
HAL Id: hal-00634662
https://hal.science/hal-00634662v1

Submitted on 21 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component-based middleware for distributed
augmented reality applications

Mehdi Chouiten, Jean-Yves Didier, Malik Mallem

To cite this version:
Mehdi Chouiten, Jean-Yves Didier, Malik Mallem. Component-based middleware for distributed
augmented reality applications. 5th International Conference on Communication System Software
and Middleware (COMSWARE ’11), Jul 2011, Verona, Italy. elec. proc., �10.1145/2016551.2016554�.
�hal-00634662�

https://hal.science/hal-00634662v1
https://hal.archives-ouvertes.fr

Component-based middleware for distributed augmented
reality applications

Mehdi Chouiten
IBISC Laboratory

40 Rue du pelvoux
91080 Courcouronnes, France

+(33) 1.69.47.06.18

Mehdi.Chouiten@ibisc.fr

Jean-Yves Didier
IBISC Laboratory

40 Rue du pelvoux
91080 Courcouronnes, France

+(33) 1.69.36.39.14

Jean-Yves.Didier@ibisc.fr

Malik Mallem
IBISC Laboratory

40 Rue du pelvoux
91080 Courcouronnes, France

+(33) 1.69.47.75.15

Malik.Mallem@ibisc.fr

ABSTRACT

This paper describes the design and implementation of a
middleware for a framework dedicated to Augmented Reality /
Mixed Reality (AR/MR) applications. The goal is to offer an
environment for the development of distributed applications
running on mobile devices (wearable computers and/or
smartphones). The paper first presents the main needs of an AR
application and introduces the necessity of distribution in this
field. Then we make a quick overview of existing distributed AR
frameworks. The goal of this overview is to extract main features
and strengths of each framework’s architecture based on a set of
defined criteria.

This comparison being meant as a starting point to extend our
own framework (ARCS: Augmented Reality Component System),
the last section is about the design and implementation of our own
software infrastructure for transparent distributed Augmented
Reality taking in consideration our own goals and constraints and
taking profit of the strengths of the studied existing frameworks.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed networks

H.5.1 [Multimedia Information Systems]: Artificial, augmented,
and virtual realities

General Terms
Design.

Keywords
Augmented Reality framework; Middleware design and
implementation; Component-based architecture; Distributed
Systems; Mobile Devices.

1. INTRODUCTION
In brief terms, Augmented Reality is a growing field that aims to
offer systems able to add virtual entities to a given real
environment in real time. These entities (augmentations) are most
of the time visual augmentations of the real scene by virtual
objects or texts. To achieve this, Augmented Reality uses a wide
range of algorithms (computer vision, localization, registration...)
and numerous devices (sensors such as camera, GPS, tracking
devices, and feedback devices). Because of these multiple
heterogeneities, the need of AR dedicated frameworks has
emerged. Numerous frameworks have been developed so far [16]
and most of them aim at offering developers a way to design AR

applications as a set of linked components communicating with
each other (locally or through a network) which makes the code
easier to maintain and increases the reusability possibilities.

Distributed applications in the AR context are used in order to
enable users (at remote sites or using different terminals) to
collaborate on a common task. In the same scope, distribution is
also a mean to run AR applications on mobile terminals with
limited computation power by using computation offloading
techniques. Previous works on distributed architectures for
simulations and Virtual Reality have already produced results.
Even if these systems were not applied on AR, they partially
inspired some of the current AR frameworks. Some of the most
significant standards for simulation are ALSP (Aggregate Level
Simulation Protocol [13]), DIS (Distributed Interactive
Simulation [14]) and HLA (High Level Architecture [15]). As
pointed out by a recent survey [17], constructing a pervasive
middleware to support AR systems is still a challenge.

In this paper, we are going to review five of the most used
distributed frameworks for Augmented Reality: DWARF,
STUDIERSTUBE, MORGAN, VARU and TINMITH. Even if
there are many more other frameworks for AR, the choice of these
systems is due to the fact that they manage distributed
applications and to their wide use which gives a significant
feedback on these still maintained projects. We will explain the
architectures main concepts and features and compare them before
extracting main strengths of each. It is important to notice that
these frameworks don't offer exactly the same features and thus,
have different architectural constraints.

