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As well as cavities, embedded concretions and fossil inclusions are known to be possible sites of fracture initiation in rocks under compressive loadings. Parallel cracks can be observed in stiff inclusions surrounded by soft sediments. The crack spacing is often small and strictly incompatible with a mechanism of successive failures and reloading because of a shielding effect. The explanation proposed here is that these failures occur almost simultaneously thus avoiding this effect. A mixed criterion developed by one of the authors and involving both energy and stress conditions is able to predict such a fracturing mechanism. It is strongly related to a size effect: the larger the inclusion diameter, the higher the number of cracks. There is a competition between this mechanism and other fracture events like matrix failure or interface debonding. It is shown that, depending on the material properties and the concretion size, one of them can become predominant.

Introduction

Rigid inclusions (concretions, fossil inclusions) embedded in a soft sedimentary matrix are known to be potential sites for the initiation of cracks. [START_REF] Bessinger | The role of compressive stresses in jointing on Vancouver Island, British Columbia[END_REF] have studied a group of limestone concretions in a sandstone bed on Vancouver Island (British Columbia) and observed different configurations. Concretions are characterized by their size and the contrast of their mechanical properties with the surrounding matrix. The failure occurs either in the sandstone matrix in the vicinity of the concretion, or at the interface between concretion and sandstone, or even inside the concretion with one or more parallel cracks (figures 1.a and 1.b). The best example is a 50 cm concretion with 5 closely spaced cracks (figure 1.a). [START_REF] Eidelman | Fracture pebbles -A new stress indicator[END_REF] have made similar comments on pebbles included in a weakly cemented matrix found in two different sites in California and Israel. The material varies from one pebble to another: gneiss, granite, slate, sandstone or limestone. Most of the ellipsoidal to spherical pebbles are 10 to 30 cm in diameter, and contain 2 to 5 closely spaced parallel cracks. They report that the number of cracks increases with the size of the pebbles.
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Moreover, they note that the pebbles are preferentially fractured, but that fractures may extend in some cases into the matrix (figures 1.c and 1.d). Within pebbles, the crack extensions do not seem to be influenced by the heterogeneity of the material. In the two cases, the inclusions are more rigid than the matrix. Both studies indicate a higher density of cracks inside or near inclusions than elsewhere in the matrix. The constant crack alignment in concretions and in the matrix indicates that the failure mechanisms occurred during the same tectonic episode. The authors' point of view is that the fracturing origin lies in a tectonic compression combined with a significant pore pressure leading to a low confinement and thus an almost pure uniaxial compressive state. In particular, [START_REF] Bessinger | The role of compressive stresses in jointing on Vancouver Island, British Columbia[END_REF] find that, in the case of multiple cracks, the low spacing (much lower than the concretion diameter) is incompatible with a remote tension and the resulting shielding effect between cracks. The compressive stress plays an essential role in their nucleation. [START_REF] Lorenz | Regional fracture I: A mechanism for the formation of regional fractures at depth in flat-lying reservoirs[END_REF] also analyze mechanical stress amplification in a lenticular sandstone inclusion in limestone. Once again compression is invoked to explain the observations. It must be pointed out that the two previous analyses differ, but the final results coincide on many points. The [START_REF] Eidelman | Fracture pebbles -A new stress indicator[END_REF] model uses the analytical approach of [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] to compute the stress field within the inclusion as a function of the mechanical properties of the materials and the remote load. [START_REF] Eidelman | Fracture pebbles -A new stress indicator[END_REF] then use a maximum tensile stress condition to predict the appearance of a single crack in the inclusion. Bessinger et al. study the mechanism of multiple fractures of the concretion numerically, under either a tensile or a compressive loading. For them, the multiple failures occur in successive steps. In case of a tensile loading, decohesion of the interface is supposed to intervene first, it prevents the breakdown of the concretion. Thus, only a sub-critical growth due to a humid or chemically reactive environment, could justify the existence of internal cracks. In the sub-critical mode, cracks grow very slowly and under a remote load far less than those observed in an inert environment where fracture is unstable and cracks grow at speeds which are comparable to the elastic waves speed. The critical stress intensity factor Ic K (see eqn. (2)), obtained in laboratories, reflects these latter conditions. For in situ conditions, the sub-critical growth rate v of a crack can be written (at least for a given range of the stress intensity factor (SIF

