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Abstract 

As well as cavities, embedded concretions and fossil inclusions are known to be possible sites 
of fracture initiation in rocks under compressive loadings. Parallel cracks can be observed in 
stiff inclusions surrounded by soft sediments. The crack spacing is often small and strictly 
incompatible with a mechanism of successive failures and reloading because of a shielding 
effect. The explanation proposed here is that these failures occur almost simultaneously thus 
avoiding this effect. A mixed criterion developed by one of the authors and involving both 
energy and stress conditions is able to predict such a fracturing mechanism. It is strongly 
related to a size effect: the larger the inclusion diameter, the higher the number of cracks. 
There is a competition between this mechanism and other fracture events like matrix failure or 
interface debonding. It is shown that, depending on the material properties and the concretion 
size, one of them can become predominant. 

Keywords: brittle fracture, crack nucleation, compressive stress, rock inclusions 

1. Introduction 

Rigid inclusions (concretions, fossil inclusions) embedded in a soft sedimentary matrix are 
known to be potential sites for the initiation of cracks. Bessinger et al. (2003) have studied a 
group of limestone concretions in a sandstone bed on Vancouver Island (British Columbia) 
and observed different configurations. Concretions are characterized by their size and the 
contrast of their mechanical properties with the surrounding matrix. The failure occurs either 
in the sandstone matrix in the vicinity of the concretion, or at the interface between concretion 
and sandstone, or even inside the concretion with one or more parallel cracks (figures 1.a and 
1.b). The best example is a 50 cm concretion with 5 closely spaced cracks (figure 1.a).  
Eidelman and Reches (1992) have made similar comments on pebbles included in a weakly 
cemented matrix found in two different sites in California and Israel. The material varies from 
one pebble to another: gneiss, granite, slate, sandstone or limestone. Most of the ellipsoidal to 
spherical pebbles are 10 to 30 cm in diameter, and contain 2 to 5 closely spaced parallel 
cracks. They report that the number of cracks increases with the size of the pebbles. 
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Moreover, they note that the pebbles are preferentially fractured, but that fractures may extend 
in some cases into the matrix (figures 1.c and 1.d). Within pebbles, the crack extensions do 
not seem to be influenced by the heterogeneity of the material.  
In the two cases, the inclusions are more rigid than the matrix. Both studies indicate a higher 
density of cracks inside or near inclusions than elsewhere in the matrix. The constant crack 
alignment in concretions and in the matrix indicates that the failure mechanisms occurred 
during the same tectonic episode. The authors’ point of view is that the fracturing origin lies 
in a tectonic compression combined with a significant pore pressure leading to a low 
confinement and thus an almost pure uniaxial compressive state. In particular, Bessinger et al. 
(2003) find that, in the case of multiple cracks, the low spacing (much lower than the 
concretion diameter) is incompatible with a remote tension and the resulting shielding effect 
between cracks. The compressive stress plays an essential role in their nucleation. Lorenz et 
al. (1991) also analyze mechanical stress amplification in a lenticular sandstone inclusion in 
limestone. Once again compression is invoked to explain the observations. 
It must be pointed out that the two previous analyses differ, but the final results coincide on 
many points. The Eidelman and Reches (1992) model uses the analytical approach of Eshelby 
(1957) to compute the stress field within the inclusion as a function of the mechanical 
properties of the materials and the remote load. Eidelman and Reches (1992) then use a 
maximum tensile stress condition to predict the appearance of a single crack in the inclusion. 
Bessinger et al. study the mechanism of multiple fractures of the concretion numerically, 
under either a tensile or a compressive loading. For them, the multiple failures occur in 
successive steps. In case of a tensile loading, decohesion of the interface is supposed to 
intervene first, it prevents the breakdown of the concretion. Thus, only a sub-critical growth 
due to a humid or chemically reactive environment, could justify the existence of internal 
cracks. In the sub-critical mode, cracks grow very slowly and under a remote load far less 
than those observed in an inert environment where fracture is unstable and cracks grow at 
speeds which are comparable to the elastic waves speed. The critical stress intensity factor 

