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Some analytical solutions for Saint-Venant torsion of non-
homogeneous cylindrical bars 

 
István Ecsedi 

Department of Mechanics, University of Miskolc, Miskolc-Egyetemváros H-3515, Hungary 
 
 

__________________________________________________________________________________________ 
 
Abstract  
 
    The Saint-Venant torsion problem of linearly elastic cylindrical bars with solid and hollow cross-section is 
treated. The shear modulus of the non-homogeneous bar is a given function of the Prandtl’s stress function of  
considered cylindrical bar when its material is homogeneous. The solution of the torsional problem of non-
homogeneous bar is expressed in terms of the torsional and Prandtl’s stress functions of homogeneous bar 
having the same cross-section as the non-homogeneous bar. 
 
 
 
Keywords: Saint-Venant torsion; Non-homogeneous; Elastic; Prandtl’s stress function 
__________________________________________________________________________________________ 
 
 
1. Introduction 
 
    Whilst the Saint-Venant’s torsional problem of cylindrical bars is a classical one in the field 
of elasticity, there has been recently a growing interest in the context of non-homogeneous 
and/or anisotropic bars (Arghavan and Hematiyan, 2008; Batra, 2006; Horgan and Chan, 
1999; Horgan, 2007; Rooney and Ferrari, 1995; Ueda et al., 2002; Yasusi and Shigeyasu, 
2000). In this paper a method is presented to find some analytical solutions for the Saint-
Venant torsion of non-homogeneous elastic members. By the proposed method the existing 
solutions of homogeneous torsion problems are employed to find solutions of the 
corresponding non-homogeneous problems. An integral transformation similar to the 
Kirchhoff transformation in non-linear heat conduction (Carslaw and Jager, 1959) is used to 
develop the formulation. In the conventional problem of torsion of non-homogeneous bars, 
the shear modulus is considered to be an arbitrary non-negative function of cross-sectional 
coordinates ( , )x y  is known, but in this study, shear modulus is considered to be a smooth 
function of Prandtl’s stress function of corresponding homogeneous problem. So that, the 
developed method is not general, but since by this formulation, some analytical solutions of 
torsional problems of non-homogeneous bars are found which are remarkable and useful 
specially for benchmarking purposes. 
    The present paper is a contribution to the existing exact benchmark solutions of non-
homogeneous, isotropic, linearly elastic, twisted cylindrical bars with simply or multiply 
connected cross-sections. The shear modulus of the non-homogeneous bar is a given function 
of the Prandtl’s stress function of the considered cylindrical bar when its material is 
homogeneous. The solution of the torsional problem of the non-homogeneous bar is expressed 
in terms of torsional and Prandtl’s stress functions of a homogeneous bar which has the same  
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cross-section as the non-homogeneous one. In this case by the use of known solutions of 
Saint-Venant’s torsional problem of homogeneous cylindrical bars we can generate the 
solutions of Saint-Venant’s torsional problem for a large set of non-homogeneous bars. 
 
2. A brief review of torsional problems of homogeneous and non-homogeneous bars 
 
    Let (0, )B A L= ×  be a right cylinder of length L , with its cross-section A which may be 
simply or multiply connected bounded regular region of 2ℜ . Let A1 and A2 be the bases and 

3 (0, )A A L= ∂ ×  the mantle of B. The cross-section A is multiply connected it has one outer 
boundary curve a0 and p inner boundary curve ( 1,2,... )ia i p=  as shown in Fig. 1. The 
Cartesian coordinate frame Oxyz  is supposed to be chosen in such a way that axis Oz  is 
parallel to the generators of the cylindrical boundary surface segment A3 and the plane Oxy  
contains the terminal cross-section A1. The position of end cross-section A2 is given by z L= . 
A point P in 1 2 3( )B B B B A A A= ∪∂ ∂ = ∪ ∪ is indicated by the vector x y zx y z= + + =r e e e  

zz+R e , where ex, ey and ze are the unit vectors of the coordinate system .Oxyz   
    We consider the Saint-Venant torsion problem of a homogeneous cylindrical bar. The 
displacement field ( , , )x y z=u u  in the twisted cylindrical bar is characterized by (Lurje, 
1970; Lekhnitskii, 1971; Sokolnikoff, 1956)  
 