The strengths of each architecture being identified, we build our
own architecture having in mind our own goals and constraints on
one hand and the teachings from other architectures on the other
hand. The last part is then the description of the architectural
design and implementation choices within this context.

2. Frameworks Overview
2.1 DWARF
DWARF [1] is a component-based framework allowing rapid
prototyping of AR applications. It uses the concept of
interdependent distributed services which needs, abilities and
connectors are exposed with the help of a service manager. A
service offers one ability to other services and requests its needs
from them (see Figure 1).

There is only one service manager per network node. Each of
them controlling its local services and cooperating with the other

managers to connect to remote services. DWARF is decentralized;
it doesn’t need a central server to run applications. The most
common services are already developed. The framework includes
a task-flow engine (sequence of actions to be done by the user), a
user interface engine, a tracking subsystem and a world model
description system collecting several data on the system's user and
its environment. Technically, DWARF distribution is based on
CORBA middleware and CORBA IIOP protocol.

Figure 1. DWARF services connection

2.2 The MORGAN Framework
MORGAN [9] is a also component-based framework. It is
convenient for Multi-User AR and VR projects. In the MORGAN
paradigm, projects are composed of sets of components that
subscribe to input devices (e.g. Tracking devices) they are
interested in. These devices provide new samples at different
rates. This is implemented using a publisher-subscriber pattern.
The framework also offers a rendering engine specially designed
for supporting multiusers within a distributed framework.

The creation, deletion and retrieval of components is done via a
core component called broker. To implement the creation of
remote components, the factory method pattern has been used by
the MORGAN system developers. Like DWARF, MORGAN uses
CORBA middleware but it also implements a proxy pattern for
other protocols. Unlike DWARF, the MORGAN framework is not
open source and there are no public tutorials available.

2.3 Studierstube
Here, each component is called an application object. This
concept encloses the data, its graphical representation and the
application operating on the data. Each application object inherits
from an application type. Studierstube[5] allows instantiation of
different application objects at the same time from the same or
different application types. These applications can communicate
to share features and data. Studierstube architecture is centralized
since it requires a session manager as central server [16]. Apart
from the interaction metaphor that we have tested, Studierstube
applications written in Open Inventor (OIV) can be seen as
distributed scene graphs replicated for each host. Distributed
applications are based on Distributed OpenInventor (DIV) which
is an extension of Open Inventor with the concept of distributed
shared scene graphs.

Figure 2. Studierstube event propagation over the network

To maintain the consistency of the graph over the network,
modifications are propagated as shown in figure 2. First step (1) is
the user pressing a button, (2) is the corresponding code
execution, (3) is the modification of Field1 on Node2 locally. The
modification is then propagated upwards to the root and notified
to a sensor which transmits the message to the remote host(4).
Finally, the receiver looks for the concerned node (5) and applies
the changes (6).

2.4 Tinmith
The architecture of the framework (Tinmith-evo5 [11]) is modular
to support a wide range of AR and multimedia applications. Some
modules can be application specific (e.g. navigation module)
when others are generic. The communication between modules is
made possible by a client-server style architecture. A module
providing data is the server that listens to clients that request a
subscription. When the data on the server is changed, the new
values are sent to all clients that have registered their interest to
this message. The clients can then use the new data to perform the
task of the module (e.g. refresh the display).

The system is asynchronous and data driven. If there is not any
new data, no new message will be generated and no action
performed by any software module.

Figure 3 shows how the Objects are connected. Objects in the
system are in C++ native format. The Binary of the object is
specific to the running process so it is not possible to send it
directly across the network. Serialization not being available by
default in C++, a custom serialization mechanism has been
developed using an XML structured format.

When the source and the listener are both running on same CPU,
they are connected via a callback function call used by the source
to notify data changes to the listener.

When the connected Objects are on distant terminals, as in Figure
3(2), the Source's new data is serialized by Object Tx which
transmits it over the the network. The Rx object receiving the new
value deserializes it and signals to the listener the data
modification. The middleware used is tinmith specific and the
protocol can be TCP or UDP based (different implementations).

