
HAL Id: hal-00634669
https://hal.science/hal-00634669

Submitted on 12 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Web services and Software Agents for Tailorable
Groupware Design

Nader Cheaib, Samir Otmane, Malik Mallem

To cite this version:
Nader Cheaib, Samir Otmane, Malik Mallem. Web services and Software Agents for Tailorable
Groupware Design. Emergent Web Intelligence: Advanced Semantic Technologies, Springer Verlag,
pp.185-210, 2010, Advanced Information and Knowledge Processing, �10.1007/978-1-84996-077-9_8�.
�hal-00634669�

https://hal.science/hal-00634669
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Web Services and Software Agents

for Tailorable Groupware Design

Nader Cheaib, Samir Otmane, and Malik Mallem

Abstract We present a new groupware architecture model called UD3 that explic-
itly introduces the notion of tailorability in designing collaborative applications. 
This model is based on the integration of web services and software agents tech-

nologies, thus using protocols of each while reinforcing their individual strengths 
in the context of tailorable groupware design. In our work, web services are dy-

namically invoked by software agents in order to bring new behaviors, and hence, 
enhancing the collaboration process by dynamically adapting the services offered 
in the system to the users’ preferences and not the other way around. Web services 
and agents were originally developed with different standards, thus their integration 
becomes important in the context of groupware tailorability, giving a totally inno-

vative approach in the area of CSCW (Computer Supported Cooperative Work). We 
apply our model on the DIGITAL OCEAN project for the creation and distribution 
of multimedia files on the Internet.

8.1 Introduction

As the use of the Internet and the services offered with it are emerging more and 
more, people are in an increasing need of flexible and agile applications. The emer-

gence of collaborative work over the Internet was a solution to the high complexity 
of systems and the technical difficulties that could arise from their use, as users, 
geographically distributed want more and more to work together on a single task, 
but using rigid and often incompatible applications that may lead to interoperabil-

ity problems. The aim of CSCW (Computer Supported Cooperative Work) is to 
find ways for groupware to enhance collaboration between individuals. For [36], 
groupware invention is a challenge, as the nature of collaborative work continually 
changes as a consequence of changing work needs, but also as a consequence of 
how the systems themselves tend to change work relationships and processes. As a

N. Cheaib (�)

IBISC CNRS FRE 3190, University of Evry, 91020 Evry Cedex, France
e-mail: nader.cheaib@ibisc.fr

1 | 26



consequence, the author argues that systems must themselves adapt to reflect the un-

predictable differences between the requirements of support for collaborative work

on the Internet during analysis and the actual requirements.

Hence, research about tailorability for groupware originated from the gap be-

tween the design and use of collaborative systems. Making the system and the ser-

vices offered within, tailorable by users is an essential and ongoing research field

that needs much attention to yet be concrete. For this reason, tailorability has shown

to be an essential property that should be taken in consideration, as it offers to users

the possibility to adapt the application based on their needs and not the other way

around. In this work, we present a new groupware architectural model called UD3

(Universal Directory for Description and Discovery), which is based on the inte-

gration of web services technologies with software agents. The aim is to design a

tailorable groupware architecture using the integration of both technologies, thus

using properties of each while reinforcing their individual strengths. In fact, agent-

oriented technology is claimed to become the next breakthrough in the development

and implementation of large-scale complex systems, while web services are fast

emerging technologies for connecting remotely executing programs via well estab-

lished Internet protocols. Web services and agents were originally developed with

different standards, thus their integration becomes important in the context of group-

ware tailorability, giving a totally innovative approach for designing collaborative

applications on the Internet.

In fact, with the emergence and advancement of Internet technologies and the

Web 2.0 [11], universal interoperability between collaborative applications is be-

coming a reality, while geographically distributed people are highlighting the flex-

ibility of cooperation by exchanging universally accessible services on the web.

However, these types of systems do not take in consideration the evolving and ex-

cessive need of users’ to dynamically integrate new components in order to enhance

collaboration with others. On one hand, web services have become one of the most

important architectures for the cooperation of heterogeneous systems and have ush-

ered in a new era of software design that focuses on implicit and explicit collabora-

tion between organizations [11]. While computer networks have been able to pass

data between different hosts, it was the emergence of web services that allowed

these remote hosts to offer services in a more flexible and dynamic way. However,

with this flexibility comes systems complexity. On the other hand, the autonomy

and intelligence of agents have considerably increased software automation of some

operational areas. An important benefit in the use of software agents in designing

software and groupware applications is their ability to help, through collaboration,

human beings and softwares’ execution, while their concept is even older than web

services and has been used successfully for the implementation of distributed ap-

plications. We present an innovative approach for a tailorable groupware architec-

ture integrating web services with software agents. The idea is to exploit agents’

proactive interaction capabilities in order to improve the behavior of web services

in a service-oriented architecture, hence creating a cohesive entity that attempts to

surpass the weaknesses of each technology, while reinforcing their individual ad-

vantages in the context of tailorable groupware design.

2 | 26



We will proceed as follows: In Sect. 8.2, we give a motivating scenario explain-

ing the problem, and we explain the concept of tailorability with the need of a new

architecture supporting it. In Sect. 8.3, we talk about few approaches in the literature

that attempt to introduce tailorability in their design of groupware applications. In

Sect. 8.4, we give a background on web services and software agents’, along with the

JADE platform [36] for deploying software agents. Section 8.5 presents our own ap-

proach for a tailorable architecture; we call it the UD3 model. Section 8.6 describes

system’s implementation on an ongoing project for the exchange of multimedia in-

formation over the Internet, Oce@nyd. The last section presents a conclusion and

future work in the field.

8.2 Motivating Scenario

Let us consider a scenario where users geographically distributed are using a collab-

orative application over the Internet, thus using Internet protocols and standards in

order to collaborate and exchange messages between each other. In order to achieve

tailorability, we should think of a way in order to make users able to search, in-

voke and use new components that could be directly integrated in their system to

satisfy their needs according to the task being done. If we imagine the components

of the system built using web services standards, then we should enable users to

invoke new web services and dynamically integrate them into their applications. As

a concrete example, if users in collaboration need a video stream mechanism, we

imagine a web service deployed somewhere in public registries on the Internet and

containing this mechanism as a part of the services it offers, and thus the system

should be designed in a way to seamlessly search, invoke and integrate this web ser-

vice into the application. By tailoring here we mean dynamically adding/modifying

web services during runtime of the application without interrupting its execution,

and thus of users’ collaboration with others. However, for [25], current techniques

for publishing and finding web services rely on static descriptions of service inter-

faces, forcing consumers to find and bind services at design time. This motivated

us to make the process dynamic in the essential purpose of enhancing collabora-

tive applications, in particular making them tailorable by users. In our research, we

found that software agents are a promising technology that could solve such prob-

lems. Unfortunately web services and agents were originally developed separately

with different standards and features, therefore their integration becomes important

in this context. With this paradigm, groupware components, each representing a

web service and an agent in collaboration, will interact to provide unified services

according to users’ preferences, and thus achieve groupware tailorability.

