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PARABOLIC DELIGNE-LUSZTIG VARIETIES.

FRANCOIS DIGNE AND JEAN MICHEL

ABSTRACT. Motivated by the Broué conjecture on blocks with abelian defect
groups for finite reductive groups, we study “parabolic” Deligne-Lusztig va-
rieties and construct on those which occur in the Broué conjecture an action
of a braid monoid, whose action on their £-adic cohomology will conjecturally
factor through a cyclotomic Hecke algebra. In order to construct this action,
we need to enlarge the set of varieties we consider to varieties attached to a
“ribbon category”; this category has a Garside family, which plays an impor-
tant role in our constructions, so we devote the first part of our paper to the
necessary background on categories with Garside families.

1. INTRODUCTION

In this paper, we study “parabolic” Deligne-Lusztig varieties, one of the main
motivations being the Broué conjecture on blocks with abelian defect groups for
finite reductive groups.

Let G be a connected reductive algebraic group over an algebraic closure F, of
the prime field IF,, of characteristic p. Let F' be an isogeny on G such that some
power F? is a Frobenius endomorphism attached to a split structure over the finite
field Fs; this defines a positive real number ¢ such that ¢° is an integral power of
p. When G is quasi-simple, any isogeny F such that the group of fixed points G¥'
is finite is of the above form; such a group G¥ is called a “finite reductive group”
or a “finite group of Lie type”.

Let L be an F-stable Levi subgroup of a (non necessarily F-stable) parabolic
subgroup P of G. Then, for ¢ a prime number different from p, Lusztig has con-
structed a “cohomological induction” RE which associates with any Q,L"-module
a virtual Q,G¥-module. We study the particular case RE (Id), which is given by
the alternating sum of the ¢-adic cohomology groups of the variety

Xp = {gP € G/P | gP N F(gP) # 0}

on which G acts on the left. We will construct a monoid of endomorphisms M
of Xp related to the braid group, which conjecturally will induce in some cases an
action of a cyclotomic Hecke algebra on the cohomology of Xp. To construct M
we need to enlarge the set of varieties we consider, to include varieties attached to
morphisms in a “ribbon category” — the “parabolic Deligne-Lusztig varieties” of
this paper; M corresponds to the endomorphisms in the “conjugacy category” of
this ribbon category of the object attached to Xp.

The relationship with Broué’s conjecture for the principal block comes as fol-
lows: assume, for some prime number ¢ # p, that a Sylow f-subgroup S of G is
abelian. Then Broué’s conjecture [Brl] predicts in this special case an equivalence

This work was partially supported by the “Agence Nationale pour la Recherche” project
“Théories de Garside” (number ANR-08-BLAN-0269-03).

1



2 F. DIGNE AND J. MICHEL

of derived categories between the principal block of Z,G*" and that of Z;Ngr(S).
Now L := Cg(S) is a Levi subgroup of a (non F-stable unless ¢|¢g — 1) parabolic
subgroup P; restricting to unipotent characters and discarding an eventual torsion
by changing coefficients from Z; to Qy, this translates after refinement (see [BM])
into conjectures about the cohomology of Xp (see [@.1]); these conjectures predict
that the image in the cohomology of our monoid M is a cyclotomic Hecke algebra.

The main feature of the ribbon categories we consider is that they have Garside
families. This concept has appeared in recent work to understand the ordinary
and dual monoids attached to the braid groups; in the first part of this paper, we
recall its basic properties and go as far as computing the centralizers of “periodic
elements”, which is what we need in the applications. The reader who wants to
avoid the general theory of Garside families can try to read only Section [l where
we spell out the results in the case of Artin monoids.

In the second part, we first define the parabolic Deligne-Lusztig varieties which
are the aim of our study, and then go on to establish their properties. We extend
to this setting in particular all the material in [BM] and [BR2].

We thank Cédric Bonnafé and Raphaél Rouquier for discussions and an initial
input which started this work, and Olivier Dudas for a careful reading and many
suggestions for improvement.

After this paper was written, we received a preprint from Xuhua He and Sian
Nie (see [HN]) where, amidst other interesting results, they also prove Theorem

B1l

I. Garside families

This part collects some prerequisites on categories with Garside families. It is
mostly self-contained apart from the next section where the proofs are omitted; we
refer for them to [DDM] or the book [DDGKM] in preparation.

2. BASIC RESULTS ON GARSIDE FAMILIES

Given a category C, we write f € C to say that f is a morphism of C, and we
write C(z,y) (resp. C(z,-), resp. C(-,y)) for the set of morphisms from z € ObjC
to y € ObjC (resp. the set of morphisms with source x, resp. the set of morphisms
with target y). We write fg for the composition of f € C(x,y) and g € C(y, 2), and
C(z) for C(z,z). By S C C we mean that S is a set of morphisms in C.

Recall that a category is cancellative if each one of the relations hf = hg or
fh = gh implies f = g; equivalently every morphism is a monomorphism and an
epimorphism. We say that f left-divides g, or equivalently that g is a right-multiple
of f, written f < g, if there exists h such that g = fh; in this situation since the
category is cancellative h is uniquely defined by ¢ and f and we write h = f~!g.
Similarly we say that f right-divides g, or that g is a left-multiple of h and write
g = f if there exists h such that g = hf.

We denote by C* the set of invertible morphisms of C, and write f = g if there
exists h € C* such that fh = g (or equivalently there exists h € C* such that

f=gh).
Definition 2.1. In a cancellative category C a Garside family is a subset S C C
such that;

(i) S together with C* generates C, and C*S C SC* UC*.
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(ii) For every product fg with f,g € S, we can write fg = fig1 with f1,q1 € S
such that if for k € C and h € § we have h < kfg then h < kfi.

If item (ii) of the above definition holds we say that the 2-term sequence (f1,¢1)
is an S-normal decomposition of fg. We extend this notion first to the case where
f,g € SC* UC* by requiring the same condition but with fi,91 € SC* UC*; we
extend then S-normal decompositions to longer lengths by saying that (z1,...,z,)
is an S-normal decomposition of = z7 ...z, if for each i the sequence (z;,x;+1)
is an S-normal decomposition. We finally extend it to elements x € SC* U C* by
saying that (x) is an S-normal decomposition.

In a cancellative category with a Garside family every element x admits an S-
normal decomposition. We will just say “normal decomposition” if S is clear from
the context. A normal decomposition (z1,...,z,) is strict if no entry is invertible
and all entries excepted possibly x,, are in S. In a cancellative category with a Gar-
side family every non-invertible element admits a strict S-normal decomposition.

Normal decompositions are unique up to invertible elements, precisely

Lemma 2.2 ([DDM| 2.11)). If (x1,...,2,) and (2,...,2),) with n <n' are two
normal decompositions of x then for any i < n we have x1---x; =% i - x} and

for i > n we have x} € C*.
Head functions.

Definition 2.3. Let C be a cancellative category and let S C C. Then we say

that a function C — C* S is an S-head function if for any h € S, we have
h<geh=H(g).

We say that a subset S C C is closed under right-divisor if f = ¢g with f € S
implies g € S. We have the following criterion to be Garside:

Proposition 2.4 (see [DDM] 3.10 and 3.34]). Assume that C is a cancellative
category and that S C C together with C* generates C. Consider the following
property for an S-head function:

(H) VfeCVgeC—C* H(fg) =" H(fH(g))

Then S is Garside if there exists an S-head function satisfying (H) or there exists
an S-head function and SC* U C* is closed under right-divisor. Conversely if S
is Garside then SC* UC* is closed under right-divisor and any S-head function

satisfies (H).

An S-head function H computes the first term of a normal decomposition in the

sense that if (z1,...,2,) is a normal decomposition of z € C — C* then H(x) =*
x1. Further any z € C — C* has a strict normal decomposition (x1,...,x,) with
H(xz) = .

Let C be a cancellative category with a Garside family S. For f € C we de-
fine lgs(f) to be the minimum number k of morphisms si,...,s; € S such that

s1---8, =" f, thuslgg(f) =01if f € C*;if f ¢ C* then lgs(f) is also the number
of terms in a strict normal decomposition of f.

The following shows that S “determines” C up to invertible elements; we say that
a subset C; of C is closed under right-quotient if an equality f = gh with f,g € C;
implies h € C;.
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Lemma 2.5 ([DDGKM| VII 2.13]). Let C1 be a subcategory of C closed under
right-quotient which contains S. Then C = C1.C* UC* and S is a Garside family
m Cl.

Categories with automorphism. Most categories we want to consider will have
no non-trivial invertible element, which simplifies Definition (i) to “S generates
C”. The only source of invertible elements will be the following construction.

An automorphism of a category C is a functor F': C — C which has an inverse.
Given such an automorphism we define

Definition 2.6. The semi-direct product category C x (F') is the category whose
objects are the objects of C and whose morphisms are the pairs (g, F*), which will be
denoted by gF*, where g € C and i is an integer. The source of gF" is source(g) and
the target of gF" is F~%(target(g)). The composition rule is given by gF' - hFJ =
gF (h)F™7 when source(h) = target(gF?).

Note that we do not identify (g, F*) and (g, F7) even when F*~7 is the identity
functor — it will be convenient in our semi-direct products to have the cyclic group
generated by F' to be infinite even though F' acts via a finite order automorphism.

The conventions on F' are such that the composition rule is natural. However,
they imply that the morphism (Id, F') of the semi-direct product category represents
the functor F~1: it is a morphism from the object F(A) to the object A and we
have the commutative diagram:

C embeds in C x (F) by identifying g and (g, F°).

Lemma 2.7 ([DDGKM], VIII 1.34 (ii)]). If S is a Garside family in the cancellative
category C, and F an automorphism of C preserving S, then S is also a Garside
family in C x (F).

If (f1,... fx) is an S-normal decomposition of f € C then (fi,..., fxF?) is an S-
normal decomposition of fF* € C x (F). Note that if C has no non-trivial invertible
element, then the only invertible elements in C x (F) are {F'};cz. In general, if
a,b € C then aF" < bFV if and only if a < b.

We have the following property

Proposition 2.8 ([DDGKM| VII 4.4]). Assume that the cancellative category C
has a Garside family S and has no non-trivial invertible morphisms. Let F be
an automorphism of C preserving S. Then the subcategory of fized objects and
morphisms C¥' has a Garside family which consists of the fized points ST

Gcds and lems, Noetherianity. We call right-lcm of a family C; C C a right-
multiple f of all morphisms in C; such that for any other common right-multiple f’
we have f < f’; this corresponds to the categorical notion of a pullback. Similarly a
left-gcd of the family C; is a common left-divisor f such that for any other common
left-divisor f’ we have f’ < f; it corresponds to the notion of a pushout. Left-lcms
and right-gcds are defined in the same way exchanging left and right.
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The existence of left-gcds and right-lcms are related when the cancellative cat-
egory C is right-Noetherian, which means that there is no infinite sequence fy =
fi == fn = --- where f;11 is a proper right-divisor of f;, that is we do not have
fi = fi+1. It means equivalently since C is cancellative that there is no infinite
sequence gp <X g1 < - =< gn = -+ =< ¢ where g; is a proper left-divisor of g;y1.
The equivalence is obtained by f; = g; lg and g = fo. In a right-Noetherian cate-
gory any element is right-divisible by an atom, which is an element which cannot be
written as the product of two non-invertible elements. If the category is Noetherian
(that is, both left and right-Noetherian) we have:

Proposition 2.9 ([DDGKM|, II 2.64]). A cancellative and Noetherian category is
generated by its atoms and its invertible elements.

We say that C admits conditional right-lcms if, whenever f and g have a common
right-multiple, they have a right-lem. We then have:

Proposition 2.10 ([DDGKM, 1T 2.41]). If C is cancellative, right-Noetherian and
admits conditional right-lcms, then any family of morphisms of C with the same
source has a left-ged.

If C admits conditional right-lems we say that a subset X C C is closed (resp.
weakly closed) under right-lem if whenever two elements of X have a right-lem in
C this lem is in X (resp. in XC*). If further X is closed under right-quotient an
lem in C which is in X is also an lem in X. The following is proved in [DDM,
Proposition 3.25] (where there is a Noetherianity assumption not used in the direct
part of the proof).

Lemma 2.11. If S is a Garside family in a category which admits conditional
right-lems then SC* is closed under right-lcm.

Here is a general situation when a Garside family of a subcategory can be deter-
mined.

Lemma 2.12 ([DDGKM| VII 1.10]). Let S be a Garside family in C assumed
cancellative, right-Noetherian and having conditional right-lems. Let S C S be a
subfamily such that S1C* U C* is as a subset of SC* UC* closed under right-lem
and right-quotient; then Sy is a Garside family in the subcategory Cy1 generated by
S1C*. Moreover Cy is a subcategory closed under right-quotient.

Lemma 2.13 ([DDGKM| VII 1.18]). Let M be a cancellative right-Noetherian
monoid which admits conditional right-lems and let M’ be a submonoid of M closed
under right-quotient and weakly closed under right-lcm. Then any w € M has a
unique (up to right-multiplication by M'* ) maximal left-divisor in M'.

Garside maps. An important special case is when a Garside family S is attached

to a Garside map. A Garside map is a map ObjC 2, € where A(z) € C(z,-) such
that the map x +— target(A(z)) is injective and such that SC* U C* is both the
set of elements that left-divide some A(z) and the set of elements that right-divide
some A(x).

This definition of a Garside map agrees with [DDGKM| V 2.30] if we take in
account that, using the notation of loc. cit., the fact that S# is the set of left- and
right-divisors of A implies that the Garside family S is bounded.

A Garside map allows to define a functor @, first on objects by taking for ®(x)
the target of A(x), then on morphisms, first on morphisms s € S by, if s € C(z,-)
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defining s’ by ss’ = A (we omit the source of A if it is clear from the context) and
then ®(s) by s'®(s) = A. We then extend ® by using normal decompositions; it
can be shown that this is well-defined and defines a functor such that for any f € C
we have fA = A®(f). It can also be shown that the cancellativity of C implies
that ® is an automorphism.

The automorphism @ is a typical automorphism of C preserving S that we will
call the Garside automorphism.

If S is attached to a Garside map, we then have the following properties:

Proposition 2.14. (1) If f < g then lgs(f) <lgs(g).
(ii) Assume f,g,h € S and (f,g) is S-normal; then lgs(fgh) < 2 implies
gh € SC*.

(iii) For f € C(=,-), the first term of an S-normal decomposition of x is a

left-gcd of f and A(x).

Proof. (i) is [DDGKM, V 2.39 (v)], (iii) is [DDGKM, V 1.14]. (ii) is [DDGKM, IV
1.38] using [DDGKM] 2.15] which says, with the notation as in loc. cit., that S#
est left-comultiple-closed. O

We will write AP for the map which associates with an object x the morphism
A(z)A(®(x))--- A(®P~1(z)). For any f € C(x,-) there exists p such that f <
AP(z).

Proposition 2.15 ([DDGKM| IIT 1.37 and V 2.14]). If S is a Garside family
attached to a Garside map A then for any positive integer p, AP is a Garside map
and {fifo--- fp | fi € S} is a Garside family attached to AP.

3. THE CONJUGACY CATEGORY

The context for this section is a cancellative category C.

Definition 3.1. Given a category C, we define the conjugacy category ConjC of C
as the category whose objects are the endomorphisms of C and where, for w € C(A)
and w' € C(B) we set ConjC(w,w') = {x € C(A,B) | zw' = wz}. We say that x
conjugates w to w' and call centralizer of w the set ConjC(w). The composition of
morphisms in ConjC is given by the composition in C, which is compatible with the
defining relation for ConjC.

Note that it is the formula for ConjC(w,w’) that forces the objects of ConjC to
be endomorphisms of C.

Since C is cancellative, the data x and w determine w’ (resp.  and w’ determine
w). This allows us to write w® for w’ (resp. *w’ for w); this illustrates that our
category ConjC is a right-conjugacy category; we call left-conjugacy category the
opposed category.

A proper notation for an element of ConjC(w,-) is a triple w = w® (that we
will abbreviate often to 2 — -), since by itself does not specify its source; but
we will use just 2 when the context makes clear which source w is meant (or which
target is meant). The forgetful functor which sends w € Obj(ConjC) to source(w)
and w = - to x is faithful, though not injective on objects; it allows us to identify
ConjC(w,-) with the subset {z € C(source(w),-) | * < wz}; similarly we may
identify ConjC(-,w) with the subset {z € C(-, source(w)) | zw = x}.
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It follows that the category ConjC inherits automatically from C properties such
as cancellativity or Noetherianity. The forgetful functor maps (ConjC)* surjec-
tively to C*, so in particular the subset ConjC(w,-) of C(source(w),-) is closed
under multiplication by C*. In the proofs and statements which follow we iden-
tify ConjC with a subset of C and (ConjC)* to C*; for the statements obtained
about ConjC to make sense, the reader has to check that the sources and target of
morphisms viewed as morphisms in ConjC make sense.

Lemma 3.2. (i) The subset ConjC of C is closed under right-quotient.
(ii) The subset ConjC(w,-) of C(source(w),-) is closed under right-lem. In
particular if C admits conditional right-lcms then so does ConjC.
Similarly ConjC(-,w) is a subset of C(-,source(w)) closed under left-lem and
left-quotient.

Proof. We show (i). If y = xz with y € ConjC(w,w’), x € ConjC(w,-) and
z € C(-,source(w’)) we have x < wz and yw’ = wy. By cancellation, let us define w”
by zw” = wz. Now since y = zz the equality yw' = wy gives zzw’ = wzz = 2w’z
which gives by cancellation that zw’ = w”z showing that z € ConjC(-, w’).

We now show (ii). If 2,y € ConjC(w,-) then < wz and y < wy. Suppose now
that « and y have a right-lem z in C. Then x < wz and y < wz from which it
follows that z < wz, that is z € ConjC(w,-), thus z is the image by the forgetful
functor of a right-lem of  and y in ConjC.

The proof of the second part is just a mirror symmetry of the above proof. [

Proposition 3.3. Assume that S is a Garside family in C; then ConjC NS is a
Garside family in ConjC and S-normal decompositions of an element of ConjC are
ConjC N S-normal decompositions.

Proof. We will use Proposition [Z4] by showing that (ConjC N'S) U C* generates
ConjC and exhibiting a ConjC N S-head function H : ConjC — C* — ConjC NS
satisfying (H).

Let H be a S-head function in C. We first show that the restriction of H to
ConjC takes its values in ConjC N'S. Indeed if < wz then H(z) < H(wz) =~
H(wH (z)) < wH(z) where the middle = is by (H).

We now deduce by induction on lgg that (ConjC N'S) U C* generates ConjC.
The induction starts with elements of length 0 which are exactly the elements
of C*. Assume now that € ConjC is such that lgg(z) = n > 0 and define
a’ by x = H(x)a'; since H(z) can be taken as the first term of a strict normal
decomposition we have lgg(z') = n — 1. Since we proved H(z) € ConjC, we deduce
by Lemma [B2(i) that 2’ € ConjC, whence the result by induction.

It is straightforward that the restriction of H to ConjC — C* is still a head
function satisfying (#), which proves that ConjC NS is a Garside family. The
assertion about normal decompositions follows. ([l

Simultaneous conjugacy. A straightforward generalization of the conjugacy cat-
egory is the “simultaneous conjugacy category”, where objects are families of mor-
phisms wy, ..., w, with same source and target, and morphisms verify = < w;z for
all 7. Most statements have a straightforward generalization to this case.
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F-conjugacy. We want to consider “twisted conjugation” by an automorphism,
which will be useful for applications to Deligne-Lusztig varieties, but also for in-
ternal applications, with the automorphism being the one induced by a Garside
map.

Definition 3.4. Let F' be an automorphism of finite order of the category C. We
define the F-conjugacy category of C, denoted by F-ConjC, as the category whose
objects are the morphisms in some C(A, F(A)) and where, for w € C(A, F(A)) and
w' € C(B,F(B)) we set F-ConjC(w,w') ={z € C| aw' = wF(x)}. We say that
x F-conjugates w to w' and we call F-centralizer of a morphism w of C the set
F-ConjC(w).

Note that F-conjugacy specializes to conjugacy when F' = Id; again, it is the
formula for F-ConjC(w,w’) which forces the objects of F-ConjC to lie in some
C(A, F(A)).

The notion of F-conjugacy turns out to be a particular form of conjugacy in
the semi-direct product category C x (F'); this is the same as the relation between
twisted conjugacy classes in a group and conjugacy classes in cosets.

Consider the application which sends w € C(4, F(A)) C Obj(F-ConjC) to wF €
(C x (F))(A) C Obj(Conj(C x (F))). Since z(w'F) = (wF)x is equivalent to
zw’ = wF(z), this extends to a functor ¢ from F-ConjC to Conj(C x (F)). This
functor is clearly an isomorphism onto its image.

The image ¢(Obj(F-ConjC)) is the subset of C x (F') which consists of endomor-
phisms which lie in CF; and «(F- ConjC) identifies via the forgetful functor with
the subset Conj(C x (F)) NC of C x (F).

Remark that, since in Conj(C x (F)) there is no morphism between gF* and g'F7
when i # j, the full subcategory that we will denote by Conj(CF') of Conj(C x (F))
whose objects are in CF' is a union of connected components of Conj(C x (F')); thus
many properties will transfer automatically from Conj(C x (F)) to Conj(CF).

In particular, if C has a Garside family S and F' is a Garside automorphism,
then S is still a Garside family for C x (F') by 27 and by Proposition B3] and the
above remark gives rise to a Garside family S N Conj(CF') of Conj(CF'). The image
t(F- Conj C) is the subcategory of Conj(CF’) consisting (via the forgetful functor) of
the morphisms in C, thus satisfies the assumptions of Lemma 2.5} it is closed under
right-quotient, because in a relation fg = h if f and h do not involve F' the same
must be true for g, and contains the Garside family S N Conj(CF) of Conj(CF).

This will allow to generally translate statements about conjugacy categories to
statements about F-conjugacy categories. For example, :=1(S N Conj(CF)) is a
Garside family for F- ConjC; this last family is just F- ConjC NS when identifying
F-ConjC with a subset of morphisms of C by the forgetful functor.

The assumption that F' acts through an automorphism of finite order is used as
follows: since (zF)* = Fz = (zF)F ' and the action of F has finite order, two
morphisms in CF are conjugate in C x (F) if and only if they are conjugate by a
morphism of C.

The cyclic conjugacy category. A restricted form of conjugation called “cyclic
conjugacy” will be important in applications. In particular, it turns out (a partic-
ular case of Proposition B]) that two periodic braids are conjugate if and only if
they are cyclically conjugate. The context for this subsection is again a cancellative
category C.
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Definition 3.5. We define the cyclic conjugacy category cycC of C as the subcat-
egory of ConjC generated by S’ = Uy {x € ConjC(w,-) | z < w}.

That is, cycC has the same objects as ConjC but contains only the products of
elementary conjugations of the form w = zy < yz. Note that since C is cancellative
Uw{z € ConjC(w,w’) | z x w} = {x € ConjC(-,w') | w' > x} so cyclic conjugacy
“from the left” and “from the right” are the same. To be more precise, the functor
which is the identity on objects, and when w = zy and w’ = yzx, sends x €
cycC(w,w’) to y € cycC(w',w), is an isomorphism between cycC and its opposed
category.

