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Abstract This article deals with detection of nonconstant long memory parameter in time series.

The null hypothesis presumes stationary or nonstationary time series with constant long memory

parameter, typically an I(d) series with d > −.5. The alternative corresponds to an increase in

persistence and includes in particular an abrupt or gradual change from I(d1) to I(d2), −.5 < d1 < d2.

We discuss several test statistics based on the ratio of forward and backward sample variances of the

partial sums. The consistency of the tests is proved under a very general setting. We also study

the behavior of these test statistics for some models with changing memory parameter. A simulation

study shows that our testing procedures have good finite sample properties and turn out to be more

powerful than the KPSS-based tests considered in some previous works.

Keywords: Long memory; change in persistence; ratio test; change point; V/S statistic; fractional integration.

1 Introduction

The present paper discusses statistical tests for detection of non-constant memory parameter of time

series versus the null hypothesis that this parameter has not changed over time. As a particular

case, our framework includes testing the null hypothesis that the observed series is I(d) with constant

d > −.5, against the alternative hypothesis that d has changed, together with a rigorous formulation

of the last change. This kind of testing procedure is the basis to study the dynamics of persistence,

which is a major question in economy (see Kumar and Okimoto (2007), Hassler and Nautz (2008),

Kruse (2008)).

In a parametric setting and for stationary series (|d| < .5), the problem of testing for a single change

of d was first investigated by Beran and Terrin (1996), Horváth and Shao (1999), Horváth (2001),

Yamaguchi (2011) (see also Lavielle and Ludeña (2000), Kokoszka and Leipus (2003)). Typically, the

sample is partitioned into two parts and d is estimated on each part. The test statistic is obtained by

maximizing the difference of these estimates over all such partitions. A similar approach for detecting

∗The second and fourth authors are supported by a grant (No. MIP-11155) from the Research Council of Lithuania.
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multiple changes of d was used in Shimotsu (2006) and Bardet and Kammoun (2008) in a more general

semiparametric context.

The above approach for testing against changes of d appears rather natural although applies to

abrupt changes only and involves (multiple) estimation of d which is not very accurate if the number

of observations between two change-points is not large enough; moreover, estimates of d involve band-

width or some other tuning parameters and are rather sensitive to the short memory spectrum of the

process.

On the other hand, some regression-based Lagrange Multiplier procedures have been recently dis-

cussed in Hassler and Meller (2009) and Martins and Rodrigues (2010). The series is first filtered by

(1− L)d, where L is the lag operator and d is the long memory parameter under the null hypothesis,

then the resulting series is subjected to a (augmented) Lagrange Multiplier test for fractional inte-

gration, following the pioneer works by Robinson (1991, 1994). The filtering step can be done only

approximatively and involves in practice an estimation of d. This is certainly the main reason for the

size distortion that can be noticed in the simulation study displayed in Martins and Rodrigues (2010).

In a nonparametric set up, following Kim (2000), Kim et al. (2002) proposed several tests (hereafter

referred to as Kim’s tests), based on the ratio

Kn(τ) :=
U∗n−bnτc(X)

Ubnτc(X)
, τ ∈ [0, 1], (1.1)

where

Uk(X) := 1
k2
∑k

j=1

(
Sj − j

kSk
)2
, U∗n−k(X) := 1

(n−k)2
∑n

j=k+1

(
S∗n−j+1 −

n−j+1
n−k S∗n−k

)2
(1.2)

are estimates of the second moment of forward and backward de-meaned partial sums

1

k1/2

(
Sj −

j

k
Sk

)
, j = 1, . . . , k and

1

(n− k)1/2

(
S∗n−j+1 −

n− j + 1

n− k
S∗n−k

)
, j = k + 1, . . . , n,

on intervals [1, 2, . . . , k] and [k + 1, . . . , n], respectively. Here and below, given a sample X =

(X1, . . . , Xn),

Sk :=
k∑
j=1

Xj , S∗n−k :=
n∑

j=k+1

Xj

denote the forward and backward partial sums processes. Originally developed to test for a change

from I(0) to I(1) (see also Busetti and Taylor (2004), Kim et al. (2002)), Kim’s statistics were extended

in Hassler and Scheithauer (2011) to detect a change from I(0) to I(d), d > 0.

A related, though different approach based on the so-called CUSUM statistics, was used in Ley-

bourne et al. (2007) and Sibbertsen and Kruse (2009) to test for a change from stationarity (d1 < .5)

to nonstationarity (d2 > .5), or vice versa.

The present work extends Kim’s approach to detect an abrupt or gradual change from I(d1) to

I(d2), for any −.5 < d1 < d2 with exception of values d1, d2 ∈ {.5, 1.5, . . . } (see Remark 3.2 for

an explanation of the last restriction). This includes both stationary and nonstationary null (no-

change) hypothesis which is important for applications since nonstationary time series with d > .5

are common in economics. Although our asymptotic results (Propositions 3.1, 4.1 and Corollary 3.1)

are valid for the original Kim’s statistics, see Remark 4.3, we modify Kim’s ratio (1.1), by replacing
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the second sample moments Uk(X), U∗n−k(X) in (1.2) of backward and forward partial sums by the

corresponding empirical variances Vk(X), V ∗n−k(X) defined at (3.1) below. This modification is similar

to the difference between the KPSS and the V/S tests, see Giraitis et al. (2003), and leads to a more

powerful testing procedure (see Tables 1–2). It is important to note that the ratio-based statistics

discussed in our paper, as well as the original Kim’s statistics, do not require an estimate of d and do

not depend on any tuning parameter apart from the choice of the testing interval T ⊂ (0, 1). However,

the limiting law under the null hypothesis depends on d, hence the computation of the quantile defining

the critical region requires a weakly consistent estimate of the memory parameter d.

The paper is organized as follows. Section 2 contains formulations of the null and alternative hy-

potheses, in terms of joint convergence of forward and backward partial sums processes, and describes

a class of I(d) processes which satisfy the null hypothesis. Section 3 introduces the ratio statistics

Wn, In and Rn and derives their limit distribution under the null hypothesis. Section 4 displays the-

oretical results, from which the consistency of our testing procedures is derived. Section 5 discusses

the behavior of our statistics under alternative hypothesis. Some fractionally integrated models with

constant or changing memory parameter are considered and the behavior of the above statistics for

such models is studied. Section 6 extends the tests of Section 3 to the case when observations contain

a linear trend. Section 7 contains simulations of empirical size and power of our testing procedures.

All proofs are collected in Section 8.

2 The null and alternative hypotheses

Let X = (X1, . . . , Xn) be a sample from a time series {Xj} = {Xj , j = 1, 2, . . . }. Additional assump-

tions about {Xj} will be specified later. Recall the definition of forward and backward partial sums

processes of X:

Sk = Sk(X) =
k∑
j=1

Xj , S∗n−k = S∗n−k(X) =
n∑

j=k+1

Xj .

Note that backward sums can be expressed via forward sums, and vice versa: S∗n−k = Sn − Sk,

Sk = S∗n − S∗n−k.
For 0 ≤ a < b ≤ 1, let us denote by D[a, b] the Skorokhod space of all cadlag (i.e. right-continuous

with left limits) real-valued functions defined on interval [a, b]. In this article, the space D[a, b] and the

product space D[a1, b1]×D[a2, b2], for any 0 ≤ ai < bi ≤ 1, i = 1, 2, are all endowed with the uniform

topology and the σ-field generated by the open balls (see Pollard (1984)). The weak convergence

of random elements in such spaces is denoted ’−→D[a,b]’ and ’−→D[a1,b1]×D[a2,b2]’, respectively; the

weak convergence of finite-dimensional distributions is denoted ’−→fdd’; the convergence in law and

in probability of random variables are denoted ’−→law’ and ’−→p’, respectively.

The following hypotheses are clear particular cases of our more general hypotheses H0, H1 specified

later. The null hypothesis below involves the classical type I fractional Brownian motion in the limit

behavior of the partial sums, which is typical for linear models with long memory. Recall that a type

I fractional Brownian motion BI
d+.5 = {BI

d+.5(τ), τ ≥ 0} with Hurst parameter H = d + .5 ∈ (0, 2),
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H 6= 1 is defined by

BI
d+.5(τ) :=

 1
Γ(d+1)

∫ τ
−∞

(
(τ − u)d − (−u)d+

)
dB(u), −.5 < d < .5,∫ τ

0 B
I
d−.5(u)du, .5 < d < 1.5,

(2.1)

where (−u)+ := (−u) ∨ 0 and {B(u), u ∈ R} is a standard Brownian motion with zero mean and

variance EB2(u) = |u|. Let bxc denote the integer part of the real number x ∈ R.

H0[I]: There exist d ∈ (−.5, 1.5), d 6= .5, κ > 0 and a normalization An such that

n−d−.5
(
Sbnτc − bnτcAn

)
−→D[0,1] κBI

d+.5(τ), n→∞. (2.2)

H1[I]: There exist 0 ≤ υ0 < υ1 ≤ 1, d > −.5, and a normalization An such that

(
n−d−.5

(
Sbnτ1c − bnτ1cAn

)
, n−d−.5

(
S∗bnτ2c − bnτ2cAn

))
−→D[0,υ1]×D[0,1−υ0]

(
0, Z2(τ2)

)
, (2.3)

as n→∞, where {Z2(τ), τ ∈ [1− υ1, 1− υ0]} is a nondegenerate a.s. continuous Gaussian process.

Here and hereafter, a random element Z of D[a, b] is called nondegenerate if it is not identically zero

on the interval [a, b] with positive probability, in other words, if P(Z(u) = 0, ∀u ∈ [a, b]) = 0.

Typically, the null hypothesis H0[I] is satisfied by I(d) series (see Definition 5.1). In Section 5.1

we give a general family of linear processes satisfying H0[I] including stationary and nonstationary

processes. See also Taqqu (1979), Giraitis et al. (2000) and the review paper Giraitis et al. (2009)

for some classes of non-linear stationary processes (subordinated Gaussian processes and stochastic

volatility models) which satisfy H0[I] for 0 < d < .5. The alternative hypothesis corresponds to the

processes changing from I(d1) to I(d2) processes (see Section 5.3 for examples).

Let us give a first example based on the well-known FARIMA model.

Example 2.1 A FARIMA(0, d, 0) process εt(d) =
∑∞

s=0 πs(d)ζt−s with −.5 < d < .5 satisfies as-

sumption H0[I] with κ = 1, An = 0. Here, πs(d), s = 0, 1, . . . are the moving-average coefficients (see

Definition 5.1) and {ζt} is a Gaussian white noise with zero mean and unit variance. Moreover, for

two different memory parameters −.5 < d1 < d2 < .5, we can construct a process satisfying H1[I] by

Xt :=

εt(d1), t ≤ bnθ∗c,

εt(d2), t > bnθ∗c,
(2.4)

where θ∗ ∈ (0, 1). The process in (2.4) satisfies (2.3) with d = d2, An = 0, υ0 = 0, υ1 = θ∗, and

Z2(τ) = BI
d+.5(1)−BI

d+.5(θ∗ ∨ (1− τ)), τ ∈ [0, 1].