8.2.1 Tailorability and the Need of a New Architecture

Some definitions exist in the literature for the concept of tailorability, but it is still

ambiguous in putting it forward in CSCW systems, where the technologies for im-

3 | 26



plementing such concept are still not explicitly identified. We retained few defini-

tions that seemed most interesting to our work, as in [35] that defines a tailorable

application as a system that can be adapted properly according to changes and the

diversity of users’ needs, or [32] that defines tailorability as the capacity of an in-

formation system to allow a person to adjust the application based on personal pref-

erences or different tasks. For [10] tailoring is the continued development of an

application by making persistent modifications to it. It is in fact initiated in response

to an application being inefficient to use. However it remains to determine the mech-

anisms of evolution of tailorability. Morch [22] defines the concept in terms of cus-

tomization, integration and extension. Tailorability by customization is limited by a

set of predetermined number of components, tailorability by integration is to insert a

new component in the architecture of the application, and tailorability by extension

or radical tailoring is offering means to change or extend the components’ imple-

mentation in order to derive the same flexibility as an “initial” application design.

These mechanisms offer more flexibility but require more and more from the user

computer skills, which partly explains why most of the current CSCW systems gen-

erally steer their tailorability to developers and expert users rather than end users

that, paradoxically and from social sciences and humanities research, are those who

need it the most. In our work we focus on the third type of tailorability, hence ex-

tending program code by new components depending on users’ preferences. We

assume that a component is a web service and an agent collaborating together in

order to offer unified and dynamic services to users.

In groupware, a mismatch between the task done by users and the corresponding

technology they are using could affect the co-operating people [33], thus tailoring by

end-users themselves is generally regarded as a suitable means to solve this problem.

Due to a lack of a theoretical framework for tailorability and the corresponding

evaluation methods, results of different studies for groupware tailorability are hard

to compare. Our research is mainly concentrating upon:

• Development of a collaborative architecture supporting tailorability.

• Integration of Internet technologies that has not been exploited before in the con-

text of groupware tailorability.

In the next section, we talk about few approaches in the literature that aim to

introduce tailorability in the design of groupware.

8.3 Tailorability Approaches

Various approaches aiming to integrate tailorability in CSCW systems have received

much attention in the literature [3, 32, 35]. However, most of these approaches apply

only to certain specific domains, as support for synchronous groupware, workflow-

based or collaborative writing, and it is not certain whether these approaches could

be applied to generic domains as well. In our research, we found that introducing

tailorability in the design of groupware is still very limited and theoretical, as there

4 | 26



exist various approaches without a sufficient support for comparison and classifi-

cation. For this reason, we thought that providing a global view on some of these

approaches is already a contribution for building a concise study of the problem, and

finding suitable technologies to implement a solution. In the rest of this work, we

will begin by building a global view on some approaches for tailorability in CSCW

systems. We will mention respectively the activity theory [2], component-based [30]

and building blocks [32] approaches, and finally we will see how we can use the

Service-Oriented Architecture (SOA) for building collaborative applications [7].

8.3.1 Activity Theory

The author in [3] justifies that tailorability possesses a theoretical foundation en-

abling to apprehend it using fundamental properties of human activity. They propose

a set of properties for constructing a conceptual model for a generic environment of

CSCW systems, based on a fundamental theory, reflectivity. This environment is

called DARE (Distributed Activities in a Reflexive Environment) [2]. In the realiza-

tion of DARE, they propose a framework based on the concepts and mechanisms

of the activity theory, which permits to distinguish two essential properties of the

human activity:

• Reflexivity, that enables to access and modify the structure of the application

during its execution.

• Crystallization or the reutilization of user’s experiences. These experiences could

be, for example, a specification of roles in a particular activity.

Based on the activity theory, all mediator elements influence the course of activity

and thus it is impossible to predict its impact on a certain activity [3]. This is why,

for the authors, the tool should be considered a fully mediator element, meaning that

if it could influence the collaborative activity, then it should be modified by it. The

authors were inspired by the Meta-Object Protocol (MOP) [2] for realizing DARE,

as the reflexivity takes place with the introduction of a meta model whose main

entity is the ‘task,’ that is a specification of the activity that describes the objectives,

resources and roles that should take place in collaboration between actors.

8.3.2 Component-Based Architecture

A lot of research has been made for the design of component-based architecture

for groupware [30, 32, 35]. The concept of a component-based architecture is in-

dependent of any application domain, and thus it is highly probable to adopt this

kind of architecture to integrate tailorability in the design of groupware [30]. In a

component-based approach, a groupware is designed as a collection of components

in which they could be added, modified, or deleted. This type of applications will be

5 | 26



able to support the evolution that tailorability tries to introduce. The authors in [30]

argue that an ideal collaborative system should be designed as a composable system

where the integration of new components is build on top of a neutral basis. We will

see here two component-based approaches, each using different ways and mech-

anisms to reach tailorability: A reflexive computational system [35] and building

blocks architecture [32].

8.3.2.1 Reflective Computational System

The authors in [35] define a tailorable system as one that can be adapted for even-

tual modifications in its structure according to diversity of user’s needs. The authors

use the term adaptability to identify tailorability in its technical aspects. Here, the

authors reused the notion of reflexivity in the activity theory seen in the first ap-

proach [3], by insisting that an adaptable application should include a representation

of aspects of itself, and this self representation should be changeable by internal or

external influences, and connected to certain aspects of the application. If the repre-

sentation changes, the application changes as well, and only aspects included in the

self representation of the application are susceptible to be affected by tailorability

activities. As a simple example, consider an application with an initialization file

that specifies the application’s background color [35]. In this case, this initialization

file is the self representation of the application, and the color is the adaptable as-

pect. This type of applications is seen as a “Reflective computational system.” Note

that a reflexive system is one that contains both representations of aspects of the

real world, and representations of its own activities. In consequence, this type of

application is capable of examining its own state and structure, and able to modify

it according to user’s and the context’s needs, which implies that every modifica-

tion of the (meta) representation is automatically shifted towards the behavior of the

system.

8.3.2.2 Building Block Architecture

The authors in [32] propose an approach based on building blocks for construct-

ing tailorable CSCW systems. They argue that the evolution in the utilization of

groupware is nowadays one of the main reasons for designing tailorable systems.

In fact, the authors consider a tailorable system as one that permits for its users to

perform modifications on the technical structure of the application, after its imple-

mentation according to their needs, personal preferences or different tasks. For the

simple reason that all the modifications could not be predicted in the design phase

by the application designers, it would be possible, according to the authors, to equip

the users with means to accommodate these changes.

The authors introduce the concept of tailoring to the extreme [32]. This con-

cept implies the extension of the set of functions in the system with new modules

that could be integrated dynamically. An example of this concept is to permit the

6 | 26



user to download modules from the Internet and plug them directly into the system

(plug-ins, widgets, etc.). However, this approach requires that functional modules

(building blocks) should be analyzed before integrating them in order to determine

the functions that they could offer and the way in which they will communicate and

interconnect to other modules for minimizing interference in the system. The au-

thors here insist that interoperability standards are therefore essential between the

building blocks that will be integrated into the system, probably resulting from dif-

ferent vendors, in order to standardize and facilitate the process of integration with

other building blocks already existing, and therefore, insure the stability of the sys-

tem as a whole. The authors implemented their concepts in the CooPS (Cooperative

People and Systems) [32] project that describes the types of building blocks that

form groupware applications and the relations between them.