(5)

(6)

(4)

(2)
Node

Hash table

Node2

Node1

Root

Root

Node1

Node2

Field1
(3)

Void main () {

 If (color=blue)

 Color = red

Field1

Network

DIV sensor
callback

DIV receive
(1)

:Type

ModuleCore

:Service

:Need

ModuleCore

:Service

:Ability

Figure 3. Tinmith transparent network distribution

2.5 VARU
VARU is a relatively recent project [6] aiming to be an integrated
framework for VR, AR and Ubiquitous Computing. Thus, for a
given application, there are three interaction spaces and it is
possible to switch from a space (VR/ AR/ Ubiquitous) to another
(object representation can be different) and it is possible for a user
in a space to interact with a user in another space (since the whole
is maintained to be consistent across the different spaces).
Basically, objects are described by 3 levels of abstraction : Object
Class, Individual and Extension. The individual is the
instantiation of a class.

This individual has different representations depending on the
interaction space. Each representation is called an extension of the
individual. Each application has its object database with an
individuals table and extensions table. When a user connects to
the server, it is also considered as an individual and added to the
object database with its extensions.

During the interaction, the different extensions of an individual
are synchronized by the VARU server which hosts the object
database and the object server. This way, other users are aware of
other users actions and position (since a user is also an individual
with its representations).

The main components of the VARU system are described in the
Figure 4. As shown, every client has a kernel which links it to the
VARU server. A client has also at least one space manager (VR,
AR or UC) and can have other components for managing I/O
devices, Display and streaming.

VARU uses CAIM middleware and UPnP protocol to connect to
smart devices (such as smart door, smart light, smart camera...)
and it uses VRPN for the interaction peripherals (e.g. joystick,
tracker) management.

3. Frameworks Comparison
These criteria have been chosen on the current applications of
VR. For example, security is not an important aspect yet because
of the non-existence of wide used applications with public
database access.

3.1 Ease of programming and reusability
versus features
In the notion of ease of programming, we include the complexity
of the application model, the ability for a developer to maintain

Figure 4. VARU main components

and reuse his code, and the ability to add a new functionality
without having to change the overall system.

The main idea of all the described systems is to offer a framework
for rapid prototyping of AR related applications. Thus, they are all
Object-Oriented and most of them are based on a component
approach (all except Tinmith evo-5 architecture). Reusability
within the same framework is then a common strength for these
systems.

From the ease of programming point of view, the simplest
application model is the Studierstube's one being based on 3D
concepts corresponding to the 2D Desktop metaphor. However,
the simplicity of this model is balanced by the features offered
that are not as numerous as other frameworks (such as DWARF
and VARU).

An important point for the ease of programming is the existence
of application authoring and monitoring tools. DWARF offers a
dedicated tool to monitor and debug distributed services.

3.2 Scalability
Since we are covering distributed architectures, an important
point is the ability to extend the number of the users (thus,
network terminal nodes).

DWARF and MORGAN both use CORBA IIOP protocol which
is widely used in systems of different sizes and has proven its high
scalability potential even if some issues remain [12]. For example,
load balancing is an important issue in scalability (in addition to
caching and persistence to reduce network traffic). Until now,
there has been not any load-balancing service in CORBA even if
there are techniques to support the re-direction necessary for load
balancing in a standard way [20]. An interesting aspect is that
DWARF is entirely decentralized. The main proof of feasibility is
that DWARF has been used in a gaming application (Herding
Sheep [7]) with distributed tracking, calibration and user
interface. However, when looking for new services, DWARF
makes a broadcast that significantly increases network traffic
(especially in a large scale application).

Object
Database

Object
Server

Simulation
Server

 VARU Server

Kernel

VARU Client

VR
Manager

AR
Manager

Device
Manager

Display
Manager

Additional Components

Space Manager

UC
Manager

Streaming
Manager

CAIM
Server

VRPN
Server

Avatar
Server

…

Axis
Camera

(1) Single Process / Single CPU (Default)

Listener

Net Listener

Source

Source Tx Rx

(2) Multiple Processes / Distributed On Network

Callback Function Call

Studierstube distributed application objects are based on
Distributed Open Inventor. The replication of the Application
Objects restrains the level of scalability. Computational scalability
can be achieved by introducing multiple application servers
holding mutually exclusive sub scene graphs [5] but this increases
significantly the number of central nodes and thus increases
significantly the cost.

