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ABSTRACT 

This paper describes the design and implementation of a 
middleware for a framework dedicated to Augmented Reality / 
Mixed Reality (AR/MR) applications. The goal is to offer an 
environment for the development of distributed applications 
running on mobile devices (wearable computers and/or 
smartphones). The paper first presents the main needs of an AR 
application and introduces the necessity of distribution in this 
field. Then we make a quick overview of existing distributed AR 
frameworks. The goal of this overview is to extract main features 
and strengths of each framework’s architecture based on a set of 
defined criteria. 

This comparison being meant as a starting point to extend our 
own framework (ARCS: Augmented Reality Component System), 
the last section is about the design and implementation of our own 
software infrastructure for transparent distributed Augmented 
Reality taking in consideration our own goals and constraints and 
taking profit of the strengths of the studied existing frameworks. 

Categories and Subject Descriptors 
C.2.1 [Network Architecture and Design]: Distributed networks 

H.5.1 [Multimedia Information Systems]: Artificial, augmented, 
and virtual realities 

General Terms 
Design. 

Keywords 
Augmented Reality framework; Middleware design and 
implementation; Component-based architecture; Distributed 
Systems; Mobile Devices. 

1. INTRODUCTION 
In brief terms, Augmented Reality is a growing field that aims to 
offer systems able to add virtual entities to a given real 
environment in real time. These entities (augmentations) are most 
of the time visual augmentations of the real scene by virtual 
objects or texts. To achieve this, Augmented Reality uses a wide 
range of algorithms (computer vision, localization, registration...) 
and numerous devices (sensors such as camera, GPS, tracking 
devices, and feedback devices). Because of these multiple 
heterogeneities, the need of AR dedicated frameworks has 
emerged. Numerous frameworks have been developed so far [16] 
and most of them aim at offering developers a way to design AR 

applications as a set of linked components communicating with 
each other (locally or through a network) which makes the code 
easier to maintain and increases the reusability possibilities.  

Distributed applications in the AR context are used in order to 
enable users (at remote sites or using different terminals) to 
collaborate on a common task. In the same scope, distribution is 
also a mean to run AR applications on mobile terminals with 
limited computation power by using computation offloading 
techniques. Previous works on distributed architectures for 
simulations and Virtual Reality have already produced results. 
Even if these systems were not applied on AR, they partially 
inspired some of the current AR frameworks. Some of the most 
significant standards for simulation are ALSP (Aggregate Level 
Simulation Protocol [13]), DIS (Distributed Interactive 
Simulation [14]) and HLA (High Level Architecture [15]). As 
pointed out by a recent survey [17], constructing a pervasive 
middleware to support AR systems is still a challenge. 

In this paper, we are going to review five of the most used 
distributed frameworks for Augmented Reality: DWARF, 
STUDIERSTUBE, MORGAN, VARU and TINMITH. Even if 
there are many more other frameworks for AR, the choice of these 
systems is due to the fact that they manage distributed 
applications and to their wide use which gives a significant 
feedback on these still maintained projects. We will explain the 
architectures main concepts and features and compare them before 
extracting main strengths of each. It is important to notice that 
these frameworks don't offer exactly the same features and thus, 
have different architectural constraints. 

The strengths of each architecture being identified, we build our 
own architecture having in mind our own goals and constraints on 
one hand and the teachings from other architectures on the other 
hand. The last part is then the description of the architectural 
design and implementation choices within this context. 

2. Frameworks Overview 
2.1 DWARF 
DWARF [1] is a component-based framework allowing rapid 
prototyping of AR applications. It uses the concept of 
interdependent distributed services which needs, abilities and 
connectors are exposed with the help of a service manager. A 
service offers one ability to other services and requests its needs 
from them (see Figure 1). 

There is only one service manager per network node. Each of 
them controlling its local services and cooperating with the other 



managers to connect to remote services. DWARF is decentralized; 
it doesn’t need a central server to run applications. The most 
common services are already developed. The framework includes 
a task-flow engine (sequence of actions to be done by the user), a 
user interface engine, a tracking subsystem and a world model 
description system collecting several data on the system's user and 
its environment. Technically, DWARF distribution is based on 
CORBA middleware and CORBA IIOP protocol. 

