
HAL Id: hal-00634687
https://hal.science/hal-00634687

Submitted on 22 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Connected quadruple excitations in the coupled cluster
theory

Monika Agnieszka Musial, Stanislaw Kucharski

To cite this version:
Monika Agnieszka Musial, Stanislaw Kucharski. Connected quadruple excitations in the coupled
cluster theory. Molecular Physics, 2010, 108 (21-23), pp.3235-3245. �10.1080/00268976.2010.523523�.
�hal-00634687�

https://hal.science/hal-00634687
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly
 

 

 

 
 

 

 

Connected quadruple excitations in the coupled cluster 

theory 
 

 

Journal: Molecular Physics 

Manuscript ID: TMPH-2010-0316 

Manuscript Type: 
Special Issue Paper - Electrons, Molecules, Solids and Biosystems: 
Fifty Years of the Quantum Theory Project 

Date Submitted by the 
Author: 

02-Aug-2010 

Complete List of Authors: Musial, Monika; University of Silesia, Institute of Chemistry 

Kucharski, Stanislaw; university of silesia, chemistry 

Keywords: 
coupled cluster method, quadruple excitations, factorization, 
quasilinear form of equations 

  

Note: The following files were submitted by the author for peer review, but cannot be converted 
to PDF. You must view these files (e.g. movies) online. 

source fies.zip 

 

 

 

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics



For Peer Review
 O

nly

Connected quadruple excitations in the coupled

cluster theory

Stanis law A. Kucharski and Monika Musia l

Institute of Chemistry, University of Silesia

Szkolna 9, 40-006 Katowice, Poland

Abstract

The role of the connected quadruple excitations in the coupled cluster

(CC) theory is discussed. The full inclusion of the T4 (Q) operator in addi-

tion to singles (S), doubles (D) and triples (T) defines the CCSDTQ method

which offers a very accurate computational tool applicable to small molecular

systems. The efficient organization of the CC equations results in the quasi-

linear formulation of the CCSDTQ scheme. A wider range of applications can

be ensured with the approximate variants of the CCSDTQ approach. Due to

possible factorization of the lowest order quadruple contribution to the en-

ergy the noniterative scheme has been formulated which requires n7 scaling.

Performance of the CCSDTQ method has been discussed on the basis of the

results obtained for several small molecules in confrontation with the reference

full configuration interaction data.
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1 Introduction

The coupled cluster (CC) method [1–30] has been recognized as an important

tool in the treatment of electronic correlation. Since its introduction into quantum

chemistry by Č́ıžek and Paldus [1–3] many successful variants have been formu-

lated beginning with the CCD (CC Doubles) scheme developed simultaneously by

Bartlett’s [11, 12] and Pople’s [13] groups. This was the first general purpose CC

program. The next extention was to the CCSD (CC Singles, Doubles) model de-

veloped by Purvis and Bartlett [14]. Unlike the CCD the CCSD scheme provides

exact results for a two-electron correlation problem. The main advantage of the

CCSD method is much greater flexibility with respect to the orbital choice since

the exp(T1) effects orbital rotations and is important in the treatment of properties

other than the energy. An inclusion of connected triples into the CC wave function

has been done through several steps beginning with the T3 operator at the lowest

order which created the CCSDT-1 scheme [17], followed by the other approximate

variants, generally denoted as CCSDT-n [18]. The full inclusion of the T3 opera-

tor created the method denoted as CCSDT [19]. The inclusion of the T3 operator

into the CC wave function proved to be critical for creating a method for accurate

correlated calculations. The weak point of the CCSDT and CCSDT-n schemes is

the high cost of the calculations. It turnes out, however, that this difficulty can

be circumvented by creating a method including the T3 operator in a noniterative

manner. This was first done by Urban, et al. [22]. In fact, the generalization of

that derivation for the non-HF case, provides the (T) method [9], pursueded by
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Raghavachari, et al. [23]. The CCSD(T) [23] noniterative scheme is currently one

of the most popular ab initio methods. Improvements over it have been made as

ΛCCSD(T) [31, 32].

A first try to go beyond the CCSDT scheme was connected with an attempt to

establish a new computational scheme based on the expectation value CC (XCC)

theory. The advantage of that scheme relies on the fact that the so called factorizable

quadruples arise in a very natural way within the XCC approach [33]. Introduction

of these terms into the standard CC theory created the method with the acronim

CCSDTQ-1 [24]. The CCSDTQ-1 is a method correct through the fifth order of

many body perturbation theory (MBPT) and accounts for the largest portion of the

electronic correlation beyond the CCSDT.