Concerning Tinmith, as said by Piekarski and Thomas in a
Tinmith-evo5 architecture related paper [10], large scale
distribution is not possible since it would require multicasting,
which is not supported by the system at the moment. It is designed
for a small number of users roaming in a wide area.

In the design of VARU, even if the architecture allows the
addition of new users, the system requires a central server to
synchronize different managers (AR manager, VR manager, UC
manager) running on the multiple clients. The application of
interior design [6] has been tested on a limited number of users
and there is not any large scale distribution application using
VARU.

3.3 Flexibility and interoperability
Flexibility refers to the ability of the framework to support
different application scenarios running on different hardware
(with different computational capabilities) and different software
environment. We also include interoperability related features
when referring to interoperable frameworks.

As said previously on the technical description of DWARF, the
framework runs on multiple platforms and supports many
programming languages. It can run on wearable computers,
laptops and smart-phones as well and the architecture allows a
wide set of applications. Dwarf can be integrated with
studierstube [2] and has been used in several applications
(ARCHIE, NAVI, CAR, SHEEP...) in different environments.
Another important feature is the ability to reconfigure some
parameters of the application at runtime.

MORGAN [8] runs on PC and smartphones and offers an API to
reduce the programming complexity and to allow higher level
programming. It addition, it offers a proxy for communicating
with applications using other protocols. MORGAN also has its
own rendering engine integrated with the framework. This last
feature can also be a limitation for application developers who
want to use other rendering engines.

Studierstube is quite portable on different hardware and OS
especially with the new Studierstube ES platform dedicated to
applications for hand-held devices [4]. The original Studierstube
platform being based on OpenInventor, that is included as a
rendering engine. However, Studierstube ES is renderer
independent and runs on Windows CE and Symbian mobile
devices with or without 3D graphics acceleration.

From the distribution point of view, Studierstube uses distributed
OpenInventor (DIV protocol) for managing the distributed scene
graphs. It is convenient to Studierstube applications but restricts
the interoperability to OIV based applications (which is restricting
but better than having a custom protocol). Studierstube ES
management of networking is based on “Muddleware”, a
communication platform for multi-user applications on
lightweight terminals. It uses XML Document Object Model
(DOM) which is a widely established data model for network
computing. The choice of this model is, referring to its designers,
due to the recursive definition of a tuple (which has child tuples

as attributes of parent tuples), the readability of the model, and its
match to many typical structures such as spatial hierarchical
representations. XPath is used as a query/update language. The
use of a server is mandatory to share data between two clients.

In the case of Tinmith, test Applications are mainly made for
exterior environments. Like in DWARF applications, some
parameters (like colors of gadgets, strings, positions...) of Tinmith
platform applications can be reconfigured at runtime without
restarting the application and without supporting an interpreted
language.

From the distribution point of view, at the moment, Tinmith's
custom protocol does not yet allow connections to applications
using other protocols or to other AR frameworks.

Finally, the VARU framework takes advantage of the VRPN
device server. The system supports a wide range of devices. The
devices are configured to work with VRPN and the application
simply connects to the server to get the data in a standardized
way. VARU offers 3 interaction spaces. Thus, it can cover a lot of
scenarios but these applications do not run well on mobile devices
because of the heavy rendering engine [6].

From the distribution point of view, the clients and the VARU
server both need to be configured to make the client's kernel
access correctly to the server which adds a new user (and creates
an individual and its extensions). This configuration being made
by XML documents may be user unfriendly.

The study of these different reference frameworks summarizes the
main characteristics, strengths and weakness of each framework
taking in consideration differences in offered features. This study
has allowed us to have a better vision on how we will improve our
own framework (ARCS) especially from the distribution
management point of view.

4. Improving ARCS
Before describing the improvements done to ARCS (which stands
for Augmented Reality Component System) architecture, we need
to briefly present the main concepts of the framework and how
applications are built with it.

4.1 Previous Work
First, ARCS [3][18] is a component-based framework dedicated
to AR. Its components, as classical components [19], can be
configured and composed with other components. ARCS uses the
signal/slot paradigm (borrowed from user interface libraries) to
connect components to each other in order to make them
communicate.

In ARCS, every application is described as a set of threads.
Basically, each thread is controlled by a finite state machine
which states represent a specific configuration of the application’s
data flow. Such a configuration is called a sheet and contains
configuration values for components as well as a list of signal/slot
connections. Each change of state in the state machine results in a
change of global configuration of components and hence
reconfigures connection between components, that is to say the
dataflow.