) I K ): ( / ) p I I c v A K K =
following a fatigue-like power law [START_REF] Olson | Predicting fracture swarms -The influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock, in The initiation, propagation and arrest of joints and other fractures[END_REF]). Here A is a scaling coefficient, and p is the sub-critical index. The value of p varies considerably depending on the kind of rock and environment, from 20 for sandstone immersed into water to over 250 in dry for carbonates [START_REF] Olson | Predicting fracture swarms -The influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock, in The initiation, propagation and arrest of joints and other fractures[END_REF]). Nevertheless, following Bessinger et al., the values of p necessary to propagate multiple fractures should be lower by several orders of magnitude than those obtained experimentally, and these values have never been found in rocks. Thus multiple cracking in concretions seems unlikely to occur according to this mechanism. The remote tension can play a role in some specific configurations. This is the case proposed by [START_REF] Lash | Jointing within the outer arc of a forebulge at the onset of the Alleghanian Orogeny[END_REF], for example, who observe fractures appearing on the outer arc of a folding zone in the Appalachians. In this study, which also contains some examples of fractures inside or near concretions, fracturing is linked to an extension in the perpendicular direction to the fracture and/or thermal shrinkage in the early stages of the tectonic cycles. But it must be noted that crack spacing is larger and so more compatible with the hypothesis of a remote tension [START_REF] Mandl | Rock joints -The mechanical genesis[END_REF]. Other publications offer examples of fracturing inside or near rigid inclusions. McConaughy and Engelder (1999) show an example of cracks in the matrix on both sides of two concretions (figure 1.e) in the region of New York. They refer to the mechanisms mentioned just above, although the spacing between cracks is, from our point of view, incompatible with such mechanisms. Another approach able to provide an explanation to the multiple cracking of an inclusion is proposed herein. It is based on a mixed criterion involving both energy and stress conditions 2002). Starting from an energy balance between an elastic initial state prior to any crack onset and after the appearance of a new crack or a crack extension with surface S δ leads to the following inequality
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p c W G G S δ δ - = ≥ (1) 
where p W δ is the change in potential energy and c G the material toughness (J.m -2 ) which can also be expressed in terms of the critical mode I stress intensity factor Ic K (MPa.m 1/2 ), also called toughness, using the Irwin relation ( E and ν are respectively the Young modulus and the Poisson ratio of the material)

2 2 1 c I c G K E ν - = (2) 
Inequality ( 1) is an unquestionable necessary condition for failure, G is the incremental energy release rate which involves a crack increment S δ . Note that the Griffith criterion derives from

(1) at the limit as 0 S δ → .

On the other hand, the maximum tensile stress criterion is based on the maximum tension that a material can bear. Failure occurs at a point if

c σ σ ≥ (3)
where σ holds for the tension orthogonally to the failure direction and c σ for the tensile strength of the material. Nevertheless, the crack nucleation cannot be correctly predicted by either of these two usual brittle fracture criteria. They give contradictory results and neither one nor the other agrees with the experiments [START_REF] Leguillon | Strength or toughness? A criterion for crack onset at a notch[END_REF]. Within the plane strain assumption, a lower bound for admissible crack length is derived from (1) whereas (3) leads to an upper bound. The compatibility between these two bounds allows a critical nucleation length to be defined. The crack is assumed to jump this length at initiation. Inserting this critical length in (1) or equivalently in (3) leads to a nucleation criterion taking into account both conditions (1) and (3). It has already proved its efficiency in various situations [START_REF] Leguillon | Strength or toughness? A criterion for crack onset at a notch[END_REF][START_REF] Leguillon | Prediction of crack initiation at blunt notches and cavities -Size effect[END_REF]).

The interaction between this critical length and the concretion diameter is responsible for a strong size effect playing a prominent role in the crack nucleation and the number of cracks appearing within a concretion.