Since the number of terms contributing to the amplitude equations grows very

fast for higher cluster operators there was a need for a proper organization or com-

putation of the CC equations to avoid unnecessary duplication of terms. This was

already done in a more or less systematic way by the authors of the most advanced

computer programs [19] but doing it completely allows writing the CC equation in

a quasilinear manner where no term contains more than a single T which substan-

tially simplifies deriving and coding the CC equations, particularly for higher cluster

operators [34]. This made it possible to conveniently construct a compact form of

the CC equations with full inclusion of the T4 operator which led to implement-

ing the CCSDTQ method [25]. A step more was taken with the partial [26] and

full [27] inclusion of the T5 operator. Currently new techniques for the automatic

3
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construction and implementaion of the CC equations have been developed. One is

the tensor contraction engine (TCE) by Hirata which relies on computer generated

FORTRAN codes [35]. A second is the string-based algorithms developed by Kallay

and coworkers [28]. They offer new possibilities for efficient coding of the complex

CC models [29].

At the CCSDTQ level one can also consider noniterative schemes built on top

of the CCSDT and CCSD methods. The former can be considered as a noniterative

version of the CCSDTQ-1 method, denoted as CCSDT(Q). Introducing noniterative

T4 together with the noniterative T3 contribution leads to the method denoted as

CCSD(TQ). At the quadruple level — as mentioned above — there is a possibil-

ity to factorize the T4 contribution which introduces negligible error to noniterative

contributions. The methods obtained by replacement of the standard nonitera-

tive T4 contributions with the factorized ones carry the acronims CCSDT (Qf) and

CCSD(TQf) [36], respectively, for the method based on the CCSDT and CCSD

iterative solutions. This factorized approaches can be applied to relatively large

basis sets, e.g. for the N2 molecule [37] and C2 molecule [38] the largest basis set

for which quadruple corrections were evaluated includes 182 basis functions.

In the next section we are going to present more details concerning full and

approximate models that engage connected quadruple excitations.

4
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2 Theory

In the coupled-cluster theory the wave function is defined through the exponen-

tial Ansatz

Ψ = eT |Φo〉 (1)

where T is the cluster operator expressed as a sum of the operators responsible for

single, double, ..., N -tuple excitations:

T = T1 + T2 + · · · + TN (2)

where N is a number of electrons in the system. The operator Tk is generally defined

as:

Tk = (k!)−2
∑

tab...
ij... a

†b† . . . ji (3)

The usual label convention is assumed with letters: a, b, ... (i, j, ...) representing the

particle (hole) indices, and the r, s, .... - the general indices.

The CC equations are obtained by inserting the wave function Ψ into the

Schrödinger equation

HNeT |Φo〉 = ECCeT |Φo〉 (4)

e−T HNeT |Φo〉 = (HNeT )c|Φo〉 = ECC |Φo〉 (5)

5
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where the normal ordered Hamiltonian HN is defined as

HN = H − 〈Φo|H|Φo〉

=
∑

r

er{r
†r} +

∑

rs

f r
s {r

†s} +
1

4

∑

rstu

vrs
tu{r

†s†ut}

= Ho
N + FN + WN (6)

where er are one-particle eigenenergies and FN and WN are one- and two-body

operators (see Fig. 1a); vrs
tu = 〈rs||tu〉 is a two-electron integral; ECC is the coupled-

cluster correlation energy and the subscript c recognizes that in the commutator

expansion of e−T HNeT only connected terms survive; |Φo〉 is the reference determi-

nant. The working equations for the cluster amplitudes are obtained by projecting

Eq. (5) onto appropriate configuration subspaces.

There are two main characteristics of the given coupled cluster model: the accu-

racy and the cost of calculations. The accuracy can be a priori estimated by relating

the CC model to the order of MBPT through which it is correct. Correctness of the

CC model through the mth order of MBPT tells us that when analyzing term-by-

term all contributions generated during the CC iterations, all MBPT terms up to

mth order can be identified. The formal relation between parameter k indicating

the rank of the CC model and the parameter m indicating the order of the MBPT

theory is simple and can be expressed as

m = Int(
3k

2
) (7)

where the integer function m = Int(x) (also known as entier(x) or floor(x)) gives

the largest integer not greater than x. This tells us that the CCSD model of rank

6
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equal 2 is correct through the third order of MBPT (m = 3). The CCSDT scheme

(k = 3) is correct through the fourth order of MBPT (m = 4), for the CCSDTQ

k = 4 we have m = 6, and so forth.