 

Figure 1. DWARF services connection 

2.2 The MORGAN Framework 
MORGAN [9] is a also component-based framework. It is 
convenient for Multi-User AR and VR projects. In the MORGAN 
paradigm, projects are composed of sets of components that 
subscribe to input devices (e.g. Tracking devices) they are 
interested in. These devices provide new samples at different 
rates. This is implemented using a publisher-subscriber pattern. 
The framework also offers a rendering engine specially designed 
for supporting multiusers within a distributed framework. 

The creation, deletion and retrieval of components is done via a 
core component called broker. To implement the creation of 
remote components, the factory method pattern has been used by 
the MORGAN system developers. Like DWARF, MORGAN uses 
CORBA middleware but it also implements a proxy pattern for 
other protocols. Unlike DWARF, the MORGAN framework is not 
open source and there are no public tutorials available. 

2.3 Studierstube 
Here, each component is called an application object. This 
concept encloses the data, its graphical representation and the 
application operating on the data. Each application object inherits 
from an application type. Studierstube[5] allows instantiation of 
different application objects at the same time from the same or 
different application types. These applications can communicate 
to share features and data. Studierstube architecture is centralized 
since it requires a session manager as central server [16]. Apart 
from the interaction metaphor that we have tested, Studierstube 
applications written in Open Inventor (OIV) can be seen as 
distributed scene graphs replicated for each host. Distributed 
applications are based on Distributed OpenInventor (DIV) which 
is an extension of Open Inventor with the concept of distributed 
shared scene graphs.  

 

 

Figure 2. Studierstube event propagation over the network 

To maintain the consistency of the graph over the network, 
modifications are propagated as shown in figure 2. First step (1) is 
the user pressing a button, (2) is the corresponding code 
execution, (3) is the modification of Field1 on Node2 locally. The 
modification is then propagated upwards to the root and notified 
to a sensor which transmits the message to the remote host(4). 
Finally, the receiver looks for the concerned node (5) and applies 
the changes (6). 

2.4 Tinmith 
The architecture of the framework (Tinmith-evo5 [11]) is modular 
to support a wide range of AR and multimedia applications. Some 
modules can be application specific (e.g. navigation module) 
when others are generic. The communication between modules is 
made possible by a client-server style architecture. A module 
providing data is the server that listens to clients that request a 
subscription. When the data on the server is changed, the new 
values are sent to all clients that have registered their interest to 
this message. The clients can then use the new data to perform the 
task of the module (e.g. refresh the display). 

The system is asynchronous and data driven. If there is not any 
new data, no new message will be generated and no action 
performed by any software module. 

Figure 3 shows how the Objects are connected. Objects in the 
system are in C++ native format. The Binary of the object is 
specific to the running process so it is not possible to send it 
directly across the network. Serialization not being available by 
default in C++, a custom serialization mechanism has been 
developed using an XML structured format. 

When the source and the listener are both running on same CPU, 
they are connected via a callback function call used by the source 
to notify data changes to the listener. 

When the connected Objects are on distant terminals, as in Figure 
3(2), the Source's new data is serialized by Object Tx which 
transmits it over the the network. The Rx object receiving the new 
value deserializes it and signals to the listener the data 
modification. The middleware used is tinmith specific and the 
protocol can be TCP or UDP based (different implementations). 
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Figure 3. Tinmith transparent network distribution 

2.5 VARU 
VARU is a relatively recent project [6] aiming to be an integrated 
framework for VR, AR and Ubiquitous Computing. Thus, for a 
given application, there are three interaction spaces and it is 
possible to switch from a space (VR/ AR/ Ubiquitous) to another 
(object representation can be different) and it is possible for a user 
in a space to interact with a user in another space (since the whole 
is maintained to be consistent across the different spaces). 
Basically, objects are described by 3 levels of abstraction : Object 
Class, Individual and Extension. The individual is the 
instantiation of a class.  