Proposition 3.6. Assume C is right-Noetherian and admits conditional right-lecms;
if S is a Garside family in C then &' NS is a Garside family in cycC.

Proof. Set S =8’ NS. We first observe that S1C* UC* generates cycC. Indeed if
z < w and we choose a decomposition x = s; - - s, as a product of morphisms in
SC* UC™ it is clear that each s; is in cycC, so is in S1C* UC*.

The proposition then results from Lemma 212] which applies to cycC since
S§1C* U C* is closed under right-divisor and right-lem; this is obvious for right-
divisor and for right-lem results from the facts that SC* U C* is closed under
right-lem by Lemma 2.T1] and that a right-lem of two divisors of w is a divisor of
w. (]

We see by Lemma that cycC is closed under right-quotient in ConjC.

We now prove that &’ — which does not depend on the existence of a Garside
family S in C — is a Garside family attached to a Garside map; S’ is usually larger
than the Garside family S’ NS of Proposition [3.6] since it contains all left-divisors
of w even if w is not in S.

Proposition 3.7. Assume C is right-Noetherian and admits conditional right-lems;
then 8" is a Garside family in cycC attached to the Garside map A such that
A(w) = w € cycC(w); the corresponding Garside automorphism ® is the identity
functor.

Proof. The set 8’ generates cycC by definition of cycC. It is closed under right-
divisors since xy < w implies * < w so that w” is defined and y < w”; since C is
right-Noetherian and admits conditional right-lems, any two morphisms of C with
same source have a ged by Proposition[2Z.10l We define a function H : cycC—C* —
S’ by letting H(x) be an arbitrarily chosen left-ged of x and w if z € cycC(w,-). Tt
is readily checked that H is an S’-head function. We conclude by Proposition 2.4]
that &’ is a Garside family for cycC. The set §’(w,-) is the set of left-divisors of
w = A(w); similarly &' (-, w) is the set of right-divisors of w = A(w). Hence A is a
Garside map in cycC. The equation zw”® = wx shows that @ is the identity. O

We say that a subset X C C is closed under left-gcd if whenever two elements of
X have a left-ged in C this ged is in X.

Proposition 3.8. Assume C is right-Noetherian and admits conditional right-lems;
then the subcategory cycC of ConjC is closed under left-gcd.

Proof. Let (1,...,2,) and (y1,...,Ym) be S’-normal decompositions respectively
of z € cycC(w,-) and y € cycC(w,-).

We first prove that if ged(x1,y1) € C* then ged(x,y) € C* (here we consider
left-geds in ConjC). We proceed by induction on inf{m,n}. We write A for A(w)
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when there is no ambiguity on the source w. Since z, and y,, divide A, we get
that ged(z,y) divides

ng(xl ce 'In71A,y1 o 'ymflA) = ng(Axl o Tn—1, Ayl o 'ymfl)
=X Ang(.Il o Tp—-1,Y1 'ymfl) =X A =w,

where the first equality uses that ® is the identity and the third results from the
induction hypothesis. So we get that ged(z,y) divides w thus is in §’; by the
property of normal decompositions it thus divides z; and i, thus is in C*.

We now prove the proposition. If ged(z1,y1) € C* then ged(x,y) € C* thus is in
cycC and we are done. Otherwise let d; be a ged of z; and y; and let (1) () be
defined by z = dyz(M, y = dyy™V). Similarly let dy be a ged of the first terms of a
normal decomposition of (1), y(*) and let (), y(® be the remainders, etc. .. Since
C is right-Noetherian the sequence dy,dyds, ... of increasing divisors of x must
stabilize at some stage k, which means that the corresponding remainders z(*) and
y®) have first terms of their normal decomposition coprime, so by the first part are

—X

themselves coprime. Thus ged(z,y) == dy -+ - dy, € cycC. O

We now give a quite general context where cyclic conjugacy coincides with con-
jugacy.

Proposition 3.9. Let C be a right-Noetherian category with a Garside map A, and
let © be an endomorphism of C such that for n large enough we have A < x™. Then
we have cycC(z,-) = ConjC(z, -).

Proof. We first show that the property In, A < z™ is stable by conjugacy. Indeed,
if u € ConjC(x,-) then there exists k such that u < AF. Since AFt! g gn(+1)
we have u 'AF - A < u12"* D If & is the Garside automorphism attached to
A, we have u 'AF - A = A - ®(u"'AF) thus A < w2+, We deduce that
()" D) = (g - )Y = =11 gy is divisible by A.

We prove then by Noetherian induction on f that f € ConjC(z,-) implies f €
cycC(z,-). This is true if f is invertible. Otherwise, write f = wuyfi; with uq =
ged(f, z); then uy € cycC(x,2¥). If we can prove that if f € ConjC(z,-), f ¢ C*,
then ged(f,z) ¢ C*, we will be done by Noetherian induction since we can write
similarly f; = uafo,... and the sequence uy,us, ... has to exhaust f.

Since as observed any u € ConjC(x,-) divides some power of x (z"* if u < AF) it
is enough to show that if u € ConjC(x,-), u ¢ C* and u < =™, then ged(u, z) ¢ C*.
We do this by induction on n. From u € ConjC(z,-) we have u < zu, and from
u < 2" we deduce u < x ged(u, z" ). If ged(u, 2"~ 1) € C* then u < = and we are
done: ged(z,u) = u. Otherwise let u; = ged(u, 2"~ 1). We have u1 < zug, ui ¢ C*
and u; < 2" ! thus we are done by induction. O

The F-cyclic conjugacy. Let F' be a finite order automorphism of the cate-
gory C. We define F-cycC as the subcategory of F-ConjC generated by U,{z €
F-ConjC(w,-) | < w}, or equivalently, since C is cancellative, by U, {z €
ConjC(-,w") | w' = F(x)}. By the functor ¢, the morphisms in F-cycC(w,w’)
identify with the morphisms in cyc(C x (F))(wF,w'F) which lie in C. To sim-
plify notation, we will denote by cycC(wF,w'F) this last set of morphisms. If
C is right-Noetherian and admits conditional right-lems, then so does C x (F).
If S is a Garside family in C and F' is an automorphism preserving S, and we
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translate Proposition to the image of ¢ and then to F-cycC, we get that
Uw{x € F-ConjC(w,-) | * < w and x € S} is a Garside family in F-cycC.

Similarly Proposition .7 says that the set U, {z € F-ConjC(w,-) | z < w} is a
Garside family in F-cycC attached to the Garside map A which sends the object
w to the morphism w € F-cycC(w, F(w)); the associated Garside automorphism
is the functor F.

Finally Proposition [3.8] says that under the assumptions of Proposition [3.7] the
subcategory F-cycC of F-ConjC is closed under left-ged.

Periodic elements.

Definition 3.10. Let C be a cancellative category with a Garside family S attached
to Garside map A; then an endomorphism f of C is said to be (d,p)-periodic if
fd € APC* for some positive integers d,p.

Note that if f is (d, p)-periodic it is also (nd, np)-periodic for any non-zero integer
n; conversely, up to cyclic conjugacy, a (nd, np)-periodic element is (d, p)-periodic,
see[3 12 We call d/p the period of f. If the Garside automorphism ® given by A is
of finite order, then a conjugate of a periodic element is periodic of the same period,
though the minimal pair (d, p) may change. Our interest in periodic elements comes
mainly from the fact that one can describe their centralizers, which is related to
the fact that by Proposition two periodic morphisms are conjugate if and only
if they are cyclically conjugate.

We deal first with the case p = 2, where we show by elementary computations
the following:

Lemma 3.11. Let f be a (d,2)-periodic element of C and let e = L%J Then f is
cyclically conjugate to a (d,2)-periodic element g such that g¢ € SC*.
Further, if g is a (d,2)-periodic element such that g¢ € SC*, then
e if d is even g is (d/2,1)-periodic.
e if d is odd and we define h € SC* by g°h = A and e € C* by g% = AZ¢
then g = h®(h)e.

Proof. We will prove by increasing induction on i that for ¢ < d/2 there exists
v € cycC such that (f¥)! € SC* UC* and (f)4 € A2C*. We start the induction
with ¢ = 0 where the result holds trivially with v = 1.

We consider now the general step: assuming the result for ¢ such that i+1 < d/2,
we will prove it for ¢ + 1. We thus have a v for step 4, thus replacing f by f* we
may assume that f* € SC* UC* and f? € A2C*; we will conclude by finding
v € S such that v < f, (fU)"*! € SC* and (f?)? € A2C*. If fi*! < A we have
the desired result with v = 1. We may thus assume that lgg(f') > 2. Since
fiT < A% we have actually lgg(f*') = 2 by Proposition Z.I4(i); since f* is in
SC* and divides fiT!, a normal decomposition of fi*! can be written (fv,w)
with fiv,w € SC*. As flow - fiv < flow - flow = f20HD g f4 =X A2 we still
have 2 = lgg(fiv - w - fiv) = lgg(f'v - w). By Proposition 2ZI4(ii) we thus have
w- flv € SC*. Then SC* 3 w - fiv = w(vw)iv = (f*)* and v < f.

So v will do if (f*)? € A2C*. Write f¢ = A% with ¢ € C*X; then f com-
mutes with AZe, thus f*! also, which can be written ®%(fit1)e = efi*t! or
equivalently ®2(f'v)®?(w)e = ef'vw. Now since ® preserves normal decomposi-
tions (®2(fiv), ®2(w)e) is a normal decomposition thus comparing with (f%v,w) by
Lemma 2.2] there exists ¢’ € C* such that ®?(fiv)e’ = efiv. Thus fIA20%(v)e’ =



12 F. DIGNE AND J. MICHEL

AZ®2(fiv)e’ = A2efiv = fiA%ew, the last equality using again that f commutes
with A2e. Canceling f'A? we get ®?(v)e’ = ev, whence v(fV)¢ = flv = A?ev =
A202(v)e’ = vAZe’ whence the result by canceling v.

We prove now the second part. Since g¢ € SC* the element h defined by g¢h = A
is in SC* UC*. Defining € € C* by g? = A% we get g°hAec = A% = ¢, whence
by cancellation hAe = ¢g°g® with a = 1 if d is odd and a = 0 if d is even. Using
hAe = A®(h)e = g°h®(h)e and canceling g¢ we get h®(h)e = g°.

If d is odd we get the statement of the lemma, and if d is even we get h®(h) € C*,
so heC*, sog°e AC*. (]

We will need at one stage the following more general statement (see [DDGKM),
VIII, 3.33]) whose proof uses an interpretation by Bestvina of normal decomposi-
tions as geodesics.

Theorem 3.12. Let f1 be a (dy, k1)-periodic element of C; let d = dy/ ged(dy, k1)
and k = ki/ ged(dy, k1); then fi is cyclically conjugate to a (d, k)-periodic element
f. Further, write an equality dk’ = 1+ kd' in positive integers. Then f is cyclically
conjugate to a (d,k)-periodic element g such that gdl < A, If we then define
g1 €C by g% g1 = AF then (g1 ®F )% =% A and (g1 ®F )k =% g in C x (D).

F-periodic elements. Let us apply Lemma[3.11] to the case of a semi-direct prod-
uct category C x (F) where C is a cancellative category with a Garside family S
attached to a Garside map A and F' is an automorphism of finite order of C pre-
serving S; then S is still a Garside family of C x (F'). We assume further that C has
no non-trivial invertible elements. Then a morphism yF € CF is (d, p)-periodic if
and only if target(y) = F(source(y)) and (yF)? = APF9.

From Lemma [311] we can deduce:

Corollary 3.13. Let yI' € CF be (d,2)-periodic and let e = [2] and A = ®F~°.
Then

(i) If d is even, there exists an (e, 1)-periodic element F € CF cyclically
conjugate to yF. The centralizer of xF in C identifies with cycC(zF).
Further, we may compute this centralizer in the category of fized points
(cycC)? since the morphisms in cycC(zF) are A-stable.

(ii) If d is odd, there exists a (d,2)-periodic element xF € CF cyclically
conjugate to yF such that (xF)¢ < AF€. The element s defined by
(xF)¢s = AF* is such that, in the category C x (A), we have zA? = (sA)?
and (sA)? = AAY. The centralizer of *F in C identifies with the F1®~2-
fized points of cycC(sA).

Note that 2.8 describes Garside families for the fixed point categories mentioned
above.

Proof. LemmaBTTlshows that yF is cyclically conjugate to a (d, 2)-periodic element
zF such that (zF)°¢ € SF°.

If d is even Lemma BTl says that 2 F is (e, 1)-periodic, and Proposition [3.9 says
that the centralizer of zF is cycC(zF'). The elements of this centralizer, commuting
to F, commute to (zF)¢ = AF® thus are ® ! F°-stable.

If d is odd Lemma [BI1] says that if (zF)®h = A then F = h®(h)F?. Since
h = sF~¢ we get * = sF~°®(sF~¢)F?~! = sA(s). This can be rewritten zA? =
(sA)%2. Now since AF¢s™! = (2F)° we get (AF¢s~1)? = A2¢F? which gives



PARABOLIC DELIGNE-LUSZTIG VARIETIES. 13

(A=1s71)9Ad = AZ¢A~? and finally (sA)? = AA?. The elements of ConjC(zF)
commute to (zF)¢ = AF¢s™! thus commute to sA thus ConjC(xF) C ConjC(sA).
Note that the elements of ConjC(xF) commute to (vF)? thus to F4®~2. Using
rA? = (sA)? we get ConjC(sA) C ConjC(zA?); but A% = zF(Fi®=2)~! so
ConjC(J:AQ)}'M(V2 C ConjC(zF), whence the result using that by Proposition
we have ConjC(sA) = cycC(sA). O

We will apply B.12] in the following particular form

Corollary 3.14. Assume that F is of finite order and that ® = Id. Then any
periodic element of CF is conjugate to a (d,k)-periodic element yF € CF where
k is prime to d. Further for any choice of positive integers d' and k' with dk' =
1+ kd', the element yF is cyclically conjugate to a (d,k)-periodic element xF
satisfying (xF)Y < A If we then define x1 € C by (¢F) 21 F~% = AF then
(e F~9)d = AR~ gnd (. F~4 )k = (F)F~¥4,

We have a partial converse:

Lemma 3.15. Assume that F is of finite order and that ® =1d. Let d,k,d’, k' be
positive integers such that dk' = 1+ kd' with d' prime to the order of F. If 11 € C
satisfies (x,F~%)4 = AF~9" then the element F € CF defined by (z, F~% )% =
(xF)F~F4 satisfies (xF)* = AFFd,

Proof. The element 1 F~% is F~9 _stable since ® = Id and (z;F~% )4 = AF—d4d",
Since d' is prime to the order of F' an element F —dd’_gtable is F-stable. Thus,
raising the equality (z1F~%)* = (zF)F~*? to the d-th power we get (zF)* =
(:ClFfd’)dka’dz _ (AFfdd’)ka’dQ — Akpd 0

The following lemma shows that we can always choose d’ satisfying the assump-
tion of lemma [3.15]

Lemma 3.16. Given k and d coprime natural integers, and an integer &, there
exists natural integers d', k' such that dk’ = 1 + kd' with d’' prime to §.

Proof. k' and d’ exist since k and d are coprime; we may change d’ by any multiple
of d. Thus it is sufficient to show that given coprime integers d and d’, we may
choose a such that d’+ad is prime to any given §. Let p1, ..., p, be the prime factors
of §. We have to choose a such that d’ + ad is nonzero mod each p;. If p;|d this is
automatic. If p; is prime to d we have to avoid a = —d’/d (mod p;); by the Chinese
remainder theorem we can choose a to avoid this finite set of congruences. (Il

4. AN EXAMPLE: RIBBON CATEGORIES

An example of a category with a Garside family is a Garside monoid, which
is just the case where C has one object. In this case we will say Garside element
instead of Garside map.

Example 4.1. A classical example is given by the Artin monoid (BT, S) associated
with a Coxeter system (W, .S). If the presentation of W is

W =(S|s*=1,sts---=tst--- for s,t € S)
—— =

Mt M.t
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then B* is defined by the presentation BT = (S | sts--. = tst--- for s,t € S)
—— N——
Ms,t Ms,t

where S is a copy of S; the group with the same presentation is the Artin group
B. There is an obvious quotient B™ — W since the relations of B* hold in W.
Matsumoto’s lemma stating that two reduced expressions for an element of W can
be related by using only braid relations implies that there is a well-defined section
W — W of the quotient BT — W which maps a reduced expression si --- s, to
the product s;---s, € BT. The monoid BT is cancellative, Noetherian, admits
conditional left-lems and right-lcms; the set S is the set of atoms of BT and W is
a Garside family in B* (for details, see [DDM] 6.27]). The Garside family W is
attached to a Garside element if and only if W is finite. In this case we call BT
spherical. The Garside element is the lift to W of the longest element wy of W it
will be written wy or A depending on the context.

Finally, an automorphism ¢ of (W,S) (that is, an automorphism of W which
preserves S) extends naturally to an automorphism of (BT,S) given by s — ¢(s)
which preserves the Garside family W.

Example 4.2. Another example, attached to the same Artin braid group B as the
above example, is the dual braid monoid introduced by David Bessis (see [BI]),
whose construction can be extended to well-generated finite complex reflection
groups.

The constructions of this section apply to the study, in the semi-direct product
of an Artin monoid (B*,S) by an automorphism stabilizing S, of the conjugates
and normalizer of a “parabolic” submonoid — the submonoid generated by a subset
of the atoms S. The “ribbon category” that we consider occurs, when the auto-
morphism is the identity, in the work of Paris [Pa] and Godelle [G] on this topic.
In Section [l we will attach parabolic Deligne-Lusztig varieties to elements of the
ribbon category and endomorphisms of these varieties to elements of the conjugacy
category of this ribbon category.

The next proposition gives a list of properties that spherical Artin monoids
satisfy; the rest of the section describes ribbons in an arbitrary monoid satisfying
the same properties, which includes the case of the dual braid monoid; this is a
motivation for giving the results in a more general context. Before stating this
proposition, we need a definition.

Definition 4.3. We say that a set I of atoms of a cancellative monoid M is
parabolic if the submonoid My of M generated by 1 is closed under right-quotient
and weakly closed under right-lem.

Note that a monoid generated by a set I of atoms has no non-trivial invertible
elements, since such an element would be a product of atoms and an atom is not
invertible. Similarly, since an atom cannot be a product of several atoms, we see
that I is the whole set of atoms of the monoid.

Proposition 4.4. Let M = BT x (¢) be the semi-direct product of a spherical
Artin monoid by a diagram automorphism (see[{.1]); then

(i) M is cancellative, right-Noetherian and admits conditional right-lems.
(ii) There exists a finite set S C M which is a transversal of the =*-classes of
atoms in M, and together with M* generates M.
(iii) Any conjugate in M of an element of S is in S.
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(iv) M has a Garside family S attached to a Garside element A.

(v) For any parabolic subset I of S, the mazimal divisor Ar of A given by
Lemma [Z13 (which is unique since My = {1}) is a Garside element in
My, and S N My is a Garside family attached to Ay.

(vi) For any parabolic subset I C S and any s € S — 1 there exists a parabolic
subset J such that Ay is the right-lem of s and Ag.

Proof. Let us prove (i). The monoid M is cancellative since it embeds in the semi-
direct product of the Artin group by ¢. Similarly it inherits from B* Noetherianity
and the Garside family W, which implies that it admits conditional right-lcms.

We prove (ii). Take for S the set of atoms of M. An invertible element must have
length 0, hence the powers of ¢ are the only invertible elements. The atoms are the
elements of length 1 that is the elements of S(¢), thus S is indeed a transversal of
the atoms.

For (iii), we have to check that if we have sf = ft with s € S and f and t in
M then t € S. Taking lengths we see that the length of t is 1 so that t = s’'¢* for
some integer k and some s’ € S. Looking then at the powers of ¢ on both sides we
get k = 0.

For (iv), take A = wq. We have seen in Example [Tl that (using the notation of
loc. cit.) the lift wo to W of the longest element wg of W is a Garside element in
BT. Hence A = wy is a Garside element in M by Lemma 2.7l We take S = W it
is a Garside family attached to A.

For (v) we notice first that My, being generated by atoms, has no non-trivial
invertible elements.

Before proving the rest, let us state the following (the fact that this fails in dual
braid monoids is a motivation for defining parabolic subsets).

Lemma 4.5. Any subset of S is parabolic.

Proof. We show that Mi is closed under right-quotient. Since both sides of each
defining relation for an Artin monoid involve the same elements of S, two equivalent
words for an element v € M involve the same subset of the generating set S; we
call this subset the support of v. Hence if zy = z with =, 2 € My then the power of
¢ in y is 0 and the support of y is a subset of that of z, thus a subset of I, thus y
is in Mj.

We now show that My is weakly closed under right-lcms. Keeping the notations
of 1] B is associated to the Coxeter system (W, S). Since M is a spherical Artin
monoid associated with the Coxeter subgroup W; of W generated by the image in
W of I (see for example [Pal 3.1]) two elements of My have a right-lem in My. This
right-lem is left-divisible by any of their right-lcms in M, so has to be equal to one
of these lcms since M is obviously stable by left-divisor. O

Since by Mj is a spherical Artin monoid it has a Garside element wr, the lift of
the longest element of W;. The corresponding Garside family is Wi = W N M,
that is the set of divisors in My of A which by definition of Ay are the left-divisors
of Ay. We get that wy and Ay have the same set of left-divisors, so are equal since
My ={1}.

We finally show (vi). We take J = I U {s}. The following lemma applied with
S =1 (resp. S = J) gives that Ay is a right-lem of I (resp. Ay is a right-lem of J).
We thus get the result by associativity of the lem.
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Lemma 4.6. The Garside element A = wq of BT is the right-lem of S.

Proof. By [DDM], 6.27] a common multiple of S in W corresponds to an element
w € W such that [(sw) < I(w) for all s € S. It is well known that only wy satisfies
this, so A = wy is the only element of W multiple of all the atoms. O

O

The category Conj(M,Z). Until the end of Section [ we fix a monoid M and
a transversal S of its set of atoms; we assume that M has a Garside family S
associated with a Garside element A so that these data satisfy properties (i) to (vi)
of Proposition [£.4]

The reader only interested in internal applications to this paper can assume that
we are in the case M = BT x (¢), the semi-direct product of a spherical Artin
monoid with a diagram automorphism (with S the usual atoms and Garside family
S = W). Our results apply also to the case of dual Artin monoids, but this will
not be used in this paper.

We fix also the conjugacy class Z under M of a subset of S. By property
any element of 7 is a subset of S. We assume all elements of this class are parabolic
subsets (which is automatic in the ordinary Artin monoid case where all subsets
are parabolic).

Let Conj(M,Z) be the connected component of the simultaneous conjugacy cat-
egory of M whose objects are the elements of Z. A morphism in Conj(M,Z) with
source I € I is given by b 6 M such that for each s € I we have s € M, which by
property [4.4(iii)| implies sP € S. We denote such a morphism in Conj(M H(d,-)
by I b, -, or if we want to specify the target we denote it by I — J where
J = {sP | s € I}, and in this situation we write J = IP.