IcK  (see eqn. (2)), obtained in laboratories, reflects these latter conditions. For in situ 
conditions, the sub-critical growth rate v  of a crack can be written (at least for a given range 
of the stress intensity factor (SIF) IK ): ( / ) p

I Icv A K K=  following a fatigue-like power law 
(Olson 2004). Here A  is a scaling coefficient, and p  is the sub-critical index. The value of 
p  varies considerably depending on the kind of rock and environment, from 20 for sandstone 

immersed into water to over 250 in dry for carbonates (Olson 2004). Nevertheless, following 
Bessinger et al., the values of p  necessary to propagate multiple fractures should be lower by 
several orders of magnitude than those obtained experimentally, and these values have never 
been found in rocks. Thus multiple cracking in concretions seems unlikely to occur according 
to this mechanism. 
The remote tension can play a role in some specific configurations. This is the case proposed 
by Lash and Engelder (2007), for example, who observe fractures appearing on the outer arc 
of a folding zone in the Appalachians. In this study, which also contains some examples of 
fractures inside or near concretions, fracturing is linked to an extension in the perpendicular 
direction to the fracture and/or thermal shrinkage in the early stages of the tectonic cycles. But 
it must be noted that crack spacing is larger and so more compatible with the hypothesis of a 
remote tension (Mandl 2005). 
Other publications offer examples of fracturing inside or near rigid inclusions. McConaughy 
and Engelder (1999) show an example of cracks in the matrix on both sides of two 
concretions (figure 1.e) in the region of New York. They refer to the mechanisms mentioned 
just above, although the spacing between cracks is, from our point of view, incompatible with 
such mechanisms.  
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                                         (a) 

(b) 

(c)
(d) 

(e)

Figure 1. Cracks inside or in the vicinity of concretions: (a) 5 closely spaced cracks in a concretion (Bessinger et 
al. 2003); (b) overview of cracks inside and around concretions in a sandstone matrix, (Bessinger et al. 2003) ; 
(c) multiple cracks in a pebble (Eidelman and Reches 1992) ; (d) various kinds of failure in pebbles (Eidelman 
and Reches 1992) ; (e) matrix cracking in the vicinity of two concretions (Mc Conaughy and Engelder 1999). 

Another approach able to provide an explanation to the multiple cracking of an inclusion is 
proposed herein. It is based on a mixed criterion involving both energy and stress conditions 
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(Leguillon 2002). Starting from an energy balance between an elastic initial state prior to any 
crack onset and after the appearance of a new crack or a crack extension with surface Sδ  leads 
to the following inequality 

    p
c

W
G G

S
δ
δ

− = ≥        (1) 

where pWδ  is the change in potential energy and cG  the material toughness (J.m-2) which can 
also be expressed in terms of the critical mode I stress intensity factor IcK  (MPa.m1/2), also 
called toughness, using the Irwin relation ( E  and ν  are respectively the Young modulus and 
the Poisson ratio of the material) 

2
21

c IcG K
E
ν−=        (2) 

Inequality (1) is an unquestionable necessary condition for failure, G  is the incremental energy 
release rate which involves a crack increment Sδ . Note that the Griffith criterion derives from 
(1) at the limit as 0Sδ → .    
On the other hand, the maximum tensile stress criterion is based on the maximum tension that a 
material can bear. Failure occurs at a point if 

cσσ ≥          (3) 

where σ  holds for the tension orthogonally to the failure direction and cσ  for the tensile 
strength of the material. 
Nevertheless, the crack nucleation cannot be correctly predicted by either of these two usual 
brittle fracture criteria. They give contradictory results and neither one nor the other agrees 
with the experiments (Leguillon 2002).  
Within the plane strain assumption, a lower bound for admissible crack length is derived from 
(1) whereas (3) leads to an upper bound. The compatibility between these two bounds allows a 
critical nucleation length to be defined. The crack is assumed to jump this length at initiation. 
Inserting this critical length in (1) or equivalently in (3) leads to a nucleation criterion taking 
into account both conditions (1) and (3). It has already proved its efficiency in various 
situations (Leguillon 2002, Leguillon et al. 2007). 
The interaction between this critical length and the concretion diameter is responsible for a 
strong size effect playing a prominent role in the crack nucleation and the number of cracks 
appearing within a concretion. 