The testing procedures of Section 3 for testing the hypotheses H0[I] and H1[I] can be extended to

more general context. We formulate these ‘extended’ hypotheses as follows.

H0: There exist normalizations γn →∞ and An such that

γ−1
n

(
Sbnτc − bnτcAn

)
−→D[0,1] Z(τ), (2.5)
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where {Z(τ), τ ∈ [0, 1]} is a nondegenerate a.s. continuous random process.

H1: There exist 0 ≤ υ0 < υ1 ≤ 1 and normalizations γn →∞ and An such that(
γ−1
n

(
Sbnτ1c − bnτ1cAn

)
, γ−1

n

(
S∗bnτ2c − bnτ2cAn

))
−→D[0,υ1]×D[0,1−υ0]

(
0, Z2(τ2)

)
, (2.6)

where {Z2(τ), τ ∈ [1− υ1, 1− υ0]} is a nondegenerate a.s. continuous random process.

Typically, normalization An = EX0 accounts for centering of observations and does not depend on

n. Assumptions H0 and H1 represent very general forms of the null (‘no change in persistence of X’)

and the alternative (‘an increase in persistence of X’) hypotheses. Indeed, an increase in persistence

of X at time k∗ = bnυ1c typically means that forward partial sums Sj , j ≤ k∗ grow at a slower rate

γn1 compared with the rate of growth γn2 of backward sums S∗j , j ≤ n − k∗. Therefore, the former

sums tend to a degenerated process Z1(τ) ≡ 0, τ ∈ [0, υ1] under the normalization γn = γn2. Clearly,

H0 and H1 are not limited to stationary processes and allow infinite variance processes as well. While

these assumptions are sufficient for derivation of the asymptotic distribution and consistency of our

tests, they need to be specified in order to be practically implemented. The hypothesis H0[I] presented

before is one example of such specification and involves the type I fBm. Another example involving

the type II fBm is presented in Section 5.2.

3 The testing procedure

3.1 The test statistics

Analogously to (1.1)–(1.2), introduce the corresponding partial sums’ variance estimates

Vk(X) :=
1

k2

k∑
j=1

(
Sj −

j

k
Sk

)2
−
(

1

k3/2

k∑
j=1

(
Sj −

j

k
Sk

))2

, (3.1)

V ∗n−k(X) :=
1

(n− k)2

n∑
j=k+1

(
S∗n−j+1 −

n− j + 1

n− k
S∗n−k

)2

−
(

1

(n− k)3/2

n∑
j=k+1

(
S∗n−j+1 −

n− j + 1

n− k
S∗n−k

))2

and the corresponding ‘backward/forward variance ratio’:

Ln(τ) :=
V ∗n−bnτc(X)

Vbnτc(X)
, τ ∈ [0, 1]. (3.2)

For a given testing interval T = [τ , τ ] ⊂ (0, 1), define the analogs of the ‘supremum’ and ‘integral’

statistics of Kim (2000):

Wn(X) := sup
τ∈T
Ln(τ), In(X) :=

∫
τ∈T
Ln(τ)dτ. (3.3)

We also define the analog of the ratio statistic introduced in Sibbertsen and Kruse (2009):

Rn(X) :=
infτ∈T V

∗
n−bnτc(X)

infτ∈T Vbnτc(X)
. (3.4)
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This statistic has also the same form as statistic R of Leybourne et al. (2007), formed as a ratio of

the minimized CUSUMs of squared residuals obtained from the backward and forward subsamples of

X, in the I(0)/I(1) framework. The limit distribution of these statistics is given in Proposition 3.1.

To this end, define

Z∗(u) := Z(1)− Z(1− u), u ∈ [0, 1] (3.5)

and a continuous time analog of the partial sums’ variance Vbnτc(X) in (3.1):

Qτ (Z) :=
1

τ2

[ ∫ τ

0

(
Z(u)− u

τ
Z(τ)

)2
du− 1

τ

(∫ τ

0

(
Z(u)− u

τ
Z(τ)

)
du
)2
]
. (3.6)

Note Q1−τ (Z∗) is the corresponding analog of V ∗n−bnτc(X) in the numerators of the statistics in (3.2)

and (3.4).

Proposition 3.1 Assume H0. Then(
γ−1
n

(
Sbnτ1c − bnτ1cAn

)
, γ−1

n

(
S∗bnτ2c − bnτ2cAn

))
−→D[0,1]×D[0,1]

(
Z(τ1), Z∗(τ2)

)
. (3.7)

Moreover, assume that

Qτ (Z) > 0 a.s. for any τ ∈ T . (3.8)

Then

Wn(X) −→law W (Z) := sup
τ∈T

Q1−τ (Z∗)

Qτ (Z)
,

In(X) −→law I(Z) :=

∫
τ∈T

Q1−τ (Z∗)

Qτ (Z)
dτ, (3.9)

Rn(X) −→law R(Z) :=
infτ∈T Q1−τ (Z∗)

infτ∈T Qτ (Z)
.

The convergence in (3.7) is an immediate consequence of H0, while the fact that (3.7) and (3.8)

imply (3.9) is a consequence of Proposition 4.1 stated in Section 4.

Remark 3.1 As noted previously, the alternative hypothesis H1 focuses on an increase of d, and the

statistics (3.3), (3.4) are defined accordingly. It is straightforward to modify our testing procedures

to test for a decrease of persistence. In such case, the corresponding test statistics are defined by

exchanging forward and backward partial sums, or Vbnτc(X) and V ∗n−bnτc(X):

W ∗n(X) := sup
τ∈T
L−1
n (τ), I∗n(X) :=

∫
τ∈T
L−1
n (τ)dτ, R∗n(X) :=

infτ∈T Vbnτc(X)

infτ∈T V ∗n−bnτc(X)
. (3.10)

In the case when the direction of the change of d is unknown, one can use various combinations of

(3.3) and (3.10), e.g. the sums

W ∗n(X) +Wn(X), I∗n(X) + In(X), R∗n(X) +Rn(X),

or the maxima

max{W ∗n(X),Wn(X)}, max{I∗n(X), In(X)}, max{R∗n(X), Rn(X)}.

The limit distributions of the above six statistics under H0 follow immediately from Proposition 3.1.

However, for a given direction of change, the ‘one-sided’ tests in (3.3), (3.4) or (3.10) are preferable

as they are more powerful.
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3.2 Practical implementation for testing H0[I] against H1[I]

Under the ‘type I fBm null hypothesis’ H0[I], the limit distribution of the above statistics follows

from Proposition 3.1 with γn = nd+.5 and Z = κBI
d+.5. In this case, condition (3.8) is verified and we

obtain the following result.

Corollary 3.1 Assume H0[I]. Then

Wn(X) −→law W (BI
d+.5), In(X) −→law I(BI

d+.5), Rn(X) −→law R(BI
d+.5). (3.11)

The process BI
d+.5 in (3.11) depends on unknown memory parameter d, and so do the upper

α−quantiles of the r.v.’s in the right-hand sides of (3.11)

q
[I]
T (α, d) := inf{x : P(T (BI

d+.5) ≤ x) ≥ 1− α)}, (3.12)

where T = W, I,R. Hence, applying the corresponding test, the unknown parameter d in (3.12) is

replaced by a consistent estimator d̂.

Testing procedure. Reject H0[I], if

Wn(X) > q
[I]
W (α, d̂), In(X) > q

[I]
I (α, d̂), Rn(X) > q

[I]
R (α, d̂), (3.13)

respectively, where d̂ is a weakly consistent estimator of d:

d̂ −→p d, n→∞. (3.14)

The fact that the replacement of d by d̂ in (3.13) preserves asymptotic significance level α is guar-

anteed by the continuity of the quantile functions provided by Proposition 3.2 below.

Proposition 3.2 Let d ∈ (−.5, 1.5), d 6= .5, α ∈ (0, 1) and let d̂ satisfy (3.14). Then

q
[I]
T (α, d̂) −→p q

[I]
T (α, d), for T = W, I, R.

We omit the proof of the above proposition since it follows the same lines as in the paper Giraitis

et al. (2006, Lemma 2.1) devoted to tests of stationarity based on the V/S statistic.

Several estimators of d can be used in (3.13). See the review paper Bardet et al. (2003) for a

discussion of some popular estimators. In our simulations we use the Non-Stationarity Extended

Local Whittle Estimator (NELWE) of Abadir et al. (2007), which applies to both stationary (|d| < .5)

and nonstationary (d > .5) cases.

Remark 3.2 The above tests can be straightforwardly extended to d > 1.5, d 6= 2.5, 3.5, . . . , provided

some modifications. Note that type I fBm for such values of d is defined by iterating the integral in

(2.1) (see e.g. Davidson and de Jong (2000)). On the other hand, although type I fBm can be defined

for d = .5, 1.5, . . . as well, these values are excluded from our discussion for the following reasons.

Firstly, in such case the normalization γn of partial sums process of I(d) processes is different from

nd+.5 and contains an additional logarithmic factor, see Liu (1998). Secondly and more importantly,

for d = .5 the limit process Z(τ) = BI
1(τ) = τBI

1(1) is a random line, in which case the limit statistic

Qτ (Z) in (3.6) degenerates to zero, see also Remark 4.2 below.
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Change point estimate. Under the alternatives H1[I] or H1 a single change-point of d need not exist

since these hypotheses are rather general and include the possibility of d changing gradually, see

Section 5.4. However, when an abrupt change-point θ∗ ∈ (0, 1) of d exists, as for instance in (2.4), one

can estimate it by

θ̂∗n := arg max
τ∈(0,1)

Ln(τ),

where Ln is defined in (3.2). Properties of θ̂∗n can be obtained following the approach in Kim et al.

(2002) and Busetti and Taylor (2004) for the change-point estimator based on Kim’s ratio Kn in (1.1).

4 Consistency and asymptotic power

It is natural to expect that under alternative hypotheses H1 or H1[I], all three statisticsWn(X), In(X),

Rn(X) tend to infinity in probability, provided the testing interval T and the degeneracy interval [0, υ1]

of forward partial sums are embedded: T ⊂ [0, υ1]. This is true indeed, see Proposition 4.1 (iii) below,

meaning that our tests are consistent. Moreover, it is of interest to determine the rate at which these

statistics grow under alternative, or the asymptotic power. The following Proposition 4.1 provides the

theoretical background to study the consistency of the tests. It also provides the limit distributions

of the test statistics under H0 since Proposition 3.1 is an easy corollary of Proposition 4.1 (ii).

Proposition 4.1 (i) Let there exist 0 ≤ υ0 < υ1 ≤ 1 and normalizations γni → ∞ and Ani, i = 1, 2

such that(
γ−1
n1

(
Sbnτ1c − bnτ1cAn1

)
, γ−1

n2

(
S∗bnτ2c − bnτ2cAn2

))
−→D[0,υ1]×D[0,1−υ0] (Z1(τ1), Z2(τ2)

)
, (4.1)

where (Z1(τ1), Z2(τ2)
)

is a two-dimensional random process having a.s. continuous trajectories on

[υ0, υ1]× [1− υ1, 1− υ0]. Then(
(n/γ2

n1)Vbnτ1c(X), (n/γ2
n2)V ∗n−bnτ2c(X)

)
−→D(0,υ1]×D[υ0,1)

(
Qτ1(Z1), Q1−τ2(Z2)

)
. (4.2)

Moreover, the limit process
(
Qτ1(Z1), Q1−τ2(Z2)

)
in (4.2) is a.s. continuous on (υ0, υ1]× [υ0, υ1).