By Proposition B3] the set {I LA | b e S} NConj(M,Z) is a Garside family in
Conj(M,I).

The ribbon category. For b € M we denote by ar(b) the maximal left-divisor
of b in My given by Lemma 213} which is unique since M{* = {1}. We denote by
wi(b) the element defined by b = ay(b)wi(b). We say that b € M is I-reduced if it
is left-divisible by no element of I, or equivalently if ag(b) = 1.
Definition 4.7. We define the ribbon category M (Z) as the subcategory of Conj(M,T)
obtained by restricting the morphisms to the I b, such that b is I-reduced.

This makes sense since the above class of morphisms is stable by composition by

(ii) in the next proposition; assertion (i) of the next proposition is a motivation for
restricting to such morphisms by showing that we “lose nothing” in doing so.

Proposition 4.8. (i) GivenI € T and b € M then I b e Conj(M,TI) if
and only if 170 =T and 12 _ e M(T).

(i) If I P Je M(I) then for any b’ € M we have az(b’) = ar(bb’)P?. In

particular if (1 LN J)e M(Z ) and (J LN K) € Conj(M,T) then (I LLIN

K) € M(Z) if and only if (J LI K) e M(Z).
(iii) If two morphisms in M(Z) admit a right-lem in Conj(M,T), then this lem
is in M(T).
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Note that if T s - is the right-lem of two morphisms T b andI - asin (iii)
then by Lemma B2l ¢ is the right-lem in M of b and b’.

Proof. Let us prove (i). We prove that if s € T and s®? € M then s1(P) € T. This
will prove (i) in one direction —we use that I is finite, see so that To1(®) C T
implies I*1(P) = I. The converse is obvious.

By property we have sb = bt for some t € S. If s < b we write b = s*b’
for some k and b’ such that s does not left-divide b’. We have sb’ = b’t and
a1(b) = s*ap(b’) and we are reduced to the case where s does not left-divide b.
Then any right-lem of s and ag(b) left-divides sb = bt and there is such a right-
lem in My since My is weakly closed under right-lem . We write this lem
sv = ar(b)u, with v and u in My since M is closed under right-quotient
and v,u # 1 since s £ b. Since sv < sb we get that v left-divides b, so left-divides
ax(b), thus az(b) = va for some a € My. We get sv = ag(b)u = vau. By property
we have au € S, thus u is an atom which is in My, henceu € T and a =1
since S is a transversal for =%. We get s*1(?) = sV = u € I, which gives the result.

Let us prove (ii). Fors € Ilet s’ =sP € J. Since I LN = M(Z) we have s £ b.
Then bs’ = sb is a common multiple of s and b which has to be an lem since s’ is
an atom. So for s € I we have s < bb’ if and only if bs’ < bb’, that is, s? < b’
whence the result.

To prove (iii) we show first the statement that if for b,c € M we have b < ¢
and I 2 - € M(Z), then b < wi(c). We write ¢ = bb’ and J = IP. By (ii
we have ar(c)® = az(b’), whence a1(c)b = baz(b’) < bb’ = ¢ = az(c)wi(c).
Left-canceling az(c) we get b < wr(c).

Now (iii) is a particular case of the above statement since if ¢ is the right-lem

of b and b’ where I 2 - and T 25 - are in M(T), we get that wr(c) is a common
right-multiple of b and b’, thus ¢ < wi(c), which implies ag(c) = 1. O

Note that by Proposition 28(i) a morphism in M (Z) with source I corresponds
by the forgetful functor to an element b € M such that ag(b) = 1 and such that
for each s € T we have s® € M. We will thus sometimes just denote by b such a
morphism in M (Z) when the context makes its source clear.

The next proposition shows that (SN M (Z)) U M* generates M(Z). Note any
element of M* gives rise to an element of M (Z).

Proposition 4.9. All the terms of a normal decomposition in Conj(M,T) of a
morphism of M(Z) are in M(T).

Proof. Let 1 Lgps M(Z) and let b = by - - - by, be a normal decomposition in M,
which gives a normal decomposition of I 5 i Conj(M,T) by Proposition 3.3l
We proceed by induction on k. We have a1(b;) < ax(b) =1 thus ar(b;) =1 and

I25 10 e (Z). This is the first step of the induction. Now, by [4.8(ii)| we get

b1 22Dk, o Ar(T) which concludes by induction. O

Corollary 4.10. The set SN M(Z) = {I % - € Conj(M,Z) | w € S and ar(w) =
1} is a Garside family in M(T).
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Proof. By |4.8(i1)| and 4.8(iii)| the subcategory M (Z) of Conj(M,Z) is closed under
right-quotient and right-lem, hence the subfamily S N M(Z) is closed under right-
quotient and right-lem in § N Conj(M,Z). Thus Lemma 2.T2] gives the result since
(SN M(Z)) U M* generates M(Z) by Proposition 9l O

Our aim now is Proposition [L.I5 which gives a description of the atoms of M (Z),
and a convenient criterion to decide whether b € M gives rise to an element of
M(T).

For I C S let ®1 be the Garside automorphism of My associated with the Garside
element Ay (see[d.4(iv)). Since I is finite (see[d.4(ii)) and is the whole set of atoms
of My, we have ¢1(I) =L

We denote by ® the Garside automorphism of M associated to A. Since ¢ is an
automorphism which preserves S, for I C S, it sends the Garside family S N My to
the Garside family S N Mgy thus ®(Ar) = Ag).

Proposition 4.11. M(Z) has a Garside map defined by the collection of morphisms

—1

1202 61) for 1T

-1
Proof. We have ®1(I) = I and wi(A) = Ay 'A. Thus by Proposition[-8(i)| I A8
®(I) € SN M(Z). We need two lemmas.

-1
Lemma 4.12. Any morphism I LAy M(Z)NS left-divides 1 e o(I).

Proof. The divisibility we seek is equivalent to Arb left-dividing A. Since Ay and
b left-divide A, a right-lem § of these elements divides A. We claim that § => Arb
which will show the lemma. Since IP C S we have A}’ € M thus § < bA%’ = Axb.
Notice that ar(d) = Ar since Ar < § and a1(d) < ar(A) = Aj;. Now write
§ = bx; by Proposition [£.8(ii)] we have agb (x) = a1(5)® = AP. Thus AP < x thus
bA%’ < bx = §, whence our claim. O

Lemma 4.13. IfI 5 Jisin M(Z) we have Ay = A¥®; conjugation by b induces
an isomorphism of Garside monoids My = My which preserves normal forms.

Proof. 1t is sufficient to prove the lemma for elements of the generating set (S N
M(Z))UM*. So we assume b € SUM*. If b € S, in the proof of Lemma .12
we have A}’ < x where x is a right-divisor hence a left-divisor of A, thus A}’ < A.
This is also clearly true if b € M *. Since A%’ € My we get A}’ < Aj. We show by
contradiction that this divisibility cannot be strict. By Lemma we can write
A7 A = bb/; then by [£.3(ii)] we have J LN ®(I) € M(Z) and by the same argument
as above A?/ < Ag). Now b’ induces by conjugation a morphism My — Mg(1)
so we can transport the strict divisibility AP < Ay to A}’b, =< AS’,. Composing we
get ®(Ar) = AP < AY < Agay = ®(Ar), a contradiction.

The second part of the statement follows from the first since the first term of a
normal form of an element x in a monoid with a Garside element A is a left-gcd of
x and A (see Proposition 2T4(iii)), and the conjugation by b preserves geds since
it is an isomorphism. ([l

We now show the proposition. We know by Lemma [£.12] that any I b Jin

ATA
SNM(Z) left-divides I —— ®(I). It remains to show that such a morphism right-
divides A;L(J)A, which is equivalent to bAj right-dividing A since ®(Ag-1(3)) =



PARABOLIC DELIGNE-LUSZTIG VARIETIES. 19

Aj. This in turn is equivalent to bAj left-dividing A since A is a Garside element.
The result is then a consequence of the fact that Arb divides A as we have seen in
Lemma [4.12] and of the equality bAy = Arb which is given by Lemma [4.13] O

Proposition 4.14. Let I € 7 and let J be a parabolic subset of S such that My C

Mjy. Then A1 < Ag (see and 1 M ®5(I), where v(J,I) = A;lAJ, s a

morphism in M(ZT).

Proof. As noted after Proposition .8 we have to show that ay(v(J,I)) = 1 and that
any t € I is conjugate by v(J,I) to an element of M. Since A LAy left-divides
Al_lA, and Oq(AI_lA) = 1, by definition of Ay, we get the first property. The
second is clear since by definition v(J,I) conjugates t to ®5(®; ' (t)). O

(i) of the next proposition is due to Paris [Pal 5.6] in the case of Artin monoids.
Proposition 4.15. (i) Let I € T and b € M such that ax(b) = 1 and such

that there exists p > 0 such that (A})® € M. Then I LAy M(T).
(ii) The atoms of M(Z) are the v(J,I) not strictly divisible by another v(J’, 1)
forTel.

Proof. Since M is right-Noetherian, for (i) it suffices to prove that under our as-
sumption b is either invertible or left-divisible by some non-invertible v.€ M giving
rise to an element of M (Z); indeed if b = vb’ where I -5 I’ € M(Z) then by
we have ap/(b’) = 1 and since IV = I’ we have (A% )?" € M by Lemma EI3] so by

Noetherian induction we have I' 25 - € M (Z), whence I b em (7). We will
prove that b is left-divisible by v(J,I) for some parabolic J 2 I which will imply
(i). We proceed by decreasing induction on p. We show that if for ¢ > 0 we have
s < Alb for some atom s not in My, v(J,I) < Aiflb where J is as prescribed in
from I and s. Indeed, the right-lem of s and Ay is Ay by property
thus from s < Alb and Ar < Alb we deduce Ay < Alb. Since Ay = Arv(J,1)
we get as claimed v(J,I) < Ai_lb. The induction starts at ¢ = p by taking for s
any atom left-dividing b, thus not in My since az(b) = 1. Such an atom satisfies
s < b < Al'b since the assumption on b can be written b < Al'b. Since any atom
t such that t < v(J,I) is not in M the induction can go on while 4 — 1 > 0.

We get (ii) from the proof of (i): any element b € M (Z) satisfies the assumption
of (i) for p =1 and I equal to the source of b; whence the result since in the proof
of (i) we have seen that b is a product of elements of the form v(J, K). O

Though in the current paper we need only finite Coxeter groups, we note that the
above description of the atoms also extends to the case of Artin monoids which are
associated with infinite Coxeter groups —and thus do not have a Garside element.
Proposition below can be extracted from the proof of Theorem 0.5 in [G].

In the case of an Artin monoid (B™,S) the Garside family of Corollary [4.10l in
BT(T)is WNBHZ) ={I 25 J € ConjB*(Z) | w € W and ag(w) = 1}. For
I C S and s € S we denote by I(s) the connected component of s in the Coxeter
diagram of T U {s}, that is the vertices of the connected component of s in the
graph with vertices TU {s} and an edge between s’ and s” whenever s’ and s” do
not commute.

When 1 is spherical, the subgroup W; generated by the image I of I in W is
finite even though W is not, in which case we denote by wy the lift in W of the
longest element of W;. With these notations, we have
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Proposition 4.16. The atoms of BT (Z) are the morphisms 1 M> v(sDT where T
is inZ ands € S—1 is such that I(s) is spherical, and where v(s,I) = W) Wi(s)—{s} -

5. APPLICATION TO ARTIN GROUPS

We will spell out how the above results can be stated in two particular cases.
We try to recall enough notation so this section can be read independently of the
previous ones.

Artin monoids with automorphism. We first look at the case of a spherical
Artin monoid BT attached to a Coxeter system (W, S) with a diagram automor-
phism ¢, see &Il The category C we will take is the monoid Bt x (¢); it has a
Garside element wq and an attached Garside family W. The Garside automorphism
® is given by b — b™W0; it is trivial if Wy is central and has order 2 otherwise. We
set m = w3, a central element in BT. An element bp € B* x (¢) is (d, p)-periodic
if (bg)? = wP¢?, which can be written bbb = wh.

Theorem 5.1. If ¢ = Id, two periodic elements of BT of same period are cyclically
conjugate.

Proof. This results from the work of David Bessis on the dual braid monoid. Two
periodic elements of same period in BT are also periodic and have equal periods
in the dual monoid, since the Garside element wqg of B is a power of the Garside
element of the dual monoid. By [B1], 11.21], such elements are conjugate in the dual
monoid, so are conjugate in B, hence are conjugate in BT; indeed if b’ = h='bh
with b,b’ € BT and h € B, then there exists i > 0 such that hz® € B* and since
7 is central hz? still conjugates b to b’. By Proposition B.9] conjugate periodic
elements are cyclically conjugate. ([l

We conjecture that the same result holds in the case ¢ # Id.
Taking in account that ®2 = Id, statement B.13 gives:

Proposition 5.2. Let b’¢ € Bt¢ be (d,2)-periodic, that is (b'¢)? = we?, and
let e = L%J Then there exists bgp € Bt cyclically conjugate to b'¢ such that
b® € W, and
e Ifd is even then (bg)¢ = wo¢®. The centralizer Cg+(b¢) identifies with
cyc Bt (bg), and even more specifically to the endomorphisms of b in the
category of conjugacy by wo¢p®-stable divisors.
o If d is odd there exists v.€ W such that (bp)°v = wo¢p® and b =
vop~¢(vWo). The centralizer Cg+(b¢) identifies with the endomorphisms
of vwod~¢ in the category of conjugacy by ¢*-stable divisors.

Part of the above proposition is already in [BM] 6.8]. The equation (b¢)? = w¢?
for (d, 2)-periodic elements made the authors of [BM] call such elements d-th ¢-roots
of .

Ribbons in Artin monoids. We keep in this subsection a spherical Artin monoid
BT attached to (W, S) with a diagram automorphism ¢ and consider the ribbon
category BT x (¢)(Z) defined by a conjugacy class Z of subsets of S.

A subset I C S and the corresponding subset I C S determine:
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e A standard parabolic subgroup W; generated by I; we denote by w;y its
longest element (with this notation wy = wg). In every coset Wiw there
is a unique shortest element called I-reduced.

e A parabolic submonoid BI+ generated by I; it has the Garside family Wy :=
WwWn BIJr and the associated Garside element is the lift wy of wr; we set
w1 = wi. By Lemma 213 every element b € BT has a unique longest

divisor ag(b) in By ; an element such that ag(b) = 1 is called I-reduced.

The ribbon category B¥(Z) is the category whose objects are the elements of 7
and a morphism I b Jis given by an I-reduced element b € Bt such that IP = J;
since J is determined by I and b we denote also by I b, _ this morphism. Propo-
sition .8 shows that this definition makes sense, that is if we have a composition
I2 35K in BT(Z), then ar(be) = 1.

By Corollary 10 and Proposition 11] BT (Z) has a Garside family S consisting

wilw
of the morphisms I < - where w € W and a Garside map Az(I) = T —— %o,
These properties include the following:

Lemma 5.3. (i) S generates BT (I); specifically, if 1 LA S B*Y(Z) and
(W1,..., W) is the W -strict normal decomposition of b, there exist subsets
I, with I = I, Ixp1 = J such that for all i we have Iy = I thus
I I, » - =TI, 25 J is a decomposition of T T in B*(Z) as a
product of elements of S.
(ii) The relations (I 2% J 2% K) = (I 5 K) when w = wiws € W form a
presentation of BT ().

In our case strict normal decompositions are unique. They can be defined as
follows: for b € BT, let a(b) be the left-ged of b and wy; the restriction of « to
Bt — {1} is a W-head function, thus w; := «a(b) is the first term of the normal
decomposition of b, and the other terms are defined similarly by induction, setting
wy = a(wy 'b), etc. ..

For generating the category BT x (¢)(Z) we need additionally the invertible
morphisms I 2 1. The family S is still a Garside family for this category, with the
same Garside map Az. When Z = {0}, B*(Z) reduces to the Artin-Tits monoid B
and BT x (¢)(Z) reduces to BT x (¢), thus the results in this subsection generalize
those of the previous subsection.

We will be interested in (d, 2)-periodic elements in BT¢(Z). Such an element is
an endomorphism of the form I P9 1 or via the correspondence between conjugacy
in the semi-direct category and ¢-conjugacy, a morphism I 5y 4T in BT (Z) where

/7y

P9T = 1. Since Az(I)Az(I%°) = I —— I the condition for this morphism to be
(d,2)-periodic is (bg)? = /w10

By the forgetful functor (I b, -) — b¢ the morphisms in B¢ (Z)(1,-) identify
with the elements b¢ € Bt¢ such that P?T ¢ S and ag(b) = 1. We will thus
sometimes write b € BT ¢(Z)(I,-) to mean 1 LN Bto(Z)(1,-).

Taking into account the above, and that the Garside automorphism associated
to Az is ®(I S IV) = I Y™, IvWo  the generalization of Proposition 52 is
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Proposition 5.4. Let b’¢ € Bt¢ be such that (b'¢)? = = /mz¢? for some ¢?-
stable Y € T, and let e = L%J Then b'¢ defines an endomorphism of J in BY¢(T),
that is ®'*J = J and az(b') = 1. This endomorphism is (d,2)-periodic and there
exists a ¢p?-stable I € T and 1 Pre BYo(Z)(X) cyclically conjugate to J LN €
BT ¢(Z)(J) such that (bg)? = 7 /m19?, (bg)® € W¢®, and

b¢ )

e If d is even then (bg)® = wy *wo¢®. The centralizer Conj BY(Z)(I =5 1
identifies with (cyc BT (Z)(1 be, I))woe",

o If d is odd there exists T ~» I%o®" € W N BY(Z) such that (bg)*v =
wi 'wod® and b = v¢~¢(vWo). The centralizer Conj B*(Z)(I bo, I) iden-
tifies with (cyc B+(Z)(I Y225 1))9",

Proof. We need to prove that (b’¢)? = (m3) 'm¢? implies ay(b’) = 1 and that
P'¢J = J. The condition az(b’) = 1 follows from ag(b’) 5 az((b’'¢)?) and from
the fact that (w3)~'m defines a morphism in BT(Z) as we have seen above. By

Proposition AI5(i) b’¢ defines a morphism J 2% Kin B*(Z). Hence b’¢ conju-
gates 3 to mx by Lemma LT3l Since b’¢ centralizes w/m3¢% and 7 is central, it
thus centralizes 3¢%, hence it centralizes rg, where § is the order of ¢ and we get
m§ = ). However the support (see the proof of Lemma FL5)) of 7§ is J and that
of 7 is K, thus J = K and b’¢ stabilizes J.

The other assertions of the proposition are straightforward translations of Corol-

lary O

We note that any element which conjugates a (d,2)-periodic element in BT ¢
to another is ¢?-stable. Indeed such an element conjugates some /w34 to some
m/m1¢d; if § is the order of ¢ since 7 is central it thus conjugates w§ to 7§ thus by
the same reasoning as the end of the proof above it conjugates I to J, which finally
implies that it commutes with ¢¢.

We now state 3.14] in the case of ribbons.

Corollary 5.5. Let b'¢ € BT ¢ be such that (b'¢)? = (w/m5)k¢? for some ¢?-
stable J € . Then b'¢ defines a (d,2k)-periodic endomorphism of J in BT ¢(Z),
and up to cyclic conjugacy in BY¢(T), we may assume k prime to d. Then, for
any choice of integers d', k' with dk' = 1+ kd' there exists a ¢®-stable I € T and
1% 1e Bto(Z)(X) cyclically conjugate to J 2203 such that (bg)4 = (7 /m1)*¢?
and (bo)¥ < (w/mD)*, and if we define by € BT(T) by (bg)¥bip~4 = (r/mp)"
then (b1~ = 7 /714" and (bip~ )k = (bg)p= <.

Proof. As in the beginning of the proof 5.4 we deduce from the equality (b’¢)? =

(w/m3)k¢? that b'¢ defines an element of B+ ¢(Z)(J). The only other observation
needed is that we apply B:I4lfor the Garside structure corresponding to the Garside

map A(J)=J M J, the square of the previously introduced Garside map Az
—this is allowed by For this Garside map the corresponding functor ® is the
identity, as required by B.14 O
Corollary 5.6. As in corollary[5d let b'¢p € Bt ¢ be such that (b'$)? = (mw/m3)kp?
for some ¢%-stable J € T. Then I Doy s cyclically conjugate in BY¢(T) to a
(d, 2k)-periodic endomorphism I 2% 1 such that (bo)L3r) € Wolzr),
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Proof. By we may first assume that k is prime to d. We then use to
get blqﬁ_d/ € B+¢_d/ satisfying the assumption of [5.4] with ¢ replaced by ¢_d/.
By 5.4 we may find a cyclic conjugate bj¢~% of bip~? such that (b’lqﬁ’d,)L%J €
Wo—4L8], If this cyclic conjugation conjugates bg = (b1~ )k d to (b o= )k pk'd
we are done since k[%] < L%J Note that the cyclic conjugacy in [5.4] conjugates
J to I and /734 to m/mw19?, so is ¢o-stable ((b’ddl—stable in our application). If
we had that any qﬁdd/—stable element is ¢%stable we would be done since the con-
jugation would then commute with ¢*'¢. Thus we finish using Lemma which
shows that we may choose d’ prime to the order of ¢. (I

For b € Bt let a(b) = ged(b,wy). It is a W-head function in BT thus by

Proposition L9 and Corollary 10 (I b, =1 ob), -) is a S-head function.

Lemma 5.7. ForI 2 - ¢ BT (I) and v € Bf we have a(vb) = a(v)a(b).

Proof. Lemma [5.3] implies that a(b) defines an element of B*(Z)(I,-) so that
ve(®) ¢ BT, We have a(vb) = a(va(b)) = a(a(b)ve®) = a(a(b)a(ve®))),
the first and last equalities by property (H) of Proposition 24 By Lemma LT3 we
have a(ve(®)) = a(v)*(P) 5o that a(vb) = a(a(b)a(v)*®)) = a(a(v)a(b)). Since
a(b) is I-reduced we have a(v)a(b) € W, hence a(a(v)a(b)) = a(v)a(b). O

The following proposition shows a compatibility of morphisms in B*(Z) with a
“parabolic” situation.

Proposition 5.8. Fiz I € Z, and for J C I, let J be the set of Bfr-conjugates of

J. Let (I LN I') € BY(Z) and let (J 5 J') € Bf (J). Let (ua,...,uy) be the strict
normal decomposition of vb and let (w1, wa,..., W) be a normal decomposition
of b (we have added some 1’s at the end of the strict normal decomposition so the
decompositions have same length); then for each i there exists v; € B* such that
w; = v;w; and (v, Vivg, V1W2vs . ) 4s a normal decomposition of v.