2. The model and the matched asymptotics procedure 

The geometry used in the present model is shown in figure 2. A stiff circular inclusion with 
diameter d  is embedded in a more compliant matrix and submitted to a uniaxial compressive 
loading σ∞  (using mechanical notations σ∞  is negative, thus throughout the paper results are 
given in terms of σ ∞ ).  The diameter d  is assumed to be small compared to the specimen 
size, making it possible for an asymptotic expansions approximation in terms of the small 
parameter d . Thereafter, ( )iE  and ( )iν  (resp. ( )mE  and ( )mν ) denote the Young modulus and 
the Poisson ratio of the inclusion (resp. the matrix). 
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σ ∞

d

Figure 2. The domain dΩ  made of a small stiff inclusion embedded in a compliant matrix and submitted to a 
uniaxial compressive loading σ ∞ .

Solving numerically an elasticity problem in the domain dΩ  (figure 2) embedding a small 
inclusion with diameter d  presents some difficulties because of the small size of the 
perturbation which requires a drastic finite element (FE) mesh refinement in its vicinity 
especially if additional inside or neighbouring cracks must be taken into account. It is better 
trying to represent the elastic solution dU  in the following approximate form called outer 
expansion  

0
1 2 1 2( , ) ( , )dU x x U x x=  + small correction     (4) 

where 0U  is the solution to the same elasticity problem, but now posed on the unperturbed 

domain 0Ω  (figure 3.a) which can be considered as the limit of dΩ  as 0d → . In other words, 
the small inclusion is not visible. It is the classical simplified frame often used to perform FE 
computations since the meshing procedure prevents taking into account very small details. 
It is clear that this solution 0U  is a satisfying approximation of dU  away from the 
perturbation, i.e., outside a neighbourhood of the perturbation, and hence its designation as the 
outer field (or far field). 
Obviously, this information is incomplete, particularly when we are interested in the fracture 
mechanisms that can occur in or around the inclusion. To this aim, the space variables are 
stretched introducing the change of variables /i iy x d= . In the limit when 0d → , we obtain 
an unbounded domain ∞Ω  (looking like the enlarged frame in figure 3.b) in which the 
inclusion diameter now equals 1.  
We then search for another representation of the same solution under the form of an expansion 
known as inner expansion and describing the near field 

0 1
1 2 1 2 0 1 2 1 1 2( , ) ( , ) ( ) ( , ) ( ) ( , ) ...d dU x x U dy dy F d V y y F d V y y= = + +   (5) 

where 1 0( ) / ( ) 0F d F d →  as 0d → . Substituting this expression in the equations of the elastic 

problem leads to problems in the new unknown functions 0V , 1V  ,  but where conditions at 
infinity lack having correctly stated problems. These missing conditions derive from the 
matching procedure.  
The inner and outer expansions describe the solution dU  in terms of near and far fields. An 
intermediate zone (close to the perturbation for the far field and far from it for the near field) 
must exist where both expansions are valid. In other words, the behaviour of the far field, when 
one comes closer to the origin, must match with the behaviour of the near field, when one 
moves away from the perturbation.  
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The behaviour of the far field near the origin, is simply described by the uniaxial compressive 
state  

0 0
1 2( , ) ( , ) ( )U x x U r rtθ σ θ∞= =       (6) 

It is written here using the polar coordinates r  and θ  to bring into evidence the linear 
dependency in r  which intervenes in the matching procedure. The stress field associated to 
the displacement ( )rt θ  fulfils 11 1σ = , 12 22 0σ σ= = .