This individual has different representations depending on the 
interaction space. Each representation is called an extension of the 
individual. Each application has its object database with an 
individuals table and extensions table. When a user connects to 
the server, it is also considered as an individual and added to the 
object database with its extensions. 

During the interaction, the different extensions of an individual 
are synchronized by the VARU server which hosts the object 
database and the object server. This way, other users are aware of 
other users actions and position (since a user is also an individual 
with its representations). 

The main components of the VARU system are described in the 
Figure 4. As shown, every client has a kernel which links it to the 
VARU server. A client has also at least one space manager (VR, 
AR or UC) and can have other components for managing I/O 
devices, Display and streaming. 

VARU uses CAIM middleware and UPnP protocol to connect to 
smart devices (such as smart door, smart light, smart camera...) 
and it uses VRPN for the interaction peripherals (e.g. joystick, 
tracker) management. 

3. Frameworks Comparison 
These criteria have been chosen on the current applications of 
VR. For example, security is not an important aspect yet because 
of the non-existence of wide used applications with public 
database access. 

3.1 Ease of programming and reusability 
versus features 
In the notion of ease of programming, we include the complexity 
of the application model, the ability for a developer to maintain  

 

Figure 4. VARU main components 

and reuse his code, and the ability to add a new functionality 
without having to change the overall system. 

The main idea of all the described systems is to offer a framework 
for rapid prototyping of AR related applications. Thus, they are all 
Object-Oriented and most of them are based on a component 
approach (all except Tinmith evo-5 architecture). Reusability 
within the same framework is then a common strength for these 
systems. 

From the ease of programming point of view, the simplest 
application model is the Studierstube's one being based on 3D 
concepts corresponding to the 2D Desktop metaphor. However, 
the simplicity of this model is balanced by the features offered 
that are not as numerous as other frameworks (such as DWARF 
and VARU). 

An important point for the ease of programming is the existence 
of application authoring and monitoring tools. DWARF offers a 
dedicated tool to monitor and debug distributed services. 

3.2 Scalability 
Since we are covering distributed architectures, an important 
point is the ability to extend the number of the users (thus, 
network terminal nodes). 

DWARF and MORGAN both use CORBA IIOP protocol which 
is widely used in systems of different sizes and has proven its high 
scalability potential even if some issues remain [12]. For example, 
load balancing is an important issue in scalability (in addition to 
caching and persistence to reduce network traffic). Until now, 
there has been not any load-balancing service in CORBA even if 
there are techniques to support the re-direction necessary for load 
balancing in a standard way [20]. An interesting aspect is that 
DWARF is entirely decentralized. The main proof of feasibility is 
that DWARF has been used in a gaming application (Herding 
Sheep [7]) with distributed tracking, calibration and user 
interface. However, when looking for new services, DWARF 
makes a broadcast that significantly increases network traffic 
(especially in a large scale application). 
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Studierstube distributed application objects are based on 
Distributed Open Inventor. The replication of the Application 
Objects restrains the level of scalability. Computational scalability 
can be achieved by introducing multiple application servers 
holding mutually exclusive sub scene graphs [5] but this increases 
significantly the number of central nodes and thus increases 
significantly the cost. 

Concerning Tinmith, as said by Piekarski and Thomas in a 
Tinmith-evo5 architecture related paper [10], large scale 
distribution is not possible since it would require multicasting, 
which is not supported by the system at the moment. It is designed 
for a small number of users roaming in a wide area. 

In the design of VARU, even if the architecture allows the 
addition of new users, the system requires a central server to 
synchronize different managers (AR manager, VR manager, UC 
manager) running on the multiple clients. The application of 
interior design [6] has been tested on a limited number of users 
and there is not any large scale distribution application using 
VARU. 

3.3 Flexibility and interoperability 
Flexibility refers to the ability of the framework to support 
different application scenarios running on different hardware 
(with different computational capabilities) and different software 
environment. We also include interoperability related features 
when referring to interoperable frameworks. 