A simple example would be an application with one automaton
(one thread), with a given number of sheets (eg. each sheet
representing a given scenario). Here, the state machine’s role
would be to switch from a scenario to another.

From the technical point of view, ARCS is written in C++ and is
based on Qt Library which already implements the signal/slot

concept. ARCS supports XML as a scripting language to describe
applications.

4.2 ARCS Middleware
4.2.1 Requirements
In its first version, ARCS was not distributed nor had network
capabilities. Given the fact that our framework aims at supporting
development of AR applications, adding network support and the
network distribution functionality is mandatory to support state of
the art applications.

As said previously, some frameworks use custom protocols while
others use generic middleware to manage the application
distribution. In particular, CORBA which is used in DWARF and
MORGAN.

For our system (ARCS), we chose a specific custom architecture
for two main reasons. The first one is the preservation of the
signal/slot mechanism on which ARCS is based. The signal
emitter is a client of the component having a slot receiving this
signal. We also need to maintain the synchronous constraint
inherent to this concept. The second reason is the ambivalent role
of the components that can be, in our case, clients and services at
the same time. This makes our architecture easier to setup, to
maintain, to scale-up and more flexible since it can also work in a
client/server manner. The two reasons cited above introduce the
need of a specific and original architecture.

In addition to these two requirements of our own. We also
identified three main requirements to answer the needs of
developers of AR applications and help them to handle the
specificity of such applications. These requirements inspired from
Tokunaga & al. work [22] are: high-level abstraction, distribution
and context-Awareness. They will be discussed further.

4.2.2 Architecture design
A first extension of ARCS architecture to allow distribution has
been made. The chosen distributed architecture allows to
transparently link remote components. The main idea is that an
intermediary component is generated if a component is supposed
to have some communication with another component on another
machine. These intermediary components, built on the proxy
design pattern [21], should include, among other data, all the
connection data needed in order to communicate (remote host
address, TCP port).

In the description of a sheet, if a component A needs to connect to
a component B over the network, the component A is in fact
connected (in signal/slot meaning) to the intermediary component
on the machine where it is located (see figure 5 and 6). A proxy
slot is created for each connection of a signal of this component
with a slot of a distant component. A proxy signal is also created
on the component B side to receive incoming remote signals and
spread them locally.

Every remote component (network component) is considered as a
service, it is attached to a specific component: the network
configurator (the intermediate component) that instantiates proxy
slots and proxy signals. A distant component can be client or
server (it can be both). The network configurator receives on the
proxy signals component all the signals destined to its local
components, de-serializes them and forwards the signals to the
actual destination components.

Here, we talk about de-serialization because once the connections
between components and network configurators are created; we

need to send the data over the network. Therefore,
marshalling/unmarshalling mechanisms are setup within the proxy
slots and proxy signals.

A connection manager (central component) lists all connections
between components. It is used to set up the new data flow and
activate different connections depending on the active sheet.
Since all machines can be clients or servers, we decided to call the
machine hosting the connection manager a Master. Other
terminals are called slaves.

During the data transfer, once all connections have been set up,
components on slave machines communicate without going
through the master as shown in Figure 5 (the connections manager
is only a repository of existing connections). The components can
communicate in both directions and regardless of the location of
the distant component (transparent communication).

Figure 5. Remote connection between components in ARCS
(Slave-Slave)

Figure 6 shows a Master – Slave communication. The component
A is a local component for the master and it needs to send and
receive signals/slots to/from component B on the slave machine.
This need is specified in the XML application description. When
running the application, the network component corresponding to
component B is created on the master side and the network
configurator to which it is attached is created on the slave side.
Then, for each signal/slot connection, a proxy slot and a proxy
signal are instantiated in the network component from one side
and in the network configurator from the other side.

As implemented (and as described in this paper), this architecture
answers our two first requirements. It keeps the component and
signal/slot paradigm on which ARCS is based and offers the
possibility to have components than can be clients and/or services.