The model and the matched asymptotics procedure

The geometry used in the present model is shown in figure 2. A stiff circular inclusion with diameter d is embedded in a more compliant matrix and submitted to a uniaxial compressive loading σ ∞ (using mechanical notations σ ∞ is negative, thus throughout the paper results are given in terms of σ ∞ ). The diameter d is assumed to be small compared to the specimen size, making it possible for an asymptotic expansions approximation in terms of the small parameter d . Thereafter, ( ) Solving numerically an elasticity problem in the domain d Ω (figure 2) embedding a small inclusion with diameter d presents some difficulties because of the small size of the perturbation which requires a drastic finite element (FE) mesh refinement in its vicinity especially if additional inside or neighbouring cracks must be taken into account. It is better trying to represent the elastic solution d U in the following approximate form called outer expansion

0 1 2 1 2 ( , ) ( , ) d U x x U x x = + small correction (4)
where 0 U is the solution to the same elasticity problem, but now posed on the unperturbed domain 0 Ω (figure 3.a) which can be considered as the limit of d Ω as 0 d → . In other words, the small inclusion is not visible. It is the classical simplified frame often used to perform FE computations since the meshing procedure prevents taking into account very small details. It is clear that this solution 0 U is a satisfying approximation of d U away from the perturbation, i.e., outside a neighbourhood of the perturbation, and hence its designation as the outer field (or far field). Obviously, this information is incomplete, particularly when we are interested in the fracture mechanisms that can occur in or around the inclusion. To this aim, the space variables are stretched introducing the change of variables / i i y x d = .

In the limit when 0 d → , we obtain an unbounded domain ∞ Ω (looking like the enlarged frame in figure 3.b) in which the inclusion diameter now equals 1. We then search for another representation of the same solution under the form of an expansion known as inner expansion and describing the near field V , but where conditions at infinity lack having correctly stated problems. These missing conditions derive from the matching procedure. The inner and outer expansions describe the solution d U in terms of near and far fields. An intermediate zone (close to the perturbation for the far field and far from it for the near field) must exist where both expansions are valid. In other words, the behaviour of the far field, when one comes closer to the origin, must match with the behaviour of the near field, when one moves away from the perturbation.

0 1 1 2 1 2 0 1 2 1 1 2 ( , ) ( , ) ( ) ( , ) ( ) ( , ) ... d d U x x U dy dy F d V y y F d V y y = = + + ( 

A C C E P T E D M A N U S C R I P T

The behaviour of the far field near the origin, is simply described by the uniaxial compressive state

0 0 1 2 ( , ) ( , ) ( ) U x x U r rt θ σ θ ∞ = = (6)
It is written here using the polar coordinates r and θ to bring into evidence the linear dependency in r which intervenes in the matching procedure. The matching conditions are written as follows 

0 1 0 1 2 1 1 2 ( ) ( , ) 0 ; ( ) ( , ) ( ) F d V y y F d V y y d t σ ρ θ ∞ ≈ ≈ (7) 
F d = , 0 1 2 ( , ) 0 V y y = ; 1 ( ) F d d σ ∞ = and 1 1 2 ( , ) ( ) V y y t ρ θ ≈ (8) 
The most significant term 1 V is the solution to a problem that can be solved using a superposition principle [START_REF] Leguillon | Strength or toughness? A criterion for crack onset at a notch[END_REF]Sanchez-Palencia 1987, Leguillon 2002). The expansion of the actual solution d U and the associated stress field become

1 1 2 1 2 1 2 ( , ) ( , ) ( , ) ... d d U x x U dy dy d V y y σ ∞ = = + (9) 1 1 2 1 2 ( ( , )) ( ( , )) ... d U x x V y y σ σσ ∞ = + (10)
where 1 1 ( ) : ( ) and ( ) : ( )

d d s s x y U C U V C V σ σ = ∇ = ∇
express the elastic constitutive law (here

s x
∇ (resp. s y ∇ ) denotes the symmetric part of the gradient with respect to x (resp. to y ) and C the stiffness matrix function of the Young modulus and the Poisson ratio of the material under consideration, i.e. inclusion or matrix).

The tensile stress field orthogonal to the remote compressive loading
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A preliminary study is carried out to determine the potential sites for crack nucleation. We assume that the expected cracks are parallel to the compressive remote load and nucleate at locations where the tensile stress is maximum. ν plays a crucial role whereas that of ( ) i ν is less pronounced, but still significant for low contrasts ( ) ( ) /
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i m E E . Of course, the computed value for 22 σ in the concretion agrees perfectly with the analytical approach of [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] cited by [START_REF] Eidelman | Fracture pebbles -A new stress indicator[END_REF].