8.3.3 Service-Oriented Architecture (SOA)

The demand for collaborative and flexible services is becoming more urgent as the

competition in the marketplace is getting fiercer between service providers. For this

reason, the authors in [7] propose the utilization of a Service-Oriented Architecture

(SOA) for the construction of collaborative services. For the authors, SOA is becom-

ing a new paradigm that aim at implementing loosely-connected applications which

are extensible, flexible and integrate well with existing systems. Collaborative plat-

forms have the potential of offering services on different layers of abstraction as

their role is to offer a support tool for collaboration of activities [14].

SOA [7, 14] is a paradigm in full expansion that could be adapted to offer ex-

tensible services integrated in a platform for different users to collaborate between

each other. Web services could facilitate the collaboration between groups or or-

ganizations, and can be defined by, for example, resource sharing, communication

and interaction between collaborators (synchronous, asynchronous, communication

channels, etc.), virtual rooms, organization management (calendar, mail, etc.). The

support for web services offers interoperability between different collaborative or

single-user systems [14], as they can be viewed as modular applications. The ar-

chitecture considers a model of integrated services, where the interfaces of web

services are described with a standardized language definition WSDL (Web Service

Definition Language), and interact with each other using SOAP (Simple Object Ac-

cess Protocol), while having their definitions saved in some norms of a web service

catalogue using UDDI (Universal Description, Discovery and Integration).

In what follows, we give a brief a background on the CSCW domain, with a

description of web services and software agents. We justify our choice for using the

JADE platform in implementing software agents as a part of system’s core. Our idea

is to show that the CSCW domain can be leveraged by using web technologies in

order to enhance collaboration between users.

7 | 26



8.4 Background

8.4.1 Ellis’s 3C Model

We refer to the 3C model [8] for further understanding of the term collaboration and

the functionalities behind it. In fact, according to [8], a groupware system covers

three domain specific functions, production/cooperation, communication and coor-

dination as we can see below: The production space designates the objects resulting

from the activity of the group (ex: word document, paint, etc.). For Ellis [8], this

production space is concerned with the result of common tasks to be achieved and it

is the space where the productivity will take place. The coordination space defines

the actors and their social structure, as well as different tasks to be accomplished

in order to produce objects in the production space. Ellis eventually completed the

model with the communication space that offers to actors in the coordination space

means to exchange information in which the semantics concern exclusively the ac-

tor, and where the system only acts as a messenger.

We will use this decomposition of groupware’s functionalities in order to intro-

duce a collaborative architecture supporting the functional decomposition of ser-

vices that can be present in a groupware system.

8.4.2 Web Services and the World Wide Web

W3C defines a web service as follows: “It is a software system that acts as an inter-

operable support in the machine–machine interaction. The system has an interface

described in a form understood by the machine (specifically WSDL). Other systems

interact with the web service depending on its description using SOAP messages

that are typically transported through HTTP with an XML serialization in conjunc-

tion with other web standards.” In fact, service-oriented architecture (SOA) emerged

due to its simplicity, clarity and normalized foundations. The concept of web ser-

vices currently revolves around three acronyms [24], as we can see in Fig. 8.1:

• SOAP (Simple Object Access Protocol) is a protocol for inter-application ex-

changing that is independent of any platform and based on XML. A SOAP ser-

vice call is an ASCII flow embedded in XML tags and transported to the HTTP

protocol.

• WSDL (Web Services Description Language) gives the XML description of web

services by specifying the methods that can be invoked, their signatures and ac-

cess point (URL, port, etc.). It is therefore equivalent in a way to the IDL language

for CORBA distributed programming.

• UDDI (Universal Description, Discovery and Integration) is a standard of a dis-

tributed directory of web services, allowing both publishing and exploration.

UDDI acts as a web service itself, whose methods are called using the SOAP

protocol.

8 | 26



Fig. 8.1 Service-oriented architecture

Our choice of using web services in our system is driven by the fact they are: Lan-

guage and platform independent (separation of specification from implementation),

deployed over the Internet (no centralized control, use of established protocols),

loosely coupled (using synchronous and asynchronous interactions) and interopera-

ble (using standards already deployed and functional to support systems interoper-

ability).

8.4.3 Software Agents

There exist several definitions of software agents in the literature. Khezami [15] has

identified the agent as a computing object (in the sense of object-oriented languages)

whose behavior can be described by a script with its own means of calculation, and

can move from a place to another in order to communicate with other agents. The

authors explain that some researchers have given the definition of agent through a

good description of its functioning, where an agent must necessarily have the nec-

essary motivation to achieve a certain goal for its existence to be worthwhile in its

environment. An agent can communicate with other agents in the environment and

must have means which enable it to achieve its goals. According to [19], an agent

is a piece of software that acts on an autonomous basis to initiate charges on behalf

of users. The authors here say that the design of many software agents is based on

the approach that users need to only indicate a high level goal instead of issuing

explicit instructions, leaving the decisions to the agent. The agent shows a number

of features that makes it different from other traditional components, including self-

direction, collaboration, continuity, character, communication, adaptation, mobility

and temporal continuity.

8.4.4 JADE Platform

Java Agent DEvelopment framework (JADE) [36] is a middleware written in Java

and conforms to the specifications of FIPA [9]. This environment simplifies the

9 | 26



development of software agents by providing basic services as well as a set of tools

for the deployment. The platform contains a runtime environment where the JADE

agents may evolve while being active on a given host, a library of classes used

to develop agents and a suite of graphical tools that allow the administration and

supervision of agents’ activities at runtime. In fact, the main container contains two

special agents:

• AMS (Agent Management System) which provides a service Namespace (i.e.

it ensures that every agent in the platform has a unique name) and represents the

authority in the platform (it is possible to create or kill agents in remote containers

by calling the AMS).

• DF (Directory Facilitator), on the other hand, is analogous to the UDDI used by

web services, and offers the Yellow Pages service through which an agent can find

other agents that are providing the services it needs in order to achieve its goal.

JADE defines a generic agent model that can perform any type of architecture

while fully integrating the FIPA [9] communication model: interaction protocols,

wrapping, ACL (Agent Communication Language), languages content and trans-

port protocols. In what follows, we proceed with some related work exposing

researchers’ motivation in this domain affecting many applications areas.

8.4.5 Related Work—Web Services and Agents’ Integration

According to [10], web services have become one of the most important architec-

tures for the cooperation of heterogeneous systems. They present a platform that

provides a runtime environment of a lightweight agent that is located within a web

container, which adds agents’ functionalities to existing web servers. The compo-

nents of the platform are deployed as web services, where SOAP (Simple Object

Access Protocol) over HTTP acting as a communication channel through standard

XML messages. In this way, the support for mobile agents can be added to the exist-

ing web infrastructure, without the need to replace components or installing client

software. In [20], the authors propose a solution for the selection and composition

of web services with software agents. The use of the concept allows an agent to

support the pro activity and autonomy of the composition process in which clients

and suppliers can take an active role through autonomous operation and negotiation.