(ii) Assume, in addition to (i), that T ⊂ U := [υ0, υ1] and

Qτ (Z1) > 0 a.s. for any τ ∈ T . (4.3)

Then, as n→∞,

(γn1/γn2)2Wn(X) −→law sup
τ∈T

Q1−τ (Z2)

Qτ (Z1)
,

(γn1/γn2)2In(X) −→law

∫
τ∈T

Q1−τ (Z2)

Qτ (Z1)
dτ, (4.4)

(γn1/γn2)2Rn(X) −→law
infτ∈T Q1−τ (Z2)

infτ∈T Qτ (Z1)
.

(iii) Assume, in addition to (i), that T ⊂ U , Z1(τ) ≡ 0, τ ∈ T and the process {Q1−τ (Z2), τ ∈ T } is

nondegenerate. Then

(γn1/γn2)2


Wn(X)

In(X)

Rn(X)

 −→p ∞. (4.5)
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Remark 4.1 Typically, under H1 relation (4.1) is satisfied with γn2 increasing much faster than γn1

(e.g., γni = ndi+.5, i = 1, 2, d1 < d2) and then (4.4) imply that Wn(X), In(X) and Rn(X) grow as

Op
(
(γn2/γn1)2

)
. Two classes of fractionally integrated series with changing memory parameter and

satisfying (4.1) are discussed in Section 5.

Remark 4.2 Note that Qτ (Z) ≥ 0 by the Cauchy-Schwarz inequality and that Qτ (Z) = 0 implies

Z(u)− u
τZ(τ) = a for all u ∈ [0, τ ] and some (random) a = a(τ). In other words, P(Qτ (Z) = 0) > 0

implies that for some (possibly, random) constants a and b,

P
(
Z(u) = a+

u

τ
b, ∀u ∈ [0, τ ]

)
> 0. (4.6)

Therefore, condition (4.3) implicitly excludes situations as in (4.6), with a 6= 0, b 6= 0, which may arise

under the null hypothesis H0, if An = 0 in (2.5) whereas the Xj ’s have nonzero mean.

Remark 4.3 All the results in Sections 3 and 5 hold for Kim’s statistics in (7.1), defined by replacing

Vbnτc(X), V ∗n−bnτc(X) in (3.3), (3.4) by Ubnτc(X), U∗n−bnτc(X) as given in (1.2), with the only differ-

ence that the functional Qτ (Z) in the corresponding statements must be replaced by its counterpart

Q̃τ (Z) := τ−2
∫ τ

0

(
Z(u)− u

τZ(τ)
)2

du, cf. (3.6).

5 Application to fractionally integrated processes

This section discusses the convergence of forward and backward partial sums for some fractionally inte-

grated models with constant or changing memory parameter and the behavior of statistics Wn, In, Rn

for such models.

5.1 Type I fractional Brownian motion and the null hypothesis H0[I]

It is well-known that type I fBm arises in the scaling limit of d−integrated, or I(d), series with i.i.d.

or martingale difference innovations. See Davydov (1970), Peligrad and Utev (1997), Marinucci and

Robinson (1999), Bružaitė and Vaičiulis (2005) and the references therein.

A formal definition of I(d) process (denoted {Xt} ∼ I(d)) for d > −.5, d 6= .5, 1.5, . . . is given

below. Let MD(0, 1) be the class of all stationary ergodic martingale differences {ζs, s ∈ Z} with unit

variance E[ζ2
0 ] = 1 and zero conditional expectation E[ζs|Fs−1] = 0, s ∈ Z, where {Fs, s ∈ Z} is a

nondecreasing family of σ−fields.

Definition 5.1 (i) Write {Xt} ∼ I(0) if

Xt =

∞∑
j=0

ajζt−j , t ∈ Z (5.1)

is a moving average with martingale difference innovations {ζj} ∈ MD(0, 1) and summable coefficients∑∞
j=0 |aj | <∞,

∑∞
j=0 aj 6= 0.

(ii) Let d ∈ (−.5, .5)\{0}. Write {Xt} ∼ I(d) if {Xt} is a fractionally integrated process

Xt = (1− L)−dYt =

∞∑
j=0

πj(d)Yt−j , t ∈ Z, (5.2)
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where Yt =
∑∞

j=0 ajζt−j, {Yt} ∼ I(0) and {πj(d), j ≥ 0} are the coefficients of the binomial expansion

(1− z)−d =
∑∞

j=0 πj(d)zj, |z| < 1.

(iii) Let d > .5 and d 6= 1.5, 2.5, . . . . Write {Xt} ∼ I(d) if Xt =
∑t

j=1 Yj , t = 1, 2, . . . , where

{Yt} ∼ I(d− 1).

In the above definition, {Xt} ∼ I(d) for d > .5 is recursively defined for t = 1, 2, . . . only, as a

p−times integrated stationary I(d − p) process, where p = bd + .5c is the integer part of d + .5, and

therefore {Xt} has stationary increments of order p. A related definition of I(d) process involving

initial values X−i, i = 0, 1, . . . is given in (5.8) below. From Definition 5.1 it also follows that an I(d)

process can be written as a weighted sum of martingale differences {ζs} ∈ MD(0, 1), for instance:

Xt =


∑

s≤t(a ? π(d))t−sζs, −.5 < d < .5,∑
s≤t
∑

1∨s≤j≤t(a ? π(d− 1))j−sζs, .5 < d < 1.5,
t = 1, 2, . . . , (5.3)

where (a ? π(d))j :=
∑j

i=0 aiπj−i(d), j ≥ 0 is the convolution of the sequences {aj} and {πj(d)}.

Proposition 5.1 (i) Let {Xt} ∼ I(d) for some d ∈ (−.5, 1.5), d 6= .5. If d ∈ (−.5, 0], assume in

addition E|ζ1|p <∞, for some p > 1/(.5 + d). Then (2.2) holds with An = 0, κ =
∑∞

i=0 ai.

(ii) Let {σs, s ∈ Z} be an almost periodic sequence such that σ̄2 := limn→∞ n
−1
∑n

s=1 σ
2
s > 0. Let

{Xt} be defined as in (5.3), where ζs, s ∈ Z are replaced by σsζs, s ∈ Z and where d and {ζs} satisfy

the conditions in (i). Then (2.2) holds with An = 0, κ = σ̄
∑∞

i=0 ai.

The proof of Proposition 5.1 can be easily reduced to the case aj = κδj , where δj = 1(j = 0) is the

delta-function. Indeed,

E

( n∑
j=1

(Xj −X0
j )

)2

= o(n2d+1), (5.4)

where X0
j := κ(1 − L)−dζj (−.5 < d < .5) and X0

j := κ
∑j

k=1(1 − L)−(d−1)ζk (.5 < d < 1.5) is

(integrated) FARIMA(0, d, 0) process. The proof of the approximation (5.4) is given in Section 8. The

proof of Proposition 5.1 is omitted in view of (5.4) and since similar results under slightly different

hypotheses on the innovations {ζs} can be found in Bružaitė and Vaičiulis (2005), Chan and Terrin

(1995), Davidson and de Jong (2000), Giraitis et al. (2012), and elsewhere. In particular, the proof

of the tightness in D[0, 1] given in Giraitis et al. (2012, Proposition 4.4.4) carries over to martingale

difference innovations, see also Bružaitė and Vaičiulis (2005, Theorem 1.2), while part (ii) follows

similarly to Bružaitė and Vaičiulis (2005, Theorem 1.1), using the fact that the sequence {σsζs}
satisfies the martingale central limit theorem: n−1/2

∑bnτc
s=1 σsζs −→fdd σ̄B(τ). Note that the linear

process {Xt} in Proposition 5.1 (ii) with heteroscedastic noise {σsζs} is nonstationary even if |d| < .5.

5.2 Type II fractional Brownian motion and the null hypothesis H0[II]

Definition 5.2 A type II fractional Brownian motion with parameter d > −.5 is defined by

BII
d+.5(τ) :=

1

Γ(d+ 1)

∫ τ

0
(τ − u)ddB(u), τ ≥ 0, (5.5)

where {B(u), u ≥ 0} is a standard Brownian motion with zero mean and variance EB2(u) = u.
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A type II fBm shares many properties of type I fBm except that it has nonstationary increments,

however, for |d| < .5 increments at time τ of type II fBm tend to those of type I fBm when τ → ∞.

Davidson and Hashimzade (2009) discussed distinctions between the distributions of type I and type

II fBms. Convergence to type II fBm of partial sums of fractionally integrated processes was studied

in Marinucci and Robinson (1999). See also Marinucci and Robinson (2000), Davidson and de Jong

(2000), Leipus and Surgailis (2010).

Type II fBm may serve as the limit process in the following specification of the null hypothesis H0.

H0[II]: There exist d > −.5, κ > 0 and a normalization An such that

n−d−.5
(
Sbnτc − bnτcAn

)
−→D[0,1] κBII

d+.5(τ). (5.6)

The alternative hypothesis to H0[II] can be again H1[I] of Section 2.

Proposition 5.1 can be extended to type II fBm convergence in (5.6) as follows. Introduce a ‘trun-

cated’ I(0) process

Yt :=


∑t

j=0 ajζt−j , t = 1, 2, . . . ,

0, t = 0,−1,−2, . . . ,
(5.7)

where {aj} and {ζs} are the same as in (5.1). Following Johansen and Nielsen (2010), for d > 0

consider a d−integrated process {Xt, t = 1, 2, . . . } with given initial values {X0
−i, i = 0, 1, . . . } as

defined by

Xt = (1− L)−d+ Yt + (1− L)−d+ (1− L)d−X
0
t , t = 1, 2, . . . , (5.8)

where {Yt} is defined in (5.7) and the operators (1−L)d± are defined through corresponding ‘truncated’

binomial expansions:

(1− L)d+Zt :=
t−1∑
j=0

πj(−d)LjZt, (1− L)d−Zt :=
∞∑
j=t

πj(−d)LjZt =
∞∑
i=0

πt+i(−d)LiZ0,

t = 1, 2, . . . . Note that the term (1 − L)−d+ (1 − L)d−X
0
t in (5.8) depends on initial values {X0

−i, i =

0, 1, . . . } only. The choice of zero initial values X0
−i = 0, i = 0, 1, . . . in (5.8) leads to type II process

Xt = (1− L)−d+ Yt, more explicitly,

Xt =

t∑
s=1

(a ? π(d))t−sζs. (5.9)

In general, {X0
−i} can be deterministic or random variables satisfying mild boundedness conditions

for the convergence of the series (1− L)d−X
0
t .