∞σ

O

x2

x1

                                                  (a) 

y1

y2

1

(b)

Figure 3. The two scales and the two domains of the matched asymptotic expansions process: (a) the outer 
domain 0Ω  (the perturbation is not visible); (b) the unbounded inner domain ∞Ω  (the concretion diameter 

equals 1 and boundaries are thrown to infinity). 

The matching conditions are written as follows 

0 1
0 1 2 1 1 2( ) ( , )  0 ;   ( ) ( , )    ( ) F d V y y F d V y y d tσ ρ θ∞≈ ≈    (7) 

when 2 2
1 2/r d y yρ = = + → ∞  (the symbol ≈  means “behaves like at infinity”), thus it 

comes straightforwardly 

0 ( ) 1F d = , 0
1 2( , ) 0V y y = ; 1( )F d dσ ∞=  and 1

1 2( , ) ( )V y y tρ θ≈    (8) 

The most significant term 1V  is the solution to a problem that can be solved using a 
superposition principle (Leguillon and Sanchez-Palencia 1987, Leguillon 2002). The expansion 
of the actual solution dU  and the associated stress field become 

1
1 2 1 2 1 2( , ) ( , )  ( , ) ...d dU x x U dy dy d V y yσ ∞= = +  (9) 

1
1 2 1 2( ( , )) ( ( , )) ...dU x x V y yσ σ σ∞= +  (10) 

where 1 1( ) : ( )  and  ( ) : ( )d ds s
x yU C U V C Vσ σ= ∇ = ∇  express the elastic constitutive law (here 

s
x∇  (resp. s

y∇ ) denotes the symmetric part of the gradient with respect to x  (resp. to y ) and 
C  the stiffness matrix function of the Young modulus and the Poisson ratio of the material 
under consideration, i.e. inclusion or matrix). 

3. The tensile stress field orthogonal to the remote compressive loading
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A preliminary study is carried out to determine the potential sites for crack nucleation. We 
assume that the expected cracks are parallel to the compressive remote load and nucleate at 
locations where the tensile stress is maximum.  
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Figure 4. Dimensionless opening component 22 22 /σ σ σ ∞=  function of 2y  at 1 0y =  for different elastic moduli 
ratios between matrix and concretion.

Figure 4 plots the opening component 22σ  along the 2y  axis at 1 0y =  (see figure 3.b), for 
different values of ( )mν  and ( )iν  and for two different stiffness contrasts ( ) ( )/ 3i mE E =  and 

( ) ( )/ 10i mE E = . The matrix Poisson ratio ( )mν  plays a crucial role whereas that of ( )iν  is less 
pronounced, but still significant for low contrasts ( ) ( )/i mE E .
Of course, the computed value for 22σ  in the concretion agrees perfectly with the analytical 
approach of  Eshelby (1957) cited by Eidelman and Reches (1992). 

According to the observations, three mechanisms can occur: concretion failure, matrix failure 
and interface debonding. They are first studied separately and then the competition between 
them is analysed. 