The proposed architecture provides flexibility and scalability in the development of

different solutions, while offering a set of integrated tools.

For the authors in [18], it is widely admitted that web service composition is

essential rather than accessing only a unique service. Searching for web services,

integrating them into a composite service, triggering and monitoring their imple-

mentation are among the operations that users will handle, whereas most of these

operations are complex and repetitive, with a large portion adapted to the computer

tool and automation. Therefore, for the authors, software agents are appropriate can-

didates to assist users in their operations, and therefore the integration of software

10 | 26



agents and web services in the same environment raises the importance of a spe-

cific approach. The authors employ a three-tiered approach: intrinsic, functional

and behavioral, where each level has multiple properties that vary according to the

component whose tier is applied, whether it is the agent or the web service. For

the software agents’ properties, the intrinsic level properties consist of an identifier,

role, and type. For web services, the intrinsic level consists of identifier properties,

description, type, input and output arguments, and cost and time of implementation.

In [34], the Do-I-Care application has been designed to help users discover inter-

esting changes on the web, using both technical means and social rights. Do-I-Care

agents automate periodic visits to selected pages for detecting interesting changes

on behalf of users, where they must keep their agents informed of the relevant pages

and the quality of reported changes. Once an agent detects an interesting change,

the user is notified by e-mail, and the change is attached to the web page associated

with the agent. This web page is also used for the relevance of comments and the

activity of cooperation.

Clearly, there is still no work in the literature that emphasizes the use of the

two technologies in the domain of groupware tailorability. This gives originality to

our approach and motivates us to present a model designed to tackle specifically

the problem of tailorability along with interoperability problems between heteroge-

neous applications deployed on the Internet.

8.4.6 Purpose of Integration

For [25], current techniques for publishing and finding services (such as WSDL and

UDDI) rely on static descriptions of service interfaces, forcing consumers to find

and bind services at design time. However, web services are becoming one of the

most important architectures used in heterogeneous cooperative information sys-

tems, as it was the appearance of web services that permitted Internet sites to offer

services in a more flexible manner [10]. However, the concept of software agents is

even older than web services, and it has been employed with success for executing

distributed applications. Agents are defined briefly as is a piece of software that acts

autonomously to undertake tasks on behalf of users. For [18], it is based on the fact

that users only need to specify a high-level goal instead of issuing explicit instruc-

tions, leaving the how and when decisions to the agent. The same authors say that

software agents exhibit a number of features that make them different from other

traditional components including autonomy, goal-orientation, collaboration, flexi-

bility, self-starting, temporal continuity, character, communication, adaptation, and

mobility.

The reason behind our motivation to integrate software agents with web ser-

vices is driven by the fact that agents put in practice the concept of mobile code,

and through coordination with their flexible architectures, can easily be adapted to

highly dynamic and heterogeneous environment as the web. Web services however

are the fast emergence of dominant means for connecting distributed applications

through well established Internet protocols.

11 | 26



Fig. 8.2 Classical SOA vs. tailorable SOA

Furthermore, software agents can be one of the essential developments to web

services for the fact that they are functional entities instead of being just simple

interaction delegations or communication means [31]. To sum up, the idea is to

explore the capacities of agents’ proactive interactions to enhance the behavior of

web services in a service-oriented architecture (SOA). With this paradigm, software

components, where each one is representing a service and an agent in collaboration,

can interact with each other for providing unified services in a specified environ-

ment, as for example the exchange of multimedia applications on the Internet (we

are currently working on such system, we call it Oce@nyd). This is aligned with the

authors in [31]: “agents will become an essential part of most web-based applica-

tions, serving as the ‘glue’ that makes a system as large as the web manageable and

viable.”

8.4.6.1 Classical SOA vs. Tailorable SOA

In Fig. 8.2, we can see the transformation of the classical SOA found in the literature

to our vision of a tailorable SOA. In the classical SOA, there exist two actors: the

service provider that registers the definitions of web services (WSDL) in the public

registry (UDDI). The user in this kind of architecture has only the possibility to

send SOAP requests to interrogate the UDDI about a needed service, but does not

have the possibility to modify the UDDI by adding new services that could satisfy

more his or her needs. This limits the use and the flexibility of the approach, as users

would only be limited to use the services already existing in the system, and thus

wouldn’t be able to adapt the application to their needs, but rather the other way

around.

In the tailorable SOA, the idea is to modify the structure of the classical SOA in

a way that the service user is the service provider himself, as we can see in Fig. 8.2.

In other words, the user will then have the privilege to interrogate the UDDI (self

representation of the application, as seen in the reflexive computational system in

Sect. 8.3.2) using standard SOAP requests, but also modify it using the same type

of messages formats by adding the new web services definitions into the UDDI

with mechanisms that will assure this type of modification. The protocols provided

12 | 26



(SOAP) in the SOA will be in charge of reconfiguring the links between the ser-

vices added and the services already present in the system. In fact, the self repre-

sentation part could be seen as an open implementation mechanism [16] where the

users would be able to modify the structure of the application (inserting new service

definitions through their WSDL files) without recompiling the system and stopping

its execution. Also, this kind of system will satisfy the evolution of the system’s use

due to temporal or behavioral changes. In this case, the classical Service-Oriented

Architecture will be transformed into a tailorable Service-Oriented Architecture by

giving the user tools to accommodate these changes. In fact, the dynamic integra-

tion of new web services will be the task of software agents, where comes the main

purpose of integrating software agents with web services in our system, and that is

to insure service tailorability in a collaborative environment, as we will see in the

next section.

8.5 The UD
3 Theoretical Model

As mentioned earlier, the aim behind our model is to integrate software agents and

web services into a cohesive entity that attempts to surpass the weakness of each

technology, while reinforcing their individual advantages [31]. W3C clearly ex-

presses the notion that, “software agents are the running programs that drive web

services—both to implement them and to access them as computational resources

that act on behalf of a person or organization.” In fact, the concept of software agents

is older than web services and it has been employed with success for executing dis-

tributed applications, while their main aim is based on the fact that users only need

to specify a high-level goal instead of issuing explicit instructions, leaving the how

and when decisions to the agent to discover web services deployed on the Internet

and integrate them in the system. This reinforces the reason behind our motivation

to integrate software agents with web services, and is driven by the fact that agents

put in practice the concept of mobile code, and through coordination with their flex-

ible architectures, can easily be adapted to the highly dynamic and heterogeneous

environment as the web.

We extend the work in [4] for the use of SOA in the design of a tailorable

groupware, as it offers the needed interoperability and reconfigurability between

system components, and the importance of using software agents in order to en-

hance the discovery of web services by making them proactive and dynamic. More-

over, we rely on the Arch model [1] by offering a canonical decomposition of the

main structure of the system into five main components (Functional core, Func-

tional core adapter, Physical Interaction, Logical Interaction and Dialog Controller

components), each having a specific functionality in the system. However in our

work we will concentrate on the design of the functional core which is the main

component of the system, along with the system interfaces, and we will make no

assumption about the other components. We rely also on Dewan’s model [5] that

structures a groupware system into a variable number of layers, each representing

13 | 26



Fig. 8.3 The UD3 model

specific levels of abstraction, where the highest layer is the semantic layer that cor-

responds to the functional core of the system (coincides with the one of the Arch

model), and the lowest layer representing the material or the hardware level (Arch’s

Physical Interaction component), and eventually we compare our model with the

clover model [17] that is itself built using the later models. Note that Fig. 8.3 rep-

resenting our proposed architecture shows only the functional core of the system,

along with the physical interaction layer that implements the interactions with the

user. In the next section, we implement the physical component as a web interface

serving as a case study of our model.