The estimation of the cost of the calculations for the given model is usually

done by determining a scaling parameter s which indicates the increase of the cost

of calculations with the size of the system. Sometimes the scaling parameter is

referred to as a rank of computational procedure. E.g. the scaling ns with s=6

tells us that when we go from monomer to dimer, i.e., both the number of occupied

and virtual levels is doubled then the cost of the calculation increases 64 times (26).

Usually the solution for the CC equations requires evaluation of many terms with

various scaling and we assume that the most costly term determines the rate of the

whole scheme. We have to be aware that for small systems the rate determining step

can account for a smaller portion of the total computer time and only for large basis

sets does it dominate. On the other hand the scaling parameter is determined by

the maximum number of nested loops in the computer code or, equivalently, by the

total number of lines (internal and external) within the irreducible diagrammatic

term. Thus for the full CC models the scaling is simply related to the rank of the

CC model with the formula s = 2k + 2. It means that by going to higher levels

(increasing the rank of the cluster operator by 1) the rank of the computational

procedure increases by 2.

7
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2.1 Full CCSDTQ model

For the CCSDTQ scheme the cluster expansion is terminated at the quadruple

excitations:

T = T1 + T2 + T3 + T4 (8)

and we obtain four sets of equations for single, double, triple and quadruple excita-

tion amplitudes, respectively,

〈Φa
i |(HNeT )c|Φo〉 = 0 (9)

〈Φab
ij |(HNeT )c|Φo〉 = 0 (10)

〈Φabc
ijk |(HNeT )c|Φo〉 = 0 (11)

〈Φabcd
ijkl |(HNeT )c|Φo〉 = 0 (12)

which in expanded form look like:

〈Φa
i |(HN(1 + T1 + T2 + T3 + T 2

1 /2 + T1T2 + T 3
1 /6))c|Φo〉 = 0 (13)

〈Φab
ij |(HN(1 + T1 + T2 + T3 + T4 + T 2

1 /2 + T1T2 + T1T3 + T 2
2 /2 +

+T 3
1 /6 + T 2

1 T2/2 + T 4
1 /24))c|Φo〉 = 0 (14)

〈Φabc
ijk|(HN(T2 + T3 + T4 + T1T2 + T1T3 + T1T4 + T 2

2 /2 + T2T3 +

+T 2
1 T2/2 + T 2

1 T3/2 + T1T
2
2 /2 + T 3

1 T2/6))c|Φo〉 = 0 (15)

〈Φabcd
ijkl |(HN(T3 + T4 + T1T3 + T1T4 + T 2

2 /2 + T2T3 + T2T4 + T 2
3 /2 + T 2

1 T3/2 +

+T 2
1 T4/2 + T1T

2
2 /2 + T1T2T3 + T 3

2 /6 + T 3
1 T3/6 + T 2

1 T 2
2 /4))c|Φo〉 = 0 (16)

The terms appearing in the above equation are obtained by the expansion of

the exponential and by keeping these terms which only contribute to the relevant

8
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equation. The standard procedure, adopted in the derivation of the working equa-

tions for the amplitudes, is to apply the Wick’s theorem to the second-quantized

expressions which is usually done with the diagrammatic technique. The crucial

problem in the derivation of the computationally effective formula is a treatment of

the nonlinear terms. The main advantage of the CC approach over the correspond-

ing configuration interaction (CI) scheme relies on the factorization of the nonlinear

terms. We will give an example (using diagrammatic language) explaining benefits

offerred by the factorization procedure.

We select one nonlinear term occurring in the T2 equation, see Eq. (14), written

as 〈Φab
ij |(WNT1T2)c|Φo〉. There are several diagrammatic terms corresponding to this

expression and one of them is shown below:

���

a
@@R
i

@@R
j

���

b =
@@R
i

���

a ?
k

@@I

b

j

6? dl

?

n7

It is easy to see that the rank of the computational procedure connected with

this diagram is 7 (four external and three internal lines), i.e., the cost of calculations

scales as n7. In order to make evaluation of this diagram more efficient we divide it

into two pieces:

@@R ��� @@I�
�

�
�
�

6?