Proof. We proceed by induction on k. By Lemma B.7 we have u; = a(v)a(b) =
a(v)wi. Hence vi = a(v) is asolution. Cancelling v; we get ug - - - ug = w(v)*®w(b).
The induction hypothesis applied to w(v)*(®) | which defines an element of B;(b) (TP,
and to w(b) which defines an element of BT (Z) gives the result. O

The category DT. The category cyc B* ¢(Z) will play an important role in our work:
it will be interpreted as a category of morphisms between Deligne-Lusztig varieties.
For this reason we will abbreviate its name to D%; when Z = {0} it reduces to the
category DT of [DMR], 5.1].

The objects of DT are endomorphisms I Y 1 in BT ¢(Z) and the morphisms
are generated by the “simple” morphisms that we will denote by ad v, defined for

-1
v < w such that IV C S; such a morphism goes from I Y Tt0J Yowov, J where

J=1.

By Proposition 3.6l the category DT has a Garside family consisting of the simple
morphisms. In particular defining relations for D are given by the equalities
advy ---ad vy = adv] ---ad v}, whenever ad v; are simple and vy - - - v, = v{ -+ - v},
in BY. If v=vy---v, € BT where the ad v; are simple morphisms of DZ, we still
denote by ad v the composed morphism in DZ.
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Note that for w¢ € B¢(Z)(I), the centralizer Conj B*(Z)(I AN I) identifies

via the forgetful functor with the monoid
BY :={be Cpi(wo¢) | I®P =T and az(b) = 1}.

The following theorem gives a general case where we can describe D* (I o, I):

Theorem 5.9. Assume that some power of w¢ is divisible on the left by WI_1W0.

Then DI(1 o, I) = Conj BT (Z)(1 we, I), thus consists of the morphisms adb

where b € th.

Proof. This is a special case of Proposition 3.9 O

Note that if k is the smallest power such that T = I and *"'w = w, then
wk) = wow. .- ¢ 'wis in B}. Since adw is equal up to an invertible to the

Garside map of DT described in Proposition B and ad w® is equal up to an

invertible to the k-th power of that map, every element of DZ(I w9, I) divides

a power of adw(®); it follows that under the assumptions of Theorem every
element of By, divides a power of w(¥) _ In particular, in the case I = @), Theorem
B9 says that BT N Cp(w¢) = Endp+ (w), with the notations of [DM2], 2.1]. Since
w divides a power of we, hence a power of w*)| any element of the group C(w¢)
multiplied by some power of w(*) lies in B, hence the group Cg(w¢) is generated
as a monoid by Endp+ (w) and (w®))~1. Thus Theorem 3 in this particular case

gives a positive answer to conjecture [DM2] 2.1].

As an example of Theorem we get that DI(I LN I) identifies with {b €

Cp+(I)? | ax(b) = 1} which itself identifies with B*(Z)(I)?.

Two examples. In two cases we show a picture of the category associated with
the centralizer of a periodic element.

We first look at the case of a (4, 2)-periodic element w € BT (W (Dy)); by Propo-
sition 5.2(i) we may assume w? = wy; following Proposition [5.2(i) we describe the
monoid (cyc BT (w))"¥°, in our case equal to cyc Bt (w) since wy is central. As in
Theorem [[0.11] we choose w given by the word in the generators 123423 where the

labeling of the Coxeter diagram is
2

I 3 4

By Proposition[5.2(i) the monoid cyc BT (w) generates Cg(w); by [BI, 12.5(ii)],
Cp(w) is the braid group of Cy (w) ~ G(4,2,2). This braid group has presentation
(x,y,2z | Xyz = yzx = zxy). The automorphism x — y — z corresponds to the
triality in D4. One of the generators x corresponds to the morphism 24 in the
diagram below. The other generators are the conjugates of the similar morphisms
41 and 21 in the other squares.
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123243 — > 232431 > > 231431 —2> 314312

al |2 al |2 1| |a 1
132432 — > 32431 123143 —2 >~ 131432 -
: R Ao :

231234 ~ 243123

131234<4— 143123

We now look at a (3,2)-periodic w € BT(W(As)), that is w® = 7, and following
Proposition [5.2(ii) we describe cyc BT (v®) where @ is the Garside automorphism
b — b“° and where w = v®(v) = v - v¥°. By Proposition (5.2(ii) the monoid
cyc Bt (s®) generates Cp(w) and, again by the results of Bessis, Cz(w) is the
braid group of Cy (w) ~ G(3,1,2) (see Theorem [[0:4]). We choose w such that v
is given by the word 21325 in the generators. The generator of Cg(w) lifting the
generator of order 3 of G(3,1,2) is given by the word 531. The other one is the
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conjugate of any of the length 2 cycles 23 in the diagram.

21325
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6. REPRESENTATIONS INTO BICATEGORIES

We give here a theorem on representations of categories with Garside families
which generalizes a result of Deligne [Dl 1.11] about representations of spherical
braid monoids into a category; just as this theorem of Deligne was used to attach
a Deligne-Lusztig variety to an element of an Artin monoid, our theorem will be
used to attach a Deligne-Lusztig variety to a morphism of a ribbon category. Note
that Theorem covers the case of non-spherical Artin monoids.

We follow the terminology of [Mcll, XII.6] for bicategories. By representation of
category C into bicategory X we mean a morphism of bicategories between C viewed
as a trivial bicategory into the given bicategory X. This amounts to give a map T
from Obj(C) to the 0-cells of X, and for f € C of source z and target y, an element
T(f) € V(T'(x),T(y)) where V(T (z),T(y)) is the category whose objects (resp.
morphisms) are the 1-cells of X with domain T'(z) and codomain T'(y) (resp. the 2-
cells between them), together with for each composable pair (f,g) an isomorphism
T(f)T(g) = T(fg) such that the resulting square

(6.1) T(HTUNT") —=T)T(f")

T(HTS ") ——=T(ff'f")
commutes.
We define a representation of the Garside family S as the same, except that the
above square is restricted to the case where f, ff’ and ff'f” are in S, (which

implies f/, ", f'f" € S since § is closed under right-divisors). We then have

Theorem 6.2. Let C be a right-Noetherian category which admits conditional right-
lems and has a Garside family S. Then any representation of S into a bicategory
extends uniquely to a representation of C into the same bicategory.

Proof. The proof goes exactly as in [D], in that what must been proven is a simple
connectedness property for the set F(g) of decompositions as a product of elements
of S of an arbitrary morphism g € C— this generalizes [D| 1.7] and is used in the
same way. In his context, Deligne shows more, the contractibility of the set of
decompositions; on the other hand our proof, which follows a suggestion by Serge
Bouc to use a version of [Boud, Lemma 6], is simpler and holds in our more general
context.

Fix g € C with g ¢ C*. We denote by E(g) the set of decompositions of g into
a product of elements of S — C*.

Then E(g) is a poset, the order being defined by

(9153 9i-1,9is Git1s - -+ 9n) > (915, Gim1,@,b, Gig1, -, Gn)
if ab = g; € S.

We recall the definition of homotopy in a poset F (a translation of the corre-
sponding notion in a simplicial complex isomorphic as a poset to F). A path from
1 to xk in E is a sequence zj - - -z where each x; is comparable to x;4;. The
composition of paths is defined by concatenation. Homotopy, denoted by ~;, is the
finest equivalence relation on paths compatible with concatenation and generated
by the two following elementary relations: xyz ~ zz if * <y < z and both zyz ~ z
and yzy ~ y when x < y. Homotopy classes form a groupoid, as the composition of
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a path with source x and of the inverse path is homotopic to the constant path at
x. For € E we denote by II; (F, z) the fundamental group of E with base point
x, which is the group of homotopy classes of loops starting from zx.

A poset E is said to be simply connected if it is connected (there is a path linking
any two elements of E) and if the fundamental group with some (or any) base point
is trivial.

Note that a poset with a smallest or largest element x is simply connected since
any path zyzt---x is homotopic to xyxzxtx - - - © which is homotopic to the trivial
loop.

Proposition 6.3. The set E(g) is simply connected.

Proof. First we prove a version of a lemma from [Bouc| on order preserving maps
between posets. For a poset E we put E>, = {/ € E | ¢’ > z}, which is a
simply connected subposet of E since it has a smallest element. If f : X — Y
is an order preserving map it is compatible with homotopy (it corresponds to a
continuous map between simplicial complexes), so it induces a homomorphism f* :
I (X, z) = I (Y, f(x)).

Lemma 6.4 (Bouc). Let f: X — Y an order preserving map between two posets.
We assume that Y is connected and that for any y € Y the poset f~1(Ys,) is
connected and non empty. Then f* is surjective. If moreover f~1(Ys,) is simply
connected for all y then f* is an isomorphism.

Proof. Let us first show that X is connected. Let z,2’ € X; we choose a path
Yo Yn in Y from yo = f(x) to y, = f(a'). For i = 0,...,n, we choose x; €
J71(Ysy,) with 2o = o and x, = 2/. Then if y; > y;41 we have f~1(Ys,,) C
S7H(Y>y,,,) so that there exists a path in f~(Y>y,,,) from z; to z;11; otherwise
Yi < Yi+1, which implies f~!(Y>,,) D f!(Y>y,,,) and there exists a path in
J71(Ysy,) from x; to z;41. Concatenating these paths gives a path connecting
and z’.

We fix now 29 € X. Let yo = f(xo). We prove that f*: II1 (X, z9) — 11 (Y, o)
is surjective. Let yoy1 - yn With y, = yo be a loop in Y. We lift arbitrarily
this loop into a loop xop—---—=x, in X as above, (where z;—z;+1 stands for a
path from z; to x;41 which is either in f~'(Y>,,) or in f~*(Y>y,,,)). Then the
path f(xo—x1—--—x,) is homotopic to yo---yy,; this can be seen by induc-
tion: let us assume that f(xo—=xy---—=a;) is homotopic to yo---y;f(x;); then
the same property holds for ¢ + 1: indeed y;y;41 ~ yif(zi)yi+1 as they are two
paths in a simply connected set which is either Y>,, or Y>,, ,; similarly we have
f@)yiv1f(zig1) ~ f(zi—zi41). Putting things together gives

Yo Yilirr f (@it1) ~ yoyr - - yif (i) yir1 f (i)
~ f(xo——x)yit1 f(Tit1)
~ f(@wo—+ =@ —Tit1).

We now prove injectivity of f* when all f~1(Y>,) are simply connected.

We first prove that if zog—---—x, and xj—---—=a], are two loops lifting the
same loop o - - - Yn, then they are homotopic. Indeed, we get by induction on i
that xo—---—x;—=, and x(— ---—2a are homotopic paths, using the fact that

Ti—1, Ti, ¥,_, and x} are all in the same simply connected sub-poset, namely either
f_l(YZyi—l) or f_l(YZyi)-
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It remains to prove that we can lift homotopies, which amounts to show that
if we lift as above two loops which differ by an elementary homotopy, the liftings
are homotopic. If yy'y ~ y is an elementary homotopy with y < ¢’ (resp. y > v'),
then f=1(Ys,) C f~1(Ys,) (vesp. f71(Y>,) C f71(Y>,)) and the lifting of yy'y
constructed as above is in f~(Ys,) (resp. f~*(Y>,/)) so is homotopic to the trivial
path. If y <y < y”, a lifting of yy'y” constructed as above is in f~(Y>,) so is
homotopic to any path in f~!(Y>,) with the same endpoints. O

We now prove Proposition by contradiction. If it fails we choose g € C
minimal for proper right-divisibility such that F(g) is not simply connected.

Let L be the set of elements of S — C* which are left-divisors of g. For any
I C L, since the category admits conditional right-lems and is right-Noetherian,
the elements of I have an lem. We fix such an lem Aj. Let Er(g) = {(g1,-..,9n) €
E(g) | Ar < ¢1}. We claim that E;(g) is simply connected for I # (. This
is clear if ¢ € A;C*, in which case Er(g) = {(g9)}. Let us assume this is not
the case. In the following, if A; < a, we denote by a! the element such that
a = Aral. The set E(g!) is defined since g ¢ A;C*. We apply Lemma 6.4 to the
map f : Er(g) — E(g') defined by

(9153 9n) (92,---.9n) g1 =4
I ghg - 90) otherwise

This map preserves the order and any set f_l(YZ(g1 _____ gn)) has a least element,
namely (A7, g1,...,9n), S0 is simply connected. As by minimality of g the set
E(g") is simply connected Lemma [6.4] implies that E;(g) is simply connected.

Let Y be the set of non-empty subsets of L. We now apply Lemma [6.4] to the
map f: E(g) = Y defined by (g1,...,9n) — {s € L | s < g1}, where Y is ordered
by inclusion. This map is order preserving since (g1,...,9n) < (91, -.,¢,,) implies
g1 < g;. We have f~1(Ysy) = E;(g), so this set is simply connected. Since Y,
having a greatest element, is simply connected, Lemma [64l gives that F(g) is simply
connected, whence the proposition. ([l

O

II. Deligne-Lusztig varieties and eigenspaces

In this part, we study the Deligne-Lusztig varieties giving rise to a Lusztig induc-
tion functor RS and generalize them to varieties attached to elements of a ribbon
category.

In Section [§] we consider the particular ribbons describing varieties which play
a role in the Broué conjectures; they are associated with maximal eigenspaces of
elements of the Weyl group.

Finally in Section [@ we spell out the geometric form of the Broué conjectures,
describing how the action on the f-adic cohomology of the endomorphisms of our
varieties coming from the conjugacy category of the ribbon category should factorize
through a cyclotomic Hecke algebra.
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7. PARABOLIC DELIGNE-LUSZTIG VARIETIES

Let G be a connected reductive algebraic group over Fp, and let F' be an isogeny
on G such that some power F° is a Frobenius for a split [Fs-structure (this defines
a positive real number ¢ such that ¢° is an integral power of p).

Let L be an F-stable Levi subgroup of a (non-necessarily F-stable) parabolic
subgroup P of G and let P = LV be the corresponding Levi decomposition of P.
Let

Xy ={gVeG/V[gVNF(gV)#0} ={gVeG/V|g 'FgeViV}
~{geG|g FgetV}/(VnTV).

On this variety GT" acts by left-multiplication and L acts by right-multiplication.
We choose a prime number ¢ # p. Then the virtual GF-module-L¥" given by
M = ,(-1)'H{(Xv,Qy) defines the Lusztig induction Rf¥ which by definition
maps an L¥-module A to M ®g,LF A
The map gV — gP makes Xv an L¥-torsor over

Xp = {gP € G/P[gPNF(4P) # 0} = {gP € G/P | g~ 'y c P'P}
~{geGlg g P}/(PNTP),

a GF-variety such that RZ(Id) = Y ,(—1)"H!(Xp,Q,). The variety Xp is the
prototype of the varieties we want to study.

Let T C B be a pair of an F-stable maximal torus and an F-stable Borel
subgroup of G. With this choice is associated a basis II of the root system ® of G
with respect to T, and a Coxeter system (W, S) for the Weyl group W = Ng(T)/T.
Let Xg = X(T) ® R where X(T) is the group of rational characters of the torus
T. On the vector space Xg, the isogeny F' acts as g¢ where ¢ is of order ¢ and
stabilizes the positive cone RTII; we will still denote by ¢ the induced automorphism
of (W, 9).

To a subset I C II corresponds a subgroup W; C W, a parabolic subgroup
P; = ]—['WEWI BwB, and the Levi subgroup L; of P; which contains T.

Given any P = LV as in the beginning of this section, where L is F-stable,
there exists I C II such that (L,P) is G-conjugate to (L;,Py); if we choose the
conjugating element such that it conjugates a maximally split torus of L to T and
a rational Borel subgroup of L containing this torus to B N Ly, then this element
conjugates (L, P, F) to (Ly, P;,wF) where @ € Ng(T) is such that “¢I = I, where
w is the image of w in W.

It will be convenient to consider I as a subset of .S instead of a subset of II; the
condition on w must then be stated as “I = I and w is I-reduced”. Note that w
is then also reduced-?I. Via the above conjugation, the variety Xp is isomorphic
to the variety

X(I,wp) = {¢Pr € G/Py | g Hge PIwFPI}.

We will denote by Xq (I, w¢) this variety when there is a possible ambiguity on the
group. If we denote by U; the unipotent radical of P;, we have dim X(I,w¢) =
dim U;—dim(U;N»FU;) = I(w), the last equality since w is reduced-?I. The f-adic
cohomology of the variety X(I,w¢) gives rise to the Lusztig induction from LY
to G of the trivial representation; to avoid ambiguity on the isogenies involved,
we will sometimes denote this Lusztig induction by RSIIL r(1d).



PARABOLIC DELIGNE-LUSZTIG VARIETIES. 31

Definition 7.1. We say that a pair (P, Q) of parabolic subgroups is in relative po-
sition (I,w,J), where I,J C S and w € W, if (P, Q) is G-conjugate to (Pr,“P ).

We denote this as P 227, Q.

Since any pair (P, Q) of parabolic subgroups share a common maximal torus,
it has a relative position (I, w,J) where I, J is uniquely determined as well as the
double coset WrwW;.

Let Pr be the variety of parabolic subgroups conjugate to Py; this variety is
isomorphic to G/P;. Via the map gP; — 9P; we have an isomorphism

Iw,?I

X(I,wp) ~{PcP; | P25 P
it is a variety over P; X Ps; by the first and second projection.

The varieties O attached to BT (Z). In order to have a rich enough monoid of
endomorphisms (see Definition [[.21]), we need to generalize the pairs (I, w¢) which
label our varieties to the larger set of morphisms of the category B*(Z) of Section
[ where 7 is the conjugacy class in BT of the lift I of I.

In order to do this, we define in this subsection a representation of B*(Z) into the
bicategory X of varieties over Py xP;, where I, J vary over Z. The bicategory X has
0-cells which are the elements of Z, has 1-cells with domain I and codomain J which
are the Py x P j-varieties and has 2-cells which are isomorphisms of P x P j-varieties.
For I,J € T we denote by V(I,J) the category whose objects (resp. morphisms) are
the 1-cells with domain I and codomain J (resp. the 2-cells between them); in other
words, V(I,J) is the category of P; x P -varieties endowed with the isomorphisms
of Pr x Py-varieties. The horizontal composition bifunctor V(I,J) x V(J,K) —
V(I,K) is given by the fibered product over P;. The vertical composition is given
by the composition of isomorphisms.

The representation of BT(Z) in X we construct will be denoted by T, following

the notations of Section ForI > Je Bt (Z), we will also write O(I,b) for
T(1 LAY ), to lighten the notation. We first define T' on the Garside family S of
B*(2).

Definition 7.2. For (I % J) € S we define O(I,w) to be the variety {(P,P’) €
PrxPy|P LwJ, P'}, where I, w, J are the images in W of I, w, J.

The following lemma constructs the isomorphism T'(f)T(g) — T(fg) when

f9.fg€s:

Lemma 7.3. Let (T 25 I, 22 J) = (I 2 J) where w = wiwa € W be a defining
relation of BT (Z). Then (p',p") : O(I,w1) xp,, O(Iz,wz) = O(I,w1w2) is an
isomorphism, where p’ and p” are respectively the first and last projections.

Proof. First notice that for two parabolic subgroups (P’,P”) € P; x P; we have
P’ 9 prif and only if the pair (P/,P”) is conjugate to a pair containing
termwise the pair (B, “B). This shows that if P/ =2 Py and Py 22427, pr
then P/ L2127, pr , 80 (p',p") goes to the claimed variety.

Conversely, we have to show that given P’ LT i there is a unique P such

that P/ 2002 P, w2 ] pr The image of (B, “B) by the conjugation which
sends (Pr,“P;) to (P’,P”) is a pair of Borel subgroups (B’ ¢ P/, B” C P”) in
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position w. Since [(w;) + I[(wz) = I(w), there is a unique Borel subgroup B; such
that B’ =% B; =2 B”. The unique parabolic subgroup of type Iy containing B
has the desired relative positions, so Py exists. And any other parabolic subgroup
P} which has the desired relative positions contains a Borel subgroup B such that
B’ %5 B) X2 B” (take for B/ the image of “'B by the conjugation which maps
(P;,"*Pyp,) to (P, P})), which implies that Bf = B; and thus P{ = P;. Thus our
map is bijective on points. To show it is an isomorphism, it is sufficient to check
that its target is a normal variety, which is given by

Lemma 7.4. For (I 25 J) € S the variety O(I,w) is smooth.

Proof. Consider the locally trivial fibrations with smooth fibers given by G x G %
Pr x Py : (gl,gg) — (QIP],gszJ) and G x G i> G : (gl,gg) — gl_lgg. It is
easy to check that O(I,w) = p(¢~1(“P,)) thus by for example [DMR] 2.2.3] it is
smooth. 0

O

From the above lemma we see also that the square commutes for elements
of S, since the isomorphism “forgetting the middle parabolic” has clearly the cor-
responding property. We have thus defined a representation T' of S in X.

The extension of T' to the whole of BT (Z) associates with a composition T ~
I, — - = I, 25 J with w; € W the variety

Ii,wi,lip1

O, w1) xp,, -+ xp, O(Ig, wi) ={(P1,...,Pi1) [ P; Pii1},

where I} = I and Iy, = J. It is a Py X P -variety via the first and last projections
mapping (Py,...,Pyy1) respectively to Py and Py 1, and Lemma [7.3] shows that
up to isomorphism it does not depend on the chosen decomposition of T ~——%, J.
Theorem[6.2] shows that there is actually a unique isomorphism between the various
models attached to different decompositions, so T associates a well-defined variety
to any element of B¥(Z).

Definition 7.5. ForT 2 J € Bt (Z) we denote by O(I,b) the variety defined by
Theorem [6.2.  For any decomposition (I LN H=0m 51 - - 25 ) dnto
elements of S it has the model {(P1,...,Pyy1) | P; fowelig P}

The variety O(I,b) is endowed with a natural action of G by simultaneous
conjugation of the P;.

The Deligne-Lusztig varieties attached to BT (Z). The automorphism ¢ lifts
naturally to an automorphism of B™ which stabilizes S, which we will still denote by
#, by abuse of notation. For (I 2 ¢T) € S, the variety X(I,we) is the intersection
of O(I,w) with the graph of F, that is, points whose image under (p’,p”) has
the form (P, fP). Via the correspondance between ¢-conjugacy and conjugacy in

the coset, we interpret I — I as the endomorphism I Y9 Iin BT ¢(Z). More
generally,

Definition 7.6. Let I 2% I be an endomorphism of BT ¢(T); we define the variety
X(I,bo) as the intersection of O(1,b) with the graph of F.
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The action of G on O(I, b) restricts to an action of G on X(I,b¢). This last
variety may be interpreted as an “ordinary” parabolic Deligne-Lusztig variety in a
group which is a restriction of scalars:

Proposition 7.7. For any decomposition (I LN M) = (I 25Ty — - 5 9T) in

elements of S the variety X(I,bg) has the model {(P1,...,Prt+1) | P;
P,.1 and Py = F(Py)}. Let Fy be the isogeny of GF defined by Fi(g1,...,9x) =
(g2,---, 9k, F(g1)) and let ¢; be the corresponding automorphism of W*. Then the
above model is isomorphic to Xgr (1 X -+ X I, (w1, ..., w)¢1). By this isomor-
phism the action of F? corresponds to that of Flk‘; and the action of GT' corresponds
to that of (G*)™ —the isomorphism GT =5 (G*)F' is via the diagonal embedding.