As said previously on the technical description of DWARF, the 
framework runs on multiple platforms and supports many 
programming languages. It can run on wearable computers, 
laptops and smart-phones as well and the architecture allows a 
wide set of applications. Dwarf can be integrated with 
studierstube [2] and has been used in several applications 
(ARCHIE, NAVI, CAR, SHEEP...) in different environments. 
Another important feature is the ability to reconfigure some 
parameters of the application at runtime. 

MORGAN [8] runs on PC and smartphones and offers an API to 
reduce the programming complexity and to allow higher level 
programming. It addition, it offers a proxy for communicating 
with applications using other protocols. MORGAN also has its 
own rendering engine integrated with the framework. This last 
feature can also be a limitation for application developers who 
want to use other rendering engines. 

Studierstube is quite portable on different hardware and OS 
especially with the new Studierstube ES platform dedicated to 
applications for hand-held devices [4]. The original Studierstube 
platform being based on OpenInventor, that is included as a 
rendering engine. However, Studierstube ES is renderer 
independent and runs on Windows CE and Symbian mobile 
devices with or without 3D graphics acceleration. 

From the distribution point of view, Studierstube uses distributed 
OpenInventor (DIV protocol) for managing the distributed scene 
graphs. It is convenient to Studierstube applications but restricts 
the interoperability to OIV based applications (which is restricting 
but better than having a custom protocol). Studierstube ES 
management of networking is based on “Muddleware”, a 
communication platform for multi-user applications on 
lightweight terminals. It uses XML Document Object Model 
(DOM) which is a widely established data model for network 
computing. The choice of this model is, referring to its designers, 
due to the recursive definition of a tuple (which has child tuples 

as attributes of parent tuples), the readability of the model, and its 
match to many typical structures such as spatial hierarchical 
representations. XPath is used as a query/update language. The 
use of a server is mandatory to share data between two clients. 

In the case of Tinmith, test Applications are mainly made for 
exterior environments. Like in DWARF applications, some 
parameters (like colors of gadgets, strings, positions...) of Tinmith 
platform applications can be reconfigured at runtime without 
restarting the application and without supporting an interpreted 
language. 

From the distribution point of view, at the moment, Tinmith's 
custom protocol does not yet allow connections to applications 
using other protocols or to other AR frameworks. 

Finally, the VARU framework takes advantage of the VRPN 
device server. The system supports a wide range of devices. The 
devices are configured to work with VRPN and the application 
simply connects to the server to get the data in a standardized 
way. VARU offers 3 interaction spaces. Thus, it can cover a lot of 
scenarios but these applications do not run well on mobile devices 
because of the heavy rendering engine [6]. 

From the distribution point of view, the clients and the VARU 
server both need to be configured to make the client's kernel 
access correctly to the server which adds a new user (and creates 
an individual and its extensions). This configuration being made 
by XML documents may be user unfriendly. 

The study of these different reference frameworks summarizes the 
main characteristics, strengths and weakness of each framework 
taking in consideration differences in offered features. This study 
has allowed us to have a better vision on how we will improve our 
own framework (ARCS) especially from the distribution 
management point of view.  

4. Improving ARCS 
Before describing the improvements done to ARCS (which stands 
for Augmented Reality Component System) architecture, we need 
to briefly present the main concepts of the framework and how 
applications are built with it. 

4.1 Previous Work 
First, ARCS [3][18] is a component-based framework dedicated 
to AR. Its components, as classical components [19], can be 
configured and composed with other components.  ARCS uses the 
signal/slot paradigm (borrowed from user interface libraries) to 
connect components to each other in order to make them 
communicate. 

In ARCS, every application is described as a set of threads. 
Basically, each thread is controlled by a finite state machine 
which states represent a specific configuration of the application’s 
data flow. Such a configuration is called a sheet and contains 
configuration values for components as well as a list of signal/slot 
connections. Each change of state in the state machine results in a 
change of global configuration of components and hence 
reconfigures connection between components, that is to say the 
dataflow. 