4. Inclusion failure 

As previously mentioned, the case of multiple fractures in rigid inclusions has been observed 
by several authors (Eidelman and Reches 1992; Bessinger et al. 2003). The picture in figure 
1.a (Bessinger et al. 2003) shows five parallel cracks in a limestone concretion included in a 
sandstone bank. The spacing between the fractures is low and strictly incompatible with a 
sequential failure mechanism where a shielding effect prevents any small spacing between 
cracks. A possible explanation is that these failures have occurred almost simultaneously and 
so avoided this shielding effect. The mixed criterion, involving both tension and energy 
conditions, allows such a mechanism to be described. It brings into evidence a strong size 
effect due to the inclusion diameter.   
According to figures 4.e to 4.h, the inside crack initiation requires a high Poisson’s ratio of the 
matrix ( )mν , typically ( ) 0.3mν ≥  in order to have a positive tension in the concretion. The 
Poisson’s ratio ( )iν  of the inclusion has a significant influence on the opening stress 
component only for low stiffness contrasts ( ) ( )/i mE E . A high ( )mν  and a low ( )iν  is the most 
favourable situation for failure within the concretion.  
The opening stress is constant through the inclusion. As a consequence, any point is a 
potential site for nucleation; and the stress condition for failure is simultaneously fulfilled at 
all points of the presupposed crack paths. An upper bound for admissible crack lengths does 
not exist. This implies that if a crack starts, it goes brutally through the whole concretion 
provided the energy condition is also verified. Nevertheless, cracks cannot extend outside 
because the matrix ahead is in a compressive state. Moreover, one or more horizontal cracks 
are likely to occur within the concretion if the available stored energy is sufficiently high. The 
brutal failure could partly explain why the crack extensions are not strongly influenced by 
heterogeneities inside the pebbles as pointed out by Eidelman and Reches (1992).  
For simplicity, we assume that the cracks are regularly distributed within the inclusion as 
illustrated in figure 5. In each case the dimensionless crack length at initiation 0 0 / dμ =  is 
known; it is the sum of the lengths of the different cracks (whereas this length is a priori 
unknown in the general case of application of the mixed criterion, see sections 7 and 8). 
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(a)                                        (b)                                        (c)                                        (d) 

Figure 5. Inner domains in different cases: from 1 to 5 cracks within the concretion.

The initial (uncracked) and final (totally cracked) configurations are the only ones involved in 
calculating the incremental energy release rate G . Expansion (9) holds in the uncracked case 
(i.e. 0 0=  where 0  denotes the cracks’ total length, see eqn. (11)1 equivalent to (9)). The 
cracked case can be described as well (eqn. (11)2), changing the inner domain by adding a 
single or many cracks as shown in figure 5 

1
1 2 1 2 1 2

1
1 2 0 1 2 0 1 2 0

( , ,0) ( , ,0)  ( , ,0) ...
( , , ) ( , , )  ( , , ) ...

d d

d d

U x x U dy dy d V y y
U x x U dy dy d d V y y

σ
μ σ μ

∞

∞

= = +
= = +

  (11) 

 where 0 0 / dμ =  is the dimensionless cracks’ total length. This leads to the condition (12) 
following a strictly analogous approach to that used in Leguillon et al. (2007) in the case of 
crack nucleation at poles of a cavity under a compressive loading 

0 0 2 ( ) ( )2 ( )2 ( )
0 0

0 0

( ) (0) ( ) (0)
( )   ( ) (1 ) /p p p p i i i i

n c Ic

W W W W
G d B G K E

d
σ μ ν

μ ∞

− −
= = = ≥ = −  (12) 

The scaling coefficient nB  depends on the number n  of cracks (through 0μ ) and on the 
cracks’ location, but not on the overall geometry of the structure or the load intensity. It can 
be extracted, once and for all for each n , from a finite element approximation of 

1
1 2 0( , , )V y y μ  by a path-independent integral (Leguillon and Sanchez-Palencia 1987, 

Leguillon et al. 2007). 

According to (10) the stress condition is written as follows 

( )
22 22

i
cσ σ σ σ∞= ≥       (13) 

Figure 6 gives the load at failure σ ∞  and the number n  of cracks in the inclusion functions of 
the inclusion diameter d  in the case: ( ) 0.1iν = , ( ) 0.4mν = , ( ) 5i

cσ = MPa and 
( ) 1i
IcK = MPa.m1/2. It evidences the size effect and especially the influence of the concretion 

diameter d  on the number of nucleating cracks. 
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Figure 6. Critical load at initiation σ ∞  and number n  of cracks (from 1 to 5) in the inclusion, functions of the 

inclusion diameter d . The predicted value σ ∞  is bounded from above by the matrix compressive strength ( )mc .