Proposition 5.2 (i) Let {Xt} be defined in (5.8), with {Yt} as in (5.7) and initial values {X0
−i}

satisfying for d > .5

sup
i≥0

E(X0
−i)

2 <∞. (5.10)

For −.5 < d ≤ .5 assume that X0
−i ≡ 0. If d ∈ (−.5, 0], assume in addition E|ζ1|p < ∞, for some

p > 1/(.5 + d). Then (5.6) holds with An = 0, κ =
∑∞

i=0 ai.
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(ii) Let {σs, s ≥ 1} be an almost periodic sequence such that σ̄2 := limn→∞ n
−1
∑n

s=1 σ
2
s > 0. Let

{Xt} be defined as in (5.9), where ζs, s ≥ 1 are replaced by σsζs, s ≥ 1 and where d and {ζs} satisfy

the conditions in (i). Then (5.6) holds with An = 0, κ = σ̄
∑∞

i=0 ai.

Remark 5.1 For d > .5, Proposition 5.2 (i) implies that any L2−bounded initial values have no effect

on the limit distribution of partial sums of the process in (5.8). As it follows from the proof in Section 8

below, the above statement also remains valid for arbitrary initial values {X0
−i} possibly depending

on n and growing at a rate Op(n
λ/2) with some 0 < λ < 1 ∧ (2d − 1), viz., supi≥0 E(X0

−i)
2 < Cnλ,

d > 0.

Similarly to Corollary 3.1, Proposition 3.1 implies the following corollary.

Corollary 5.1 Let {Xt} satisfy the conditions of Proposition 5.2. Then

Wn(X) −→law W (BII
d+.5), In(X) −→law I(BII

d+.5), Rn(X) −→law R(BII
d+.5), (5.11)

where {BII
d+.5(τ), τ ∈ [0, 1]} is a type II fBm as defined in (5.5).

Remark 5.2 Numerical experiments confirm that the upper quantiles q
[II]
T (α, d), T = W, I,R, of the

limit r.v.s on the r.h.s. of (5.11) are very close to the corresponding upper quantiles q
[I]
T (α, d) of the

limiting statistics in (3.11) when d is smaller than 1 (see Figure 1 in the particular case T = I). In

other words, from a practical point of view, there is not much difference between type I fBM and type

II fBm null hypotheses H0[I] and H0[II] in testing for a change of d when d < 1.

0 0.5 1 1.5
0.5

1

1.5

2

2.5

3

3.5

4

Figure 1: Representation of the ratio q
[I]
I (0.05, d)/q

[II]
I (0.05, d) as function of d, with the choice τ = 0.1

and τ = 0.9.

5.3 Fractionally integrated models with changing memory parameter

Let us discuss two nonparametric classes of nonstationary time series with time-varying long memory

parameter termed ‘rapidly changing memory’ and ‘gradually changing memory’.
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Rapidly changing memory. This class is obtained by replacing parameter d by a function d(t/n) ∈
[0,∞) in the FARIMA(0, d, 0) filter

πj(d) =
d

1
· d+ 1

2
· · · d− 1 + j

j
=

Γ(d+ j)

j!Γ(d)
, j = 1, 2, . . . , π0(d) := 1. (5.12)

Let d(τ), τ ∈ [0, 1] be a function taking values in the interval [0,∞). (More precise conditions on the

function d(τ) will be specified below.) Define

b1,j(t) := πj
(
d( tn)

)
, j = 0, 1, . . . ,

X1,t :=

t∑
s=1

b1,t−s(t)ζs, t = 1, . . . , n, (5.13)

where the innovations ζs, s ≥ 1 satisfy the conditions of Definition 5.1. The particular case

d(τ) =

0, τ ∈ [0, θ∗],

1, τ ∈ (θ∗, 1]
(5.14)

for some 0 < θ∗ < 1, leads to the model

X1,t =

ζt, t = 1, 2, . . . , bθ∗nc,∑t
s=1 ζs t = bθ∗nc+ 1, . . . , n,

(5.15)

which corresponds to transition I(0)→ I(1) at time bθ∗nc+ 1. A more general step function

d(τ) =

d1, τ ∈ [0, θ∗],

d2, τ ∈ (θ∗, 1]
(5.16)

corresponds to {X1,t} changing from I(d1) to I(d2) at time bθ∗nc+ 1.

Gradually changing memory. This class of nonstationary time-varying fractionally integrated processes

was defined in Philippe et al. (2006a,b, 2008). Here, we use a truncated modification of these processes

with slowly varying memory parameter d(t/n) ∈ [0,∞), defined as

b2,j(t) :=
d( tn)

1
·
d( t−1

n ) + 1

2
· · ·

d( t−j+1
n )− 1 + j

j
, j = 1, 2, . . . , b2,0(t) := 1,

X2,t :=

t∑
s=1

b2,t−s(t)ζs, t = 1, . . . , n. (5.17)

Contrary to (5.13), the process in (5.17) satisfies an autoregressive time-varying fractionally integrated

equation with ζt on the right-hand side, see Philippe et al. (2008). In the case when d(τ) ≡ d is constant

function, the coefficients b2,j(t) in (5.17) coincide with FARIMA(0, d, 0) coefficients in (5.12) and in

this case the processes {X1,t} and {X2,t} in (5.13) and (5.17) coincide.

To see the difference between these two classes, consider the case of step function in (5.14). Then

X2,t =

ζt, t = 1, 2, . . . , bθ∗nc,∑t
s=bθ∗nc+1 ζs +

∑bθ∗nc
s=1

t−bθ∗nc
t−s ζs, t = bθ∗nc+ 1, . . . , n.

(5.18)
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Note t−bθ∗nc
t−s = 0 for t = bθ∗nc and monotonically increases with t ≥ bθ∗nc. Therefore, (5.18) embodies

a gradual transition from I(0) to I(1), in contrast to an abrupt change of these regimes in (5.15). The

distinction between the two models (5.15) and (5.18) can be clearly seen from the variance behavior:

the variance of X1,t exhibits a jump from 1 to bθ∗nc+ 1 = O(n) at time t = bθ∗nc+ 1, after which it

linearly increases with t, while the variance of X2,t changes ‘smoothly’ with t:

Var(X2,t) =

1, t = 1, 2, . . . , bθ∗nc,

(t− bθ∗nc) +
∑bθ∗nc

s=1
(t−bθ∗nc)2

(t−s)2 , t = bθ∗nc+ 1, . . . , n.

Similar distinctions between (5.13) and (5.17) prevail also in the case of general ‘memory function’

d(·): when the memory parameter d(t/n) changes with t, this change gradually affects the lagged

ratios in the coefficients b2,j(t) in (5.17), and not all lagged ratios simultaneously as in the case of

b1,j(t), see (5.12).

5.4 Asymptotics of change-point statistics for fractionally integrated models with

changing memory parameter

In this subsection we study the joint convergence of forward and backward partial sums as in (2.6) for

the two models in (5.13) and (5.17) with time-varying memory parameter d(t/n). After the statement

of Proposition 5.3 below, we discuss its implications for the asymptotic power of our tests.

Let us specify a class of ‘memory functions’ d(·). For 0 < d1 < d2 <∞ and 0 ≤ θ ≤ θ ≤ 1, introduce

the class Dθ,θ(d1, d2) of left-continuous nondecreasing functions d(·) ≡ {d(τ), τ ∈ [0, 1]} such that

d(τ) =

d1, τ ∈ [0, θ],

d2, τ ∈ [θ, 1],
, d1 < d(τ) < d2, θ < τ < θ. (5.19)

The interval Θ := [θ, θ] will be called the memory change interval. Note that for θ = θ ≡ θ∗, the

class Dθ∗,θ∗(d1, d2) consists of a single step function in (5.16). Recall from Section 3 that the interval

T = [τ , τ ] in memory change statistics in (3.3) and (3.4) is called the (memory) testing interval. When

discussing the behavior of memory tests under alternatives in (5.13), (5.17) with changing memory

parameter, the intervals Θ and T need not coincide since Θ is not known a priori.

With a given d(·) ∈ Dθ,θ(d1, d2), we associate a function

H(u, v) :=


∫ v
u
d(x)−d2
v−x dx, 0 ≤ u ≤ v ≤ 1,

0, otherwise
(5.20)

Note H(u, v) ≤ 0 since d(x) ≤ d2, x ∈ [0, 1] and H(u, v) = 0 if θ ≤ u ≤ v ≤ 1. Define two Gaussian

processes Z1 and Z2 by

Z1(τ) :=
1

Γ(d2)

∫ τ

0

{∫ τ

θ
(v − u)d2−1

+ dv
}

dB(u) = BII
d2+.5(τ)−BII

d2+.5(θ),

Z2(τ) :=
1

Γ(d2)

∫ τ

0

{∫ τ

θ
(v − u)d2−1

+ eH(u,v)dv
}

dB(u), τ > θ, (5.21)

Z1(τ) = Z2(τ) := 0, τ ∈ [0, θ].
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The processes {Zi(τ),∈ [0, 1]}, i = 1, 2 are well-defined for any d2 > −0.5 and have a.s. continuous

trajectories. In the case θ = θ ≡ θ∗ and a step function d(·) in (5.19), Z2(τ) for τ > θ∗ can be

rewritten as

Z2(τ) =
1

Γ(d2)

∫ τ

0

{∫ τ

θ∗
(v − u)d1−1

+ (v − θ∗)d2−d1dv
}

dB(u). (5.22)

Related class of Gaussian processes was discussed in Philippe et al. (2008) and Surgailis (2008).

Proposition 5.3 Let d(·) ∈ Dθ,θ(d1, d2) for some 0 ≤ d1 < d2 < ∞, 0 ≤ θ ≤ θ ≤ 1. Let Si,k and

S∗i,n−k, i = 1, 2 be the forward and backward partial sums processes corresponding to time-varying

fractional filters {Xi,t}, i = 1, 2 in (5.13), (5.17), with memory parameter d(t/n) and standardized

i.i.d. innovations {ζj , j ≥ 1}. Moreover, in the case d1 = 0 we assume that E|ζ1|2+δ < ∞ for some

δ > 0. Then

(i) for any θ ∈ (0, θ] with θ > 0(
n−d1−.5Si,bnτ1c, n

−d2−.5S∗i,bnτ2c
)
−→D[0,θ]×D[0,1−τ ] (Zi,1(τ1), Zi,2(τ2)

)
, i = 1, 2, (5.23)

where

Zi,1(τ) := BII
d1+.5(τ), Zi,2(τ) := Z∗i (τ) = Zi(1)−Zi(1− τ), i = 1, 2, (5.24)

and Zi, i = 1, 2 are defined in (5.21);

(ii) for any θ ∈ [θ, 1], for any d > d(θ), d1 < d < d2(
n−d−.5Si,bnτ1c, n

−d2−.5S∗i,bnτ2c
)
−→Db0,θc×D[0,1−τ ] (0, Zi,2(τ2)

)
, i = 1, 2, (5.25)

where Zi,2, i = 1, 2 are the same as in (5.24).

The power of our tests depends on whether the testing and the memory change intervals have an

empty intersection or not. When τ < θ, Proposition 5.3 (i) applies taking θ = τ and the asymptotic

distribution of the memory test statistics for models (5.13) and (5.17) follows from Proposition 4.1

(4.4), with normalization (γn2/γn1)2 = n2(d1−d2) → 0, implying the consistency of the tests. But this

situation is untypical for practical applications and hence not very interesting. Even less interesting

seems the case when a change of memory ends before the start of the testing interval, i.e., when θ ≤ τ .