According to the observations, three mechanisms can occur: concretion failure, matrix failure and interface debonding. They are first studied separately and then the competition between them is analysed.

Inclusion failure

As previously mentioned, the case of multiple fractures in rigid inclusions has been observed by several authors [START_REF] Eidelman | Fracture pebbles -A new stress indicator[END_REF][START_REF] Bessinger | The role of compressive stresses in jointing on Vancouver Island, British Columbia[END_REF]. The picture in figure 1.a [START_REF] Bessinger | The role of compressive stresses in jointing on Vancouver Island, British Columbia[END_REF] shows five parallel cracks in a limestone concretion included in a sandstone bank. The spacing between the fractures is low and strictly incompatible with a sequential failure mechanism where a shielding effect prevents any small spacing between cracks. A possible explanation is that these failures have occurred almost simultaneously and so avoided this shielding effect. The mixed criterion, involving both tension and energy conditions, allows such a mechanism to be described. It brings into evidence a strong size effect due to the inclusion diameter. According to figures 4.e to 4.h, the inside crack initiation requires a high Poisson's ratio of the matrix ( ) m ν , typically ( ) The opening stress is constant through the inclusion. As a consequence, any point is a potential site for nucleation; and the stress condition for failure is simultaneously fulfilled at all points of the presupposed crack paths. An upper bound for admissible crack lengths does not exist. This implies that if a crack starts, it goes brutally through the whole concretion provided the energy condition is also verified. Nevertheless, cracks cannot extend outside because the matrix ahead is in a compressive state. Moreover, one or more horizontal cracks are likely to occur within the concretion if the available stored energy is sufficiently high. The brutal failure could partly explain why the crack extensions are not strongly influenced by heterogeneities inside the pebbles as pointed out by [START_REF] Eidelman | Fracture pebbles -A new stress indicator[END_REF].

For simplicity, we assume that the cracks are regularly distributed within the inclusion as illustrated in figure 5. In each case the dimensionless crack length at initiation 0 0 / d μ = is known; it is the sum of the lengths of the different cracks (whereas this length is a priori unknown in the general case of application of the mixed criterion, see sections 7 and 8). The initial (uncracked) and final (totally cracked) configurations are the only ones involved in calculating the incremental energy release rate G . Expansion (9) holds in the uncracked case (i.e. 0 0 = where 0 denotes the cracks' total length, see eqn. ( 11) 1 equivalent to ( 9)). The cracked case can be described as well (eqn. ( 11) 2 ), changing the inner domain by adding a single or many cracks as shown in figure 5 is the dimensionless cracks' total length. This leads to the condition (12) following a strictly analogous approach to that used in [START_REF] Leguillon | Prediction of crack initiation at blunt notches and cavities -Size effect[END_REF] in the case of crack nucleation at poles of a cavity under a compressive loading

1 1 2 1 2 1 2 1 1 2 0 1 2 0 1 2 0 ( , , 0) ( , , 0) ( , , 0) ... ( , , ) ( , , ) ( , , ) ... 
0 0 2 ( ) ( ) 2 ( ) 2 ( ) 0 0 0 0 ( ) (0) ( ) (0) ( ) ( ) (1 )/ p p p p i i i i n c I c W W W W G d B G K E d σ μ ν μ ∞ - - = = = ≥ = - (12) 
The scaling coefficient n B depends on the number n of cracks (through 0 μ ) and on the cracks' location, but not on the overall geometry of the structure or the load intensity. It can be extracted, once and for all for each n , from a finite element approximation of 1 1 2 0 ( , , )

V y y μ by a path-independent integral [START_REF] Leguillon | Strength or toughness? A criterion for crack onset at a notch[END_REF]Sanchez-Palencia 1987, Leguillon et al. 2007).

According to (10) the stress condition is written as follows As mentioned above, the mixed criterion merges two necessary conditions. The energy condition depends on d , as well as on the number n of cracks in the concretion (through the parameter n B ), whereas the stress condition is independent of n and d (horizontal line in figure 6). In the present case where 0 μ is a priori known, the two conditions are uncoupled.

d (mm) |σ ∞ | (MPa) E (i) /E (m) = 3 (i) = 0.1 (m) = 0.
-For very small inclusion size, the compressive strength ( ) m c = 45 MPa of the matrix is reached prior to any other mechanism.