As mentioned above, the mixed criterion merges two necessary conditions. The energy 
condition depends on d , as well as on the number n  of cracks in the concretion (through the 
parameter nB ), whereas the stress condition is independent of n  and d  (horizontal line in 
figure 6). In the present case where 0μ  is a priori known, the two conditions are uncoupled.  
- For very small inclusion size, the compressive strength ( )mc = 45 MPa of the matrix is 
reached prior to any other mechanism.  
- For the inclusion size immediately below, the energy condition for a single crack governs 
the mechanism ( )

1/i
cG d Bσ ∞ =  and 22/cσ σ σ∞ > . The diameter d  for which equality holds 

in the two cases is the limit of a new regime governed by the stress condition 22/cσ σ σ∞ = .
- As d  increases, the gap between the two conditions grows and a significant amount of extra 
energy becomes available. Then the horizontal line 22/cσ σ σ∞ =  meets the energy condition 

for two cracks ( )
2/i

cG d Bσ ∞ = , etc.
The number of cracks increases with the concretion size as observed by Eidelman and Reches 
(1992). 

5. Sensitivity of the model to various parameters 

In the present case the stress and energy conditions are uncoupled as mentioned in the 
previous section. Thus the sensitivity to the failure parameters cσ  and ( )i

IcK  is trivial. This is 
illustrated in figure 7.a. The next figure, 7.b, shows the sensitivity of the criterion to the 
Young moduli contrast between inclusion and matrix.
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Figure 7. Sensitivity of the model for a single crack; (a) to the failure parameters. The solid line (resp. 
dotted/dashed line) corresponds to the mixed criterion with ( ) 5i

cσ = MPa and ( ) 1i
cK = MPa.m1/2 (resp. 

( ) 2.5i
cσ = MPa  and ( ) 0.5i

cK = MPa.m1/2); (b) to the stiffness contrast ( ) ( )/i mE E  between inclusion and matrix.

6. Comparison with data 

Let us consider the concretion failure observed by Bessinger et al. (2003) and shown in figure 
1.a. The tensile strength of the concretion ( ) 18i

cσ = MPa is determined by a Brazilian test on 
samples taken from three different concretions of the same type. No specific test is performed 
to obtain the value of ( )i

IcK . The Young moduli and Poisson ratios are also determined 
experimentally, but according to Bessinger et al., their values as well as the tensile strength 
are probably overestimated by the experimental set-up. Moreover, there is another 
fundamental uncertainty: should we use the current values of the mechanical parameters? 
Bessinger et al. computations and the present ones give much better results if the parameters’ 
values are considered to be those during the materials’ consolidation stage. For a concretion 
diameter 50d = cm and 5 observed cracks, assuming the toughness value ( )i

IcK  between 1 and 
3 MPa.m1/2, the tensile strength ( )i

cσ  appears to lie between 2 and 7.5 MPa, which seems to be 
quite reasonable. These multiple fractures can be a good indicator of a palaeostress state. 

7. Matrix failure 
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The curves in figure 4 show that 22σ  is positive in the matrix whatever the mechanical 
characteristics of the two materials, except in some cases at close proximity to the inclusion. 
Failure of the matrix can therefore a priori take place in all cases. We assume that the 
direction of nucleating cracks is once again parallel to the remote load (i.e. parallel to the 1y
axis). The peak of tension is clearly visible on the graphs of figure 4. Excluding some 
particular cases of figure 4(a), it lies in most cases between 2 0.6y =  and 2 0.8y = , depending 
on the stiffness contrast ( ) ( )/i mE E   and on the Poisson ratios ( )iν  and ( )mν .
In the sequel, we analyze the particular case ( ) ( )/ 3i mE E = , ( ) 0.4mν =  and ( ) 0.1iν = . By 
symmetry two cracks are likely to nucleate horizontally, on both sides of the concretion at 

2 0.61y = ±  (figure 8). Note that this distribution of fractures is very similar to that observed 
by McConaughy and Engelder (1999) (figure 1.e). 

y1

y2

O

1

μ

Figure 8. Inner domain associated with the matrix failure.