A simple example would be an application with one automaton 
(one thread), with a given number of sheets (eg. each sheet 
representing a given scenario). Here, the state machine’s role 
would be to switch from a scenario to another. 

From the technical point of view, ARCS is written in C++ and is 
based on Qt Library which already implements the signal/slot 



concept. ARCS supports XML as a scripting language to describe 
applications.  

4.2 ARCS Middleware 
4.2.1 Requirements  
In its first version, ARCS was not distributed nor had network 
capabilities. Given the fact that our framework aims at supporting 
development of AR applications, adding network support and the 
network distribution functionality is mandatory to support state of 
the art applications.  

As said previously, some frameworks use custom protocols while 
others use generic middleware to manage the application 
distribution. In particular, CORBA which is used in DWARF and 
MORGAN. 

For our system (ARCS), we chose a specific custom architecture 
for two main reasons. The first one is the preservation of the 
signal/slot mechanism on which ARCS is based. The signal 
emitter is a client of the component having a slot receiving this 
signal. We also need to maintain the synchronous constraint 
inherent to this concept. The second reason is the ambivalent role 
of the components that can be, in our case, clients and services at 
the same time. This makes our architecture easier to setup, to 
maintain, to scale-up and more flexible since it can also work in a 
client/server manner. The two reasons cited above introduce the 
need of a specific and original architecture.  

In addition to these two requirements of our own. We also 
identified three main requirements to answer the needs of 
developers of AR applications and help them to handle the 
specificity of such applications. These requirements inspired from 
Tokunaga & al. work [22] are: high-level abstraction, distribution 
and context-Awareness. They will be discussed further. 

4.2.2 Architecture design 
A first extension of ARCS architecture to allow distribution has 
been made. The chosen distributed architecture allows to 
transparently link remote components. The main idea is that an 
intermediary component is generated if a component is supposed 
to have some communication with another component on another 
machine. These intermediary components, built on the proxy 
design pattern [21], should include, among other data, all the 
connection data needed in order to communicate (remote host 
address, TCP port). 

In the description of a sheet, if a component A needs to connect to 
a component B over the network, the component A is in fact 
connected (in signal/slot meaning) to the intermediary component 
on the machine where it is located (see figure 5 and 6). A proxy 
slot is created for each connection of a signal of this component 
with a slot of a distant component. A proxy signal is also created 
on the component B side to receive incoming remote signals and 
spread them locally. 

Every remote component (network component) is considered as a 
service, it is attached to a specific component: the network 
configurator (the intermediate component) that instantiates proxy 
slots and proxy signals.  A distant component can be client or 
server (it can be both). The network configurator receives on the 
proxy signals component all the signals destined to its local 
components, de-serializes them and forwards the signals to the 
actual destination components. 

Here, we talk about de-serialization because once the connections 
between components and network configurators are created; we 

need to send the data over the network. Therefore, 
marshalling/unmarshalling mechanisms are setup within the proxy 
slots and proxy signals. 

A connection manager (central component) lists all connections 
between components. It is used to set up the new data flow and 
activate different connections depending on the active sheet.  
Since all machines can be clients or servers, we decided to call the 
machine hosting the connection manager a Master. Other 
terminals are called slaves. 

During the data transfer, once all connections have been set up, 
components on slave machines communicate without going 
through the master as shown in Figure 5 (the connections manager 
is only a repository of existing connections). The components can 
communicate in both directions and regardless of the location of 
the distant component (transparent communication). 

 

Figure 5. Remote connection between components in ARCS      
(Slave-Slave) 

 

Figure 6 shows a Master – Slave communication. The component 
A is a local component for the master and it needs to send and 
receive signals/slots to/from component B on the slave machine. 
This need is specified in the XML application description. When 
running the application, the network component corresponding to 
component B is created on the master side and the network 
configurator to which it is attached is created on the slave side. 
Then, for each signal/slot connection, a proxy slot and a proxy 
signal are instantiated in the network component from one side 
and in the network configurator from the other side. 