-For the inclusion size immediately below, the energy condition for a single crack governs the mechanism The number of cracks increases with the concretion size as observed by [START_REF] Eidelman | Fracture pebbles -A new stress indicator[END_REF].

Sensitivity of the model to various parameters

In the present case the stress and energy conditions are uncoupled as mentioned in the previous section. Thus the sensitivity to the failure parameters c σ and ( ) i Ic K is trivial. This is illustrated in figure 7.a. The next figure, 7.b, shows the sensitivity of the criterion to the Young moduli contrast between inclusion and matrix. i m E E between inclusion and matrix.

d (mm) |σ ∞ | (MPa) E (i) /E (m) = 3 c = 5 MPa K Ic = 1 MPa.m 1/2 c = 2.5 MPa K Ic = 0.5 MPa.m 1/2 (i) = 0.1 (m) = 0.4 ( 
|σ ∞ | (MPa) Ec/Em=2 Ec/Em=3 Ec/Em=10 (m) = 0.4 (i) = 0.1 E (i) /E (m) = 2 E (i) /E (m) = 3 E (i) /E (m) = 10 c = 5 MPa K Ic = 1 MPa.m 1/2 (b)

Comparison with data

Let us consider the concretion failure observed by [START_REF] Bessinger | The role of compressive stresses in jointing on Vancouver Island, British Columbia[END_REF] K between 1 and 3 MPa.m 1/2 , the tensile strength ( ) i c σ appears to lie between 2 and 7.5 MPa, which seems to be quite reasonable. These multiple fractures can be a good indicator of a palaeostress state.

Matrix failure
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The curves in figure 4 show that 22 σ is positive in the matrix whatever the mechanical characteristics of the two materials, except in some cases at close proximity to the inclusion. Failure of the matrix can therefore a priori take place in all cases. We assume that the direction of nucleating cracks is once again parallel to the remote load (i.e. parallel to the 1 y axis). The peak of tension is clearly visible on the graphs of figure 4. Excluding some particular cases of figure 4(a), it lies in most cases between 2 0.6 y = and 2 0.8 y = , depending on the stiffness contrast ( ) ( ) /

i m E E and on the Poisson ratios ( ) i ν and ( ) m ν .

In the sequel, we analyze the particular case ( ) ( ) / 3 Thanks to the mixed criterion, we can determine the critical remote load σ ∞ at nucleation of these two cracks; each of them having a dimensionless length 0 2μ (figure 8). Contrary to the previous case (failure inside the concretion, section 4) where the crack length at initiation was known in advance due to the constant opening stress field in the concretion, this length is a priori unknown here. A finite element computation in the uncracked configuration allows the opening stress component 22 ( ) 

σ
E (i) /E (m) = 3 (i) = 0.1 (m) = 0.4 c = 3 MPa d = 20 cm μ 01 22 = c (a) 0 30 60 90 0 0 . 1 0 . 2 0 . 3 μ G (J.m -2
) 

E (i) /E (m) = 3 (i) = 0.1 (m) = 0.4 G c = 41.7 J.m -2 d = 20 cm G = G c μ 02 ( 
d (mm) |σ ∞ | (MPa) E (i) /E (m) = 3 (i) = 0.

K

is significant for small inclusions whereas that of ( ) m c σ becomes more significant for large ones. In other words, the energy condition is more predominant for small inclusions, whereas the stress condition takes precedence for large inclusions. Scm=5MPa Scm=10MPa 

E (i) /E (m) = 3 (i) = 0.1 (m) = 0.4 K Ic = 1 MPa.m 1/2 c = 5 MPa c = 10 MPa

Interface debonding

The matrix/inclusion interface debonding is another possible mechanism (figure 12). The prediction method of the critical load at failure σ ∞ remains strictly identical to that of the matrix failure. The only difference is that the stress component to be considered is no longer Indeed, the main difficulty here lies in the knowledge of the failure parameters of the interface: ( )

d Ic K and ( ) d c
σ which would require very specific experimental tests. We consider two cases. In the first one, the smallest of the two materials' brittleness is selected. In case of interface debonding, this is a reasonable choice; otherwise if the interface was stronger then failure would not occur along the interface but within the most brittle material. In the second case, the interface properties are arbitrarily set at half those of the previous case. Once again, there is a strong size effect due to the diameter d on the critical remote load at interface debonding (figure 13). Moreover, the sensitivity of the model to the different failure parameters remains almost the same as that encountered for the matrix failure.