 ( , ) ,z zz x yϑ ϑϕ= × +u e R e  (1) 
 
where ϑ  is the rate of twist with respect to axial coordinate z and ( , )x yϕ ϕ=  is the torsional 
function. For homogeneous bar ( , )x yϕ ϕ=  is a solution of the next Neumann type boundary 
value problem: 
 
 0 in ,AϕΔ =  (2) 
 
 ( ) 0 on .z Aϕ⋅ ∇ + × = ∂n e R  (3) 
 
In Eq. (1), the cross is the sign of the vectorial product and in Eq. (3), scalar product of two 
vectors is indicated by dot and ∇  is the gradient (del) operator Δ  is the Laplace operator that 
is  

2 2

2 2, ,x yx y x y
∂ ∂ ∂ ∂

∇ = + Δ = ∇⋅∇ = +
∂ ∂ ∂ ∂

e e  

 
n is the outer unit normal vector to boundary curve A∂  (Fig. 1).  
 
Fig. 1 
 
The displacement field for non-homogeneous twisted beam when the shear modulus does not 
depend on the axial coordinate z has the same form as given by Eq. (1) and in this case the 
rate of twist is denoted by .Θ  For non-homogeneous beam if the shear modulus G is a smooth 
function of the cross-sectional coordinates x and y then the torsional function , which is 
denoted by Φ  is a solution of the next boundary value problem (Kolchin, 1971; Lekhnitskii, 
1971) 
 [ ]( ) 0 in ,zG A∇⋅ ∇Φ + × =e R  (4) 
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 ( ) 0 on .z A⋅ ∇Φ + × = ∂n e R  (5) 

 
The solution of torsional problem can be formulated by the use of Prandtl’s stress function for 
homogeneus bar with shear modulus g as (Lurje, 1970; Sokolnikoff; 1956) 
 
 ,z xz x yz y zt t g uϑ= + = ∇ ×t e e e  (6) 
 
where ,xz yzt t  are the shearing stresses, ( , )u u x y=  is the Prandtl’s stress function of the 
considred homogeneous cross-section. In Eq. (6) ( , )u u x y=  is the solution of the boundary 
value problem  
 
 2 in ,u AΔ = −  (7) 
 00 on ,u a=  (8) 
                                                 on ( 1,2,... ),i iu c a i p= =                                                  (9) 

 2 ( 1,2,... ).
i

i
a

uds A i p⋅∇ = =∫ n�  (10) 

 
The rate of twist is computed from next equation  
 

 
1

, 2 ,
p

i i
iA

t k udA c A
gk

ϑ
=

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
∑∫  (11) 

 
where t is the applied torque, k is the Saint-Venant torsional constant. In Eq. (10), s is an arc 
length defined on the boundary curve A∂  (Fig. 1) and iA  is the area inclosed by inner 
boundary curve ( 1,2,... )ia i p= . The connection between ϕ  and u is as follows (Lurje, 
1970; Lekhnitskii, 1971) 
 
 .z zu ϕ∇ × = ∇ + ×e e R  (12) 

 
In the case of non-homogeneous bar when ( , ),G G x y=  the solution of the Saint-Venant 
torsional problem for the shearing stresses ,xz yzT T  is as follows 
 
 ,z xz x yz y zT T U= + = Θ∇ ×T e e e  (13) 
 
where ( , )U U x y=  is the solution of the following boundary value problem (Kolchin, 1971; 
Lekhnitskii, 1971) 
 

 
1 2 in ,U A
G

⎛ ⎞∇ ⋅ ∇ = −⎜ ⎟
⎝ ⎠

 (14) 

 00 on ,U a=  (15) 

 on ( 1,2,... ),i iU C a i p= =  (16) 

 
1 2 ( 1,2,... ).

i

i
a

Uds A i p
G

⋅∇ = =∫ n�  (17) 
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For non-homogeneous beam we have (Ecsedi, 1981; 2005) 
 