8.5.1 Description of the Functional Core (FC)

The overall architecture as we can see in Fig. 8.3 is constituted of a root representing

shared layers, meaning that it is shared among all the users in the system, and several

branches constituted by replicated layers for every user. The layers communicate

vertically using interaction events, and use collaboration events for communication

between layers of different branches. However, in contrast to the clover model [17]

where the functional core is also split into two layers: one private and shared, while

the other is replicated and public, the functional core in our model is represented

by two layers that are both shared and constitute the root of the system: The first

layer of the Functional Core (FC) at the level N represents the highest semantic

14 | 26



level in the system, while the other FC layer at the level N − 1 is divided into two

distinct parts: a service oriented environment (SOA), and a JADE agent layer. One

can imagine two different environments evolving in parallel, while having a layer

on the level N with the essential requirement of projecting the two environments

on the level N − 1, hence integrating web services with the corresponding software

agents. The use of two shared layers as a functional core is to increase the separation

of functionalities, and thus to increase the modularity of the code. In this article, we

will skip the details about the layers between the functional core and the physical

interaction components, and we will concentrate on the essence of the architecture

represented by its functional core composed of web services and agents, and the

interfaces that residing on the lowest layer (Layer 0) of the system.

8.5.2 FC Decomposition

The shared layers of the architecture constituting the system’s FC enable all users

to manipulate domain objects and have access to various services during the inter-

action with the system, while the replicated layers handles the set of services and

the state of the system that is private for every user in collaboration. We extend this

layer abstraction as in [17] by decomposing each layer of the architecture into sub-

components, each dedicated to one facet of Ellis’ 3C model, while providing and

managing specific services for communication, coordination and production (de-

fined by the term cooperation in [8]). However, we suppose that only the layers on

the level N − 1 and on the lowest level (Layer 0) satisfy these three main classi-

fications, while we have made no assumption till now about the decomposition of

the highest semantic layer in the architecture, that is for us mainly composed of one

single component for integrating web services with agents, as we will see later in the

description of our model. The sub-components on the level N − 1 are enclosed in a

software interface exposing its functionalities to the clients, by dividing the services

in the system into three main services: communication, coordination and production

services.

Indeed, for [28], a component is a distributable and executable software module

that provides and receives services through a well-defined interface. Specifically,

a component is a module, an object, a unit of calculation or data. Hence we con-

cretize the notion of component by defining it as a web service and a software agent

interacting together and creating a dynamic environment for groupware tailoring, by

offering common and unified services to satisfy users’ preferences. We will explain

in more details the FC of our system, beginning with the layer N − 1 that encloses

an SOA environment and a JADE agents’ environment respectively.

8.5.3 SOA Environment

As we can see in Fig. 8.3, the first component on the level N −1 is based on an SOA

environment. This component contains all the web services in the system grouped

15 | 26



into 3 main services: communication services, coordination services and production

services. By classifying services in the system into these three main categories, the

main spaces of the software collaboration process defined by the 3C model [8], as

we have mentioned, are satisfied. Note that we use the term ‘Production’ to mean

‘Cooperation’ of activities (used in the 3C model: Communication, Coordination

and Cooperation):

• ComService: contains all services offering means of communication between

users in collaboration (videoconference service, voice recorder service, etc.).

• CoorService: contains services implementing rules of coordination by codifying

their interaction (i.e. workflow).

• ProService: contains services that are the collaborative product of using the ar-

chitecture. (Ex: Paint application, Word document, etc.).

These services can be considered as orchestrations of various other services in the

system [29], and include services based on the functionalities they offer. Compared

to the architecture proposed in [4], the UDDI is viewed as a dynamic registry for

web services description enhanced with software agent’s capabilities, and contain-

ing definitions of services running in the system that are susceptible of undergoing

tailorability activities. The definitions of these web services are provided using the

standardized language for web services description (WSDL) and are connected to

adaptable aspects that are the services themselves, residing in the SOA environment.

8.5.4 JADE Agents’ Environment

In parallel to the SOA environment, a JADE environment constitutes the other part

of the FC on the level N − 1. This layer is populated with software agents that are

deployed on a JADE environment using its libraries for implementing agents’ behav-

iors. The adopted paradigm of communication between layers is an asynchronous

message passing with a format specified by the ACL (Agent Communication Lan-

guage) defined by FIPA [9]. This format includes a number of fields, more specifi-

cally the sender of the message, the list of recipients, the communication intention

that indicates the purpose of sending the message, the message content and its lan-

guage i.e. the used syntax to explain the content that could be understood by the

sender and the recipient, and finally the ontology i.e. the vocabulary of symbols

used in the contents and their meanings that also should be understood both by the

sender and the recipient of the message. As in the SOA environment, all agents

are grouped into three main classes: communication, coordination and production

agents. The use of agents, as we have mentioned before, is to make the discovery

of new services in the system dynamic, meaning that new web services will be ac-

tively integrated into the FC without stopping the execution of the system. These

services are normally used by users on the physical layer, which is the lowest layer

in the architecture. The functional decomposition of the layer into three main sub-

components corresponding to the 3C model will fasten the interaction with web

16 | 26



services in the system, while every agent in one particular sub-component would

know exactly where to search for a particular web service in the SOA environment

that best suits the functionalities it can offer. Each sub-component in this layer ma-

nipulates semantic objects dedicated to one of the 3C model functionalities, and

performs specific processing functions on its services.

8.5.5 Universal Directory for Description and Discovery

We describe the highest semantic layer of the architecture constituting the core com-

ponent in the proposed model. The name of the UD3 model is derived from integrat-

ing the UDDI [24] (Universal Description Discovery and Integration) used by web

services and the DF [36] (Directory Facilitator explained in Sect. 8.4.4) used by soft-

ware agents. Hence emerges the Universal Directory for Description and Discovery,

or the UD3 model. In fact, building a model using both technologies would consti-

tute a new approach built on integration’s synergy, which is still not been exploited

till now in the context of tailorable groupware design. We can view this component

on the highest level of the architecture as a shared registry with dynamic interac-

tion mechanisms for the discovery of web services. We visualize a scenario where

a client agent searches for a service in the system. The model can then trigger a

mechanism to look up for available services in the web service environment. Hence

the advantages of classifying web services into three main services (Communica-

tion, Coordination and Production) for making the search for available web services

faster and more efficient by separation of their functionalities. If the web service

is found, its corresponding ontology and interaction models are generated, then the

agent registers the corresponding web service as its own service, and communica-

tion between the invoking agent and the service would be able to start. Hence, the

aim of this part of the FC is for:

• Software agents to discover publish and invoke web services in web service reg-

istries (UDDI).

• Web service clients to discover software agents services in the Directory Facilita-

tor (DF) of the JADE Platform.