Competition between the different mechanisms

As in the previous sections, the elastic moduli of the two materials are set at: Therefore it is clear that the naturally selected mechanism is strongly governed by the inclusion diameter. Other combinations of material properties can lead to different conclusions (see figures 15.a to 15.e). Moreover, if the failure parameters of one of the components (i.e. matrix, inclusion or interface) are sufficiently low, the associated mechanism may completely hide the others (for example in case of a very weak matrix, its failure can occur whatever the diameter of the inclusion). 

Conclusions

The most original part of this work is the brittle fracture model for multiple failures in the inclusion. Results have been obtained for an inclusion stiffer than the surrounding matrix as often met in sediment beds. Failure of the inclusion can occur only for a matrix Poisson ratio In this model, it is assumed that almost all the extra energy is consumed by the fracture mechanisms. This is a reasonable hypothesis since, due to the confinement, the concretion pieces cannot be quickly dispersed. Any kinetic energy production is avoided except perhaps if acoustic waves emanate from the cracks' nucleation and propagate through the matrix. In that case, the predicted number of cracks within the inclusion, using this model, overestimates the actual number since part of the available energy is used for the propagation of these acoustic waves.

Figure 1 .

 1 Figure 1. Cracks inside or in the vicinity of concretions: (a) 5 closely spaced cracks in a concretion (Bessinger et al. 2003); (b) overview of cracks inside and around concretions in a sandstone matrix, (Bessinger et al. 2003) ; (c) multiple cracks in a pebble (Eidelman and Reches 1992) ; (d) various kinds of failure in pebbles (Eidelman and Reches 1992) ; (e) matrix cracking in the vicinity of two concretions (Mc Conaughy and Engelder 1999).

  the Young modulus and the Poisson ratio of the inclusion (resp. the matrix).

Figure 2 .

 2 Figure 2. The domain dΩ made of a small stiff inclusion embedded in a compliant matrix and submitted to a uniaxial compressive loading σ ∞ .

Figure 3 .

 3 Figure 3. The two scales and the two domains of the matched asymptotic expansions process: (a) the outer domain 0Ω (the perturbation is not visible); (b) the unbounded inner domain ∞ Ω (the concretion diameter equals 1 and boundaries are thrown to infinity).

  the symbol ≈ means "behaves like at infinity"), thus it comes straightforwardly 0 ( ) 1

Figure

  Figure 4. Dimensionless opening component 22 22 / σ σ σ ∞ = function of 2 y at 1 0 y = for different elastic moduli ratios between matrix and concretion.

Figure

  Figure 4 plots the opening component 22 σ along the 2 y axis at 1 0 y = (see figure 3.b), for

  have a positive tension in the concretion. The Poisson's ratio ( ) i ν of the inclusion has a significant influence on the opening stress component only for low stiffness contrasts ( failure within the concretion.

Figure 5 .

 5 Figure 5. Inner domains in different cases: from 1 to 5 cracks within the concretion.
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 6 Figure6gives the load at failure σ ∞ and the number n of cracks in the inclusion functions of the inclusion diameter d in the case:

Figure 6 .

 6 Figure 6. Critical load at initiation σ ∞ and number n of cracks (from 1 to 5) in the inclusion, functions of the inclusion diameter d . The predicted value σ ∞ is bounded from above by the matrix compressive strength ( ) m c .

  d for which equality holds in the two cases is the limit of a new regime governed by the stress condition d increases, the gap between the two conditions grows and a significant amount of extra energy becomes available. Then the horizontal line 22

Figure 7 .

 7 Figure 7. Sensitivity of the model for a single crack; (a) to the failure parameters. The solid line (resp. dotted/dashed line) corresponds to the mixed criterion with ( ) 5 i c σ = MPa and ( ) 1 i c K = MPa.m 1/2 (resp.

  and shown in figure 1.a. The tensile strength of the concretion ( ) 18 i c σ = MPa is determined by a Brazilian test on samples taken from three different concretions of the same type. No specific test is performed to obtain the value of ( ) i Ic K . The Young moduli and Poisson ratios are also determined experimentally, but according to Bessinger et al., their values as well as the tensile strength are probably overestimated by the experimental set-up. Moreover, there is another fundamental uncertainty: should we use the current values of the mechanical parameters? Bessinger et al. computations and the present ones give much better results if the parameters' values are considered to be those during the materials' consolidation stage. For a concretion diameter 50 d = cm and 5 observed cracks, assuming the toughness value ( ) i Ic

Figure 8 .