	

	

As a first step we compute an intermediate diagram which scales as n4

9
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?
?

j

k
=

j

k n4

?

6? dl?

and then using this intermediate we evaluate the term occurring in the T2 equation

(scaling n5):

���

a
@@R
i

@@R
j

���

b =

@@R
i

���

a ?
k

@@I

b

j?

n5

We see that the one-step calculation with scaling n7 is replaced with two steps

scaling as n4 and n5 which is a substantial saving in computer time. This procedure

is applied to all nonlinear terms.

The second strategy used to simplify the CC equation relies on collecting the

identical contributions and computing them in one step. This can be illustrated

with the following example. Grouping together the terms we may write

HNT3 + HNT1T3 = (HN + HNT1)T3 = I2
3T3 (17)

which means that we first evaluate the quantity in parentheses (the fast step), let

us denote it as I2
3 , and then we take its product with T3 (the slow step). Thus as

a result we have the scheme which requires one T3 contraction instead of two. This

procedure can be generalized to eliminate from the CC equations all nonlinear terms

10
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to obtain the CCSDTQ equations as

〈Φa
i |(I

1
o + I ′1

1 T1 + I1
2T2 + I ′2

2 T1 + I ′2
3 T2 + I2

4T3)c|Φo〉 = 0 (18)

〈Φab
ij |(I

2
o + I1

1T2 + I1
2T3 + I ′2

1 T1 + I ′′2
2 T2 + I2

3T3 + I2
4T4)c|Φo〉 = 0 (19)

〈Φabc
ijk|(I

1
1T3 + I1

2T4 + I ′′2
1 T2 + I2

2T3 + I2
3T4)c|Φo〉 = 0 (20)

〈Φabcd
ijkl |(I

1
1T4 + I2

1T3 + I2
2T4 + I ′3

1 T2 + I ′3
2 T3)c|Φo〉 = 0 (21)

We see that in each term only a single cluster operator occurs since all others are

’hidden’ in the properly defined intermediates, Im
k , where m and k indicate that this

is an m-body intermediate with k-annihilation lines (i.e., lines below the vertex or

second-quantized annihilation operators). The intermediates which are needed to

write the quasilinear form of the CCSDTQ equations from Fig. 2 are presented in

Fig. 1c. with the terms occuring in the H̄N expansion:

H̄N = e−T HNeT = (HNeT )c (22)

which is a very important and useful quantity since we can use it in the equation-

of-motion CC (EOM-CC), Fock space CC (FS-CC), Λ equations, etc. [9, 10].

Due to the two-body nature of the electronic interaction we have the relation

that k ≤ 3. Formally we can consider k=4, but in this case the intermediate I2
4 is

reduced to the two-electron integral. Similarly as in the case of the CC equation

(i.e. when k = 0) we may consider the complete form of the H̄N element or its full

form within the given CC model. The H̄N elements which represent a complete set

of diagrammatic contributions are indicated by a wiggly line. In Ref. [39] we present

the general formulas for the number of diagrams contributing to the H̄N elements

11
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and the number of diagrammatic terms occurring for the complete form of the Im
k

element.

We should mention also that there exists a very simple formula to evaluate the

rank of the computational procedure for each term in quasilinear form. Namely, for

the general term Im
k Tl the rank of the computational procedure (scaling parameter)

is equal to n2(m+l)−k.

2.2 Approximate CCSDTQ models

Iterative variants

The approximate variants of the CC method are obtained by neglecting some

terms in the CC equations, usually those which are difficult in coding and more costly

in computations. The simplest approximate CCSDTQ scheme is that which retains

in Eq. (16) only two terms, i.e., those which give the lowest-order contribution.