 
2

1
, 2 ,

p

i i
iA A

UT K UdA C A dA
K G=

⎛ ⎞ ∇
Θ = = + =⎜ ⎟

⎝ ⎠
∑∫ ∫  (18) 

 
where K is the torsional rigidity of the considered non-homogeneous cross-section and T is 
the applied torque. The connection between the torsional function ( , )x yΦ = Φ  and Prandtl’s 
stress function ( , )U U x y=  is as follows (Kolchin, 1971; Lekhnitskii, 1971) 
 
 ( ).z zU G∇ × = ∇Φ + ×e e R  (19) 

 
3. Solution of the Saint-Venant torsional problem for non-homogeneous bar 
 
    It is assumed that the shear modulus of the considered non-homogeneous bar has the form   
 
 ( )( , ) ( , ) ,G x y f u x y=  (20) 

 
where ( )f f ξ= is a given positive smooth function. We define a new function ( )F F ξ=  as 
 

 
0

( ) ( ) .F f d
ξ

ξ η η= ∫  (21) 

It is clear  
 

 (0) 0, ( ) ( ).dFF F f
d

ξ ξ
ξ

′= = =  (22) 

 
We remark to formula (20), the Prandtl’s stress function ( , )u u x y=  is positive in A and 

0 ( 1,2,... )ic i p> =  (Bandle, 1980) and in the case of functionally graded elastic materials 
( , )G G x y=  is a smooth function of the cross-sectional coordinates x and y. Relations 

between the solutions of Saint-Venant’s torsional problems of homomogeneous and non-
homogeneous elastic bars having the same cross-section are formulated in the next theorem. 
    Theorem. Let ( )( , )G f u x y=  be. In this case we have 
 
 ( )( , ) ( , ) ( . ) ,U x y F u x y x y A A= ∈ ∪∂  (23) 

 ( ) ( 1,2,... ),i iC F c i p= =  (24) 

 ( ) ( )( , ) ( , ) ,z z z
Tf u x y u f u x y u
K

= Θ ∇ × = ∇ ×T e e  (25) 

 ( )
1

2 ( , ) ( ) ,
p

i i
iA

K F u x y dA A F C
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑∫  (26) 

 ( )
2

( , ) ,
A

K f u x y u dA= ∇∫  (27) 

 ( , ) ( , ) ,x y x yϕ γΦ = +  (28) 
 
where γ  is an arbitrary constant.  
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    Proof. The proof of validity of Eqs. (23), (24) is based on Eqs. (7), (8), (9), (10) and Eqs. 
(14), (15), (16), (17) and  
 
 ( ) ( )( , ) ( , ) ( , ) .U F u x y u f u x y u G x y u′∇ = ∇ = ∇ = ∇  (29) 
 
Substitution of Eqs. (23), (24) and (29) into Eqs. (18)1,2 gives fomulas (26) and (27). The 
correctness of Eq. (25) follows from Eqs. (13), (23), (24) and (29). Starting from Eqs. (19), 
(29) we can write  
 
 ( ) ,z z zU G u G∇ × = ∇ × = ∇Φ + ×e e e R  (30) 

 
that is, according to Eq. (12) we have 
 
 .z z zu ϕ∇ × = ∇Φ + × = ∇ + ×e e R e R  (31) 
 
Statement formulated in Eqs. (28) and (31) are just the same. 
 
4. Examples 
 
4.1. Hollow elliptical cylinder  
 
    Fig. 2 shows the cross-section of the considered elliptical cylinder. Equations of outer and 
inner boundary curves of hollow elliptical cross-section are  
 

 
2 2

2 2 1 0,
( ) ( )

x y
a bλ λ

+ − =  (32) 

 0 0 1 1 11 for , for , (0 1).a aλ λ λ λ λ= = = < <  (33) 

 
Fig. 2 
 
The shear modulus of the non-homogeneous bar is as follows 
 
 ( ) exp( ), 0, 0.G f u uα β α β= = > ≠  (34) 
 
It is evident  

 [ ]( ) exp( ) 1 .F u uα β
β

= −  (35) 

 
It is known that (Lurje, 1970; Sokolnikoff, 1956) 
 

 
2 2 2 2

2 2 2 2( , ) 1 ,a b x yu u x y
a b a b

⎛ ⎞
= = − −⎜ ⎟+ ⎝ ⎠

 (36) 

 
2 2

2
1 12 2 (1 ).a bc

a b
λ= −

+
 (37) 