As implemented (and as described in this paper), this architecture 
answers our two first requirements. It keeps the component and 
signal/slot paradigm on which ARCS is based and offers the 
possibility to have components than can be clients and/or services. 

It also meets the three requirements quoted from [22] and we will 
explain how it is done for each point: 

High-level abstraction: AR applications often use different types 
of nodes (computers, mobile phones…) that can be specialized 
and running different operating systems. In our case, the goal was 
to offer a design generic enough to hide this complexity to the 
developer. In our solution, distributed components are localized 
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by a path system which allows more readable descriptions and 
makes application writing comfortable for developers. Also, the 
network components family in particular and the whole 
architecture in general is based on Qt library which is cross-
platform. Finally, components being organized in a more abstract 
concept (component family), it allows developers even to enrich 
the framework itself with new components for a given family. 

Distribution: as described above, the architecture is distributed 
and different application modules can be located on different 
network nodes. Distribution can be made on a very small 
granularity (at the level of a component). Thus, a low calculation 
capabilities mobile device can use a module running on a more 
capable computer to process data for example. 

Context-Awareness: As said in ARCS description, the different 
scenarios of an ARCS application are described in its sheets. The 
required data about different software modules that interact with 
the application and the components handling hardware (e.g. 
camera capture component) are described within the sheets and 
are standardized within the components implementation (e.g. send 
camera images at the framerate of capture, if detection is not 
possible, send at a default framerate). 

 

Figure 6. Remote connection between components in ARCS     
(Master-Slave) 

 

4.2.3 Current Status and future work 
This architecture has been tested and it works (even if detailed 
performance evaluation still needs to be done). Numerous toy 
tests have been made and they were conclusive. To allow the 
developer to have a global vision on his application, we also 
developed an architecture viewer (figure 7) reading application 
descriptions of the different nodes and building the final 
architecture at the machine and component level (to know which 
signal of which component is sending data to which slot of which 
component on which machine). 

In addition, we also developed a tool (figure 8) for monitoring 
and debugging applications. It allows choosing ARCS application 
to run and displays the parameters of the application. A set of 
given values to the parameters is called a profile. These 
parameters can be changed at runtime. 

Currently, in addition to qualitative and quantitative tests, an AR 
distributed application using ARCS and its middleware is being 
developed and is providing the most significant feedback for this 
architecture. The application consists of a SLAM (Simultaneous 
Localization And Mapping) application. Basically, its goal is to 
build 3D models of real environments explored simultaneously by 

multiple users which terminals collaborate to build a common 3D 
model.  

ARCS middleware uses a custom protocol and as we noticed for 
studied frameworks, using a custom protocol is an important 
restraint for interoperability. We plan to use a more interoperable 
protocol in the future (ARCS design offers generic components 
families which makes it easy to make our middleware 
interoperable with other frameworks without having to redevelop 
it completely). 

 

 

Figure 7. ARCS Network application viewer 

 

 

Figure 8. ARCS application wizard 

 

We also noticed that the security is not the main concern when 
building current AR frameworks. Most applications run for a 
limited number of users in a relatively restricted area and it would 
be interesting to reinforce the security of the systems before 
considering large scale distributed AR applications in the future. 

5. Conclusion 
In this paper, we presented the design of a middleware dedicated 
to a framework for AR applications. We started by reviewing the 
most popular distributed AR frameworks. We described their 
application models and the way the distribution is managed within 
them. Even if these frameworks don't offer exactly the same 
features, we established general comparison criteria based on the 
needs of nowadays AR applications. From this comparison have 
emerged interesting ways to explore in order to advance in the 
ARCS platform extension especially on the network architecture 
and the protocol choice. The architecture has been designed and 
developed taking in consideration the existing framework, the 
complexity and specificity of this field, and the needs and comfort 
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of AR applications developers. In addition to the architecture 
itself, two ARCS application developer tools were presented. 
Finally, we also listed numerous possible improvements to our 
solution. 
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