Thus the T4 equation of the full CCSDTQ model, Eq. (16), is replaced with the

following expression:

〈Φabcd
ijkl |(HN(T3 + T 2

2 /2))c|Φo〉 = 0 (23)

In addition in the T3 equation, Eq. (15), we neglect the terms in which the T4

operators occur, i.e., T4 and T1T4. As we see in Table 1 the CCSDTQ-1 method

scales as n9 and the rate determining step is a construction of the T4 operator. The

T4 operator built according to Eq. (23) includes — in the first iteration — the third

order contributions:

T
(3)
4 = R4(WN(T

(1)2
2 /2 + T

(2)
3 ))c (24)

12
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which substituted into the T2 equation in the next iteration gives

T
(4)
2 (Q) = R2(WNT

(3)
4 ) (25)

The Rn operator is defined as

Rn(X) = (n!)−2
∑ 〈Φab...

ij... |X|Φo〉

ei + ej + .... − eb − ea

{a†b†...ji} (26)

to ensure the presence of the required denominator and the proper projection sub-

space for the sequence of operators represented by X.

The final step is the contribution to the energy:

E
(5)
Q = 〈Φo|WNT

(4)
2 (Q)|Φo〉 = 〈Φo|WNR2(WNT

(3)
4 )|Φo〉 (27)

Since this was the only fifth-order contribution left out by the CCSDT model hence

the CCSDTQ-1 is a method correct through fifth order of MBPT.

It is easy to show that the lowest-order quadruple contribution to the energy is

factorizable. The last expression in Eq. (27) can be expressed diagrammatically as

E = 1
2

? 6 ? 6
? 6 ? 6

+ ? 6 ? 6

? 6 ? 6

= 1
2

? 6 ? 6 ? 6 ? 6

In the above figure the denominators are denoted by the solid horizontal lines

and we can see that the factorization allows replacing the ’long’ T4 denominator

13
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with the ’short’ T2 denominators. Owing to this we can rewrite the energy formula,

Eq. (27), as

E
(5)
Q =

1

2
〈Φo|T

(1)†
2 T

(1)†
2 (WN (T

(1)2
2 /2 + T

(2)
3 ))c|Φo〉 (28)

We see that we can get the fifth-order quadruple contribution to the energy without

constructing the T4 operator. In fact this formula holds also for the converged T2

and T3 and is valid as long as two “daggered” operators in Eq. (28) or two top

interaction lines in the figure above are identical.

We may try, however, to build such a scheme in which the contribution to the T2

equation, see Eq. (25), is obtained via factorized expression (CCSDTQf -1 approxi-

mation):

T
CCSDTQf−1
2 = T2(CCSDT ) +

1

2
R2(T

(1)†
2 [WN (T 2

2 /2 + T3)]c) (29)

Noniterative variants

The correctness of the CC model through the fifth order of MBPT can be ensured

also by the noniterative inclusion of the quadruple contribution. The noniterative

variants proved to be very successful when approximating the contribution due to

the T3 operator leading to the CCSD(T) and CCSD[T] approximations.

At the quadruple level we may construct the noniterative T4 contribution follow-

ing the derivation of the CCSD[T] approach. Thus in analogy to the construction

of the lowest order T3 term

T3 = R3(WNT2) (30)
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where T2 is defined for the amplitudes converged at the CCSD level, we obtain the

lowest order contribution to the T4 operator

T4 = R4(WN(T 2
2 /2 + T3))c (31)

where the T2 and T3 operators are determined at the CCSDT level. Next step in

the CCSD[T] development is to get the T2 operator on the basis of the noniterative

T3

T2(T ) = R2(WNT3) (32)

and then the contribution to the energy

E[T ] = 〈Φo|T
†
2 (−Ho

N)T2(T )|Φo〉 (33)

Analogous steps for the T4 operator lead to

T2(Q) = R2(WNT4) (34)

and

E5
Q = 〈Φo|T

†
2 (−Ho

N )T2(Q)|Φo〉 (35)

Thus the final formula for EQ is

E5
Q = 〈Φo|T

†
2WNT4|Φo〉 = 〈Φo|T

†
2WNR4(WN(T 2

2 /2 + T3))c|Φo〉| (36)

The formula above cannot be factorized due to the fact that the operators contracted

with the T4 are not the same (T †
2 and WN ) hence the T4 operator must be constructed

which imposes high scaling, i.e. n9. The only way to avoid such an unfavourable

scaling is to depart from strict rigor and force the factorization

E5
Q
∼= E5

Qf = 〈Φo|T
†
2T

(1)†
2 (WN(T 2

2 /2 + T3))c|Φo〉 (37)
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Moreover a diagrammatic summary of various expressions for Λ based