Thanks to the mixed criterion, we can determine the critical remote load σ ∞  at nucleation of 
these two cracks; each of them having a dimensionless length  02μ  (figure 8). Contrary to the 
previous case (failure inside the concretion, section 4) where the crack length at initiation was 
known in advance due to the constant opening stress field in the concretion, this length is a 
priori unknown here.  
A finite element computation in the uncracked configuration allows the opening stress 
component 22 ( )σ μ  along the presupposed crack path (figure 9.a) to be determined. It is a 
decreasing function of μ . Fulfilling the stress condition provides an upper bound 01μ  of the 
admissible dimensionless cracks’ half length. 
Then the energy release rate ( )G μ , a function of the dimensionless cracks half length μ , is 
calculated by successively unbuttoning the nodes along the presupposed crack path. It is an 
increasing function of μ . Thus the energy condition provides a lower bound 02μ  (figure 9.b). 
For a low remote load these two bounds are incompatible. Increasing the remote load makes it 
possible to merge these two values to obtain 0 01 02μ μ μ= = , which is the characteristic 
nucleation dimensionless half length. The associated remote load σ ∞  is the critical remote 
load at failure.  
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Figure 9. (a) Opening stress component 22σ  along the presupposed crack path, in the uncracked structure; (b) 
energy release rate G calculated for two cracks with dimensionless half length μ . The remote load σ ∞  for 

which 01 02μ μ=  is the critical load at failure. 
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Figure 10. Critical remote load σ ∞  function of the inclusion diameter d . The predicted value σ ∞  is bounded 

from above by the matrix compressive strength ( )mc .
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Once again, these curves exhibit a significant size effect due to the inclusion diameter d  ; the 
larger the inclusion, the lower the critical remote load at failure. The critical load becomes 
almost constant for large inclusions (figure 10). For very small inclusions, the critical value of 
σ ∞  is bounded from above by the matrix compressive strength ( )mc .
A sensitivity analysis to the parameters ( )m

cσ  and ( )m
IcK  is illustrated in figure 11. The role of 

the matrix toughness ( )m
IcK  is significant for small inclusions whereas that of ( )m

cσ  becomes 
more significant for large ones. In other words, the energy condition is more predominant for 
small inclusions, whereas the stress condition takes precedence for large inclusions. 
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Figure 11. Sensitivity to the matrix failure parameters: (a) to ( )m
cσ ; (b) to ( )m

IcK .

8. Interface debonding 

The matrix/inclusion interface debonding is another possible mechanism (figure 12). The 
prediction method of the critical load at failure σ∞  remains strictly identical to that of the 
matrix failure. The only difference is that the stress component to be considered is no longer 

22σ  but the radial component rrσ  associated with the opening of the interface. It reaches a 
maximum at 1 0y = . The curves ( )rrσ μ  and ( )G μ  are very similar to those exhibited in 
figure 9 and the same reasoning applies.  
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Figure 12. Inner domain associated with the interface debonding.

Indeed, the main difficulty here lies in the knowledge of the failure parameters of the 
interface: ( )d

IcK  and ( )d
cσ  which would require very specific experimental tests. We consider 

two cases. In the first one, the smallest of the two materials’ brittleness is selected. In case of 
interface debonding, this is a reasonable choice; otherwise if the interface was stronger then 
failure would not occur along the interface but within the most brittle material. In the second 
case, the interface properties are arbitrarily set at half those of the previous case.  
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Figure 13. Remote critical load σ ∞  at interface debonding function of the inclusion diameter d .  As previously 
mentioned this value is bounded from above by the matrix compressive strength ( )mc .

Once again, there is a strong size effect due to the diameter d  on the critical remote load at 
interface debonding (figure 13). Moreover, the sensitivity of the model to the different failure 
parameters remains almost the same as that encountered for the matrix failure. 