Liywi, Iita
Skl

Proof. That X(I, bg) has the model given above is a consequence of the analogous
statement for O(I, b).

An element Py x -+ x P € Xagw(ly X -+ X I, (w1, ..., wg)d1) by definition
satisfies

11><~~~Ik,(w1 ..... wk),l2><~-~1k><¢11

P1><"'><Pk PQX"'XPkXFpl

Li,wi, I;
thus is equivalently given by a sequence (P, ..., Pgy1) such that P; o, P
with Pry1 = FP, and Iy1 = ¢];, which is the same as an element

(Pl, ceey Pk+1) € O(Il,wl) XPry O(IQ,WQ) s Xplk O(Ik,wk)

such that Pry; = FP,. But this is a model of X (I, bg) as explained above.
One checks easily that this sequence of identifications is compatible with the
actions of F¥ and G¥" as described by the proposition. O

Proposition 7.8. The variety X(I,b¢) is irreducible if and only if T U supp(b)
meets all the orbits of ¢ on S, where supp(b) is the support of b (see the proof of

Lemma[{-3).

Proof. This is, using Proposition[7.7, an immediate translation in our setting of the
result [BR] Theorem 2] of Bonnafé-Rouquier. O

The varieties X(I,w¢). The conjugation which transforms Xp into X(I,w¢)
maps Xy to the GF-variety-L¥¥ given by

(7.9) X(I,wF) ={gU; € G/U; | g~ 'Fg e UrFU},

where w is a representative of w (any representative can be obtained by choosing
an appropriate conjugation). The map gU; — gP; makes X(I,wF) a L¥"-torsor
over X (I, w¢). We have written w and F' together since the variety depends only on
the product wF € Ng(T) x (F); we will write X(I, - F) to separate the Frobenius
endomorphism from the representative of the Weyl group element when needed, in
the case where the ambient group is a Levi subgroup with Frobenius endomorphism
of the form & F.

In this section, we define a variety X(I, w¢) which generalizes X (I,wF) by
replacing w by elements of the braid group. Since w represents a choice of a lift of
w to Na(T), we have to make uniformly such choices for all elements of the braid
group, which we do by using a “Tits homomorphism”.

First, when w € W, we define a variety O(I,w) “above” O(I,w) such that
X(I,wF) is the intersection of O(I,w) with the graph of F, and then we extend
this construction to B (Z).
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Definition 7.10. Let (I 25 J) € S, and let w € Ng(T) be a representative of w.
We deﬁne O(I,w) = {(gUl,g/U,]) € G/U[ X G/U,] | g_lg' S U]’LUUJ}.

The variety O(I,1) has a left action of G by simultaneous translation and a
right action of L; by (¢gUyz,¢'Uy) — (giUy, ¢'1¥Uy).
We can prove an analogue of Lemma [7.3]

Lemma 7.11. Let (I 25 I 22 J) = (I 2225 J) where wiws € W be a defining
relation of BY(Z), and let n,ws be representatives of the images of w1 and way in
W. Then (p/,p") : OI,n) XG/uy, O(Iz,1ip) = O(I,101102) is an isomorphism
where p' and p” are the first and last projections.

Proof. We first note that if I ~» J € BT(Z) and w is a representative in Ng(T) of
the image of w in W, then U;wU is isomorphic by the product morphism to the
direct product of varieties (U; N “ U7 )w x U, where U] is the unipotent radical
of the parabolic subgroup opposed to P ; containing T. We now use the lemma:

Lemma 7.12. Under the assumptions of Lemma [7.11], the product gives an iso-
morphism (U[ N wlUI;)’lbl X (U[2 n sz;)’U'}Q = (U[ n wlsz;)u'}l’lbg.

Proof. Since w is I-reduced and I = J, we have Uy N “U; = HfaewN(w) U,
as a product of root subgroups, where N(w) = {a € & | Ya € &~ }. The

lemma is then a consequence of the equality N(wq)“2 [[ N(w2) = N(wiwsz) when
l(wl)—l-l(wg) :l(wlwg). O

The lemma proves in particular that if gflgg € Uuin Uy, and g;lgg e Upnw Uy
then g;'gs € UpinUpipUy = (Ur N 107 Jin (Uy, N %207 )i Uy = (U N
W12 Mo Uy = Urigie Uy, so the image of the morphism (p,p”) in Lemma
1T is indeed in the variety O(I,wr1is).

Conversely, we have to show that given (g1 Uy, gsUjy) € @(I, wytg), there exists
a unique g2Ur, such that (91U, g2Uy,) € O(1,41) and (92U1,, g3U1,) € O(I2,102).
The varieties involved being invariant by left-translation by G, it is enough to solve
the problem when g; = 1. Then we have g3 € Urwyw2 Uy, and the conditions for
92Uy, is that ¢goUy, C U Uyg,. Any such coset has then a unique representative
in (UyN wlUl_z)u'xl and we will look for such a representative go. But we must have
92_193 € UpuU; = (ULN w2U;)u}2UJ and since by the lemma the product gives
an isomorphism between (U; N u"1UI_2)U'J1 x (Ug, N %207 )i Uy and Uiy ie Uy,
the element g3 can be decomposed in one and only one way in a product g2(g5 ! g3)
satisfying the conditions. To conclude as in Lemma we show that the variety
(7)(1, wWyt2) is smooth. An argument similar to the proof of Lemma [[4] replacing
Pr and Py by G/U; and G/U respectively gives the result. O

The isomorphism of Lemma [T.T1] is compatible with the action of G and of Ly,
L, respectively.

We will now use a Tits homomorphism, which is a homomorphism B EN Ng(T)
which factors the projection B — W —the existence of such a homomorphism is
proved in [T]. Theorem implies that, setting T(I < J) = O(I, t(w)) for (I %
J) € S and replacing Lemma [7.3] by Lemma [7.11] we can define a representation of
B*(I) in the bicategory X of varieties above G/U; x G/U; for I, J € T.
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Definition 7.13. The above representation defines for any I b Je B () a
variety O(I,b) which for any decomposition (I LN H=1%1, — R I Tk,
J) into elements of S has the model O(I,t(w1)) XG/u,, "+ Xa/u;, Ok, t(wy)).

By the remarks after Lemma[ZIT] the variety O(I, b) affords a natural left action
of G and right action of L;j.

Proposition 7.14. There exists a Tits homomorphism t which is F-equivariant,
that is such that t(¢(b)) = F(t(b)).

Proof. With any simple reflection s € S is associated a quasi-simple subgroup Gy
of rank 1 of G, generated by the root subgroups U,, and U_,_; the 1-parameter
subgroup of T given by T N G, is a maximal torus of Gs. By [T} Theorem 4.4] if
for any s € S we choose a representative $ of s in Gy, then these representatives
satisfy the braid relations, which implies that s — $ induces a well defined Tits
homomorphism. We claim that if s is fixed by some power ¢? of ¢ then there exists
5 € G, fixed by F9; we then get an F-equivariant Tits homomorphism by choosing
arbitrarily $ for one s in each orbit of ¢. If s is fixed by ¢? then G, is stable
by F?; the group Gy is isomorphic to either SLy or PSLy and F? is a Frobenius
endomorphism of this group. In either case the simple reflection s of G4 has an
F-stable representative in Ng, (T N G,), whence our claim. O

Notation 7.15. We assume now that we have chosen, once and for all, an F'-
equivariant Tits homomorphism t which is used to define the varieties O(1,b).

The equivariance of ¢ allows to extend it to a morphism Bt x (¢) — Ng(T) x
(F')—note that here our convention that (¢) is infinite order is useful, since F' is of
infinite order. This allows to extend ¢ by ¢(¢) = F thus we can write indifferently
t(b)F or t(bg).

Definition 7.16. For any endomorphism (I be, I) € Bt¢(Z) we define X (I, bg) =
{z e OLb) | p"(x) = F(p'(x))}-

The action of L; on O(I,b) restricts to an action of Li(bd’) on X(I,be), com-
patible with the first projection X(I, b¢) — G/Uj.

When w € W we have X (I, wg) = X(I,t(w)), the variety defined in for
wF = t(wg). We have the following analogue of Proposition [7.7] for )NC(I7 bo).

Proposition 7.17. Let I =1, Ty 5 I 25 9T be a decomposition into
elements of S of 1 b o1 e B*(I), let Iy be the isogeny of G* as in Proposition

Then Xg(I,bg) ~ Xgr(ly X -+ x I, (t(w1),...,t(wy))F1). By this isomor-
phism the action of F° corresponds to that of Flk‘s, the action of GT' corresponds

to that of (GF)', and the action of Lg(b(b) corresponds to that of (Ly, X -+ X
le)(t(wl) ..... t(Wk))Fl.

Proof. An element 21Uy, x --- x 2, Uy, € Xgr (11 X -+ X I, (H(wy), ..., t(wg)) F1)
by definition satisfies (x;Uy,, 241Uy, ,) € O(l;,t(w;)) for i = 1,..., k, where we
have put Iy11 = I and 211U, 11 = F(21Uyz,). This is the same as an element

in the intersection of @(Il,wl) Xa@/u,, O(Iz,wa) - -+ XG/uy, O(Ix, wy) with the
graph of F. Since, by definition, we have

O(I,b) ~ O(Il,Wl) XG/U12 O(IQ,WQ) s XG/UIk (’)(Ik,wk),
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via this last isomorphism we get an element of O(I, b) which is in Xg(I, bo).
One checks easily that this sequence of identifications is compatible with the
actions of F%, of G¥" and of Li(bcb) as described by the proposition. O

Lemma 7.18. For any endomorphism (I b, I) € Bt¢(Z), there is a natural pro-
jection X(I, bp) = X (I, bg) which makes X(I,b¢) a Li(bd))—torsor over X(I, be).

Proof. Let T 5% Iy — --- — I, 25 ¢TI be a decomposition into elements of S of
I 2 T, 50 that X (I, bg) identifies with the set of sequences (g1 U7, g2Uy, ..., ¢, Ur.)
such that g;lgjﬂ € Uy t(w;)Uy,,, for j < rand g, ' g1 € Up t(w,)Usr. We
define 7w by g;U;, — 9%Py,. It is easy to check that the morphism 7 thus de-
fined commutes with an “elementary morphism” in the bicategories of varieties X

or X consisting of passing from the decomposition (wy,..., W;, Wit1,..., W) to
(W1,...,WiW;y1,...,W,) when (I; RACMAEIN I;i2) € S. Thus by the morphism

7 is well-defined independently of the chosen decomposition of b.
The fact that 7 makes X (I, bp) a L!P?)_torsor over X(I,b¢) results then via
Proposition [[. 17 from the same statement on the varieties of O

We give an isomorphism which reflects the transitivity of Lusztig’s induction.

Proposition 7.19. Let I ANy € BT¢(Z), and let w be the image of w in W;
the automorphism we¢ of Wr lifts to an automorphism that we will still denote by

we of Bf . For J C 1, let J be the set of By -conjugates of J and let J AN,
Bfwo(J). Then

(i) We have an isomorphism X (I, w¢) X o) Xp, (T, vwe) = X(J, vwe)

of GF-Uarieties-L’}(vw“b), where the variety XLI (J, vwe) is defined via the
(obvious) Tits homomorphism Bf x (w¢) — N, (T) x (t(w¢)). This
isomorphism is compatible with the action of F™ for any n such that I, J,
v and w are ¢"-stable.

(ii) Through the quotient by Lf](qub) (see Lemma[7.18) we get an isomorphism
of GF'-varieties

X(I, w) X s X, (3, vog) =X (T, vwo).

Proof. We first look at the case w,v € W (which implies vw € W), in which case
we seek an isomorphism

X(Iv t(W¢)) XL’;(W@ XLI (J7 t(vw¢)) l> X(Jv t(VW¢))

where
X(I,t(we)) ={gU; € G/U; | g Fg € Ut(w) U},
X(J, t(vwe)) = {gU; € G/U; | g7 Fg € Ust(vw)FU;}
and Xy, (J, t(vwe)) = {IVy € L/V; | 171 e Vii(v) w9V},

where V; =L;NUj.
This is the content of Lusztig’s proof of the transitivity of his induction (see [Lul
Lemma 3]), that we recall and detail in our context. We claim that (gUr,IV ) —
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gUlV; = glU; induces the isomorphism we want. Using that U; = U;V; and
that V ;t(v)"*®)V; is in Ly, thus normalizes U, we get

U t(vw) U = UV t(v)' OV t(w) U = Vi t(v) @9V U it (w) Py
Hence if (gU7,1V ;) € X(I,t(we)) x X, (J, t(vwe)), we have
(gD) " (gl) € I7YU (W) FUFL = 1720191 (w) FU;
= 7HOU i (w) U € Vit(v)! OV Ut (w) U = Ust(vw) U

Hence we have defined a morphism X(I,t(w¢)) x Xy, (J, t(vwe)) — X(J, t(vwe))
of GF —Varieties-LZ(vwcb). We show now that it is surjective. The unicity in the de-
composition P;N* WU, = L;-(Un*W9U;) implies that the product L;.(U t(w) U;)
is direct. Hence an element 2~ 1%z € U t(vw)'U; defines unique elements [ €
Vt(v) !9V, and v € Urt(w)FU; such that 2Pz = lu. If, using Lang’s
theorem, we write | = 't} with I’ € Ly, the element ¢ = zl'~! satisfies
gleg — g~ LFFp—1 — t(w¢)l/uFl/71 c t(w¢)l/U1t(W)FU[Fl/71 _ U]t(W)FU].
Hence (gU;, 1"V ;) is a preimage of zU; in X(I,t(w¢)) x Xy, (J, t(vwe)).

Let us look now at the fibers of the above morphism. If ¢'U;I'V ; = gU;IV ; then
g'1g € P sowe may choose ¢’ in ¢’U; such that ¢’ = g\ with A € L;; we have then
M'U; = Uy, so that 7'\’ € U; NL; = V; moreover if gAU; € X(I,t(w))
with A € Ly, then A~ U t(w)FU;FA = Ust(w)"U; which implies A € L™,
Conversely, the action of A € Li(wqb) given by (gUy,IV ;) — (gA\U7, A"V ) pre-
serves the subvariety X (I,t(w¢)) x Xy, (J, t(vwe)), of G/U x L;/V ;. Hence the
fibers are the orbits under this action of L’;(wd’ .

Now the morphism j : (¢Ur,lV;) + ¢lU; is an isomorphism G/U; Xy,
L;/V;~ G/Ujsince gU; — (gUy, V) is its inverse. By what we have seen above
the restriction of j to the closed subvariety X (I, t(w¢)) X o) Xy, (J, t(vwe)) maps

this variety surjectively on the closed subvariety X (.J,t(vw¢)) of G/U, hence we
get the isomorphism we want.

We now consider the case of generalized varieties. Let k be the number of terms of
the strict normal decomposition of vw and let I L T s T, 2R 9T
be a normal decomposition of I ~ I of same length. We have X(I,we) ~
X(Iy x Iy X+« X I, (6(w1), ..., t(wg))F1), where F} is as in Proposition[[71l Let us
write (Viwi,...,vEgWy) for the normal decomposition of vw, with same notation
as in Proposition B8 Let J1 = J and Jjy1 = J;7" C Ijjy for j =1,...,k— 1.
We apply the first part of the proof to the group G* with isogeny F; with I, J,
w, v replaced respectively by Iy X -+ X I, Ji X -+ X Jg, (w1, ..., wg) (v1,...,0k).
Using the isomorphisms from Proposition [T

Xar(J1 X - X Ji, (H(viwe), ..o t(views)) L) ~ X(J, vwe)
and

XLllx---ka (Jl X X Jk, (1)1, . ,vk).(t(wl), . ,t(Wk))Fl) ~ XLI(J,VM¢),
we get (i). Now (ii) is immediate from (i) taking the quotient on both sides by
Lt(qub) [l

J .

In the particular case where I = () we write X(w¢) for X(I, w¢). Let us recall
that in [DMR] 2.3.2] we defined a monoid Bt generated by B* and symbols w
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where w € W, and attached to any u € B a Deligne-Lusztig variety X (u¢). This
variety is denoted by X(u) in [DMR] and roughly defined by the property that
given w attached to w € W, we have X(ujwuz¢) = {J,,s <, X(u1w'uz¢), where w’
is the lift to BT of w’ and where w’ runs over the elements smaller than w for the
Bruhat order. Attached to I C S, we have an analogous monoid E;‘ attached to
Wi, which has a natural embedding E;‘ c B™.

Corollary 7.20. With these notations of [DMRI, for any I Y 1e BT¢(Z) and
any u € By, we have an isomorphism X(uw¢) = X(I, we) X ptowey X1, (uwe)
I

and a surjective morphism X(uw¢) — X(I,w¢) whose fibers are isomorphic to
Xy, (uwg).

Proof. The variety X(uw¢) is the union of varieties of the form Xp,, (vwe) with
v € Wi. The isomorphisms given for each v by Proposition [[.19] applied with
J = () can be glued together to give a global morphism of varieties since they
are defined by a formula independent of v. We thus get a bijective morphism
X (I, wo) X pwe) Xy, (uwep) — X(uw¢) which is an isomorphism since X(uwe)
is normal (see [DMRI 2.3.5]). Composing this isomorphism with the projection of
X(I, wo) Xyt Xy, (nwe) onto X(I, we) (see [[I]), we get the second assertion

of the corollary. O
Endomorphisms of parabolic Deligne-Lusztig varieties — the category
DL,

w v lwev
Definition 7.21. Given adv € D*(I ALN 1LJ Y wov, J) where J =1V, we define

morphisms of varieties:

(i) Dy : X(I,wo) — X(J,v-iwev) as the restriction of the morphism

(a,b) — (b, Ta) : O, w) = O(L,v) xp, OF,v'w) =
OJ,v'w) XP,, O(°L %v) = O(J, v 'wov).

(i) Dy : X(I,wo) — X(J,v_'wev) as the restriction of the morphism

(a,b) — (b, Ta) : @(I,W) = @(I,V) XG/u, @(J,V_IW) —
OJ, v lw) Xa/u,, O(’L *v) = O(J, v iw?v).

Note that the existence of well-defined decompositions as above of O(I, w) and
of O(I, w) are consequences of Theorem

Note that when v, w and v_!w?v are in W the endomorphism D, maps
gP; € X(I,wo) to ¢'Py € X(J, v~ wew) such that g~ 'g’ € P;oP; and ¢~ g €
P ;v 'wfP; and similarly for Dy.

Note also that D, and D, are equivalences of étale sites; indeed, the proof of
[DMR], 3.1.6] applies without change in our case.

The definition of D, and Dy, shows the following property:
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Lemma 7.22. The following diagram is commutative:

X (I, wo) D X(J, v lwov)

| l

X(L wo) —> X(J, v wev)

-1
where the vertical arrows are the respective quotients by Li(wqb) and LZ(V wov) (see
Lemma[7138); forl € Li(wd)) we have Dy ol = [!™V) o D,.

As a further consequence of Theorem [6.2] the map which sends a simple mor-

w “lwov

phism ad v to Dy extends to a natural morphism from DZ (I AN g >, J)
to Homgr (X(I, we), X(J, v~ lwev)) whose image consists of equivalences of étale
sites. We still denote by Dy, the image of ad v by this morphism.

Lemma 7.23. Via the isomorphism of [7.17 and with the notations of loc. cit. the
morphism Dy, with source Xg(I,b¢) becomes the morphism D (i(wy)1,....1) with
source Xgr (I X -+ X I, (H(w1), ..., t(wy))F1).

Proof. The endomorphism Dy, maps the element (g1 Ujq,...,gxUx) of the model
of 17 of Xg (I, be) to (¢2Us,. .., grUx, Fg:FUy). On the other hand the isomor-
phism of Proposition [[.I7] maps (g1 Uy, ...,gxUk) to

(gl, . ,gk)(Ul, ey Uk) S Xch(Il X oo X I, (t(Wl), . ,t(Wk))Fl)
which is sent by D ;(w,),1,....1) to (g2, - - -, Gk, Fg1)(Ug, ..., Uk, FU;) which is the im-

age by the isomorphism of Proposition [I7 of (g2Us, ..., g1 Uk, F9: U1 ), whence
the lemma. O

Proposition 7.24. For J C I let J denote the set of Bfr-conjugates of J. With
same assumptions and notation as in Proposition [719, let J = J* € Bf (J) be a
left-divisor of I3 < W¢J. The following diagram is commutative:

X(I, wo) X o) Xy, (3, v - wp) ——— X(J, vwo)
1d xDxl Dx
X(I, wo) ) Xp, (I, x (v - wp)x) —= X(IJ*, x lvwex)

Proof. Decomposing x into a product of simples in the category analogous to D
where BT is replaced by BIJr and Z by J, the definitions show that it is sufficient
to prove the result for x € W. We use then Proposition 5.8 and Lemma to
reduce the proof to the case where v, w and x 1v*?x are in W (in which case vw
and x~'vw?x are in W too): we choose compatible decompositions of v and w
as in [5.8] which we refine if needed so that x is the first term of that of v and use
Lemma [7.23] once in G and once in in Lj.

Assume now v, w and x~'v*%x in W. We start with (gU;,1V ;) € X(I,t(w@))x
XLI (J,vw¢). This element is sent by the top isomorphism of the diagram to ¢giU ;.
On the other hand, we have seen above Lemma that it is sent by Id x Dy
to (gU7,I'V s2) where I7'1' € V2V o and I'"1* W9 € V oz~ V ;. This ele-
ment is sent in turn to gl’U j= by the bottom isomorphism of the diagram. We have
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to check that gl'U = = Dy(glU}). But (gl) ‘gl ="' isin V2V e C UjzUj e
and

(gl/)_l F(gl) _ l/—lg—l FgFl c ll_lU]t(W)FU]Fl _ U[zl—lt(wd))lt(w)FUl

CU/Vyez lowfV,;FU; = Ume_lvwFUJ,

so that (gl'U j=) = Dx(glU). O
Using Proposition [[.19(ii), Proposition [[.24] and Lemma [7.22] we get

Corollary 7.25. The following diagram is commutative:
X(L W) X puwe Xp, (3, v - w) ————=X(J, vwo¢)
Id xDxl Dy
X(I, wo) X 1we) Xp, (I, x (v - wp)x) ——= X(J*, x'vwex)

Affineness. Until the end of the text, we will be specially interested in varieties
X(I,b¢) which satisfy the assumption of Theorem [5.9 that is some power of b¢
is left-divisible by wp 'wo. They have many nice properties. We show in this
subsection that they are affine, by adapting the proof of Bonnafé and Rouquier
[BR2]; we use the existence of the varieties O(I, b) and X(I, b¢) to replace doing

a quotient by L; by doing a quotient by Lz(wcb).