CCSD(TQf ) approaches is shown in Fig. 3. For comparison purposes we also

present there the CCSD(TQf ) model. These Λ based variants are especially useful

when we are interested in creating PEC (potential energy curves). See Ref. [31, 40]

for more details. The T4 contribution obtained with ΛCCSD(TQf ) is defined as:

EΛ(T4) =
1

2
〈Φo|Λ2T

(1)†
2 (WN(T 2

2 /2 + T3))c|Φo〉 (38)

whereas the Λ2CCSD(TQf ) gives the T4 contribution with the following formula:

EΛ2(T4) =
1

2
〈Φo|Λ

2
2(WN(T 2

2 /2 + T3))c|Φo〉 (39)

The Λn is defined in a similar way to the Tn operator:

Λn = (n!)−2
∑

λij...
ab...{i

†j†...ba} (40)

except it is not connected [9, 10].

3 Performance

CCSDTQ vs. other CC models

The quality of the new computational method is usually tested in two ways:

either relating the results to the data provided by a reference theoretical method

of high accuracy or confronting the results with experiment. To take advantage of

the second option large basis sets are required which in the case of high accuracy

correlated methods is hardly feasible. The reference theoretical scheme for correlated

methods is the full configuration interaction (FCI) approach. In Tables 2 – 4 we
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compare the CCSDTQ correlation corrections to the energy with other correlated

methods relating them to the FCI values. All calculations use RHF based CC

theory. In Table 2 we list the results for H2O and HF molecules for three different

geometries. We observe that the CC scheme converges very fast with the rank of

cluster operator. At the CCSD the errors relative to FCI ranges from the 3 to 21

mEh, at the CCSDT this is reduced to the range 0.3 – 2.5 mEh and for the CCSDTQ

scheme the largest error is 0.14 mEh. With full inclusion of pentuple excitations the

CC error is below 0.01 mEh. The same applies to the results presented in Table 3

for SiH2 and CH2 molecules: the CC errors are reduced from tens of a mEh for the

SD level to hundredths of a mEh for the SDTQ model. We want to point out good

performance of the CCSDTQ scheme also for molecules with stretched bonds. In

this case due to increased multiconfigurational character of the reference function

we have quite a large portion of nondynamical correlation which is more difficult

to account for with the single reference approach. However, also in that case, the

CCSDTQ scheme works quite well. A similar situation is observed for the N2 and C2

molecules, see Table 4. Here the deviation from FCI is larger already at the CCSD

level, for the N2 molecule it amounts to over 13 mEh but goes down to 1.6 mEh

for the CCSDT and to ca 0.2 for the CCSDTQ. The C2 is an example of a difficult

molecule with multiconfigurational reference state character also at its equilibrium

geometry. Here the T4 operator reduces the error from ca 30 mEh for the CCSD to

0.6 mEh for CCSDTQ which is a significant improvement.

In summary we think it is fair to say that when going from connected singles
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and doubles to connected triples and quadruples we reduce the error by nearly two

orders of magnitude.

CCSDTQ vs. CISDTQ

In Table 2 we may compare the performance of the CI and CC methods. It is

a well known fact that the inclusion of triple excitations into the CI scheme has

a very small effect on the performance as CISDT gives larger error than CCSD.

A significant improvement is observed upon inclusion of quadruples and CISDTQ

achieves a performance at the level of CCSDT. Of course, an advantage of the CI

approach over CC is that the latter is not variational, e.g. for stretched geometries

the CC often overshoots, see the CCSDT value for the H2O molecule at R = 2Re.

Nevertheless we may state that CCSDTQ outperforms the CISDTQ by nearly an

order of magnitude.

CCSDTQ vs. MBPT

In the theory section we discussed the relation between the CC and MBPT

approaches. In Tables 2 and 3 we list the deviations from the exact (FCI) values

for various orders of MBPT. It is a well established observation that even orders of

perturbation theory are more stable and reliable than the odd ones. We observe this

also here: the MBPT(2) values are comparable with the CISD but much inferior

to the CCSD. The accuracy achieved at the MBPT(4) level is comparable with the

CCSD whereas at the MBPT(6) we achieve the quality of the CCSDT approach.

The CCSDTQ is about an order more accurate than the sixth order MBPT.