Although the last case is not covered by Proposition 5.3, the limit distribution of the test statistics

for models (5.13), (5.17) exists with trivial normalization (γn2/γn1)2 = 1 and therefore our tests are

inconsistent, which is quite natural in this case.

Let us turn to some more interesting situations, corresponding to the case when the intervals T and

Θ have a nonempty intersection of positive length. There are two possibilities:

Case 1: τ < θ ≤ τ (a change of memory occurs after the beginning of the testing interval), and

Case 2: θ ≤ τ < θ (a change of memory occurs before the beginning of the testing interval).

Let us consider Cases 1 and 2 in more detail.

Case 1. Let T̃ := [τ , θ] ⊂ T . Introduce the following ‘dominated’ (see (5.27)) statistics:

W̃n(X) := sup
τ∈T̃

V ∗n−bnτc(X)

Vbnτc(X)
, Ĩn(X) :=

∫
T̃

V ∗n−bnτc(X)

Vbnτc(X)
dτ, (5.26)

R̃n(X) :=
infτ∈T V

∗
n−bnτc(X)

inf
τ∈T̃ Vbnτc(X)

.
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Clearly,

Wn(X) ≥ W̃n(X), In(X) ≥ Ĩn(X), Rn(X) ≥ R̃n(X), a.s. (5.27)

The limit distribution of (5.26) for models (5.13) and (5.17) can be derived from propositions 4.1

and 5.3 (i) choosing θ = θ. In particular, it follows that n2(d1−d2)W̃n(Xi), n
2(d1−d2)Ĩn(Xi), and

n2(d1−d2)R̃n(Xi), i = 1, 2 tend, in distribution, to the corresponding limits in (4.4), with T replaced

by T̃ and Z1 = Zi,1, Z2 = Zi,2, i = 1, 2 as defined in (5.24). Moreover, it can be shown that

n−2d1Vbnτc(Xi) −→p ∞ for any τ ∈ T \ T̃ . Therefore, in Case 1, the limit distributions of the original

statistics in (3.3) and the ‘dominated’ statistics in (5.26) coincide.

Case 2. In this case, define T̃ := [τ , θ̃] ⊂ T , where θ̃ ∈ (τ , θ) is an inner point of the interval

[τ , θ]. Let W̃n(X), Ĩn(X), R̃n(X) be defined as in (5.26). Obviously, relations (5.27) hold as in the

previous case. Since the memory parameter increases on the interval T̃ , the limit distribution of the

process Vbnτc(Xi), τ ∈ T̃ in the denominator of the statistics is not identified from Proposition 4.1

(ii). Nevertheless in this case we can use Propositions 4.1 (iii) and 5.3 (ii) to obtain a robust rate of

growth of the memory statistics in (5.26) and (3.3). Indeed from Proposition 5.3 (ii) with θ = θ̃, we

have that n−2dVbnτc(Xi) −→D(0,θ̃] 0 for any d2 > d > d(θ̃) and hence n2(d−d2)Wn(Xi), n
2(d−d2)In(Xi)

and n2(d−d2)Rn(Xi), i = 1, 2 tend to infinity, in probability.

6 Testing in the presence of linear trend

The tests discussed in Section 3 can be further developed to include the presence of a linear trend.

In such a case, partial sums Sbnτc may grow as a second-order polynomial of bnτc (see Example 6.1

below). Then, the null and alternative hypotheses have to be modified, as follows.

Htrend
0 : There exists normalizations γn →∞, An, Bn, such that

γ−1
n

(
Sbnτc − bnτcAn − bnτc2Bn

)
−→D[0,1] Z(τ), (6.1)

where {Z(τ), τ ∈ [0, 1]} is a nondegenerate a.s. continuous random process.

Htrend
1 : There exist 0 ≤ υ0 < υ1 ≤ 1 and normalizations γn →∞, An, Bn, such that(

γ−1
n

(
Sbnτ1c − bnτ1cAn − bnτc2Bn

)
, γ−1

n

(
S∗bnτ2c − bnτ2c∗An − bnτ2c2∗Bn

))
(6.2)

−→D[0,υ1]×D[0,1−υ0]

(
0, Z2(τ2)

)
,

where {Z2(τ), τ ∈ [1 − υ1, 1 − υ0]} is a nondegenerate a.s. continuous random process, bnτc∗ :=

n− bn(1− τ)c = bnτc, bnτc2∗ := n2 − bn(1− τ)c2.

Example 6.1 Consider a process {Xt} defined as in Example 2.1 from equation (2.4). We construct

the process {Xt} by adding to {Xt} an additive linear trend:

Xt = Xt + a+ bt, (6.3)

where a, b are some coefficients.
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When d1 = d2 = d, we have Xt = εt(d) + a + bt and {Xt} satisfies the hypothesis Htrend
0 with

Bn = b
2 , An = a+ b

2 and Z = BI
d+.5. Indeed,

n−d−.5
(
Sbnτc(X )− bnτc(a+

b

2
)− bnτc2 b

2

)
= n−d−.5Sbnτc(ε(d)) + n−d−.5

{
abnτc+ b

bnτc∑
j=1

j − bnτc
(
a+

b

2

)
− bnτc2 b

2

}
= n−d−.5Sbnτc(ε(d)) −→D[0,1] BI

d+.5(τ), n→∞.

Under linear trend, the test statistics of Section 3.1 have to be modified, as follows. For a fixed

1 ≤ k ≤ n, let

X̂j := Xj − âk(X)− b̂k(X)j, 1 ≤ j ≤ k

denote the residuals from the least-squares regression of (Xj)1≤j≤k on (a+ bj)1≤j≤k. Similarly, let

X̂∗j := Xj − â∗n−k(X)− b̂∗n−k(X)j, k < j ≤ n

denote the residuals from the least-squares regression of (Xj)k<j≤n on (a+bj)k<j≤n. The corresponding

intercept and slope coefficients are defined through (âk(X), b̂k(X)) := argmin
(∑k

j=1(Xj − a− bj)2
)
,

(â∗n−k(X), b̂∗n−k(X)) := argmin
(∑n

j=k+1(Xj−a−bj)2
)
. The variance estimates of de-trended forward

and backward partial sums are defined by

Vk(X) :=
1

k2

k∑
j=1

(Ŝj)
2 −

(
1

k3/2

k∑
j=1

Ŝj

)2

,

V∗n−k(X) :=
1

(n− k)2

n∑
j=k+1

(
Ŝ∗n−j+1

)2 − ( 1

(n− k)3/2

n∑
j=k+1

Ŝ∗n−j+1

)2

,

(6.4)

where

Ŝj :=

j∑
i=1

X̂i =

j∑
i=1

(Xi − âk(X)− b̂k(X)i), Ŝ∗n−j+1 :=
n∑
i=j

X̂∗i =
n∑
i=j

(Xi − â∗n−k(X)− b̂∗n−k(X)i),

cf. (3.1). Replacing Vn(X), V ∗n−k(X) in (3.3)–(3.4) by the corresponding quantities Vn(X),V∗n−k(X),

the statistics in presence of a linear trend are given by

Wn(X) := sup
τ∈T

V∗n−bnτc(X)

Vbnτc(X)
, In(X) :=

∫
τ∈T

V∗n−bnτc(X)

Vbnτc(X)
dτ, Rn(X) :=

infτ∈T V∗n−bnτc(X)

infτ∈T Vbnτc(X)
.

(6.5)

Note that (6.5) agree with (3.3)–(3.4) if no trend is assumed (i.e. b is known and equal to zero).

Under the null hypothesis Htrend
0 the distributions of (6.5) can be obtained similarly to that of (3.3)–

(3.4). The following proposition is the analog of the corresponding result (4.2) of Proposition 4.1 (ii)

for (6.4).

Proposition 6.1 Under the hypothesis Htrend
0 ,(

(n/γ2
n)Vbnτ1c(X), (n/γ2

n)V∗n−bnτ2c(X)
)
−→D(0,1]×D[0,1)

(
Qτ1(Z),Q1−τ2(Z∗)

)
, (6.6)
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where Z∗ is defined in (3.5) and

Qτ (Z) :=
1

τ2

[ ∫ τ

0
Z(u, τ)2du− 1

τ

(∫ τ

0
Z(u, τ)du

)2
]
, (6.7)

Z(u, τ) := Z(u) + 2Z(τ)
u

τ

(
1− 3u

2τ

)
+ 6
(1

τ

∫ τ

0
Z(v)dv

)u
τ

(
1− u

τ

)
.

Note that the process {Z(u, τ), u ∈ [0, τ ]} defined in (6.7) satisfies Z(0, τ) = Z(τ, τ) = 0 and∫ τ
0 Z(u, τ)du = 0. In the case of Brownian motion Z = B, {Z(u, 1), u ∈ [0, 1]} is known as the

second level Brownian bridge (see MacNeill (1978)). Extension of Proposition 3.1 to the modified

statistics Wn, In, Rn with the ratio (3.2) replaced by V∗n−bnτc(X)/Vbnτc(X) is straightforward. Clearly,

Z(u, τ) in (6.7) is different from the corresponding process Z(u) − u
τZ(τ) in (3.6) and therefore the

de-trended tests Wn, In, Rn have different critical regions from those in (3.13). We also note that

{Z(u, τ)} can be heuristically defined as the residual process {Z(u, τ) = Z(u) − âτu − b̂τ
2 u

2} from

the least squares regression of (dZ(u)/du)u∈[0,τ ] onto (a + bu)u∈[0,τ ], with (âτ , b̂τ ) minimizing the

integral
∫ τ

0 (dZ(u)
du − a − bu)2du. Indeed, the above minimization problem leads to linear equations∫ τ

0 (dZ(u)
du − a− bu)du = 0,

∫ τ
0 (dZ(u)

du − a− bu)udu = 0, or

Z(τ) = aτ + b
τ2

2
, τZ(τ)−

∫ τ

0
Z(u)du = a

τ2

2
+ b

τ3

3
,

where we used
∫ τ

0 u
dZ(u)

du du =
∫ τ

0 udZ(u) = τZ(τ)−
∫ τ

0 Z(u)du. Solving the above equations leads to

the same âτ = − 2
τZ(τ) + 6

τ2

∫ τ
0 Z(u)du, b̂τ = 6

τ2
Z(τ)− 12

τ3

∫ τ
0 Z(u)du as in (8.18) below. The resulting

expression of Z(u, τ) = Z(u)− âτu− b̂τ
2 u

2 agrees with (6.7).

7 Simulation study

In this section we compare from numerical experiments the finite-sample performance of the three test

statistics in (3.13) for testing H0[I] against H1[I] with nominal level α = 5%. A comparison with the

Kim’s tests based on the ratio (1.1), is also provided.