Proposition 7.26. Assume the morphism I LA, e B*(Z) is left-divisible by
I%o. Then the variety O(L,b) is affine.

wo

—1
AI:II—)

Proof. By assumption there exists a decomposition into elements of S of I b Jof

wi'w, v v v
the form I —/——5 T; Y5 I, 25 I3 — - — I, 25 J. We show that the map ¢
defined by:

G x [J(U, n'™IUp t(vi) =
=1

O(I,t(wy 'wo)) Xayu,, O1,t(v1)) - Xayu,, O, t(v,))
(g,hl,...,hr) —
(9Ur, gt(wy 'wo)Uyp,, gt(wy 'wo)hi Uy, ..., gt(wy 'wo)hy -+ - b, U )

is an isomorphism; since the first variety is a product of affine varieties this will
prove our claim.

Since Uy, t(v;)Uy,,, is isomorphic to (Uz, N t("i)UI_iH)t(vi) x Uy, ,, by com-
i1 7 (Ulz n
t("i)UZH)t(vi) for i = 1,...,r, where I,;; = J. Similarly we have a morphism

n: Urt(wy 'wo)Ur, — (Ur N t(W;IWO)UI_I )t(wy two). For

position with the first projection we get a morphism 7; : U, t(v;)Uj

T = (QUL gth ) gQUIza oo 7gTUL~7 gTJrlUJ)
€ @(I,t(w;1W0)) ><G/U[1 @(Ilvt(vl)) o Xa@/ug, @(ITat(VT))
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let $(2) = gn(g™91), ¥1(x) = PR (Wo), Yix) = mi( (D)1 (2) -+ Bi1(2)"g5)-
We claim that the map 1 (resp. v;) is well defined, that is does not depend on the
representative g (resp. g;) chosen; the morphism z — (¥(x),¢1(x),...,¥-(2)) is
then clearly inverse to ¢. Since n;(hu) = n;(h) for all h € U t(v4)Uy,,, and all
u € Uy, we get that all 1; are well-defined. Since moreover n(uh) = un(h) for
all h € Ust(wy 'wo)Uy, and all u € Uy, we get that ¢ also is well-defined, whence
our claim. 0

Proposition 7.27. Assume that we are under the assumptions of Theorem [5.9,

that is (I o, I) € BY¢(Z) has some power divisible by Az, or equivalently some
power of we is left-divisible by wy *wo. Then X(I,w¢) is affine.

Proof. Let us define k as the smallest integer such that ST = I, 'w = w and
W;IWO < w) where wib) := wow - .. " w.

We will embed X(I, w¢) as a closed subvariety in O(I, w®)), which will prove it
to be affine.

Let T 25 I, 225 I3 — -« > I, 25 9T be a decomposition of I 2y 2T into
elements of S, so that O(I, w*)) identifies with the set of sequences

(91,1U1,912U,,...,91, Uy, ,
92,1U¢1,922U0p,,...,92,.Usj ,

.
gk11U¢k—ll, gk12U¢k—112, ce ,gk1TU¢k711T,
gr+1,1U71)

. — i—1 —
such that fquj < r we have gw.lgi)jﬂ € U¢i—11jt(¢ Wj)U¢i—llj+1 and gwlgH_l,l €
U¢'L—1I7‘t(¢17 WT)U¢iI.
Similarly X(I,w¢) identifies with the set of sequences (¢1Uy, 92Uy, ..., 9-Ur,)
such that g;lgjﬂ € Uy t(w;)Uy,,, for j <rand g;'Fg1 € Uy t(w,)Usp. It is
thus clear that the map

(01U1,92Up,,...,9.Ur.) = (01U1,92Up,, ..., .U,
FglU¢Ia Fg2U¢127 SRR FgTU¢]7,7

ey

Fr—1 k-1 Fk
glUd)k*llu"'u gTUd)k*l[Ta glUI)

identifies X (I, wg) with the closed subvariety of O(I, w(*)) defined by gi+1,; Ui, =

F(gmUwfle) for all 4, j. O

Corollary 7.28. Under the assumptions of Theorem[5.9, that is (I e, I) € BY(2)
has some power divisible by Az, or equivalently some power of w¢ is divisible on
the left by wy "wo, the variety X(I,wo) is affine.

Proof. Indeed, by Proposition [[.27 and Lemma [T18 X(I,w¢) is the quotient of
an affine variety by a finite group, so it is affine. O
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Shintani descent identity. In this subsection we give a formula for the Leftschetz
number of a variety X(I, wF') which we deduce from a “Shintani descent identity”.

Let m be a multiple of ¢; if we identify G/B with the variety B of Borel subgroups
of G, the G -module Q,(G/B)" identifies with the permutation module of
G on BF". Its endomorphism algebra H,m (W) := Endgrm (Q,B"") has a
basis consisting of the operators (Ty, )wew where

Ty :B > B”
{B"eBF™|B" 5B’}
(see [Boul, Chapitre IV §2, exercice 22]).
Similarly, since I is F™-stable, the algebra Hym (W, W;) := Endgrm (Q,PF™)
has a Q,-basis consisting of the operators
Xy : P > P/,
(preprmpr 2l py
where w runs over a set of representatives of the double cosets W \W/W ~
PI\GI" /PF™ . The map v which sends P € PF™ to the sum of all its F™-stable
Borel subgroups makes Q,Pf " into a direct summand of Q,B8F". Indeed the image
of v identifies with that of the idempotent X; = |(P;/B)¥"|~! > vew, Lo, and v
has a left-inverse given up to a scalar by mapping B € BF" to the unique (thus
F™-stable) parabolic subgroup in P; containing it. The operator X, identifies with
the restriction of X;T,, to the image @gpfm of Xj.

We may define a Q,-representation of BT (Z)(I) on Q,PF" by sending I I to
the operator X € H(W, W;) defined by

Xw(P) = Z p'(x).
{z€O@,w)F™ |p"(z)=P}
When w € W, with image w in W, the operators X, and X,, coincide. In the
particular case where I = () we get an operator denoted by Ty, defined for any w in
BT. The operator X, identifies with the restriction of X174 to the image @ﬂ?I "
of X1 .
Similarly, to I Yo 1e BT ¢(Z) we associate an endomorphism Xy of Q,P? "
by the formula
Xwo(P) = Z P ().
{z€O@Lw)F™ |p"/ (z)=F (P)}
When ¢(I) = I we have Xyw4 = X\wF. In general we have Xwy = X1TwWF on
@ﬂ?fm seen as a subspace of Q,B": on this latter module one can separate the
action of F'; the operator F' sends the submodule @ﬂ’f " to @ﬂ’fg) which is sent
back to @ﬂ?fm by X17Tw. The endomorphism X4 commutes with GE™ like F,
hence normalizes Hqm (W, Wr); its action identifies with the conjugation action of
Tw® on Hem (W, W;) inside Hgm (W) % (@) .
Recall that the Shintani descent Shpm/p is the “norm” map which maps the
F-class of ¢ = h."h~' € G to the class of g = h~.F"h € GF.

Proposition 7.29 (Shintani descent identity). Let I M Te Bt¢(Z), and let m
be a multiple of 6. We have the following equality of functions on GF :

(9= [XTLwe)*™"|) = Shpm p(g' = Trace(y' Xws | QPT))-
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Proof. Let g = h™".%"h and ¢’ = h.Fh~", so that the class of g is the image by
Shpm g of the F-class of ¢'; we have X(L wg)9'" = {z € O(I,w) | Iz =
hy and p”("x) = 9Fp/("x)}. Taking "z as a variable in the last formula we get
IX(L,wo)9F" | = {x € O(L,w)F™" | p(x) = 9Fp/(x)}]. Putting P = p/(z) this last
number becomes ZPGPIFM {z € O, w)F" | p/(z) = P and p’(z) = 9YFP}|. On
the other hand the trace of g’ Xy is the sum over P € P of the coefficient of P
n Y comw) | ()=rpyy 9P (). This coefficient is equal to [{z € oI, w)f"™ |
gp(x) = Pand p’(z) = TP} = [{z € OL,w)™ | p/(z) = P and p/(z) =
9'FPY|, this last equality by changing ¢’z into . O

The above computation can be done along different lines, without mention-
ing @ﬂ’fm; one can use instead Corollary for u = w;, which gives a GF'-
equivariant morphism X(w;w¢) — X (I, w¢) whose fibers are isomorphic to the
variety of Borel subgroups of L;; the action of F' induces that of t(w¢) on the fibers.
One may then use directly [DMR], 3.3.7] to get | X(w,we)9"" | = Trace(g9'Tw, Two |
QBF"), where T,,, = > vew; To-

By, for example, [DM1], II, 3.1] the algebras Hym (W) and Hqm (W) % (¢) split
over Q,[¢™/?]; corresponding to the specialization ¢™/2? + 1 : Hym (W) — Q,W,
there is a bijection x + xgm : Irt(W) — Irr(Hqm (W)). Choosing an extension
X to W x (@) of each character in Irr(W)?, we get a corresponding extension
gm € Irr(Hym (W) x (#)) which takes its values in Q,[¢™/?]. If U, € Irr(GF™") is
the corresponding character of GF", we get a corresponding extension Uy of U,
to GI" x (F) (see [DMI] IIT théoreme 1.3 |). With these notations, the Shintani
descent identity becomes

Proposition 7.30.
(g — | X(I,we)s""|) = Z Xgm (X1Tw¢) Shpm p Uy
XEIrr(W)¢
and the only characters x in that sum which give a non-zero contribution are those

which are a component of Ind%l 1d.

Proof. We have Trace(g' Xwe | QuPF") = Trace(¢' X1 Tw¢ | QuBF™) since X is the
projector onto Q,PF". Hence (g — |X(I, wep)I""|) = > vetnw)e Xam (X1Twd) Shpm /p Uy
Since X; acts by 0 on the representation of character x if x is not a component of
Ind%j Id, we get the second assertion. O

Finally, if A, is the root of unity attached to p € £(G',1) as in [DMR], 3.3.4],
the above formula translates, using [DMI] III, 2.3(ii)] as

Corollary 7.31.
X@Lwe) ™ [= > Ap(g) D Xem (XiTwd)(p, Re)ar,
peE(GT 1) x€lrr(W)¢

where Ry = W[~ Y cw )Z(wgb)R%w (Id). The only characters x in the above sum

which give a non-zero contribution are those which are a component of Ind%l 1d.

Using the Lefschetz formula and taking the “limit for m — 0” (see for example
[IDMR], 3.3.8]) we get the equality of virtual characters
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Corollary 7.32.
Y (D) HUX(I,wg), Q) = > X(z1we) R,

( {XEIrr(W)ﬂ(Res%I x,Id)w, #0}
where w is the image of w in W and x1 = [Wr|7* Y oy, v.

Cohomology. If 7 is the projection of Lemma [.I8 the sheaf mQ, decomposes

into a direct sum of sheaves indexed by the irreducible characters of Li(w@. We

will denote by x the subsheaf indexed by the character x € Irr(Li(w‘b)) and in

particular by St the subsheaf indexed by the Steinberg character St € Irr(L;(w@).
(W)

3

We have the isomorphism of GF' x L§ -modules

Hé(X(L Wd))a @l) = GBXeIrr(L;(WW)Hé(X(Ia Wd))a X) ® VX

where V,, is an Li(wqb)—module of character y and H!(X(I,wa), x) is a G'-module.
When x is F-stable there is an action of F° on V; such that the inclusion of
Hi{(X(I,we), x) @V, into H/(X(I,w¢),Q,) is an inclusion of G x Lz(wqb) x (F9)-
modules

The following corollary of Proposition relates the cohomology of a general
variety X(I, w¢) to the case of the varieties X(u¢) considered in [DMR]; its part

(ii) is a refinement of Corollary[7.32] In the following corollary, if M is a QQ,-vector
space on wich F' acts, we denote by M (n) for n € Z the n-th Tate twist of M.

Corollary 7.33. Let T % Y1 € BY(Z). Then

(i) For any unipotent F°-stable character x € Irr(LtI(w¢)), for any u € Bf
and any i, j we have the inclusion of G x (F°)-modules

H(X(T,we), x) @ (H](Xp, (uwe), Qp) @) V) € HyH (X(uwe), Qp).

(ii) For all v € By and all i we have the following inclusions of G x (F°)-

modules:

H{(X(Lwg),Qy) € HIP'M (X (vwe), Q) (~1(v))
and
H{(X(T,wo),8t) € HIHY (X (vwo), Q)
(iii) For all i we have the following equality of G x (F°)-modules:
H (X (wywe), Q) = Z HI(X(I,we),Q,) @ Q""" (k)
J+2k=i
where ny i = {v € Wi | l(v) = k}|.
Note that in (iii) above we have X(w,w¢) = U, cw, X(VW®).

Proof. We apply the Kiinneth formula to the isomorphism of Corollary [[.20] and

decompose the equality obtained according to the characters of Li(wqb); we get that

for any u € Efr, we have

D HTXETW). )y Oy goer HL Xy (w6), Ty = HA(X(uwo), Ty).

0<j<2i(u)
xetrr(LEWe))
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which can be written

(7.34) P HIXIwe),x)® (H (X, (uwe), Q) By swer V)
0<j<2l(u)

XEIrr(Li(W"’))

~ H (X (uw¢), Q).
This gives (i). We get also (ii) from equation [.34 and the facts that for v € By

e the only j such that H(Xy, (vwe),Q,)1q is non-trivial is j = 2I(v) and
that isotypic component is irreducible and t(w¢) acts by ¢'*) on it (see
[DMR], 3.3.14]) and t(w¢)* is equal to F* for some k.

e the only j such that HI(Xp,(vwe),Q,)s; is non-trivial is j = I(v) and
that isotypic component is irreducible with trivial action of t(w¢) (see
[DMR] 3.3.15]).

Hence the term x = Q, in the LHS of[3dlfor u = v and j = 2I(v) is HIH) (X(I,wo),Q))®
Qu(—1(v)) and is a submodule of H!(X(I,wv¢),Q,). Similarly the term x = St
in the LHS for u = v and j = I(v) is Hcifl(v)(X(I,w@, St) and is a submodule of
We now prove (iii). By Corollary [[.20 applied with u = w; we have an isomor-
phism X(I, wo) X L) B; = X(w;w¢) where By is the variety of Borel subgroups

of L;. We get (iii) from the fact that H*(Br,Q,) is 0 if k is odd and if k = 2k’
is a trivial Ltl(w¢)-module of dimension nyj/, where F9 acts by the scalar q‘sk/;
this results for example from the cellular decomposition into affine spaces given by
the Bruhat decomposition and the fact that the action of Li(wqb) extends to the
connected group L; so that it acts trivially on the cohomology. ([

Corollary 7.35. Let I 1€ Bt¢(Z), let x € Irr(Lg(w‘b)) be unipotent and
F?_stable, and let i € N. Then
(i) The G¥-module H{(X(I,w¢),Xx) is unipotent. Given p € Irr(GT') unipo-
tent, the eigenvalues of F° on H{(X(I,w¢), Xx), are in ¢°“\,w,, where A,
is as in Corollary [7.31) and w, is the element of {1, q‘S/Q} attached to p as
in [DMR] 3.3.4]; A\, and w, are independent of i and w.
(i) The eigenvalues of F° on H!(X(I,w¢),x) have absolute value at most
2.
(iii) We have H{(X(I,w¢),x) = 0 unless [(w) < i < 2l(w).
(iv) The Steinberg representation does not occur in H:(X (I, wa), x) unless x =
St and i = I[(w), in which case it occurs with multiplicity 1, associated with
the eigenvalue 1 of F?°.
(v) The trivial representation does not occur in HL(X(I, we), x) unless x = Q,
and i = 2l(w), in which case it occurs with multiplicity 1, associated with
the eigenvalue ¢°"™) of F9.

Proof. (i) is a straightforward consequence of equation [[.34] applied for any u such
that some term H?(Xy, (uwe),Q,)x is not 0 for some j, since the result is known
for HY(X(uw¢),Q,) (see [DMR] 3.3.4] and [DMR] 3.3.10 (i)]).

(ii) and (iii) are a consequence of [[.:34 applied for u € By~ of minimal length such
that X appears in some H?(Xp, (uwe),Q,). Then by [DMR] 3.3.21] X appears in

Hé(u)(XLI (uwe), Q,) and the corresponding eigenvalue of F° has module ¢°/(W/2,
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It follows then from [T33(i) applied with j = I(u) that HY(X(I,w¢),x) ® V C

HHW(X (uwe), Q,) where V is an F°-module where the eigenvalues of F? are of

module ¢®(W/2, The result follows from the facts that H*+W(X(uw¢),Q,) = 0

for i < I(w) and that the eigenvalues of F on it have a module at most ¢?(+Hw)/2,
For (iv), we use

Lemma 7.36. If y € Irr(Li(wqb)) is unipotent and x # St there exists u € Bf — Bf
and j such that H} (Xr,, (uwe),Qy)y # 0.

Proof. First, assume that y is not in the principal series, and let v € BI+ be of
minimal length such that x appears in some HI(Xp,(vwe),Q,). Since x is not
in the principal series we have [(v) > 0 thus there exists s € I and v/ € Bj such
that v = sv/. Then HJ(Xy,(sv'wo),Q,)y = HI(Xy,(vwe),Q,)y # 0 because
of the minimality of v and the long exact sequence resulting from X, (sv'w¢) =
Xy, (vwe) [ Xi, (v'we) where the first (resp. second) term of the RHS is an open
(resp. closed) subvariety of the LHS.

When y is in the principal series, we use that if J is a w¢-stable subset of I
and u € BY, then HI(Xy, (uwe),Q,) = Ring (X1, (uwe), Q). Tt follows that
if  is of the form p,;, for ¢ € Irr(W}W) (see [DMR], 5.3.1]), and #; is a component of

we . ray j [0)
Resg’}m ¢ such that (H (Xy, (uwe), Qp), py, ) # 0, then (HZ (Xr, (uwe), Q), py)rr #

0. If J is a we¢-orbit in I, the group W;”b is a Coxeter group of type A; and the

restriction to Wf,w of a character ¥ other than the sign character cannot be iso-
typic of type sign for all orbits J (¢ would then be itself isotypic of type sign). We

are thus reduced to the case where I is a single w¢-orbit, so that Lg(qu) has only
two unipotent characters, Id and St. For such a group the identity character is a
component of H2(Xy,, (sw$)Q,) where W}w = (s), so that the lemma is true. 0O

Since for u as in the lemma we have H} (X(uw),Q,)s; = 0 (see [DMR] 3.3.15)),
by .34 we deduce that for x # St we have H:(X(I, wg), Xx)st = 0 for all . Thus,
for any u € By, using that HJ (Xy, (uwe), Q) @ «ws Vs = 0 when j # I(u), the
St-part of [.34] reduces to !

Hé*l(u) (X(I, ng)), St)sc ® (H(l:(“) (XLI (quﬁ), @4) ®L;(w¢) VSt) ~ Hé(X(UW(b), @E)St-

We apply this for u = v € By in which case Hi(v)(XLI (vwe), Q) Qpewe) Vs = Q,
I
with trivial action of F°, which gives the isomorphism of G¥ x (F)’-modules
H{(X(I,w¢),St)s ~ HH' (X (vwe),Qy)s:.-
using the values of the RHS (known by [DMR] 3.3.15]) H:"™ (X (vwe), Qs =
{o if i # I(w)

— , we get, (iv).
Q, with trivial action of F° otherwise get (iv)

For (v), we use

Lemma 7.37. If x € Irr(Li(wqb)) is unipotent and x # Id there exists u € BIJr and
j # 2l(u) such that H}(Xy,, (uwe), Qp)y # 0.

Proof. First, assume that x is not in the principal series, and let u € BI+ be of
minimal length such that y appears in some HJ(Xy,(uwg),Q,). Then by [DMR]
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3.3.21 (ii)] we have g™ (X1, (uwe), Q) # 0. Since y is not in the principal series
we have [(u) # 2[(u), whence the lemma in this case.

Now assume x in the principal series and take u = 7. It results for example
from [DMR] 3.3.8 (i)] that there exists j such that H}(Xy, (mrwe),Q,) # 0. On
the other hand, it results for example from Proposition [[.8 that Xy,, (wrwe) is
irreducible, thus Hgl(m)(XLI (r1we), Q) is a 1-dimensional module affording only
the trivial representation of G¥'. It follows that j # 2I(7r1), whence the lemma. [

Applying [.34 for an u as in Lemma[Z.37 and using that H(X(uwg),Q,)1q = 0
for i # 2(I(w) + I(u)), we deduce that for x # Id we have H{(X(I,w¢), x)1a = 0
for all i. Taking now u = 1 and using that HY (XL, (we),Q,) @piwe Id = Qy, the

I

Id-part of [.34] reduces to
H{(X(L,we), Id)1a =~ H(X(we), Q)ra.
whence the result using the value of the RHS given by [DMR], 3.3.14]. O

8. EIGENSPACES AND ROOTS OF 7 /71

Let ¢ # p be a prime such that a Sylow f-subgroup S of G is abelian.

Then “generic block theory” (see [BMM]) associates with ¢ a root of unity ¢
and some w¢ € W¢ such that its (-eigenspace V in X := Xp ® C is non-zero and
maximal among (-eigenspaces of elements of W¢; for any such (, there exists a
unique minimal subtorus S of T such that V' C X(S) ® C. The space X(S) ® C is
the kernel of ®(w¢), where, if the coset W¢ is rational (that is, ¢ preserves X (T))
then @ is the d-th cyclotomic polynomial, where d is the order of (. Otherwise, in
the “very twisted” cases 2Bsy, 2F} (resp. 2G2) we have to take for ® the irreducible
cyclotomic polynomial over Q(v/2) (resp. Q(v/3)) of which ¢ is a root. The torus
S is wF-stable thus has an F-stable G-conjugate S’ in a maximal torus of type w;
the torus S’ is called a ®-Sylow; we have |S'F| = ®(q)d™ V.

The relationship with ¢ is that S is a subgroup of S’F', and thus that |G¥|/|SF|
is prime to ¢; we have Ngr(S) = Ngr(S') = Ngr (L) where L := Cg(S’) is a Levi
subgroup of G whose Weyl group is Cy (V). Conversely, any non-zero maximal
(-eigenspace determines some primes ¢ giving an abelian Sylow, those which divide
®(q) and no other cyclotomic factor of |G|

The classes Cy (V)we, where V = Ker(w¢ — ¢) is maximal, form a single orbit
under W-conjugacy [see eg. [Br2 5.6(i)]]; the maximality implies that all elements
of Cw (V)we¢ have same (-eigenspace.

We will see in Theorem [BJ(i) that up to conjugacy we may assume that Cyy (V)
is a standard parabolic group W7; then the Broué conjectures predict that for an
appropriate choice of coset Cyy (V)w¢ in its Ny (Wr)-conjugacy class the cohomol-
ogy complex of the variety X (I, w¢) should be a tilting complex realizing a derived
equivalence between the unipotent parts of the principal ¢-blocks of G and of
Ngr(S"). We want to describe explicitly what should be a “good” choice of w (see
Conjectures 0.1]).