It also meets the three requirements quoted from [22] and we will
explain how it is done for each point:

High-level abstraction: AR applications often use different types
of nodes (computers, mobile phones…) that can be specialized
and running different operating systems. In our case, the goal was
to offer a design generic enough to hide this complexity to the
developer. In our solution, distributed components are localized

Net. configurator

Master

Component A

Connection Manager

Slave

Component B

Net. configurator

Slave

(1)
(1) (2)
(2)

(1) Proxy slots
(2) Proxy signals

Network
Component B

Network
Component A

by a path system which allows more readable descriptions and
makes application writing comfortable for developers. Also, the
network components family in particular and the whole
architecture in general is based on Qt library which is cross-
platform. Finally, components being organized in a more abstract
concept (component family), it allows developers even to enrich
the framework itself with new components for a given family.

Distribution: as described above, the architecture is distributed
and different application modules can be located on different
network nodes. Distribution can be made on a very small
granularity (at the level of a component). Thus, a low calculation
capabilities mobile device can use a module running on a more
capable computer to process data for example.

Context-Awareness: As said in ARCS description, the different
scenarios of an ARCS application are described in its sheets. The
required data about different software modules that interact with
the application and the components handling hardware (e.g.
camera capture component) are described within the sheets and
are standardized within the components implementation (e.g. send
camera images at the framerate of capture, if detection is not
possible, send at a default framerate).

Figure 6. Remote connection between components in ARCS
(Master-Slave)

4.2.3 Current Status and future work
This architecture has been tested and it works (even if detailed
performance evaluation still needs to be done). Numerous toy
tests have been made and they were conclusive. To allow the
developer to have a global vision on his application, we also
developed an architecture viewer (figure 7) reading application
descriptions of the different nodes and building the final
architecture at the machine and component level (to know which
signal of which component is sending data to which slot of which
component on which machine).

In addition, we also developed a tool (figure 8) for monitoring
and debugging applications. It allows choosing ARCS application
to run and displays the parameters of the application. A set of
given values to the parameters is called a profile. These
parameters can be changed at runtime.

Currently, in addition to qualitative and quantitative tests, an AR
distributed application using ARCS and its middleware is being
developed and is providing the most significant feedback for this
architecture. The application consists of a SLAM (Simultaneous
Localization And Mapping) application. Basically, its goal is to
build 3D models of real environments explored simultaneously by

multiple users which terminals collaborate to build a common 3D
model.

ARCS middleware uses a custom protocol and as we noticed for
studied frameworks, using a custom protocol is an important
restraint for interoperability. We plan to use a more interoperable
protocol in the future (ARCS design offers generic components
families which makes it easy to make our middleware
interoperable with other frameworks without having to redevelop
it completely).

Figure 7. ARCS Network application viewer

Figure 8. ARCS application wizard

We also noticed that the security is not the main concern when
building current AR frameworks. Most applications run for a
limited number of users in a relatively restricted area and it would
be interesting to reinforce the security of the systems before
considering large scale distributed AR applications in the future.

5. Conclusion
In this paper, we presented the design of a middleware dedicated
to a framework for AR applications. We started by reviewing the
most popular distributed AR frameworks. We described their
application models and the way the distribution is managed within
them. Even if these frameworks don't offer exactly the same
features, we established general comparison criteria based on the
needs of nowadays AR applications. From this comparison have
emerged interesting ways to explore in order to advance in the
ARCS platform extension especially on the network architecture
and the protocol choice. The architecture has been designed and
developed taking in consideration the existing framework, the
complexity and specificity of this field, and the needs and comfort

Net. Component B

Master

Component A

Connection Manager

Slave

Component B

Net. Configurator

(1) Proxy slots
(2) Proxy signals

 (2)

(2) (1)

(1)

of AR applications developers. In addition to the architecture
itself, two ARCS application developer tools were presented.
Finally, we also listed numerous possible improvements to our
solution.

6. References

[1] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher, S.
Riss, C. Sandor, and M. Wagner. Design of a component-based
augmented reality framework. In Proceedings of the International
Symposium on Augmented Reality (ISAR), Oct. 2001.

[2] M. Bauer, O. Hilliges, A. MacWilliams, C. Sandor, M. Wagner, J.
Newman, G. Reitmayr, T. Fahmy, G. Klinker, T. Pintaric, and D.
Schmalstieg. Integrating Studierstube and DWARF. In International
Workshop on Software Technology for Augmented Reality Systems
(STARS), Oct. 2003.