The main steps to implement the testing procedures defined in (3.13) are the following:

• We choose τ = 1 − τ for τ ∈ (0, 1) which defines the testing region T := [τ , 1 − τ ]. Sensitivity

to the choice of τ is also explored;

• For each simulated sample X1, . . . , Xn, we estimate the parameter d using the NELWE of Abadir

et al. (2007) as the estimate of d. Following the recommendation in Abadir et al. (2007), the

bandwidth parameter in the above estimate is chosen to be b
√
nc;

• The quantiles q
[I]
T (.05, d) in the critical regions (3.13), as functions of d, for T = W,R, I, and

for chosen values of τ , are approximated by extensive Monte Carlo experiments. The integral

appearing in the definition of T = I in (3.9) is approximated by a Riemann sum. See also Hassler

and Scheithauer (2008) on approximation of similar quantiles. The quantile graph for T = I

and three different values of τ is shown in Figure 2.
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Figure 2: The upper 5% quantile of I(BI
d+.5) as a function of d, for τ = .05 (solid graph); τ = .1 (solid

graph with points); τ = .2 (dashed graph). The right plot is a zoom in of the left plot in the region

d ∈ [0, .5).

7.1 Empirical comparisons of the tests In, Rn, Wn, I
Kim
n , RKim

n , and WKim
n

In this section we compare the test procedures based on our statistics In, Rn, Wn and the corresponding

Kim’s statistics

IKimn :=

∫
T
Kn(τ)dτ, WKim

n := sup
τ∈T
Kn(τ) and RKimn :=

infτ∈T U
∗
n−bnτc(X)

infτ∈T Ubnτc(X)
, (7.1)

where Kn(τ), Uk(X) and U∗n−k(X) are defined in (1.1) and (1.2).

The empirical size of the above tests is evaluated by simulating the FARIMA(0,d,0) process of

Example 2.1 for d = 0, 0.1, 0.2, 0.3, 0.4. The empirical power is estimated by simulating the FARIMA

process of Example 2.1, (2.4) with of d1, d2 ∈ {0, 0.1, 0.2, 0.3, 0.4} and the change-point of d in the

middle of the sample (θ∗ = 0.5).

Tables 1 and 2 display the estimated level and power based on 104 replications of the testing

procedures, for respective sample sizes n = 500 and n = 5000. These results show that for all six

statistics and three values of τ = 0.05, 0.1, 0.2, the estimated level is close to the nominal level 5%.

We also observe that while the performance of the tests In and IKimn does not much depend on τ , the

last property is not shared by WKim
n , RKimn , Wn and Rn .

Tables 1 and 2 suggest that when τ is small, In clearly outperforms the remaining five tests. As

τ increases, the performance of Rn becomes comparable to that of In, while Wn, IKimn , WKim
n and

RKimn still remain less efficient. Clearly, it make sense to choose τ as small as possible, since none of

these tests can detect a change-point that occurs outside the testing interval T = [τ , 1− τ ].

In conclusion, given the choice τ = 0.05 (or τ = 0.1), the statistic In seems preferable to Wn and

Rn and the three Kim’s statistics IKimn , RKimn , and WKim
n .

7.2 Further simulation results pertaining to the test In

As noted above, the results in Subsection 7.1 suggest that In is favorable among the six tests in

the case when the observations follow a ‘pure’ FARIMA(0,d,0) model with a possible jump of d for
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d ∈ [0, .5). Here, we explore the performance of In when the observations are simulated from other

classes of processes following the hypotheses H0[I] and H1[I].

Table 3 extends the results of Tables 1 and 2 to a larger interval of d values, viz., 0 < d1 ≤ d2 < 1.5.

In accordance with Definition 5.1 (iii), for d > .5 the FARIMA(0, d, 0) process is defined by

Xt =

t∑
i=1

Yi, t = 1, . . . , n, (7.2)

where {Yt} is a stationary FARIMA(0, d− 1, 0) as in Example 2.1.

Figure 3 shows some trajectories simulated from model (2.4) with fixed d2 − d1 = 0.3 and three

different values of d1, with the change-point in the middle of the sample. From visual inspection

of these paths, it seems that it is more difficult to detect a change in the memory parameter when

0 ≤ d1 < d2 < .5 or .5 < d1 < d2 (top or bottom graphs) than when d1 < .5 < d2 (middle graph). Note

that the top and bottom graphs of Figure 3 correspond to d1, d2 belonging to the same ‘stationarity

interval’ (either [0, .5) or (.5, 1.5)) and the middle graph to d1, d2 falling into different ‘stationarity

intervals’ [0, .5) and (.5, 1.5). The above visual observation is indeed confirmed in Table 3. The last

table also shows that when the difference d2 − d1 is fixed, the test In is more powerful in the region

0 ≤ d1 < d2 < .5 than in .5 < d1 < d2.

Tables 4 and 5 illustrate the performance of In when a positive, resp. negative, autoregressive part

is added to the fractional processes {εt(di)} (i = 1, 2) in the model (2.4).

These tables show that the performance of the test is essentially preserved, especially when the

autoregressive coefficient is positive. However in the case of negative autoregressive coefficient the

estimated level is slightly more disturbed (Table 5). Tables 3, 4 and 5 also confirm that In is not very

sensitive to the choice of the parameter τ , i.e. to the length of testing interval.

Finally, we assess the power of the test for fractionally integrated models with changing memory

parameters discussed in Section 5.3. Figure 4 presents sample paths of the rapidly changing memory

model in (5.13) and the gradually changing memory model in (5.17), for the same function d(t/n) =

.2+ .6 t/n with the middle point t = bn/2c marking the transition from ‘stationarity regime’ d ∈ [0, .5)

to ‘nonstationarity regime’ d ∈ (.5, 1). The visual impression from Figure 4 is that the above transition

is much easier to detect for the rapidly changing memory model than for the gradually changing

memory model.

Table 6 displays the estimated power of the test In for the rapidly changing memory model (5.13)

when d(τ) = d1 + (d2 − d1)τ , θ = 0 and θ = 1. The null hypothesis is naturally less often rejected for

this model than for the model defined in (2.4), cf. Table 3. However, the estimated power still seems

to be satisfactory. Similar simulations under gradually changing memory model (not included in this

paper) show that the test has more difficulty to detect this type of changing memory on small samples.

However, when n is larger than 500, the difference in the estimated power between the gradually and

rapidly memory cases becomes negligible.

7.3 Simulations in the presence of linear trend

In this section we illustrate the performances of the test based on the de-trended statistic In defined in

(6.5). This testing procedure is implemented similarly to the previous one. Note that the critical region

still depends on the memory parameter d which is estimated as follows: having observed X1, . . . , Xn
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we estimate d using NELWE estimate on the residuals from the least-squares regression of (Xj)1≤j≤n

on (a+ bj)1≤j≤n.

First we apply the de-trended test on series without trend, namely from model (2.4). Table 7

displays the estimated level and power of the test for this model. The estimated level is close to the

nominal level. Moreover the power is close to that obtained in Table 3. Therefore the performances

of the testing procedure are preserved even if the estimation of the linear trend was not necessary.

Second we assess the power of this test in presence of a linear trend (see Table 8). Figure 5 presents

sample paths of models defined in (6.3) with a = 1, b = .01, θ∗ = 1/2, n = 500 and different values

of (d1, d2). For this model, Table 8 summarizes the estimated level and power, which are similar to

Table 7.
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Figure 3: Sample paths simulated from model (2.4) for different values of d1 and d2: d1 = .1, d2 = .4

(top); d1 = .3, d2 = .6 (middle); d1 = .8, d2 = 1.1 (bottom). The sample size is n = 1000.
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Figure 4: Sample paths simulated from models (5.13) (top) and (5.17) (bottom) with d(τ) = .2 + .6τ ,

θ = 0 and θ = 1.
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Figure 5: Comparison of trajectories simulated from the model (6.3) with a = 1, b = .01, change point

θ∗ = 1/2 and different values of d1 and d2: d1 = .1, d2 = .4 (top); d1 = .3, d2 = .6 (middle); d1 = .8,

d2 = 1.1 (bottom). The sample size is n = 500.
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τ = 0.05 τ = 0.1 τ = 0.2
HHH

HHHHd2

d1
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

Wn statistic

0 3.6 2.4 2.3

0.1 10.0 4.4 6.3 2.5 10.4 2.6

0.2 19.0 10.2 4.4 11.8 5.1 2.8 25.2 9.9 2.7

0.3 25.9 16.9 9.5 4.9 15.9 9.0 4.7 3.1 45.1 23.3 9.4 2.9

0.4 31.0 21.6 13.1 8.3 4.8 19.9 12.2 6.8 4.5 2.8 65.1 42 21.0 8.7 2.6

Rn statistic

0 3.4 2.6 2.5

0.1 11.2 3.9 8.0 2.9 11.6 2.9

0.2 24.5 12.0 4.6 17.0 7.2 3.1 28.5 11.3 3.2

0.3 37.6 23.1 11.5 4.9 27.2 14.7 6.6 3.4 50.6 27.3 11.1 3.4

0.4 49.5 34.0 19.8 10.6 5.0 41.1 23.7 12.4 6.7 3.0 72.0 49.0 25.5 10.5 3.4

In statistic

0 3.2 3.0 2.9

0.1 12.6 4.2 10.7 3.4 13.2 3.6

0.2 29.1 13.6 5.0 25.5 11.1 3.8 31.8 13.4 3.8

0.3 48.5 27.8 13.5 5.1 43.4 23.3 10.2 4.1 55.0 31.0 13.0 4.0

0.4 66.1 45.0 25.6 12.1 4.9 64.9 41.3 22.1 9.9 4.2 77.1 54.3 29.6 12.4 4.1

WKim
n statistic

0 3.1 3.3 3.3

0.1 6.6 3.2 8.3 3.7 10.3 4.2

0.2 10.7 6.2 3.3 14.6 7.4 3.6 20.2 9.5 4.4

0.3 16.5 9.0 5.3 3.1 25.2 13.6 7.0 3.8 36.6 20 9.4 4.4

0.4 24.4 15.5 9.5 5.7 3.4 41.7 26.4 15.7 7.7 4.2 58.3 37.9 21.7 10.0 4.8

RKimn statistic

0 3.7 3.3 3.3

0.1 9.4 4.3 9.9 4.4 10.7 4.3

0.2 17.1 9.5 4.7 21.1 11.1 4.7 24.1 11.6 4.5

0.3 25.8 15.3 8.8 4.6 34.9 20.6 10.6 5.1 42.4 24.2 11.7 4.8

0.4 31.4 22.1 13.6 8.4 4.9 47.4 32.3 19.1 10.3 5.0 58.8 40.2 22.5 11.7 4.9

IKimn statistic

0 2.6 2.8 3.1

0.1 8.6 3.2 9.5 3.5 10.5 4.0

0.2 18.7 8.3 3.3 20.8 9.1 3.5 23.1 10.4 4.0

0.3 35.0 18.3 8.4 3.1 38.9 21.0 9.3 3.4 42.0 23.4 10.6 4.0

0.4 57.0 37.3 20.5 9.0 3.9 62.3 41.3 23.5 10.2 4.2 64.8 43.8 24.5 11.3 4.4

Table 1: Estimated level (d1 = d2) and power (d1 6= d2) (in %) of the tests In, Wn, Rn, IKimn , WKim
n ,

RKimn . The nominal level is α = 5%. The samples are simulated from model (2.4) with θ∗ = 1/2. The

sample size is 500 and the number of independent replications is 104.
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τ = 0.05 τ = 0.1 τ = 0.2
HHH