 
A simple computation gives  
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2 2

2
1 12 2exp (1 ) 1 ,a bC

a b
α β λ
β
⎛ ⎞⎡ ⎤

= − −⎜ ⎟⎢ ⎥⎜ ⎟+⎣ ⎦⎝ ⎠
 (38) 

 2
1 1 .A abλ π=  (39) 

 
Application of formula (27) and Eqs. (38), (39) leads to the next result for the torsional 
rigidity   
 

 
2 2 2 2 2 2

2 2
1 12 2 2 2 2 22 exp (1 ) 1 .a b a b a bK ab

a b a b a b
α βπ λ λ
β β β

⎧ ⎫⎛ ⎞ ⎡ ⎤ ⎛ ⎞+ +⎪ ⎪= + − − +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥+⎪ ⎪⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎩ ⎭
 (40) 

 
From Eqs. (25) and (28) we get 
 

 
2 2 2 2 2

2 2 2 2 2 22 exp 1 ,xz
a y a b x yT

a b a b a b
α β⎡ ⎤⎛ ⎞

= − Θ − −⎢ ⎥⎜ ⎟+ + ⎝ ⎠⎣ ⎦
 (41) 

 
2 2 2 2 2

2 2 2 2 2 22 exp 1 ,yz
b x a b x yT

a b a b a b
α β⎡ ⎤⎛ ⎞

= Θ − −⎢ ⎥⎜ ⎟+ + ⎝ ⎠⎣ ⎦
 (42) 

 
2 2

2 2( , ) ( , ) .b ax y x y xy
a b

ϕ −
Φ = =

+
 (43) 

 
We note, the limit as β  tends to zero in Eqs. (40), (41), (42) leads to the formulae of torsional 
rigidity and shearing stresses of twisted homogeneous elliptical cross-section. 
 
4.2. Solid equilateral triangle cross-section  
 
    The boundary of the solid cross-section shown in Fig. 3 is an equilateral triangle of altitude 
h. The shear modulus of non-homogeneous bar is  
 
 2( ) , 0, 0.G f u uα β α β= = + ≥ >  (44) 
 
It is clear that, in the present case (Lurje, 1970; Sokolnikoff, 1956)  
 

 2 21( , ) (3 )( ),
2

u x y y x x h
h

= − −  (45) 

 3 21( , ) ( 3 4 ),
2

x y y x y hxy
h

ϕ = − +  (46) 

and we have  

 3( ) .
3

F u u uα β= +  (47) 

 
Fig. 3. 
 
Application of Eqs. (25) and (28) gives the next results 
 

 2 2 2 3
3

3 3(3 ) ( ) ( ),
4xzT y x x h y y y h

h h
α βΘ Θ

= − − + −  (48) 
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 2 2 2 2 2 2 2
3 (3 )( ) (3 2 3 ) (3 2 3 ),

8 2yzT y x x h x xh y x xh y
h h
α βΘ Θ

= − − − − + − −  (49) 

 3 21= ( 3 4 ).
2

y x y hxy
h

Φ − +  (50) 

 
Starting from formula, (27) by a detailed computation we get 
 
 8 40.0003334 0.03849 .K h hα β= +  (51) 
 
It is evident from Eqs. (48), (49), (50) the formulas of homogeneous cross-section is obtained 
as α  tends to zero. 
 
4.3. Approximate solution for thin-walled tube  
 
    Cross-section of thin-walled tube with smooth centerline ma  and uniform thickness H is 
shown in Fig. 4. The arc-length defined on the centerline ma  is denoted by s and the thickness 
coordinate is indicated by η . On the outer boundary curve 2Hη = /  and on the inner 
boundary curve 2Hη = − / . The shear modulus G changes continuously between the inner and 
outer walls, it does not depend on s, that is, ( ).G G η=  According to Bredt’s formulation we 
can write (Kollbrunner and Basler, 1969; Murray, 1985)  
 

 
2 2( ) ( ), ,

2
m mA H Au u u

l l
η η= = − ∇ = − n  (52) 

 
�

0

2( ) ,m
n

PP

As s R ds
l

ϕ ϕ= = − ∫  (53) 