 8 Figure 8. Inner domain associated with the matrix failure.

  μ along the presupposed crack path (figure 9.a) to be determined. It is a decreasing function of μ . Fulfilling the stress condition provides an upper bound 01 μ of the admissible dimensionless cracks' half length. Then the energy release rate ( ) G μ , a function of the dimensionless cracks half length μ , is calculated by successively unbuttoning the nodes along the presupposed crack path. It is an increasing function of μ . Thus the energy condition provides a lower bound 02 μ (figure 9.b).For a low remote load these two bounds are incompatible. Increasing the remote load makes it possible to merge these two values to obtain

Figure 9 .

 9 Figure 9. (a) Opening stress component 22 σ along the presupposed crack path, in the uncracked structure; (b) energy release rate G calculated for two cracks with dimensionless half length μ . The remote load σ ∞ for which 01

Figure 10 .

 10 Figure 10. Critical remote load σ ∞ function of the inclusion diameter d . The predicted value σ ∞ is bounded from above by the matrix compressive strength ( ) m c .

Figure 11 .

 11 Figure 11. Sensitivity to the matrix failure parameters: (a) to ( ) m c σ ; (b) to ( ) m Ic K .

22σFigure 12 .

 12 figure 9 and the same reasoning applies.

Figure 13 .

 13 Figure 13. Remote critical load σ ∞ at interface debonding function of the inclusion diameter d . As previously mentioned this value is bounded from above by the matrix compressive strength ( ) m c .

Figure 14 .

 14 Figure 14. Critical remote load σ ∞ function of the inclusion diameter d . Different characteristic regimes are brought into evidence in figure 14. -For very small inclusion size ( 11 d ≤ mm), the matrix fails under a compressive stress because its strength ( ) m c is reached prior to any of the three other failure mechanisms. -For small inclusion sizes (11mm 76 d ≤ ≤ mm), the single or multiple inclusion failure mechanism becomes predominant. A single crack can appear in the concretion for 11mm 35 d ≤ ≤ mm, two cracks for 35 mm 48 d ≤ ≤ mm, three cracks for 48 mm 60 d ≤ ≤ mm, four cracks for 60 mm 71 d ≤ ≤ mm, and five cracks for 71 mm 76 d ≤ ≤ mm. -For medium inclusion sizes ( 76 mm 219 d ≤ ≤ mm), the interface debonding takes place prior to other mechanisms of failure. -Finally for larger inclusion sizes ( 219 d ≥ mm), the matrix failure becomes the predominant mechanism.Therefore it is clear that the naturally selected mechanism is strongly governed by the inclusion diameter. Other combinations of material properties can lead to different conclusions (see figures 15.a to 15.e). Moreover, if the failure parameters of one of the components (i.e. matrix, inclusion or interface) are sufficiently low, the associated mechanism may completely hide the others (for example in case of a very weak matrix, its failure can occur whatever the diameter of the inclusion).

  c = 4.2 MPa ; K Ic = 0.8 MPa.m 1/2 interface: c = 4 MPa ; K Ic = 0.5 MPa.m 1/2 inclusion: c = 2.8 MPa ; K Ic = 2 MPa.m = 10 MPa ; K Ic = 0.5 MPa.m 1/2 interface: c = 5 MPa ; K Ic = 1 MPa.m 1/2 inclusion: c = 6.6 MPa ; K Ic = 1.4 MPa.m 1/2 Figure 15. Various combinations of failures' parameters (inclusion, matrix and interface) allow to draw different conclusions about the influence of the concretion diameter d . A small concretion diameter leads to the inclusion failure (case (a)), to the interface failure (cases (b) and (c)), or to the matrix failure (cases (d) and (e)).

.ν

  The overburden at concretion failure is very sensitive to the value of this parameter, for ( ) 0changes from 0.3 to 0.4, whatever the inclusion size. The Poisson ratio i ν of the inclusion has also a significant role although less pronounced. For a fixed diameter of inclusion d ,( ) 
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