• Web services to be published in the Directory Facilitator (DF) as a agent service.

• Web service clients to invoke Software Agents in order to integrate new web

services in the system.

8.5.6 Dynamic Discovery and the Semantic Web

Existing syntax based on SOA standards such as WSDL allows for dynamic invo-

cation of web services. However, this is only true for web services that have already

been discovered, as WSDL does not allow attachment of semantic meaning to data

in order to discover external web services on the fly. Dynamic discovery, on the

17 | 26



other hand, needs to deal with unknown services on the Internet. It will hence re-

quire the use of semantic metadata that software agents can understand and inter-

pret without human intervention. Hence a specific language should be used to add

semantics to inputs and outputs of the web service by attaching semantic metadata

that reference ontology concepts. Agents can then understand service descriptions

without intervention from the human user, thus enabling dynamic discovery as well

as dynamic invocation of web services, and hence tailoring groupware services in

relation to user’s preferences. The W3C community developed the Web Ontology

Language (OWL) to address this problem [26]. It is a machine-understandable de-

scription language that is capable of describing resources in a richer manner than

traditional flat taxonomies and classification systems, by providing a set of concepts

specifically for describing web services inputs, outputs, operations, and categoriza-

tion. However, UDDI is not capable of storing and processing semantic service de-

scriptions written in OWL. Therefore it is clear that a registry that supports seman-

tic annotation and matchmaking of web services will produce much more refined

search results, invocation and integration mechanisms which we are exploiting in

our model by implementing services’ tailorability.

8.5.7 FC Implementation

As we have mentioned earlier, the FC on the level N of the architecture as shown

in Fig. 8.4, should allow mechanisms for translating web services’ invocations into

a language understood by software agents, and vice versa. In fact, few related work

in the literature have been identified dealing with such translation mechanisms. The

authors in [25] present their tool, WS2JADE, that is based on two distinct layers: An

interconnection layer that glues agents and web services together, and a static man-

agement layer that creates and controls these interconnection entities called WSAG

(Web Service Agents), that are able to communicate and deliver web services as

their own services by producing and deploying WSAG at runtime. For [21], agents

can represent service consumers and providers that are independent, and collaborate

together in order to dynamically configure and reconfigure service-based applica-

tions. Their approach implements an agent-based architecture and is realized in a

web service agent platform (WSAF) that uses QoS ontology and an XML language

enabling consumers and service providers to expose their preferences.

Our primary concern in the design of our model is to have a tool translating web

services’ and agents’ invocation messages, and creating interaction mechanisms in

order to tailor web services in the system. In fact, a useful tool in using JADE is

the WSIG (‘Web Service Integration Gateway’) that meets our needs by providing

means to register web services in the JADE DF [36] (see Sect. 8.4.4) “mapped”

with descriptions of agents. In our case, registered web services can be called by

agents by directing the invocation to the WSIG. Thus, a web service is published

as JADE agent service, and an agent service can be symmetrically published as an

“end-point” of a web service. As shown in Fig. 8.4, the highest level of the FC

18 | 26



Fig. 8.4 FC implementation

contains a WSIG consisting of several components, each linked either directly or

indirectly to two registries, the DF that is not visible outside the platform, and the

UDDI that is visible internally to the WSIG, and externally to web services and web

service clients, but not directly to agents, and hence the WSIG acts as the interface

point between the agents and SOA environment.

In order to be visible in both environments, WSIG is registered as a special agent

service in DF (Directory Facilitator) and a special web service endpoint in the UDDI

directory, where any service description registered with either the DF or UDDI is

automatically translated into an entry for the other. The purpose is to ensure that

any registered web service is visible to agents via the DF and any registered agent

is visible to web service clients via the UDDI. We describe the local components of

the WSIG [13] of the JADE platform:

• OWL-S/WSDL codec (OWL-S is the semantic markup for web services [12])

that has the purpose of generating OWL ontologies from WSDL specifications.

In fact, WSDL is known to have limited ability in order to express semantic infor-

mation about the web service in order for it to be manipulated by an agent in the

system. And thus, a specific need is to have a codec mapping WSDL elements or

operations into OWL-S atomic processes, and alternatively, OWL-S class types

of the inputs and outputs of an atomic process mapped onto WSDL elements. Of

course, not all the operations in the WSDL can be mapped into OWL descrip-

tions, therefore some descriptions would be added manually by the programmer.

A scenario of use is described in Sect. 8.6.3 for further understanding of the in-

vocations process between an agent and a web service.

• ACL-SOAP codec that is responsible for parsing ACL (Agent Communication

Language [36]) messages received from the DF in order to extract the encoded

19 | 26



service descriptions (SD) held within their content, then translating them into a

web service invocation and returning the results to the WSIG for registration in

the UDDI. It is also responsible for parsing ACL messages sent to the WSIG to

invoke a web service into a corresponding SOAP message. This codec operates

also in a bidirectional manner in order to translate SOAP and service specification

information into correctly encoded ACL messages and DF entries [13].

• Axis’ JAX-RPC (Java API for XML based Remote Procedure Call) is an appli-

cation program interface (API) that enables Java developers to include remote

procedure calls (RPCs) with any web-based applications. It is aimed at making it

easier for applications or web services to call other applications. The JAX-RPC

programming model simplifies the development by abstracting SOAP protocol-

level runtime mechanisms and providing mapping services between Java and the

web services description language (WSDL).

As we can see in Fig. 8.4, language translation between the two environments

for making the discovery and integration of new services in the system dynamic,

leads in our model to explicitly implementing tailorability in a collaborative sys-

tem, which is leveraged by reusing and identifying existing technologies instead of

reinventing the wheel [25], with the use of the WSIG [13] component in the JADE

platform. In the next section we will see how the UD3 model can be put into practice

in the Oce@nyd project.

8.6 Case Study—Oce@nyd

Figure 8.5 illustrates the application of the UD3 on an ongoing project in our lab-

oratory, Oce@nyd, which is a part of a national project DIGITALOCEAN [6] for

the distribution and creation of multimedia applications (audio, video, text, etc.). In

fact, it is designed to enable the public to discover, online, underwater environments.

Our aim is to deal with the collaboration aspects of the project, as well as questions

concerning its integration, interoperability and mainly tailorability.

Moreover, as the nature of collaborative work in this domain continually changes

as a consequence of changing work needs, the system must adapt to reflect the un-

predictable requirements of users’ in collaboration. Hence emerges the need for a

new architectural model that could satisfy these requirements in a real application.

We have applied our model on Oce@nyd in order to satisfy these problems.

At the conceptual level we applied the FC shown in Fig. 8.3 that includes two

shared layers. At the implementation level, Oce@nyd is a client–server application

deployed on a Netbeans [23] platform using JADE libraries, along with other li-

braries for implementing the web services environment in the system. Both shared

layers of the FC are deployed on the server side and other layers are replicated

on users’ machines, while the client/server communication is based on network

streams. We will discuss mainly the FC of the model in a real application along

with the physical interaction layer and the services offered that are tailored by users,

while we make no assumptions, as we have mentioned before, for the other layers

between the FC core and the physical interaction.