9. Competition between the different mechanisms 

As in the previous sections, the elastic moduli of the two materials are set at: 
( ) ( )/ 3i mE E =  MPa, ( ) 0.4mν =  and ( ) 0.1iν = . The different curves (6), (10) and (13) are 

superimposed on the same graph (figure 14) with the following failure parameters: 

- matrix : ( ) 4m
cσ = MPa, ( ) 1.8m

IcK = MPa.m1/2.
- interface : ( ) 5d

cσ = MPa, ( ) 1d
IcK = MPa.m1/2.

- inclusion : ( ) 7.2i
cσ = MPa, ( ) 1.3i

IcK = MPa.m1/2.
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stress condition for the inclusion

Figure 14. Critical remote load σ ∞  function of the inclusion diameter d .

Different characteristic regimes are brought into evidence in figure 14. 
- For very small inclusion size ( 11d ≤ mm), the matrix fails under a compressive stress 
because its strength ( )mc  is reached prior to any of the three other failure mechanisms.  
- For small inclusion sizes (11mm 76d≤ ≤ mm), the single or multiple inclusion failure 
mechanism becomes predominant. A single crack can appear in the concretion for 
11mm 35d≤ ≤ mm, two cracks for 35 mm 48d≤ ≤ mm, three cracks for 48 mm 60d≤ ≤ mm, 
four cracks for 60 mm 71d≤ ≤ mm, and five cracks for 71mm 76d≤ ≤ mm. 
- For medium inclusion sizes ( 76 mm 219d≤ ≤ mm), the interface debonding takes place prior 
to other mechanisms of failure. 
- Finally for larger inclusion sizes ( 219d ≥ mm), the matrix failure becomes the predominant 
mechanism. 
Therefore it is clear that the naturally selected mechanism is strongly governed by the 
inclusion diameter.  
Other combinations of material properties can lead to different conclusions (see figures 15.a 
to 15.e). Moreover, if the failure parameters of one of the components (i.e. matrix, inclusion 
or interface) are sufficiently low, the associated mechanism may completely hide the others 
(for example in case of a very weak matrix, its failure can occur whatever the diameter of the 
inclusion).  
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Figure 15. Various combinations of failures’ parameters (inclusion, matrix and interface) allow to draw different 
conclusions about the influence of the concretion diameter d . A small concretion diameter leads to the inclusion 
failure (case (a)), to the interface failure (cases (b) and (c)), or to the matrix failure (cases (d) and (e)). 

10. Conclusions 

The most original part of this work is the brittle fracture model for multiple failures in the 
inclusion. Results have been obtained for an inclusion stiffer than the surrounding matrix as 
often met in sediment beds. Failure of the inclusion can occur only for a matrix Poisson ratio 

( ) 0.3mν ≥ . The overburden at concretion failure is very sensitive to the value of this 
parameter, for ( ) 0.1iν = , ( ) 5i

cσ = MPa and ( ) 1i
IcK = MPa.m1/2, the failure load decreases by  

55 % as ( )mν  changes from 0.3 to 0.4, whatever the inclusion size. The Poisson ratio iν  of the 
inclusion has also a significant role although less pronounced. For a fixed diameter of 
inclusion d , ( ) 0.4mν = , ( ) 5i

cσ = MPa and ( ) 1i
IcK = MPa.m1/2, the critical load at failure 

increases by roughly 65 % as ( )iν  changes from 0.1 to 0.4.  
In this model, it is assumed that almost all the extra energy is consumed by the fracture 
mechanisms. This is a reasonable hypothesis since, due to the confinement, the concretion 
pieces cannot be quickly dispersed. Any kinetic energy production is avoided except perhaps 
if acoustic waves emanate from the cracks’ nucleation and propagate through the matrix. In 
that case, the predicted number of cracks within the inclusion, using this model, overestimates 
the actual number since part of the available energy is used for the propagation of these 
acoustic waves. 
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