Equilibrium geometry
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In Table 5 we compare the perfomance of selected CC models in the evaluation

of the equlibrium bond length for the N2 molecule. Since we relate the theoretical

values to the experimental one, a sufficiently large basis set should be used to

eliminate the deficiencies in the basis set as a possible source of error. The

calculations were done for larger sequence of correlation consistent basis sets out

of which we quote in Table 5 only three: the smallest one cc-pVDZ, cc-pV5Z and

the largest one cc-pCV6Z. For the cc-pVDZ basis set the calculations were done

with all listed CC variants whereas for the larger basis sets the simpler variants

were used. Nevertheless for the method involving factorized quadruples we could

run the calculations up to the cc-pV5Z basis set obtaining very stable correction

due to (Qf ). We considered this fact as a justification to extrapolate the (Qf) and

CCSDTQ correction to the largest basis set for which the quadruple calculations

were no longer feasible. We observe a perfect agreement with experiment with the

error within 0.0001 — 0.0002 Å. Similar observations are valid for the C2 molecule,

see Ref. [38].

Harmonic frequencies

In Table 5 we also list computed harmonic frequencies for the N2 molecule. We

applied the same strategy as in the case of the eqilibrium geometry. We see again

that quadruples improve the theoretical value by 15 to 20 cm−1. Note that in the

triple bond case, the connected pentuple has a nonnegligible effect on the harmonic

frequency (ca 4 cm−1).
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Potential energy curves

In Fig. 4 we present the potential energy curves for the H2O molecule. The

exact (reference) curve is obtained with the FCI method. There are seven variants

of the CC method considered and three of them involve the T4 operator. The best

performance is observed fot the CCSDTQ scheme (although the final point on the

CCSDTQ curve could not be obtained due to convergence problem). Almost equally

good behavior as for the CCSDTQ is observed for the Λ-based CCSD(TQf ). This is

a promising result indicating that the connected quadruples even at an approximate

level can offer a remedy for the notorious failure of the CC methods in a proper

description of the potential energy curves.

Acknowledgments

It is a great pleasure to contribute this paper to a special volume celebrating

the 50th Sanibel Symposium and work done in the Quantum Theory Project in

Gainesville. We would like to express our gratitude for the hospitality of Professor

Rodney J. Bartlett, faculty members and staff during our visits in QTP.

Current positions: Professor of Chemistry (SAK) (currently vice-rector of the

University of Silesia), Associate Professor (MM), Institute of Chemistry, University

of Silesia, Katowice, Poland.

Quantum Theory Project: SAK - Postdoctoral Associate (1982-1984, 1988-1989),

several 2-6 months visits in the years 1985-2002; MM - Postdoctoral Associate (2002-

2003), several 2-4 months visits in the years 2004-2010.

20

Page 20 of 34

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

References

[1] J. Č́ıžek, J. Chem. Phys., 45, 4256 (1966).
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Figure caption

Figure 1. Diagrammatic form of the one- and two-electon integrals, cluster op-

erators and H̄ elements.

Figure 2. Diagrammatic form of the quasilinear form of the CCSDTQ equations

in antisymmetrized formulation (Dab...
ij... denotes an appropriate denominator).

Figure 3. Diagrammatic form of the various non-iterative variants with factorized

quadruples. In the definition of the energy expressions V4 = 1
242 Σ(ei + ... − ed) ×

tabcd
ijkl a

†...i.

Figure 4.(Color online) Potential energy curves for the H2O molecule with various

CC methods (reference FCI [52]; Re=1.84345 a.u. [52]).
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Table 1. Rank of the computational procedure for MBPT and CC schemes

generating methods correct through a given order in MBPT energy.

Order in Rank of MBPT Rate deter- Rank of CC Rate deter-

MBPT energy procedure mining step procedure mining step
Method

3 n6 T2 → T2 n6 T2 → T2 CCSD

T2 → T3

4 n7
T2 → T3

n7

T3 → T2

CCSDT-1

5 n8 T3 → T3 n9 (T3, T 2
2 ) → T4 CCSDTQ-1

6 n9 (T3, T 2
2 ) → T4 n10 T4 → T4 CCSDTQ

T4 → T5

7 n10 T4 → T4 n11 T2T3 → T5 CCSDTQP-1

T 3
2 → T5

T4 → T5 T5 → T6

8 n11 T2T3 → T5 n13 T2T4 → T6 CCSDTQPH-1

T 3
2 → T5 (T 2

3 , T 4
2 ) → T6

9 n12 T5 → T5 n14 T6 → T6 CCSDTQPH
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Table 2. Correlation corrections (in mEh) with various CI, MBPT,

and CC methods relative to FCIa) values for HF and H2O

molecules in DZP basis set (frozen core).