 
24 ,mAk H

l
=  (54) 

 
where mA  is the area enclosed by the centerline of walls, l is the length of ma  and ,nR = ⋅R n  
where n is the outward unit normal vector to the centerline (Fig. 4). Function ( )u u η=  
satisfies the boundary conditions (8), (9) and Eq. (10) but Eq. (7) is not satisfied by ( )u u η=  
(Kollbrunner and Basler, 1969). It is evident, in this case, G can be considered as a function of 
u, that is we have ( ).G f u=  From Eqs. (25) and (28) it follows that (Fig. 4) 
 

 2 ( ) , .m
z

A dG
l ds

η= Θ =
RT e e  (55) 

 
�

0

2( ) .m
n

P P

As s R ds
l

Φ = − ∫  (56) 

 
Fig. 4. 
 
Application of formula (27) gives 
 

 ( )
/ 22 2

2
0 12

/ 2

4 4 2( , ) ( ) 1 ,
m

H
m m

A a H

A AK f u x y u dA G d ds
l l l

η πη η
ρ−

⎛ ⎞ ⎛ ⎞= ∇ = + = Γ + Γ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫ ∫ ∫�  (57) 
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where 

 
/ 2

/ 2

( ) ( 0,1)
H

i
i

H

G d iη η η
−

Γ = =∫  (58) 

and we have used  

 1 , 2 .
ma

dsdA d dsη η π
ρ ρ

⎛ ⎞
= + =⎜ ⎟
⎝ ⎠

∫�  (59) 

 
Here, ρ  is the radius of curvature of smooth centerline .ma  
    For thin-walled non-homogeneous circular tube, whose centerline is a circle of radius b, 
(Fig. 5), the exact solution of the torsional problem is known (Horgan and Chan, 1999) which 
is as follows 
 
                  ( ) ( ) 3 2

0 1 2 3( )( ) , 2 ( 3 3 ),e e
z G b K b b bη η π= Θ + = Γ + Γ + Γ +ΓT e                (60) 

 
where 

 
/ 2

/ 2

( ) ( 0,1,2,3).
H

i
i

H

G d iη η η
−

Γ = =∫  (61) 

 
The present formulation gives  
 
 3 2

0 1( ) , 2 ( ).z G b K b bη π= Θ = Γ + ΓT e  (62) 

 
Assuming that Θ  is specified, from Eqs. (60)1 and (62)1 it follows that the relative error in 
stresses is smaller than 5% if / 0.1H b ≤  independetly of material properties. 
The error of torsional rigidity of approximate solution is analysed when the shear modulus is a 
linear function of thickness coordinate η  as 
 

 0 (1 12 )G G
H
η

= +  (63) 

 
and .b Hλ=  The exact and approximate values of torsional rigidity by these data are 
 
 ( ) 4 3 2 4 3 2

0 02 ( 3 0.25 0.15), 2 ( ).eK G H K G Hπ λ λ λ π λ λ= + + + = +  (64) 

 
The relative error ε  for the torsional rigidity is as follows  
 

 
( ) 2

( ) 3 2
2 0,25 0.15

3 0,25 0.15

e

e
K K

K
λ λε

λ λ λ
− + +

= =
+ + +

 (65) 

 
and ε  as function of λ is shown in Fig. 6. In the present problem the relative error is smaller 
than 6% if / 1/ 30.H b ≤  
 
Fig. 5, Fig. 6.  
 
    An approximate analytical formulation is presented by Arghavan and Hematiyan (2008) for 
the torsional analysis of functionally graded hollow tubes with uniform thickness, whose 
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centerlines consist of straight lines and circular arcs. Solution obtained by Arghavan and 
Hematiyan (2008) is more accurate as that given by formulas (55) and (57) since in their 
analitical formulation Eq. (14), which is the local condition of compatibility for torsion 
problem, is satisfied. Their approximate solution can be used for thin and moderate thick 
walled functionally graded hollow tubes. Paper by Arghavan and Hematiyan (2008) uses the 
Prandtl’s stress function formulation, it does not deal with the determination of the warping of 
hollow tubes. 
 