Since it is no more effort to have a result in the context of any finite real reflection
group than for a context which includes the Ree and Suzuki groups, we give a
more general statement. Our situation generalizes that studied in [BM], which
corresponds to the case I = (), or (-regular elements, that is elements of W ¢ which
have an eigenvector for the eigenvalue ¢ outside the reflecting hyperplanes (see [S,
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above 6.5]); in particular Theorem [B] generalizes [BM| 3.11, 6.5] and Theorem
generalizes [BM| 3.12, 6.6]; in the [BM] case, the “d-good periodic maximal”
elements we consider here reduce to “good d-th ¢-roots of 7. Note that we focus
our study on the ¢-principal block (or ®(g)-principal block), which corresponds
to the maximality condition on eigenspaces and to what we call “non-extendable”
periodic elements. Extendable periodic elements would be needed in considering
more general blocks.

In what follows we look at real reflection cosets W ¢ of finite order, that is W is
a finite reflection group acting on the real vector space Xg and ¢ is an element of
Nerxy) (W), such that W is of finite order ¢, that is ¢ is the smallest integer such
that (W¢)° = W (equivalently ¢ is of finite order). Since W is transitive on the
chambers of the real hyperplane arrangement it determines, one can always choose
¢ in its coset so that it preserves a chamber of this arrangement. We will do this;
thus ¢ is 1-regular, since it has a fixed point outside the reflecting hyperplanes,
thus is of order ¢ since 1 is the only 1-regular element of W.

Theorem 8.1. Let W¢ C GL(Xg) be a finite order real reflection coset, such that
¢ preserves a chamber of the hyperplane arrangement on Xg determined by W, thus
induces an automorphism of the Cozeter system (W, S) determined by this chamber.
We call again ¢ the induced automorphism of the braid group B of W, and denote
by S, W the lifts of S,W to B (see Example[{.1]).

Let ¢ = e™F/4 and let V' be a subspace of X := Xgr @ C on which some element
of Wo acts by (. Then we may choose V' in its W-orbit such that:

(i) Cw (V) =Wy for someI CS.

(ii) If Wrw¢ is the Wi-coset of elements which act by ¢ on V, where w is
I-reduced, then I((wp)?) = (2ik/d)l(wow; ') for 2ik < d, where we have
extended the length function to W x (¢) by l(we?) = I(w).

Further, we may lift w as in (ii) to w € BT such that V*I = I and (w¢)? =

¢ (m/mr)k, where T C S lifts I. Thus 1 Y 1is a (d, 2k)-periodic element in
BT (), where T is the set of subsets of S conjugate to 1.

Note that the last part implies that for w as in (ii) we have (w@)? = ¢?. Note
also that if 2k < d, then (ii) is applicable for ¢ = 1 and we get I(w) = l(w) =
(2k/d)l(wow; ') thus w is the unique lift of w to W.

Since we assume W real, if 2™/ ig an eigenvalue of w¢, then the complex
conjugate e2™(@=k)/d is also an eigenvalue, for the complex conjugate eigenspace;
thus we may always assume that 2k < d, so that w € W.

If the coset W¢ preserves a Q-structure on Xg (which is the case for cosets
associated with finite reductive groups, except for the “very twisted” cases 2Bs, 2G5
and 2Fy), we have more generally that if e2mk/d is an eigenvalue of w¢, with k
prime d, the Galois conjugate €™/ is also an eigenvalue, for a Galois conjugate
eigenspace; in these cases we may assume k = 1.

Recall that by our conventions, even though ¢ is a finite order automorphism of
BT, in the semi-direct product BT x (¢) we take (¢) of infinite order.

Proof of Theorem[8l. Since W {¢) is finite, we may find a scalar product on Xg
(extending to an Hermitian product on X ) invariant by W and ¢. The subspace X
of Xy orthogonal to the fixed points of W (the subspace spanned by the root lines
of W) identifies with the reflection representation of the Coxeter system (W, .S) (see
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for example [Boul Chapitre V §3]). We will use the root system ® on Xy consisting
of the vectors of norm 1 (for the scalar product) along the root lines of W, which
is thus preserved by W{(¢). By [Boul Chapitre V §3 Proposition 1] the centralizer
of any subspace of X is a parabolic subgroup of W, hence conjugate to a standard
parabolic subgroup, whence (i).

To prove (ii) we reprove (i) by changing the order on ®, which is equivalent to do a
conjugation by some element of W. Let v be a regular vector in V', that is v € V such
that Cyw (v) = Cw (V). Multiplying v if needed by a complex number of absolute
value 1, we may assume that for any « € ® we have R(v,a) = 0 if and only if
(v,a) = 0. Then there exists an order on ® such that ®* C {a € ¢ | R((v,a)) > 0}.
Let II be the corresponding basis; the subset I = {a € I|R({v,«)) = 0} is such
that Cyw (V) = Cw(v) = Wy, and ®; = {a € ® | (v,a) = 0} is a root system for
Wr.

Note that (wg)? = ¢?. Indeed (w¢)? fixes v, thus preserves the sign of any root
not in ®;; since w is chosen I-reduced we have “?I = I, so that w¢ also preserves
the sign of roots in ®;. It is thus equal to the only element ¢¢ of W¢? which
preserves the signs of all roots. We get also that $°T = I. If we notice that we may
lift ¢ to ¢m /7y, this completes the proof in the case d = 1.

We now assume that d # 1 and we first prove the theorem in the case k = 1.
Since (v, (W®)"a) = (W) "y a) = ("™ (v, a), we get that all orbits of w¢ on & — &
have cardinality a multiple of d; it is thus possible by partitioning suitably those
orbits, to get a partition of ® — ®; in subsets O of the form {«a, “%a, ..., (w¢)d71a};
and the numbers {(v, 8) | 8 € O} for a given O form the vertices of a regular d-gon
centered at 0 € C; the action of w¢ is the rotation by —2m/d of this d-gon. Looking
at the real parts of the vertices of this d-gon, we see that for m < d/2, exactly m
positive roots in O are sent to negative roots by (w¢)™. Since this holds for all O,
we get that for m < d/2 we have [((wg)™) = @; thus if w is the lift of w to
W we have (wg)" € W¢' if 20 < d.

Now we finish the case k = 1,d # 1 with the following

Lemma 8.2. Assume that “YW; = Wy, that w is I-reduced, and that for some
d > 1 we have (wp)? = ¢? and 1((wp)?) = (2i/d)l(wow; ") if 20 < d. Then if w is
the lift of w to W we have Y*I =1 and (w¢)¢ = ¢lm/m1.

Proof. Since w is I-reduced and w¢ normalizes W; we get that w¢ stabilizes I;
these properties imply in the braid monoid the equality W¢I = I.

Assume first d even and let d = 2d’ and 2 = ¢~ (we)?. Then I(z) = (1/2)l(w /1) =
I(wg) — l(wy) and since x is reduced-I it is equal to the only reduced-I element
of that length which is wowl_l. Since the lengths add we can lift the equality
(w¢)d/ = ¢d/wow;1 to the braid monoid as (w¢)d/ = (bd/wowjl. By a similar rea-
soning using that (w@)? ¢~¢ is the unique I-reduced element of its length, we get
also (wgb)d/ = wflwod)dl. Thus (w¢)? = wflwoqﬁd,d)dlwow;l = ¢%m /1, where
the last equality uses that ¢¢ = (w¢)? preserves I.

Assume now that d = 2d’ + 1; then (wqﬁ)d,qﬁ’d, is I-reduced and ¢~ (wqﬁ)d, is
reduced-I. Using that any reduced-I element of W is a right-divisor of W0WI_1
(resp. any I-reduced element of W is a left-divisor of wflwo), we get that there
exists t,u € W such that ¢¢ w;'wy = t(wg)? and wow; '¢¢ = (wé)? u. Thus
¢y = wowflgbdw;lwo = (wgb)d/ugbt(wgb)d/, the first equality since 7 = 1.
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The image in W¢? of the left-hand side is ¢¢, and (w¢)? = ¢?. We deduce that the
image in W¢ of ugt is we. If d # 1 then d’ # 0 and we have I(u) = I(t) = I(w)/2;
thus ugt = wo and (we)? = ¢?n/my. O

We now consider the case k # 1, d # 1. We have seen (before assuming k = 1)
that (i) holds and that the I-reduced element w of the coset Wrwe¢ acting by ¢ on
V satisfies (wo)? = ¢

We first consider the case when k is prime to d. Let d’, k' be positive integers
such that kd’ = 1+dk, and let wip; = (we)? , where ¢ = ¢% . Then wi ¢, acts on
V by e%m/4 50 by the case k = 1 we have [((w1¢1)?) = (2i/d)l(wow; ") for 2i < d.
Since (w1¢1)* = (wg) ™" = (we) M) = (we) ", we get (i).

By Lemma B2 the lift w of wy to B satisfies W11 = I and (w1¢1)? = ¢m /71,
thus if we define w by (w1¢1)F = we!T9' then w lifts w and satisfies (w¢)? =
¢4 (m /mp)¥, using Fr=1.

We finally consider the general case d = Ad1, k = A\k; where d; is prime to kj.
The theorem holds for dy, k1; statement (ii) depends only on k/d thus holds, and
we just have to raise the equation (wg)? = (7/m1)*1 ¢% to the A-th power to get
the desired equation (w¢)? = (m/m1)*¢. O

We give now a kind of converse of Theorem Bl

Theorem 8.3. Let (W, S), ¢, Xgr, X, S, B, BT be as in Theorem[8 1 For d € N,
let w € BT be such that (we)? = ¢4 (m/m1)* for some ¢%-stable I C'S. Then

(i) WI=1, and I X Tisa (d, 2k)-periodic element in BT ¢(Z), where T is
the set of subsets of S conjugate to 1.
Denote by w and I the images in W of w and I, let ¢ = e2™*/4 let V C X be the
C-eigenspace of weo, and let X be the fized point space of Wy; then
(i) Wi = Cw (X" NV), in particular Cyw (V) C Wy.
Further, the following two assertions are equivalent:
(iii) No element of the coset Wiwe¢ has a non-zero (-eigenvector on the subspace
spanned by the root lines of Wr.
(iv) wo is “non-extendable”, that is, there do not exist a ¢%-stable I C I and
v € By such that (vwg)? = ¢d(m/my)".

Proof. We will deduce the general case from the case k = 1.

So we first assume k = 1. Then (i) is already in Proposition [.4] which also
states that there exists T ~ J € BT (Z) such that if w'¢) = (w¢)" then w'¢ € BT ¢,
(W ¢)? = ¢n/my and (W )l2) e Wols),

As (ii) and the equivalence of (iii) and (iv) are invariant by a conjugacy in B
which sends w¢ to B¢ and I to another subset of S, we may replace (w¢,I) by
the conjugate (w’¢,J), thus assume that w and I satisfy the assumptions of the
next lemma.

Lemma 8.4. Let w € W,I C S be such that (wg)? = ¢, Y9I = I and such that
l((we)') = Zi(w;  wo) for any i < d/2. We have

(i) If @ is a root system for W and ®% is chosen such that ¢(®1) = @ (as

in the proof of Theorem [81l), then ® — @1 is the disjoint union of sets of

the form {a, “%a, .. ., (w¢)d71a} with o, Yoy, . . ., (we)let/2 =t

and (w‘b)tdma, ey (we)* g of the opposite sign.

a of same sign
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(ii) The order of we is lem(d, 9).
(iii) If d > 1, then Wi = Cy (X1 Nker(we — ).

Proof. The statement is empty for d = 1 so in the following proof we assume d > 1.

For 2 € W x (¢) let N(z) = {a € T | “a € & }; for z € W we have
l(x) = |N(x)| (see [Bou, Chapitre VI §1, Corollaire 2]). This still holds for x =
wd' € W x (¢) since N(w¢?) = ¢ 'N(w). It follows that for z,y € W x (¢) we
have I(zy) = I(z) 4+ I(y) if and only if N(zy) = N(y)[] yle(x). In particular
1((wp)?") = il(we) for i < d/2 implies W) "N(we¢) C &+ for i < d/2 —1.

Let us partition each w¢-orbit in ® — ®; into “pseudo-orbits” of the form
{a, “Pa, ..., 9" "4} where k is minimal such that " = ¢“a (then k di-
vides d); a pseudo-orbit is an orbit if ¢ = 1. The action of w¢ defines a cyclic
order on each pseudo-orbit. The previous paragraph shows that when there is a
sign change in a pseudo-orbit, at least the next |d/2] roots for the cyclic order have
the same sign. On the other hand, as ¢* preserves ®*, each pseudo-orbit contains
an even number of sign changes. Thus if there is at least one sign change we have
k > 2|d/2]. Since k divides d, we must have k = d for pseudo-orbits which have a
sign change, and then they have exactly two sign changes. As the total number of
sign changes is 2l(w) = 2|® — ®|/d, there are |® — ®;|/d pseudo-orbits with sign
changes; their total cardinality is |® — ®@;|, thus there are no other pseudo-orbits
and up to a cyclic permutation we may assume that each pseudo-orbit consists of
|d/2] roots of the same sign followed by d — |d/2] of the opposite sign. We have
proved (i).

Let d' = lem(d, ). The proof of (i) shows that the order of w¢ is a multiple of
d. Since the order of (wg)? = ¢¢ is d’/d, we get (ii).

We now prove (iii). Let V' = ker(w¢ — ). Since W{¢) is finite, we may find a
scalar product on X invariant by W and ¢. We have then X"’ = ®;. The map

p=% Z?;Bl ¢"Hwg)! is a we-invariant projector on V, thus is the orthogonal

projector on V.

We claim that p(a) €< ®; > for any @ € ® — &;. As p((wo)'a) = (p(a)
it is enough to assume that « is the first element of a pseudo-orbit; replacing if
needed a by —a we may even assume a € ®*. Looking at imaginary parts, we
have §(¢*) > 0 for 0 < i < [d/2], and S(¢%) < O for |d/2] < i < d. Let A be a
linear form such that X is 0 on ®; and is real strictly positive on ®* — ®;; we have
M@®)'q) > 0 for 0 < i < |d/2], and \((*®)'a) < 0 for |d/2] < i < d; it follows
that S(A(CF ()" q)) = F(CA((W?) 'a)) > 0 for all elements of the pseudo-orbit. If
d" = d we have thus S(A(p(«))) > 0, in particular p(a) €< ®; >. If d’ > d, since
¢%a is also a positive root and the first term of the next pseudo-orbit the same
computation applies to the other pseudo-orbits and we conclude the same way.

Now Cy (X" NV) is generated by the reflections whose root is orthogonal to
XWrAV, that is whose root is in < ®; > +V+. If v is such a root we have p(a) €<
®; >, whence a € ®; by the above claim. This proves that Cy (X" N V) C Wy.
Since the reverse inclusion is true, we get (iii). (]

We return to the proof of the case k = 1 of Theorem[83] Assertion (iii) of Lemma
Bl gives the second assertion of the theorem. We now show —(iv)= —(iii). If w¢ is
extendable, there exists a ¢?-stable J C T and v € B; such that (vw¢)? = ¢dm /7,
which implies YW¢J = J. If we denote by 1/ the automorphism of By induced by
the automorphism w¢ of I, we have Y¥J = J and (vi))? = ¢ %my/mwy. Let X1 be
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the subspace of X spanned by ®;. It follows from the first part of the theorem
applied with X, ¢, w, w respectively replaced with X, ¥, v, v that vy = vwe
has a non-zero (-eigenspace in X7, since if V' is the (-eigenspace of vw¢ we get
Cw, (V') € W; C Wi; this contradicts (iv).

We show finally that —(iii)= —(iv). If some element of Wiy has a non-zero
¢-eigenvector on Xy, by Theorem B applied to Wit acting on X; we get the
existence of J C I and v € By satisfying V¥J = J and (vi))? = ¢4m1/m;. Using
that (wg)? = ¢9m /7y, it follows that (vwe)? = (we)imy/my = ¢@m /7y - w1/73 =
¢ /w3 so wo is extendable.

We now deal with the general case k # 1. This time we use B35 which gives
immediately (i). Let us first consider the case when k is prime to d. Then, by B35
up to conjugacy in BT (Z), which we may as well do as observed at the beginning of
the proof, we get that with ¢’ and k' as in 5.5 we have (w¢)? < (7/71)* and the
element w; defined by (wo)? w14 = (7/mp)F satisfies (w1~ % )F = (wep)gp 4
and (wlgb_d/)d = W/ngf)_dd/. Since I is ¢~_stable the last equality shows that
we may apply the case k =1 to wy qﬁ_d/. Since k is prime to d the defining relation
for wy gives in W that (wqﬁ)_d/ = w1¢~%, where w; is the image of wi in W,
which (since d’ is prime to d) shows that that the ¢-eigenspace of w¢ is the e2™/d-
eigenspace of wi¢~% . This gives (ii).

Similarly the coset Wrw, (b‘d/ is the —d’-th power of the coset Wiw¢, so condition
(iii) for w¢ and ¢ is equivalent to (iii) for w;¢~¢ and em/d,

Item (ii) of the following lemma completes the proof of the case ged(d, k) = 1
since by Lemma we may choose d’ prime to J;

Lemma 8.5. Let k,d,k’,d" be positive integers satisfying dk’ = 1+ kd' with d’
prime to the order of ¢. Let ngb_d/ be (d,2)-periodic element. Define wo by
wo = (w14 )kgF 4. Then

(i) wo is (d, 2k)-periodic.

(ii) w¢ is non-extendable if and only if w1~ is non-extendable.

Proof. Assertion (i) is an immediate translation of Assume wi¢~ 7% ex-
tendable, that is there exists v; such that (V1W1¢_d/)d = ¢_dd/7r/7r,] for some
J C I. The k-th power of this equality gives (v(wi¢~ ¢ )¥)? = (vwe - ¢+ )4 =
¢~k (7 /e 5)F, where v is defined by (viw1¢~ %) = v(w1¢~%)F. Since wip~? is
(d, 2)-periodic, it is ¢dd/—stable, and the defining equality for v; shows that v, also
is (bdd/—stable. It follows that vw¢ is also gbdd,—stable. Since d’ is prime to § any
element commuting to ¢dd/ commutes to ¢?, in particular (vwe - (b‘k/d)dqbkdd/ =
(vwe)lp—F & +hdd" — (yvwe)dp=d whence the result.

For the converse, if w¢ denotes the automorphism of Bi" induced by w¢, us-
ing that (wg)? = ¢%(m/mw1)* and that w/mwy = (w/m1)(71/73) we may write
the equation (vwo)? = ¢(mw/m3)k as (vwe)? = ¢¢(mr/m3)k. We now use a
relative version of 5.5 where we replace BY(Z) by B (J) where J is the set
of Bi" -conjugates of J, replace ¢ by w¢ and replace b by v; we get the ex-
istence of vy such that (vy(wg)~4)? = my/my(we)~ %, which can be written
(vi(wo)™ ") (m/m) = mr/ms= ™ or (vi(we) ™ (w/m)")? = w/mapm
which using that (w¢)? wi¢p~? = (m/71)* transforms into the equality we seek
(viwip~ %) = 7 /mypdd’. O
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We now consider the case when A = ged(d, k) # 1. We set di = d/)\ and
k1 = k/X. Up to cyclic conjugacy, which we may as well do, we may assume by
G5 that (wp)? = (m/71)F1¢% . Since e?™F1/d = 2mk/d e have (i), (ii) of the
theorem as well as the equivalence of (iii) with the “d;-extendability” of w, that is
the existence of v € Bf such that (vwg)? = ¢% (/m3)" . The di-extendability
implies trivially the d-extendability by raising the equation to the A-th power.
Conversely, using as above that the equation (vwe)? = ¢?(m/m3)* is equivalent to
(vwe)? = ¢%(m1/m3)" the relative version of 5.5 as used above shows that up to
cyclic conjugacy we have (vwg)® = ¢% (wy/m3)** which in turn is equivalent to
(vwo)h = g (/g ). O

The non-extendability condition (iii) or (iv) of Theorem R3] is equivalent to
the conjunction of two others, thanks to the following lemma which holds for any
complex reflection coset and any (. For definitions and basic results on complex
reflection groups we refer to [Br2]. Recall that a complex reflection group is a finite
group generated by pseudo-reflections acting on a finite dimensional complex vector
space and that the fixator of a subspace is called a parabolic subgroup. It is still a
complex reflection group.

Lemma 8.6. Let W be finite a reflection group on the complex vector space X and
let ¢ be an automorphism of X of finite order which normalizes W. Let V' be the
C-eigenspace of an element wep € Wo. Assume that W' is a parabolic subgroup of
W which is we-stable and such that Cyw (V) C W', and let X' denote the subspace
of X spanned by the root lines of W'. Then the condition

(i) VnX'=0.
is equivalent to
(ii) Cw(V)=WwW".
While the stronger condition
(iii) No element of the coset Ww¢ has a non-zero (-eigenvector on X'.
is equivalent to the conjunction of (ii) and

(iv) The space V is maximal among the (-eigenspaces of elements of W .

Proof. Since W{(¢) is finite we may endow X with a W (¢)-invariant Hermitian
scalar product, which we shall do.

We show (i) < (ii). Assume (i); since w¢ has no non-zero (-eigenvector in X’
and X' is w¢-stable, we have V' L X', so that W’ C Cw (V'), whence (ii) since the
reverse inclusion is true by assumption. Conversely, (ii) implies that V' € X'+ thus
VnX' =0.

We show (iii) = (iv). There exists an element of W¢ whose (-eigenspace V; is
maximal with V' C V3. Then Cyw (V1) C Cw (V) C W’ and the Cw (V1)-coset of
elements of W¢ which act by ¢ on V; is a subset of the coset Cy (V)we of elements
which act by ¢ on V. Thus this coset is of the form Cy (V1)vwe for some v € W'.
By (i) = (ii) applied with w¢ replaced by vw¢ we get Cy (V1) = W’. Since v € W’
this implies that vw¢ and w¢ have same action on V; so that w¢ acts by ¢ on Vi,
thus V; C V.

Conversely, assume that (ii) and (iv) are true. If there exists v € W’ such that
vwe has a non-zero (-eigenvector in X', then since v acts trivially on V' by (ii), the
element vwe¢ acts by ¢ on V and on a non-zero vector of X’ so has a (-eigenspace
strictly larger that V, contradicting (iv). O
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Let us give now examples which illustrate the need for the conditions in Theorem
and Lemma

We first give an example where w¢ is a root of 7 /7 which is extendable in the
sense of Theorem [R3(iv) and ker(w¢ — ¢) is not maximal: let us take W = W (A3),
¢p=1,d=2,(=—1,1={s2} (where the conventions for the generators of W are
as in the appendix, see Subsection [0.2)), w = WI_1WQ. We have w? = 7 /71 but
ker(w 4+ 1) is not maximal: its dimension is 1 and a 2-dimensional —1-eigenspace is
obtained for w = wy.

In the above example we still have Cy (V) = W, but even this need not happen;
at the same time we illustrate that the maximality of V = ker(w¢ — () does not
imply the non-extendability of w if Cw (V) C Wr; we take W = W (A3), ¢ = 1,
d =2, (= —1, but this time I = {s;,s3}, w = wl_lwo. We have w? = /w1 and
ker(w + 1) is maximal (w is conjugate to wp, thus —1-regular) but w is extendable.
In this case Cyw (V) = {1}.

The smallest example with a non-extendable w and non-trivial I is for W =
W(Ay), ¢ = 1,d = 3, w = s18283848382 and I = {s3}. Then w3 = 7 /my; this
corresponds to the smallest example with a non-regular eigenvalue (we call regular
an eigenvalue of a regular element for which the eigenspace has trivial centralizer):
(3 is not regular in Ay.