HHHHd2

d1
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

Wn statistic

0 3.4 3.6 4.1

0.1 20.2 3.7 24.2 4.1 28.3 4.5

0.2 50.1 16.0 3.8 61.1 20.9 4.5 68.6 26.0 4.7

0.3 74.6 38.5 13.3 3.6 87.1 51.1 17.7 4.1 93.1 62.0 23.6 4.7

0.4 88.7 64.1 31.2 11.6 3.7 96.6 79.6 44.3 15.0 4.0 99.2 88.8 56.7 20.0 4.4

Rn statistic

0 3.7 3.9 4.1

0.1 29.0 5.1 30.9 4.9 31.3 5.0

0.2 65.0 25.3 4.9 71.0 28.1 4.8 73.1 30.5 4.6

0.3 85.3 53.8 21.2 5.0 91.7 62.2 24.4 4.9 94.3 67.0 26.5 4.9

0.4 94.1 75.7 44.8 18.4 4.8 98.0 84.8 54.1 21.7 4.6 99.3 90.3 60.3 24.4 4.5

In statistic

0 2.9 3.2 3.6

0.1 28.5 3.4 29.5 3.8 30.7 4.1

0.2 73.4 27.8 3.6 74.0 28.8 3.9 73.7 30.1 4.2

0.3 95.9 68.0 24.8 3.5 96.3 69.8 26.5 3.7 95.9 69.7 27.9 4.3

0.4 99.5 92.3 62.5 21.8 3.5 99.7 93.6 65.7 24.1 3.8 99.7 94.1 66.6 25.6 4.0

WKim
n statistic

0 5.0 4.9 4.8

0.1 20.3 5.1 22.0 5.1 23.8 5.2

0.2 44.9 15.7 4.7 51.1 18.1 5.1 55.2 21.2 5.5

0.3 68.8 37.2 13.4 4.6 77.6 45.7 16.6 5.0 83.1 52.1 19.5 5.3

0.4 83.7 60.1 32.4 12.8 4.2 92.2 72.4 41.4 14.9 4.5 96.0 79.7 48.1 18.2 4.6

RKimn statistic

0 3.9 4.2 4.5

0.1 26.5 4.8 26.5 4.6 26.6 5.1

0.2 59.6 23.1 4.9 63.2 24.9 5.1 62.7 24.6 5.1

0.3 81.6 49.9 19.6 5.4 87.0 56.4 22.4 5.2 87.4 57.4 22.6 5.0

0.4 91.9 72.1 42.0 17.6 4.9 96.5 80.8 50.1 20.4 4.9 97.2 82.6 52.5 20.1 4.5

IKimn statistic

0 3.5 3.7 4.2

0.1 23.5 3.6 24.1 4.0 24.6 4.3

0.2 58.4 21.4 4.3 58.5 22.0 4.4 57.4 22.4 4.7

0.3 86.1 54.8 19.9 4.0 86.8 55.8 20.5 4.2 86.1 55.4 20.8 4.5

0.4 96.6 82.2 52.1 18.4 4.0 97.3 83.6 53.6 19.2 3.7 97.3 83.4 53.4 19.7 4.0

Table 2: Estimated level (d1 = d2) and power (d1 6= d2) (in %) of the tests In, Wn, Rn, IKimn , WKim
n ,

RKimn . The nominal level is α = 5%. The samples are simulated from model (2.4) with θ∗ = 1/2. The

sample size is 5000 and the number of independent replications is 104.
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8 Appendix: proofs

Proof of Proposition 4.1. (i) Without loss of generality, we will assume that An1 = An2 = 0 in what

follows. Write zn1(τ) := γ−1
n1 Sbnτc, (n/γ2

n1)Vbnτc(X) =
∑6

i=1 Uni(τ), where the terms

Un1(τ) :=
(
n2/bnτc2

) ∫ bnτc/n
0

z2
n1(u)du,

Un2(τ) := −2
(
n2/bnτc2

)
zn1(τ)

∫ bnτc/n
0

(
bnuc/bnτc

)
zn1(u)du,

Un3(τ) :=
(
n2/bnτc2

)
z2
n1(τ)

∫ bnτc/n
0

(
bnuc/bnτc

)2
du,

Un4(τ) := −
(
n3/bnτc3

)( ∫ bnτc/n
0

zn1(u)du
)2
,

Un5(τ) := 2
(
n3/bnτc3

)
zn1(τ)

(∫ bnτc/n
0

zn1(u)du
)∫ bnτc/n

0

(
bnuc/bnτc

)
du,

Un6(τ) := −
(
n3/bnτc3

)
z2
n1(τ)

(∫ bnτc/n
0

(
bnuc/bnτc

)
du
)2

tend in distribution, as n→∞, to the corresponding limit quantities

U1(τ) := τ−2

∫ τ

0
Z2

1 (u)du,

U2(τ) := −2τ−2Z1(τ)

∫ τ

0
(u/τ)Z1(u)du,

U3(τ) := τ−2Z2
1 (τ)

∫ τ

0
(u/τ)2du,

U4(τ) := −τ−3

(∫ τ

0
Z1(u)du

)2

,

U5(τ) := 2τ−3Z1(τ)

(∫ τ

0
Z1(u)du

)∫ τ

0
(u/τ)du,

U6(τ) := −τ−3Z2
1 (τ)

(∫ τ

0
(u/τ)du

)2

.

Note Qτ (Z1) =
∑6

i=1 Ui(τ) a.s. for each τ ∈ (0, υ1]. The joint convergence

(Un1(τ), . . . , Un6(τ)) −→d (U1(τ), . . . , U6(τ)) (8.1)

at each fixed point τ ∈ (0, υ1] can be easily derived from the (marginal) convergence γ−1
n1 Sbnτc −→D[0,υ1]

Z1(τ) in (4.1). The convergence in (8.1) easily extends to the joint convergence at any finite number

of points 0 < τ1 < · · · < τm ≤ υ1. In other words,

(n/γ2
n1)Vbnτc(X) −→fdd(0,υ1] Qτ (Z1). (8.2)

In a similar way,

γ−1
n2 S

∗
bnτc −→D[0,1−υ0] Z2(τ),

implies

(n/γ2
n2)V ∗n−bnτc(X) −→fdd[υ0,1) Q1−τ (Z2). (8.3)
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It is clear from the joint convergence in (4.1) that (8.2), (8.3) extend to the joint convergence of

finite-dimensional distributions, in other words, that (4.2) holds with −→D(0,υ1]×D[υ0,1) replaced by

−→fdd(0,υ1]×[υ0,1).

It remains to prove the tightness inD(0, υ1]×D[υ0, 1). To this end, it suffices to check the tightness of

the marginal processes in (8.2) and (8.3) in the corresponding Skorokhod spaces D(0, υ1] and D[υ0, 1).

See, e.g., Ferger and Vogel (2010), Whitt (1970).

Let us prove the tightness of the l.h.s. in (8.2) in D(0, υ1], or, equivalently, the tightness in D[υ, υ1],

for any 0 < υ < υ1. Let Υn(τ) := (n/γ2
n1)Vbnτc(X). Since {Υn(υ), n ≥ 1} is tight by (8.2), it suffices

to show that for any ε1, ε2 > 0 there exist δ > 0 and n0 ≥ 1 such that

P(ωδ(Υn) ≥ ε1) ≤ ε2, n ≥ n0, (8.4)

where

ωδ(x) := sup
{
|x(a)− x(b)| : υ ≤ a < b ≤ υ1, a− b < δ

}
is the continuity modulus of a function x ∈ D[υ, υ1]; see Billingsley (1968, Theorem 8.2). Since

Υn(τ) =
∑6

i=1 Uni(τ), it suffices to show (8.4) with Υn replaced by Uni, i = 1, . . . , 6, in other words,

P(ωδ(Uni) ≥ ε1) ≤ ε2, n ≥ n0, i = 1, . . . , 6. (8.5)

We verify (8.5) for i = 2 only since the remaining cases follow similarly. Write Un2(τ) =
∏3
i=1Hni(τ),

where Hn1(τ) := −2
(
n2/bnτc2

)
, Hn2(τ) := zn1(τ), Hn3(τ) :=

∫ bnτc/n
0

(
bnuc/bnτc

)
zn1(u)du. Then

P(ωδ(Un2) ≥ ε1) ≤
∑3

i=1

[
P(ωδ

(
Hni) ≥ ε1/(3K)

)
+ P

(∏
j 6=i ‖Hnj‖ > K

)]
, where ‖x‖ := sup{|x(a)| :

υ ≤ a ≤ υ1

}
is the sup-norm. Relation (4.1) implies that the probability P

(∑3
i=1 ‖Hni‖ > K

)
can be

made arbitrary small for all n > n0(K) by a suitable choice of K. By same relation (4.1) assumed under

the uniform topology, for a given ε1/K, we have that limδ→0 lim supn→∞ P
(
ωδ(Hni) ≥ ε1/K

)
= 0.

This proves (8.5) and the functional convergence (n/γ2
n1)Vbnτc(X) −→D(0,υ1] Qτ (Z1). The proof of

(n/γ2
n2)V ∗n−bnτc(X) −→D[υ0,1) Q1−τ (Z2) is analogous. This concludes the proof of part (i), since

the continuity of the limit process in (4.2) is immediate from continuity of (Z1(τ1), Z2(τ2)
)

and the

definition of Qτ in (3.6).

(ii) Note that (4.3) and the a.s. continuity of τ 7→ Qτ (Z1) guarantees that infτ∈T Qτ (Z1) > 0 a.s.

Therefore relations (4.4) follow from (4.2) and the continuous mapping theorem.

(iii) Follows from (4.2) and the fact that Z1(τ) = 0, τ ∈ T implies Qτ (Z1) = 0, τ ∈ T . �

Proof of (5.4). Let first −.5 < d < .5 and bi := (a ? π(d))i − κπi(d), i = 0, 1, . . . . Consider the

stationary process X̃j := Xj − X0
j =

∑∞
i=0 biζj−i with spectral density f̃(x) = |â(x) − κ|2g(x),

where â(x) =
∑∞

j=0 aje
−ijx, i :=

√
−1 and g(x) := (2π)−1|1 − e−ix|−2d is the spectral density of

FARIMA(0, d, 0). We have

E

( n∑
j=1

(Xj −X0
j )

)2

=

∫ π

−π
f̃(x)D2

n(x)dx, Dn(x) :=
sin(nx/2)

sin(x/2)
. (8.6)

Since â(x) is bounded and continuous on [−π, π], â(0) = κ, it follows that f̃(x) = o(|x|−2d) (x → 0),

which in turn implies (5.4) for −.5 < d < .5; see e.g. Giraitis et al. (2012, proof of Proposition 3.3.1).
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Next, let .5 < d < 1.5. Then Xj −X0
j =

∑j
k=1 X̃k, where the stationary process X̃k :=

∑∞
i=0((a ?

π(d − 1))i − κπi(d − 1))ζk−i satisfies E
(∑j

k=1 X̃k

)2 ≤ ε(j)j2d−1, ε(j) → 0, (j → ∞), see above. We

have

E

( n∑
j=1

(Xj −X0
j )

)2

= E

( n∑
j=1

j∑
k=1

X̃k

)2

≤
n∑

j1,j2=1

{
E

( j1∑
k=1

X̃k

)2

E

( j2∑
k=1

X̃k

)2}1/2

≤
{ n∑
j=1

√
ε(j)j2d−1

}2

= o(n2d+1).