Method
HF H2O

Re 1.5Re 2.0Re Re 1.5Re 2.0Re

CISDb,c) 9.38 14.9 27.6 12.9 30.4 75.6

CISDTb,c) 7.01 11.1 19.2 10.6 23.5 60.3

CISDTQb,c) 0.28 0.49 0.92 0.40 1.55 6.29

MBPT(2)d) 7.80 10.6 24.0 13.0 23.3 53.7

MBPT(3)d) 5.44 11.9 27.0 7.22 26.4 74.6

MBPT(4)d) -0.26 0.77 4.84 0.92 5.76 14.9

MBPT(5)d) 0.81 2.29 8.10 0.70 4.98 17.0

MBPT(6)d) -0.23 -0.41 -1.13 0.08 1.82 4.06

CCSDe) 3.01 5.10 10.2 4.12 10.2 21.4

CCSDTe) 0.27 0.65 1.13 0.53 1.78 -2.47

CCSDTQe) 0.02 0.04 0.06 0.02 0.14 -0.02

CCSDTQPf) 0.00 0.00 0.00 0.00 0.03 0.03

a) Ref. [42] for HF; Ref. [43] for H2O.

b) Ref. [44].

c) Ref. [28].

d) Ref. [41].

e) Ref. [25].

f) Ref. [27].
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Table 3. Correlation correction (in mEh) with various MBPT and CC

methods relative to FCIa) values for SiH2 and CH2 molecules

in DZP basis set. The 3s combination of the 3d functions

is included for CH2 but deleted for SiH2.

Method
SiH2 CH2

Re 1.5Re 2.0Re Re 1.5Re

MBPT(2)b) 29.423 48.582 94.839 31.056

MBPT(3)b) 9.701 23.353 52.986 10.590

MBPT(4)b) 3.658 11.033 21.489 4.980

MBPT(5)b) 1.617 5.456 8.112 2.949

CCSDc) 2.843 6.685 14.869 3.544 6.961

CCSDTc) 0.100 0.058 -3.689 0.206 0.310

CCSDTQc) 0.002 -0.015 -0.346 0.007 0.026

CCSDTQPc) 0.001 0.001 0.001 0.000 0.000

a) Ref. [45] for SiH2; Ref. [46] for CH2.

b) Ref. [47].

c) Ref. [27].
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Table 4. Correlation correction (in mEh) with various CC methods relative to

FCIa)

values for N2 (R=2.068 au) in cc-pVDZ basis set and for C2 (R=2.348 au)

in cc-pVDZ basis set augmented by diffuse functions with exponents:

s(0.0469), p(0.04041). The 1s orbitals were frozen.

Molecule CCSDb) CCSDTb) CCSDTQb) CCSDTQPc)

C2 29.597 3.273 0.622 0.103

N2 13.465 1.626 0.192 0.016

a) Ref. [48].

b) Ref. [31].

c) Ref. [9].
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Table 5. Computed and extrapolated equilibrium geometry and harmonic

frequencies with coupled cluster methods for the N2 molecule.

Basis No. of CC

set basis func. SD(T) SDT SDT(Qf) SDTQ SDTQ(Pf )
Exp.

Re [Å]

cc-pVDZ 28 1.1189a) 1.1185a) 1.1200a) 1.1198a) 1.1201b)

cc-pV5Z 182 1.0994a) 1.0987a) 1.0999a) 1.0997a,c) 1.1000c,d)

cc-pCV6Z 460 1.0970e) 1.0964a,c) 1.0976a,c) 1.0978a,c) 1.0975c,d) 1.0977f)

ω [cm−1]

cc-pVDZ 28 2339a) 2347a) 2325a) 2328a) 2324b)

cc-pV5Z 182 2360a) 2370a) 2351a) 2354a,c) 2350c,d)

cc-pCV6Z 460 2371e) 2381a,c) 2362a,c) 2365a,c) 2361c,d) 2358.6f)

a) Ref. [37].

b) Ref. [49].

c) Estimated value.

d) Ref. [9].

e) Ref. [50].

f) Ref. [51].
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