20 | 26



Fig. 8.5 Case study—Oce@nyd

8.6.1 Physical Layer

At the physical layer of the application, lays a web interface manipulated by users

in collaboration. This web interface enables users to drag/drop multimedia files on

a map of a specified underwater site taken by another partner for the project, using

sensors, cameras and a GPS. The aim is to enrich this map with multimedia files

by professional divers or users having real photos taken underwater when scuba

diving in this particular location. We assume for now that the interface offers three

mechanisms implemented with web services technologies, each dedicated to one

aspect of the 3C model as follows:

• Communication: the application provides a chat mechanism enabling users to

exchange information about the files dragged onto the loaded map.

• Coordination: a service is encapsulated into the system that divides the map into

variable zones, and which will detect the coordinates of the dragged file onto the

shared zone that is showing a loaded map of a particular underwater site (the

number of zones dividing the map will be defined by the user, hence insuring

tailorability of coordination capabilities in the system).

• Production: the system provides a mechanism for dumping the information of

the multimedia applications dropped by users, into an XML file defining data

attributes for every file dragged onto the map: date/time, nature (image, video

or text), description (user’s description of a particular file), and coordinates: the

21 | 26



user will be prompt to enter the exact coordinates of the file (x, y, z) taken in a

particular underwater site. In the case where the actual coordinates are missing,

the system will give an (x, y) coordinates of the file dropped by the user on the 2D

loaded map, while a (z) coordinate will be given by the administrator depending

on the description of the user of the particular file.

8.6.2 Shared FC

These services reside in the functional core of the system, more particularly in the

SOA environment while their WSDL files reside in the UDDI implemented one

level up in the conceptual model, along with the DF and a set of codec provided

by using JADE libraries. The main aim is to ensure consistency by binding one

agent to its corresponding web service via the WSIG as described in the previ-

ous section. In the JADE part of the system, every agent is bound with its corre-

sponding web service. For example, a communication web service is managed by a

communication agent insuring its integration and invoking in the system’s physical

interface. The part constituting the FC that contains all the agents are handled by

the WSIG and JADE tools, providing basic methods for the registration of agents

and their communication with the SOA. The agents use classes inherited from vari-

ous behaviors offered by JADE libraries for implementing interaction protocols be-

tween agents: CyclicBehaviour that listens to messages exchanged between various

agents, AchieveREInitiator/AchieveREResponder that provides an effective imple-

mentation for all the FIPA-Request-like interaction protocols, Contract NetInitia-

tor/ContractNetResponder that offer various API and functionalities [13], etc.

8.6.3 Invocation of an External Web Service by an Agent

In the case where the system is prompted for an external web service, an agent

handling the particular class of the web service (communication, coordination or

production) sends an ACL Request message to the WSIG containing the identity,

name or any parameters identifying the web service to be invoked. Received ACL

messages are parsed and a SOAP message is constructed in order to prompt external

public registries for this particular web service, using the WSDL of the service to

be invoked. If the web service is found and a response is expected, a temporary

endpoint is established on the web server in order to receive responses, where the

incoming SOAP message is parsed into an ACL Inform message and sent to the

invoking agent, while registering the service in the local UDDI as a regular web

service. This particular agent will then be responsible for offering the requested

web service to the user directly integrated into the web interface.

Hence, on the design level, web services can act as semi-autonomous agents

that can be employed for describing the external behaviors and services offered by

22 | 26



software agents, and where every agent works in relation to the environment as a

regular web service. In consequence, agents are used to establish high level, flexible

and dynamic interaction models, while the web services will be more appropriate

for resolving the problems of interoperability in the system. At the execution level,

UDDI WSDL and SOAP will provide capacities such as the discovery, deployment

and communication.

8.6.4 Properties and Discussion

The originality of our model is the use of existing technologies’ synergy in order

to create a tailorable and interoperable architecture for groupware. Moreover, our

model is inspired by the Arch and Dewan’s model for separating the core func-

tionality (logic of the application) of its interfaces, and thus carrying with it many

essential properties such as modifiability, which is also crucial in the HCI domain.

However, the two layers constituting the FC are both shared and handle exclusively

the services and their dynamic integration, which is different from the clover model

[17] that advocates a replicated functional core for every user by managing their

private domain-dependent objects. We thought that a functional core adapter situ-

ated between the functional core and the physical layer (which was not discussed in

our work presented) is more suited to handle this type of data, while dedicating the

core of the application solely to handle tailoring system’s services, and hence every

newly added service will be shared by all users’ participating in a particular session.

The functional core breakdown according to Ellis’ 3C model contains several

properties. In fact, from the implementation perspective, the functional breakdown

will result in a greater modularity which reduces the complexity of groupware’s im-

plementation. For example, In the Oce@nyd system, it would be easy to add a new

communication web service by adding, for example, a video stream service without

affecting existing web services in the system. In addition, we have made no assump-

tions about the other layers in the system according to the functional decomposition

of Ellis’ model. This could reduce the development cost and computational time,

while enabling the addition of independent and heterogeneous layers to improve the

distribution of features and increase the modularity of code, and also by insuring

interoperability on every layer of the architecture (by using FIPA and W3C speci-

fication and standards). As for the branching point discussed in [27], we have fix it

after the FC layers, which induce a lower replication degree than the Clover model,

but convenient in order to ensure state consistency of services, as well for collab-

orating users to share discovered services and reusing them when needed. Finally,

our model identifies the implementation architecture that is deduced from the the-

oretical model in order to achieve tailorability in collaborative applications, where

opposed to other models, it identifies explicitly a component as a web service and a

software agent collaborating together to offer unified services in a specified environ-

ment, and where agents implement the concept of mobile code, while coordination

with their flexible architecture would enable them to easily adapt to highly dynamic

23 | 26



and heterogeneous environments as the web. Furthermore, this model accepts equity

between roles of agents and web services to support tailorability, which is different

from the traditional view that agents are considered on an upper level from web

services and take solely the roles of web services providers and consumers.

8.7 Conclusion

In this work, we have proposed a new architectural model that supports tailorabil-

ity in CSCW domain, where existing models are still lacking in putting it forward

and identifying technologies supporting it in the field. Our model relies on the in-

tegration of web services and software agents that build system’s components, and

offers interoperability between heterogeneous applications by providing a synergy

of technology used for the dynamic discovery and integration of web services. This

leads us to conceive a totally innovative approach, where research about web ser-

vices and agent’s integration is, until now, never been exploited in the context of

groupware tailorability, and hence bringing innovation in both the CSCW domain

and the web. Moreover, our model relies on the Arch and Dewan’s model, offering a

canonical separation of the application’s core from its interfaces, thus greater mod-

ularity, and also on Ellis’ model by decomposing system’s functionality into three

facets: communication, coordination and production, which satisfies various prop-

erties in the HCI (Human–Computer Interaction) and CSCW (Computer Supported

Cooperative Work) domains. However, storing and processing semantic service de-

scriptions (OWL-S) in existing UDDI registries may not be the ideal solution in

the long run, while compared to registries specifically designed to handle semantic

service description and queries, it will have drawbacks with respect to some func-

tionalities as well as efficiency in terms of both speed and storage. However, our

approach will provide a cost effective and functional short-term solution that builds

on top of existing registry infrastructure.