4.4 Rectangular cross-section 
 
    The bar with rectangular cross-section (Fig. 7) is an important structural component. The 
Prandtl’s stress function of homogeneous rectangular cross section is known in infinite series 
form as (Lurje, 1970) 
  

 
2 1

2 2
3 3

0

(2 1)cosh32 ( 1) (2 1)2( , ) cos .(2 1)(2 1) 2cosh
2

i

i

i x
b i ybu x y b y i ai b

b

π
π

ππ

+∞

=

+
− +

= − +
++∑  (66) 

 
In this case, the application of the presented formulation gives only approximate solution for 
the stresses and torsional rigidity. The shear stresses can be obtained point-by-point as  
 

 ( , ) ( , ) ( , ), ( , ) ,xz m n m n xz m n xz
uT x y f x y t x y t x y
y
∂

= Θ =
∂

% %  (67) 

 ( , ) ( , ) ( , ), ( , ) ,yz m n m n yz m n xz
uT x y f x y t x y t x y
x
∂

= Θ = −
∂

% %  (68) 

 
where ( , )m nx y  is an arbitrary point of the considred rectangular cross-section (Fig. 7). The 
approximate value of the torsional rigidity can be computed by a numerical integration which 
is based on Eq. (26). By the use of a suitable quadratura formula we can write  
 
 ( )

,
2 ( , ) ,mn m n

m n
K p F u x y= ∑  (69) 

 
where ( , 0,1,2,...)mnp m n =  are the weight coefficients of the quadratura formula used 
(Kopal, 1961). According to Eq. (28) independently of the shape of function ( )f f ξ=  we 
have for non-homogeneous rectangular cross-section (Slaugter, 2001) 
 

 
2

3
30

(2 1) (2 1)( 1) sin sinh32 2 2 .(2 1)(2 1) cosh
2

n

n

n nx ya a axy nn b
a

π π

ππ

∞

=

+ +
−

Φ = −
+

+
∑  (70) 

 
Fig. 7 
 
 
4.5. Narrow rectangular cross-section 
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    We consider a non-homogeneous narrow rectangular cross-section when /a b →∞  or 
0b →  (Fig. 7). The shear modulus of the non-homogeneous cross-section is an even function 

of ’’thickness’’ coordinate y. The approximate solution of the corresponding homogeneous 
torsion problem (Lurje, 1970) is  
 
 2 2, .u b y y b= − ≤  (71) 
 
This function does not satisfy all the boundary conditions since 
 
 ( , ) 0 and ( , ) 0 .u y a u y a y b− ≠ ≠ ≤  (72) 

 
It is evident, in this case the shear modulus can be considered as a function of u that is, we 
have  
 
 2 2( ) ( ) ( ).G y f u f b y= = −  (73) 
 
Application of Eqs. (25) and (27) for the considered non-homogeneous narrow rectangular 
cross-section yields 
 

 22 ( ), 8 ( ) .
b

xz
b

T yG y K a y G y dy
−

= − Θ = ∫  (74) 

 
These formulas for non-homogeneous narrow rectangular cross-section were derived by 
Kolchin (1971). Kolchin’s approach is based on the solution of the boundary value problem 
 

 
d 1 d 2, ( ) ( ) 0.
d ( ) d

u u b u b
y G y y
⎛ ⎞

= − − = =⎜ ⎟
⎝ ⎠

 (75) 

 
 
5. Conclusions 
 
    The Saint-Venant’s torsional problem of linearly elastic, isotropic, non-homogeneous 
cylindrical bars is treated. The shear modulus of the investigated non-homogeneous bar is a 
given function of the Prandtl’s stress function of a homogeneous bar, which has the same 
cross-section as the considered non-homogeneous bar. The main result of the present paper is 
a contribution to the existing exact benchmark solutions for functionally graded twisted 
elastic cylinders. Five examples illustrate the applications of presented formulation. An 
extension of Bredt’s theory for non-homogeneous thin-walled tubes is also given. 
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Captions of Figures 
 
Fig. 1. Non-homogeneous cross-section. 
 
Fig. 2. Hollow elliptical cross-section. 
 
Fig. 3. Solid equilateral triangle cross-section. 
 
Fig. 4. Hollow thin-walled tube cross-section. 
 
Fig. 5. Cross-section of circular tube. 
 
Fig. 6 Relative error of torsional rigidity as a function of / .b H  
 
Fig. 7. Rectangular cross-section. 
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