This completes the proof of (5.4). �

Proof of Proposition 5.2. Note first that the convergence in (5.6) for type II integrated process of (5.9)

can be easily established following the proof of Proposition 5.1. Hence, it suffices to show that

sup
τ∈[0,1]

1

nd+.5

∣∣∣∣ bnτc∑
t=1

R0
t

∣∣∣∣ →p 0, (8.7)

where R0
t := (1 − L)−d+ (1 − L)d−X

0
t =

∑∞
i=0X

0
−i
∑t−1

j=0 πj(d)πt−j+i(−d) is the contribution arising

from initial values. When d > 0.5, using (5.10), the Cauchy-Schwarz inequality and the fact that

|πj(d)| ≤ Cjd−1 we obtain

E

(
1

nd+.5

n∑
t=1

|R0
t |
)2

≤ C

n2d+1

( n∑
t=1

∞∑
i=0

t−1∑
j=0

|πj(d)| |πt−j+i(−d)|
)2

≤ C

n2d+1

( ∑
1≤j<t≤n

jd−1(t− j)−d
)2

→ 0

since

∑
1≤j<t≤n

jd−1(t− j)−d ≤
n∑
j=1

jd−1
n∑
k=1

k−d ≤ C


nd, d > 1,

n log n, d = 1,

n, 1
2 < d < 1.

This proves (8.7). �

Proof of Proposition 5.3. We restrict the proof to the case (i) and i = 2, or, equivalently, to the

model (5.17), since the remaining cases can be treated similarly. Similarly as in the proof of (4.2), it

suffices to prove the joint convergence of finite-dimensional distributions in (5.23) and the functional

convergence of marginal processes, viz.,

n−d1−.5S2,bnτc −→D[0,θ] Z2,1(τ), n−d2−.5S∗2,bnτc −→D[0,1−τ ] Z2,2(τ). (8.8)

Since X2,t =
∑t

j=0 πj(d1)ζt−j , 1 ≤ t ≤ bnτc has constant memory parameter d1, the proof of the first

convergence in (8.8) to Z2,1(τ) = BII
d1+.5(τ) is standard, and we omit it.

Consider the second convergence in (8.8). It can be rewritten as

n−d2−.5S2,bnτc −→D[τ ,1] Z2(τ), (8.9)
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where S2,bnτc =
∑bnτc

t=1 X2,t =
∑bnτc

t=1

∑t
s=1 b2,t−s(t)ζs. Let us first prove the one-dimensional conver-

gence in (8.9) at a fixed point τ ∈ [τ , 1].

We start with the case τ > θ. Following the scheme of discrete stochastic integrals in Surgailis

(2003), rewrite the l.h.s. of (8.9) as a discrete stochastic integral

n−d2−.5S2,bnτc =

∫ τ

0
Fn(u)dzn(u) =

∫ θ

0
Fn(u)dzn(u) +

∫ τ

θ
Fn(u)dzn(u),

where zn(u) := n−1/2
∑bnuc

i=1 ζi is the partial sum process of standardized i.i.d. r.v.s, tending weakly to

a Brownian motion {B(u), u ∈ [0, 1]}. The integrand Fn in the above integral is equal to

Fn(u) := n−d2
bnτc∑
t=bnuc

b2,t−bnuc(t)

=

n−d2
∑bnτc

t=bnuc b2,t−bnuc(t), 0 < u ≤ θ,

n−d2
∑bnτc

t=bnuc πt−bnuc(d2), θ < u ≤ τ,

where we used the fact that b2,t−bnuc(t) = πt−bnuc(d2) for t ≥ bnuc ≥ bnθc, where πj(d) are the

FARIMA coefficients in (5.12). Similarly, the r.h.s. of (8.9) can be written as the sum of two stochastic

integrals: ∫ τ

0
F (u)dB(u) =

∫ θ

0
F (u)dB(u) +

∫ τ

θ
F (u)dB(u),

where

F (u) :=

Γ(d2)−1
∫ τ
θ (v − u)d2−1eH(u,v)dv, 0 < u ≤ θ,

Γ(d2 + 1)−1(τ − u)d2 , θ < u ≤ τ.

Accordingly, using the above mentioned criterion in Surgailis (2003, Proposition 3.2) (see also

Lemma 2.1 in Bružaitė and Vaičiulis (2005)), the one-dimensional convergence in (8.9) follows from

the L2−convergence of the integrands:∫ θ

0
|Fn(u)− F (u)|2du→ 0,

∫ τ

θ
|Fn(u)− F (u)|2du→ 0. (8.10)

The second relation in (8.10) is easy using the properties of FARIMA filters. Denote Jn the first

integral in (8.10). The integrand there can be rewritten as

Fn(u)−F (u) =

∫ θ

u
n1−d2b2,bnvc−bnuc(bnvc)dv +

∫ τ

θ
Gn(u, v)dv − n−d2(nτ −bnτc)b2,bnτc−bnuc(bnτc),

(8.11)

where Gn(u, v) := n1−d2b2,bnvc−bnuc(bnvc)−Γ(d2)−1(v−u)d2−1eH(u,v) and H(u, v) is defined at (5.20).

Let us write b2,bnvc−bnuc(bnvc) = πbnvc−bnuc(d2)Kn(u, v) where

Kn(u, v) :=
b2,bnvc−bnuc(bnvc)
πbnvc−bnuc(d2)

=

bnvc−bnuc∏
i=1∨(bnvc−bnθc)

d
( bnvc−i+1

n

)
− 1 + i

d2 − 1 + i
. (8.12)

We claim that

lim
n→∞

Kn(u, v) = eH(u,v), 0 ≤ u ≤ θ < v ≤ 1, (8.13)
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Indeed,

Kn(u, v) = exp

{ bnvc−bnuc∑
i=1∨(bnvc−bnθc)

log

(
1−

d2 − d
( bnvc−i

n

)
d2 − 1 + i

)}
= eHn(u,v)+Rn(u,v),

where

Hn(u, v) := n−1

bnvc−bnuc∑
i=1∨(bnvc−bnθc)

d
( bnvc−i

n

)
− d2

d2−1+i
n

→ H(u, v),

Rn(u, v) = O

( bnvc−bnuc∑
i=1∨(bnvc−bnθc)

1

i2

)
= O

(
1

1 ∨ (bnvc − bnθc)

)
,

hence Rn(u, v)→ 0 for any v > θ.

The proof of Jn → 0 in (8.10) then follows from the following arguments. Using on one hand the

fact that the ratio Kn(u, v) tends to 0 for 0 < u < v ≤ θ, on the other hand (8.13), and from the

well-known asymptotics πj(d) ∼ Γ(d)−1jd−1, j → ∞ of FARIMA coefficients, it easily follows that

n1−d2b2,bnvc−bnuc(bnvc) → 0 for any 0 < u < v ≤ θ, and Gn(u, v) → 0 for any 0 < u < v ≤ 1

fixed. Moreover, the last term in (8.11) obviously tends to 0 because d2 > 0. Since both sides of

(8.13) are nonnegative and bounded by 1, the above convergences extend to the proof of Jn → 0 by

the dominated convergence theorem. This proves the convergence of one-dimensional distributions in

(8.9) for τ > θ.

For τ ≤ τ ≤ θ, the above convergence follows similarly by using the fact that Kn(u, v) tends to 0

for 0 < u < v ≤ θ.
The proof of the convergence of general finite-dimensional distributions in (8.9), as well as the joint

convergence of finite-dimensional distributions in (5.23), can be achieved analogously, by using the

Cramèr-Wold device. Finally, the tightness in (8.9) follows by the Kolmorogov criterion (see, e.g.

Bružaitė and Vaičiulis (2005), proof of Theorem 1.2 for details). Proposition 5.3 is proved. �

Proof of Proposition 6.1. Consider de-trended observations and their partial sums processes as defined

by

εj := Xj − (An −Bn)− 2Bnj, Sk(ε) :=

k∑
j=1

εj , S∗n−k(ε) :=

n∑
j=k+1

εj .

Note that Sk(ε) = Sk(X)− k(An −Bn)− k(k+ 1)Bn = Sk(X)− kAn − k2Bn and the null hypothesis

Htrend
0 can be rewritten as

γ−1
n Sbnτc(ε) −→D[0,1] Z(τ). (8.14)

For a fixed 1 ≤ k < n, let (âk(ε), b̂k(ε)) := argmin
(∑k

j=1(εj − a − bj)2
)
, (â∗n−k(ε), b̂

∗
n−k(ε)) :=

argmin
(∑n

j=k+1(εj − a− bj)2
)

be the corresponding linear regression coefficients. More explicitly,

âk(ε) =

( k∑
j=1

j
)( k∑

j=1
jεj

)
−
( k∑
j=1

j2
)( k∑

j=1
εj

)
( k∑
j=1

j
)2
− k

k∑
j=1

j2

, b̂k(ε) :=

( k∑
j=1

j
)( k∑

j=1
εj

)
− k

k∑
j=1

jεj( k∑
j=1

j
)2
− k

k∑
j=1

j2

.(8.15)
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It is easy to verify that âk(ε) = âk(X) + (Bn − An), b̂k(ε) = b̂k(X) − 2Bn. Hence we obtain the

following expression of residual partial sums Ŝj = Sj(X̂) via de-trended partial sums Sj(ε) and the

above regression coefficients:

Ŝj = Sj(ε)− j
(
âk(ε) +

b̂k(ε)

2

)
− j2

( b̂k(ε)
2

)
(8.16)

The limit behavior of Vbnτc(X) follows from the limit behavior of γ−1
n Ŝbnuc, u ∈ [0, τ ] similarly as in

the proof of Proposition 4.1. The behavior of the first term γ−1
n Sbnuc(ε) in (8.16) is given in (8.14). It

remains to identify the limit regression coefficients âbnτc(ε), b̂bnτc(ε) in (8.16). Clearly the denominator(∑k
j=1 j

)2 − k∑k
j=1 j

2 ∼ −k4

12 . The numerators in (8.15) are written in terms of Sk(ε) and
∑k

j=1 jεj .

From summation by parts and (8.14) we obtain

n−1γ−1
n

bnτc∑
j=1

jεj = n−1γ−1
n

(
bnτcSbnτc(ε)−

bnτc−1∑
j=1

Sj(ε)

)
−→D[0,1] τZ(τ)−

∫ τ

0
Z(v)dv.(8.17)

Relations (8.14), (8.15) and (8.17) entail (bnuc/γn)âbnτc(ε)→D[0,τ ] uâτ , (bnuc2/(2γn))b̂bnτc(ε)→D[0,τ ]

u2 b̂τ
2 , where

âτ := −2
(1

τ

)
Z(τ) + 6

(1

τ

)2
∫ τ

0
Z(v)dv, b̂τ := 6

(1

τ

)2
Z(τ)− 12

(1

τ

)3
∫ τ

0
Z(v)dv, (8.18)

leading to the convergence γ−1
n Ŝbnuc −→D[0,τ ] Z(u, τ), where the limit process is given in (6.7). The

remaining details of the proof are similar as in Proposition 4.1. �
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