In our future work, we aim to complete our implementation for the UD3 model.

Our concern will be to modify incoming SOAP messages’ headers of external web

services in order to fasten their integration into the architecture according to their

functionalities (communication, coordination and production). We believe that our

preliminary approach for groupware tailorability will continue to mature through

the use of web services and software agents, which revealed to be appropriate to

bring this concept from theory to practice.

References

1. Bass, L.: A metamodel for the runtime architecture of an interactive system. SIGCHI Bulletin

24(1), 32–37 (1992). User Interface Developers’ Workshop

2. Bourguin, G.: Un support informatique a l’activite cooperative fonde sur la Theorie de

l’Activite- le projet DARE. Thesis in computer science, University of Lille, France (2000)

24 | 26



3. Bourguin, G.: Les lecons d’une experience dans la realisation d’un collecticiel reflexif. In:

Proc. of 15th IHM Conference, pp. 24–28 (2003)

4. Cheaib, N., Otmane, S., Mallem, M.: Integrating Internet technologies in designing a tailorable

groupware architecture. In: Proc. of 12th IEEE CSCWD, Xi’an, China, pp. 141–147 (2008)

5. Dewan, P.: Architectures for collaborative applications. Computer-Supported Cooperative

Work 7, 169–193 (1999)

6. Dinis, A., Fies, N., Cheaib, N., Otmane, S., Mallem, M., Nisan, N., Boi, J.M., Noel, C.,

Viala, C.: DIGITAL OCEAN: A national project for the creation and distribution of mul-

timedia content for underwater sites. In: Proc. of 14th International Conference on Virtual

Systems and Multimedia (VSMM’08), Limassol, Cyprus (2008)

7. Dustdar, S., Gall, H., Schmitt, R.: Web services for groupware in distributed and mobile col-

laboration. In: Proc. of 12th Euromicro Conference on Parallel, Distributed and Network-

Based Processing, pp. 241–247 (2004)

8. Ellis, C.A., Wainer, J.A.: Conceptual model of groupware. In: Proc. of CSCW, pp. 79–88.

ACM, New York (1994)

9. FIPA: http://www.fipa.org/ (2008)

10. Foukarakis, I.E., Kostaridis, A.I., Biniaris, C.G., Kaklamani, D.I., Venieris, I.S.: Webmages:

An agent platform based on web services. Computer Communications 30(3), 538–545 (2007)

11. Gannod, G.C., Burge, J.E., Urban, S.D.: Issues in the design of flexible and dynamic service-

oriented systems. In: Proc. of SDSOA’07: ICSE. IEEE Comput. Soc., Washington (2007)

12. http://www.w3.org/Submission/OWL-S/

13. JADE Board: JADE Web Services Integration Gateway (WSIG) Guide, Whitestein Technolo-

gies AG, Zürich (2005)

14. Jorstad, I., Dustdar, S., Thanh, D.V.: A service oriented architecture framework for collab-

orative services. In: Proc. of 14th IEEE International Workshops on Enabling Technologies,

Infrastructure for Collaborative Enterprise, pp. 121–125. IEEE Press, New York (2005)

15. Khezami, N.: Vers un collecticiel basé sur un formalisme multi-agent destiné à la téléopération

collaborative via Internet. Phd thesis, University of Evry Val d’Essone, Evry, France (Decem-

ber 2005)

16. Kiczales, G., Lamping, J., Lopes, C., Maeda, C., Mendhekar, A.: Open implementation design

guidelines. In: Proc. of 19th International Conference on Software Engineering, pp. 481–490.

ACM, New York (1997)

17. Laurillau, Y., Nigay, L.: Clover architecture for groupware. In: Proc. of the 2002 ACM Con-

ference on Computer Supported Cooperative Work, pp. 236–245. ACM, New York (2002)

18. Maamar, Z., Akhter, F., Lahkim, M.: An agent-based approach to specify a web service-

oriented environment. In: Proc. of WET ICE, pp. 48–49. IEEE Comput. Soc., Washington

(2003)

19. Maamar, Z., Sheng, Q.Z., Benatallah, B.: Interleaving web services composition and execution

using software agents and delegation. In: AAMAS Workshop (2003)

20. Matskin, M., Küngas, P., Rao, J., Sampson, J., Petersen, S.A., Link, I., Back, J.: Enabling web

services composition with software agents. In: Proc. of IASTED, pp. 15–17 (2005)

21. Maximilien, E.M., Singh, M.P.: A framework ontology for dynamic web services selection.

IEEE Internet Computing 8(5), 84–93 (2004)

22. Morch, A.: Three levels of end-user tailoring: customization, integration, and extension. In:

Computers and Design in Context, pp. 51–76. MIT Press, Cambridge (1997)

23. Netbeans Platform. http://www.netbeans.org/

24. Newcomer, E.: Understanding Web Services: XML, WSDL, SOAP, and UDDI. Pearson Edu-

cation, Boston (2002)

25. Nguyen, T.X., Kowalczyk, R.: WS2JADE: Integrating web service with Jade agents. In:

Service-Oriented Computing: Agents, Semantics, and Engineering, pp. 147–159. Springer,

Berlin (2007)

26. OWL Web Ontology Language Reference. Copyright W3C. http://www.w3.org/TR/owl-ref/

(2004)

27. Patterson, J.F.: A taxonomy of architectures for synchronous groupware applications. SIGOIS

Bulletin 15(3), 27–29 (2005)

25 | 26



28. Payet, D.: L’enrichissement de message comme support pour la composition logicielle. Phd

thesis, University of Monptellier, France (2003)

29. Peltz, C.: Web services orchestration. A review of emerging technologies, tools and standards.

Hewlett Packard White Paper (January 2003)

30. Roseman, M., Greenberg, S.: Simplifying component development in an integrated group-

ware environment. In: Proc. of 10th Annual ACM Symposium on User Interface Software and

Technology, New York, pp. 65–72 (1997)

31. Shen, W., Hao, Q., Wang, S., Li, Y., Ghenniwa, H.: Agent-based service-oriented integration

architecture for collaborative intelligent manufacturing. Robotics and Computer-Integrated

Manufacturing 23(3), 315–325 (2007)

32. Slagter, R., Biemans, M., Hofte, H.T.: Evolution in use of groupware: Facilitating tailoring to

the extreme. In: Proc. of CRIWG, pp. 68–73 (2001)

33. Slagter, R., Biemans, M.: Designing tailorable groupware for the healthcare domain. In: Proc.

of CRIWG, pp. 58–73. Springer, Berlin (2003)

34. Starr, B., Ackerman, M.S., Pazzani, M.: Do- I-Care: A collaborative web agent. In: Conference

on Human Factors in Computing Systems, pp. 273–274. ACM, New York (1996)

35. Stiemerling, O., Cremers, A.: Tailorable component architectures for CSCW-systems. In:

Proc. of 6th Euromicro Workshop on Parallel and Distributed Programming, pp. 21–24 (1998)

36. Telecom Italia Lab: JADE (Java Agent Development Framework). http://sharon.cselt.it/

projects/jade/

26 | 26