[3] J. Didier, S. Otmane, and M. Mallem. A component model for
augmented/mixed reality applications with reconfigurable data-flow. In
8th International Conference on Virtual Reality (VRIC 2006), pages 243–
252, Laval (France), April 26-28 2006.

[4] S. Dieter and W. Daniel. Mobile phones as a platform for augmented
reality. In Proceedings of the IEEE VR 2008 Workshop on Software
Engineering and Architectures for Realtime Interactive Systems, Mar.
2008.

[5] A. Fuhrmann, G. Hesina, Z. Szalavari, L. M. Encarnacao, M.
Gervautz, and W. Purgathofer. The studierstube augmented reality project.
In Presence: Teleoperators and Virtual Environments, volume 11, Feb
2002.

[6] S. Irawati, S. Ahn, J. Kim, and H. Ko. Varu framework : Enabling
rapid prototyping of VR, AR and ubiquitous applications. IEEE VR, Mar.
2008.

[7] A. MacWilliams, C. Sandor, M. Wagner, M. Bauer, G. Klinker, and B.
Bruegge. Herding sheep : live system development for distributed
augmented reality. International Symposium on Mixed and Augmented
Reality, Oct. 2003.

[8] J. Ohlenburg, W. Broll, and A.-K. Braun. Morgan: A framework for

realizing interactive real-time AR and VR applications. IEEE VR, Mar.

2008.

[9] J. Ohlenburg, I. Herbst, I. Lindt, T. Fröhlich, and W. Broll. The
MORGAN framework: enabling dynamic multi-user AR and VR projects.
In VRST ’04: Proceedings of the ACM symposium on Virtual reality
software and technology, pages 166–169, New York, NY, USA, 2004.
ACM.

[10] W. Piekarski and B. H. Thomas. Tinmith-evo5 - an architecture for
supporting mobile augmented reality environments. International
Symposium on Augmented Reality, Oct. 2001.

[11] W. Piekarski and B. H. Thomas. An object-oriented software
architecture for 3d mixed reality applications. International Symposium
on Mixed and Augmented Reality, Oct. 2003.

[12] Q. Gu, A. Marshall. Network management performance analysis and
scalability tests : Snmp vs. corba. IEEE/IFIP Network Operations and
Management Symposium, Apr. 2004.

[13] R. M. Weatherly, A. L. Wilson, B. S. Canova, E. H. Page, A. A.
Zabek, M. C. Fischer. Advanced Distributed Simulation through the
Aggregate Level Simulation Protocol. Proceedings of the 29th Hawaii
International Conference on Systems Sciences, pages 407–415, 1996.

[14] IEEE 1278.1A-1998. Standard for Distributed Interactive Simulation
- Application protocols, 1998.

[15] HLA IEEE 1516.1-2000 - Standard for Modeling and Simulation
High Level Architecture – Federate Interface Specification, 2000.

[16] C. Endres, A. Butz, and A. MacWilliams. A survey of software
infrastructures and frameworks for ubiquitous computing. Mobile
Information Systems Journal, Amsterdam (Netherlands), Jav 2005.
[17] F. Zhou, H. B-L. Duh, M. Billinghurst - Trends in augmented reality
tracking, interaction and display: A review of ten years of ISMAR.
Proceedings of the 7th IEEE/ACM International Symposium on Mixed
and Augmented Reality pp. 193--202, Washington, DC, USA, 2008

[18] J-Y. Didier, S. Otmane, M. Mallem - ARCS : Une Architecture
Logicielle Reconfigurable pour la conception des Applications de Réalité
Augmentée. Technique et Science Informatiques (TSI), Réalité Virtuelle -
Réalité Augmentée 28 (6-7/2009):891-919, Jun-sep, 2009

[19] C. Szyperski, Component Software - Beyond Object-Oriented
Programming, second edn, Addison-Wesley, Harlow, England, 2002.

[20] Object Management Group. http://www.omg.org

[21] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley
Professional, Nov, 1994.

[22] E. Tokunaga, A. van der Zee, M. Kurahashi, M. Nemoto, and T.
Nakajima. Object-Oriented Middleware Infrastructure for Distributed
Augmented Reality. In Proceedings of the Sixth IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC '03). May, 2003.