Finally we give an example which illustrates the necessity of the condition
#*(I) = I in Theorem B3l We take W¢ of type Dy, thus ¢ is the triality au-
tomorphism s; — s4 — s5. Let w = Wosflsgls4. Then, for I = {s;} we have
(wp)? = m/m1¢?, but IV? = {s4}. The other statements of Theorem B3] also
fail: if V is the —1-eigenspace of w¢ the group Cy (V) is the parabolic subgroup
generated by si,s2 and sy.

Lemma 8.7. Let W¢ be a complex reflection coset and let V' be the (-eigenspace
of wp € Wo; then
(i) Nw (V) = Nw(Cw (V)we).
(ii) If W is real, and Cw (V) = Wy where (W, S) is a Cozeter system and
I CS, and w is I-reduced, then the subgroup {v € Cw (w¢) N Ny (W7) |
v is I-reduced} is a section of Ny (V)/Cw (V) in W.

Proof. Let W; denote the parabolic subgroup Cy (V). All elements of Wiw¢ have
the same (-eigenspace V, so Ny (Wiw¢) normalizes V; conversely, an element
of Ny (V) normalizes W; and conjugates w¢ to an element w'¢ with same (-
eigenspace, thus w and w’ differ by an element of W7, whence (i).

For the second item, Ny (Wrw¢)/W admits as a section the set of I-reduced
elements, and such an element will conjugate w¢ to the element of the coset Wrwe¢
which is I-reduced, so will centralize we. O

We call essential rank of a (complex) reflection coset W¢ C GL(X) the dimension
of the space generated by its root lines (the dimension of X minus the dimension
of the intersection of the reflection hyperplanes of W).

We call (-rank of an element of W ¢ the dimension of its (-eigenspace, and (-rank
of W¢ the maximal (-rank of its elements.

Let us say that a (d, 2k)-periodic element of B*¢(Z) is non-extendable if it is
non-extendable in the sense of Theorem [B3[iv). Another way to state the non-

extendability of a periodic element I Y Te Bt ¢(Z) is to require that |I| be no
more than the essential rank of the centralizer of a maximal (-eigenspace of W ¢,
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where ¢ = e2#7/: indeed if I Y9, Y is extendable there exists J and v as in
Theorem [B3|(iv) and, since condition B3[iv) implies Lemma [B6(iii), the element
vwe has maximal (-rank, and the centralizer of its (-eigenspace has essential rank
|J] < |I|. Note that the notion of non-extendable (d,2k)-periodic element makes
sense without specifying Z, as ¢ = e2**7/¢ is determined by k/d, and Z in turn is de-
termined as the class of parabolic subgroups which are centralizers of (-eigenspaces
of elements of W¢ of maximal (-rank.

The correspondence between maximal eigenspaces and non-extendable periodic
elements, as described by Theorems [B.1] and R3] can be summarized as follows:

Corollary 8.8. Let V' be the (-eigenspace of an element of W¢ of mazimal (-
rank, where ¢ = €*™%/®_ Then there is a W-conjugate V of V! and I C S such that
Cw (V) = Wr and the corresponding I-reduced w¢ (see Theorem [81l(ii)) lifts to a

non-extendable (d, 2k)-periodic element I o, 1. Conversely, for a (d,2k)-periodic

non-extendable T % 1 the mmage wo i W has mazximal (-rank.
We conjecture that Bessis’s theorem [B1l 11.21] extends to

Conjecture 8.9. Two non-extendable (d,2k)-periodic elements of BT¢(Z) are
cyclically conjugate.

Note that because of Lemma [B.6] the non-extendability condition is necessary in
the above.

By B.Gla (d, 2k)-periodic element is cyclically conjugate to an element which sat-
isfies in addition (we)l2F) € Welsel, We will call good a (d, 2k)-periodic element
which satisfies this additional condition.

When k£ = 1 we can give conditions purely in terms of W for an element to lift
to a good (d, 2)-periodic (resp. non-extendable good (d, 2)-periodic) element.

Lemma 8.10. Let W¢ C GL(XRr) be a finite order real reflection coset such that
¢ preserves the chamber of the corresponding hyperplane arrangement determining
the Coxeter system (W, S).

Let we W and I C S and let w € W and I C S be their lifts; let T be the

conjugacy orbit of I, then w induces a morphism 1 Yo Te BT (Z) if and only if:
(i) “?I =1 and w is I-reduced.

If w satisfies (i), for d > 1 the element I WO T s good (d, 2)-periodic if and only
if the following two additional conditions are satisfied.

(i) I((we)?) = %l(w?lwo) for 0 <2i<d.
(iif) (we)? = ¢7.
If, moreover,
(iv) Wrwg h/as C-rank O on the subspace spanned by the root lines of Wi where
C — p2im d;

then w is non-extendable in the sense of Theorem [83(iv).

Proof. By definition w induces a morphism I X9 1 if and only if it satisfies (i).

By definition again if I X9 1 good (d, 2)-periodic then (ii) and (iii) are satisfied.
Conversely, Lemmal8 2 shows that the morphism induced by the lift of a w satisfying
(i), (ii), (iii) is good (d, 2)-periodic.
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Property (iv) means that no element vw¢ with v € Wj has an eigenvalue ¢ on
the subspace spanned by the root lines of W; which is exactly the characterization
of Theorem B3(iv) of a non-extendable element. O

Note that d and I are uniquely determined by we¢ satisfying (i), (ii), (iii) above
since d is the smallest power of w¢ which is a power of ¢ and I is determined by

(wop)? = 7 /mro?.

Definition 8.11. We say that wep € W¢ is d-good if it satisfies (i), (ii), (iii) in
Lemma[8.10
We say we¢ is d-good maximal if it satisfies in addition (iv) in Lemma[8I0.

In particular, d-good elements lift to good (d, 2)-periodic elements, and d-good
maximal elements lift to good non-extendable (d, 2)-periodic elements. In the ap-
pendix, we will construct a non-extendable (d, 2k)-periodic element for each W ¢,
each d and each k. Actually, we will do this only for £k = 1 (by constructing d-good
maximal elements of W¢), which is sufficient by

Lemma 8.12. (i) If A = ged(d, k) and we set dy = d/X and k1 = k/)\ and
w¢ is (d1,2k1)-periodic (resp. non-extendable (dy,2k1)-periodic) then we
is (d, 2k)-periodic (resp. non-extendable (d,2k)-periodic).

(ii) If k is prime to d there exists integers k' and d' such that dk' = 1+ kd’
such that if w1~ is (d, 2)-periodic (resp. non-extendable (d,2)-periodic)
then the element wo defined by (w1¢~%)* = (wp)p~F ¢ is (d, 2k)-periodic
(resp. non-extendable (d,2k)-periodic).

Proof. (i) is part of what is proved in the last paragraph of the proof of 83 and (ii)
is Lemma O

Any element of W¢ with a maximal (-eigenspace is conjugate to an element of
Cw (V)w¢ since the maximal eigenspaces are conjugate, see [S, Theorem 3.4(iii) and
Theorem 6.2(iii)]. If w¢ is the image of a non-extendable (d, 2k)-periodic element,
where ¢ = €2*#7/4 it is 1-regular in this coset by Theorem B3 (ii) which implies
that it preserves a chamber of the corresponding real arrangement (see remarks
above Theorem BT]). The following lemma shows that the images in W¢ of non-
extendable (d, 2k)-periodic elements (thus in particular d-good maximal elements)
belong to a single conjugacy class under W, characterized by the above property.

Lemma 8.13. Let W¢ be a finite order real reflection coset. The elements of W ¢
which have a (-eigenspace V' of maximal dimension and among those, have the
largest dimension of fived points, are conjugate.

Proof. As remarked above, up to W-conjugacy we may fix a (-eigenspace V and
consider only elements of the coset Cy (V)w¢ where we is some element with (-
eigenspace V; then W-conjugacy is reduced to Cy (V)-conjugacy. Since Cy (V)
is a parabolic subgroup of the Coxeter group W and is normalized by w¢, the
coset Cy (V)we is a real reflection coset; in this coset there are 1-regular elements,
which are those which preserve a chamber of the corresponding real hyperplane
arrangement; the 1-regular elements have maximal 1-rank, that is have the largest
dimension of fixed points, and they form a single Cy (V')-orbit under conjugacy,
whence the lemma. O
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Lemma 8.14. Let w¢ be the image in W¢ of a non-extendable (d,2k)-periodic

element T X%, I, let I be the image of I and let V1 be the fixed point subspace of
we¢ in the space spanned by the root lines of Wr; then w¢ is regular in the coset

Proof. Let W’ = Cw (V1); we first note that since w¢ normalizes V; it normalizes
also W', so Ww¢ is indeed a reflection coset. We have thus only to prove that
Cw (V) is trivial, where V is the e?hm/d_eigenspace of w¢. This last group is
generated by the reflections with respect to roots both orthogonal to V' and to
V1, which are the roots of Wy = Cw (V) orthogonal to V. Since w¢ preserves a
chamber of Wy, the sum v of the positive roots of W with respect to the order
defined by this chamber is in V; and is in the chamber: this is well known for a
true root system; here we have taken all the roots to be of length 1 but the usual
proof (see [Boul Chapitre VI §1, Proposition 29]) is still valid. Since no root is
orthogonal to a vector v inside a chamber, W7 has no root orthogonal to V;, hence
Cw (V) ={1}. O

One could hope that the above lemma reduces the classification of d-good maxi-
mal elements to that of regular elements; however the map Cy (w¢) = Ny (V) —
Nw (V)/Cw (V) with the notations of the above proof is injective, but not al-
ways surjective: for example, if W of type E7, and ¢ = Id and d = 4, then
Nw (V)/Cw (V) is the complex reflection group Gg, while W' is of type Dy and
Nw(V)/Cw: (V) is the complex reflection group G(4, 2,2). However, there are only
3 such cases for irreducible groups W; the group Ny (V)/Cw (V) was determined
in appendix 1 in all other cases by the equality Cyw(w¢) ~ Ny (V)/Cw (V'), which
is proved by checking that Cy (w¢) and Ny (V)/Cw (V') have the same reflection
degrees, a simple arithmetic check on the reflection degrees of W and W’; indeed,
recall that when V' is a maximal (-eigenspace, the group Ny (V)/Cw (V) is a com-
plex reflection group acting on V', with reflection degrees the reflection degrees of
W satisfying the arithmetic condition given for instance in [Br2, 5.6] (when ¢ = 1d,
the reflection degrees divisible by d).

9. CONJECTURES

The following conjectures extend those of [DM2] §2]. They are a geometric form
of Broué conjectures.

Conjectures 9.1. Let I YT Bt (Z)¢ be non-extendable (d, 2k)-periodic. Then

(i) The group By, generated by the monoid B, of Theorem[5.9 is isomorphic to
the braid group of the complex reflection group W (we) := Ny (Wiwe)/Wr.

(ii) The natural morphism D* (1 o, I) » Endgr(X(I,wo)) (see below Lemma
[729) gives rise to a morphism Byw — Endgr H} (X(I, we)) which factors
through a special representation of a (-cyclotomic Hecke algebra Hy for
W (we), where ¢ = /4,

(iii) The odd and even HL(X(I,w¢)) are disjoint G¥'-modules, and the above
morphism extends to a surjective morphism Qu[By] — Endgr (H (X(I, we))).

The group W(w¢) above is a complex reflection group by the remarks at the
end of last section and Lemma [87] (i).

The condition that the periodic elements we consider are non-extendable is nec-
essary for assertion (ii) above to hold; in the case of extendable periodic elements
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the endomorphism algebra should, instead of being a deformation of the group
algebra of W(wg), be a deformation of an endomorphism algebra of an induced
representation from a complex reflection group to another. Whenever a periodic
element is extendable, a decomposition as in Theorem can be applied. See
[Dul 1.3] for such computations.

David Craven has made (iii) above more specific by giving a conjectural formula
computing the cohomology degree in which a given unipotent character should
occur (see [C]); Craven’s formula should be valid for any (d, 2k)-periodic element,
not only the non-extendable ones. In the current paper we focus on the study of
non-extendable periodic elements; this should be a start for the general study of all
periodic elements.

Lemma 9.2. Let T Y% T ¢ Bt¢(Z) be non-extendable (d,2k)-periodic and as-
sume Congjectures [0} then for any i # j the G -modules H{(X(I,w¢)) and
HI(X(I,w¢)) are disjoint.

Proof. Since the image of the morphism of Conjecture [@.II(ii) consists of equiva-
lences of étale sites, it follows that the action of Hy on HZ(X(I,w¢)) preserves
individual cohomology groups. The surjectivity of the morphism of (iii) implies that
for p € Trr(GF), the p-isotypic part of H*(X(I,w¢)) affords an irreducible H.y-
module; this would not be possible if this p-isotypic part was spread over several
distinct cohomology groups. ([l

We will now explore the information given by the Shintani descent identity on
the above conjectures

Lemma 9.3. Let T Y% 1 ¢ BY¢(Z) be (d,2k)-periodic With the notations of
Proposition [7.30, we have Xgn(X1Tw¢) = qm§(l(”/“l)_“X_Ax)f((e]wF) for x €
Irr(W)®, where a, (resp. Ay) is the valuation (resp. the degree) of the generic
degree of x and er = [Wi|™' 3 ey, v.

Proof. We have (X1Two)? = X1(Tx/Tr;)F¢? = ¢ H ™)X TEp? since X; com-
mutes with Tyw¢ and since for any v € W; we have X T, = ql(”)Xl. Since T
acts on the representation of character x,~ as the scalar g —ax—Ay) (see [BM
Corollary 4.20]), it follows that all the non-zero eigenvalues of X;Tyw¢ on this rep-
resentation are equal to qmg(l(“/"”)*ax*“xx) times a root of unity. To compute the
sum of these roots of unity, we may use the specialization ¢”*/2 — 1, through which
Xqm (X1Tw®) specializes to x(ejwa). O

Proposition 9.4. Let I Y 1e BT ¢(Z) be (d,2k)-periodic. For any m multiple
of 0, we have

m m mE(r/m1)—a,— G,
XEwoyF | = S Amsqmin/ma—an () REF 14y p(g).
pEE(GT 1)

where a, and A, are respectively the valuation and the degree of the generic degree
of p.
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Proof. We start with Corollary [[3Tl, whose statement reads, using the value of
Xqm (X1Tw¢) given by Lemma 9.3t

IXLwo) ™ [= Y AMu(g)
pEE(GT 1)

S grattrm=mac A g(erwe) (p, Ry)ar-

xEIrr(W)¢

Using that for any p such that (p, Rg)gr # 0 we have a, = a,, and A, = A, (see
[BM] around (2.4)) the right-hand side can be rewritten

o apegrattrmozasAdpg)p, ST Rlerwd) Rydar

pe&(GT,1) xEIrr(W)¢

The proposition is now just a matter of observing that

> Xlerwg)Rg = [Wil7H Y > X(vwe)Ry =
X Elrr (W)® veEWr xelrr(W)¢

wi7t 3 RS, (1) = RE ) (1d).
UEW}

Where the last equality is obtained by transitivity of RE and the equality Id; «we) =
I

W™ Y ew, R;ii(w‘b) (Id), a torus T of L; of type v for the isogeny ¢(w¢) being
conjugate to Ty in G. O

Corollary 9.5. Let I AL, g Bt¢(Z) be non-extendable (d,2k)-periodic and

assume Conjectures[I1; then for any p € Irr(GE) such that (p, RSI};(W¢) (Id))gr #

0 the isogeny F? has a single eigenvalue on the p-isotypic part of HX(X(I,wa)),
equal to )\pq‘s%(l("/“l)—%—f‘p)'

Proof. This follows immediately, in view of Lemma [0.2] from the comparison be-
tween Proposition and the Lefschetz formula:

IX(Lwe)!™" | = (=1) Trace(¢F™ | HA(X(Lw¢),Qy)).

%

O

In view of Corollary [Z.35(i) it follows that if (p, RE (Id))gr # 0 then if w, =1

then & (I(m/m1)—a,—A,) € N, and ifw, = V¢ then E((r/mr)—a,—A,) € N+1/2.

Assuming Conjectures [I.1] we choose once and for all a specialization ¢'/¢
¢'/% where a € N is large enough such that H, ® Q[¢'/%] is split. This gives
a bijection ¢ — @4 : Ir(W(wg)) — Irr(Hw), and the conjectures give a further
bijection ¢ — py, between Irr(W (w¢)) and the set {p € Irr(GF) | (p, RE (Id))gr #

0}, which is such that (p,, RE (Id))gr = ¢(1).

Corollary 9.6. Under the assumptions of Corollary[d.3, if w, is the central char-
acter of v, then

Ap, = %((u@)é)c—ag(z(w/m)ﬂ% ~Ap,)

©
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Proof. We first note that it makes sense to apply w, to (w¢)°, since (w¢)® is
a central element of W(w¢). Actually (w¢)? is a central element of By, and
maps by the morphism of Conjecture [@I|(iii) to F°, thus the eigenvalue of F° on
the p,-isotypic part of H}(X(I,w¢)) is equal to wy, ((we)?); thus w,, (we)’) =
)\pvq‘;%(l("/"l)*% ~4¢) . The statement follows by applying the specialization
¢/ — (1% to this equality. (I

10. APPENDIX: d-GOOD MAXIMAL ELEMENTS IN FINITE COXETER COSETS.

We will describe, in a finite Coxeter coset, for each d, a d-good maximal element.

As explained the introduction of Section [l when the Coxeter coset is attached
to a reductive group G, such an element defines a parabolic Deligne-Lusztig variety
whose cohomology should be a tilting complex for the Broué conjectures for an
¢ dividing ®4(q). The properties of this variety do not depend on the isogeny
type, thus it is sufficient to study the case when G is semi-simple and simply
connected. Now, a semi-simple and simply connected group is a direct product
of restrictions of scalars of simply connected quasi-simple groups. A restriction of

scalars is a group of the form G™, with an isogeny Fj such that Fy(zo,...,Tn—1) =
(r1,...,Zn_1,F(x0)). Then (Gt ~ G If F induces ¢ on the Weyl group W of
G then (G™, F1) corresponds to the reflection coset W™ .o, where o(zo, ..., Tn—1) =

(1, Tn—1,0(20)).

10.1. Restrictions of scalars. Restrictions of scalars as above appear in the clas-
sification of arbitrary complex reflection cosets. Arbitrary cosets W¢ are direct
products of cosets where ¢ is transitive on the irreducible components of W; we
call restriction of scalars a complex reflection coset with this last property. It is of
the form W™-o C GL(V™), where V is a complex vector space and W¢ C GL(V) is
a complex reflection coset and where o(xq,...,Zn-1) = (21,...,Tn-1,¢(x0)). We
say that W"o is a restriction of scalars of W¢, by analogy with the terminology
for reductive groups.

We first look at the invariant theory of a restriction of scalars. Recall (see for
example [Br2]) that, if Sy is the coinvariant algebra of W (the quotient of the
symmetric algebra of V* by the ideal generated by the W-invariants of positive
degree), for any W-module X the graded vector space (S ® X*)W admits a
homogeneous basis formed of eigenvectors of ¢. The degrees of the elements of this
basis are called the X-exponents of W and the corresponding eigenvalues of ¢ the
X-factors of W¢. For X = V| the V-exponents n; satisfy n; = d; — 1 where the d;’s
are the reflection degrees of W, and the V-factors ¢; are called the factors of We.
For X = V*, the n; — 1 where n; are the V*-exponents are called the codegrees
df of W and the corresponding V*-factors €} are called the cofactors of W¢. By
Springer [S} 6.4], for a root of unity ¢, the (-rank of W is equal to |{i | (% = &;}|.
By analogy, we define the (-corank of W¢ as |{i | (% = &¥}|. By for example [Br2,
5.19.2] an eigenvalue is regular if it has same rank and corank.

Proposition 10.1. Let W™ - o be a restriction of scalars of the complex reflection
coset W¢. Then the (-rank (resp. corank) of W™ - o is equal to the ("-rank (resp.
corank) of W .

In particular, ¢ is regular for W™ - o if and only if ¢ is regular for W - ¢.

Proof. 1t is easy to see from the construction that the pairs of a reflection degree
and the corresponding factor of o for the coset W™ - ¢ are the pairs (d;,7; ;), where
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i€ {l,...,r} and where {1; j};cf1..n} Tun over the n-th roots of ;. Similarly, the
pairs of a reflection codegree and the corresponding cofactor are (dj, n; j) where
{n};}jef1..ny Tun over the n-th roots of 7.

In particular the (-rank of W™ - o is |{(i,J) | (% = n;;}| and the (-corank is
{6, 5) 1 ¢% = ni;}.

Given d, there is at most one j such that (¢ = n;, j, and there is one if and only if
(" = ¢g;. Thus [{(i,5) | ¢ =mi;}| = |{i | ("% = &;}| and similarly for the corank,
whence the two assertions of the statement. ]

The next lemma can also be used to give a direct proof of the statement on
(-ranks.

Lemma 10.2. Let W™ - o be a restriction of scalars of W¢. Then

(i) Any element of W"o is conjugate to an element of the form (1,...,1,w)o.
(ii) The vector (zg,...,xn—1) € V™ is a (-eigenvector of (1,...,1,w)o if and
only if xg is a ("-eigenvector of wé and x; = ('xg fori=1,...,n— 1.

Proof. The element (1, wq, wows, ..., wWow; ...wp,_2) conjugates (wo, . . ., Wp—1)0 to
(1,...,1,wg ... wp_1)o, whence (i). Property (ii) results from an immediate com-
putation. (I

In view of Lemma [[0.J] the following proposition is enough to determine all
possible non-extendable (d, 2k)-periodic elements of W"o.

Proposition 10.3. Let W™ -0 be a restriction of scalars of the finite Cozeter coset
W . Let (BT)"o and BT ¢ be the corresponding cosets of braid monoids. Then

(i) Any element in (B1)"c is conjugate under (BT)™ to an element of the
form (1,...,1,w)o.

(i) The element (1,...,1,w)o € (B1)"0 is (nd, 2k)-periodic if and only if w
is (d, 2k) periodic. Moreover the latter is non-extendable if and only if the
former is non-extendable.

Proof. The element (1, wq, WoW1,..., WoW1 ... W,_o) conjugates (Wo,...,Wn_1)0
to (1,...,1,wqg...w,_1)o, whence (i).
For (ii), we have ((1,...,1,w)o)™ = ((wp)%¢~9, ..., (wp)?¢~%)o"¢, whence the
first assertion: (w¢)? = (w/m1)F¢? is equivalent to ((1,...,1,w)o)"? = ((w/m1)*,.
If the last equalities hold and w¢ is extendable, that is there exist v € BIJr
and J C I such that (vw)? = (mw/m3)F¢?, then ((1,...,1,v)(1,...,1,w)o)"@ =
(m/m3)*, ..., (w/m5)*)o™, so that (1,...,1,w)o is extendable.

(/)R e

Conversely assume that (1,...,1, w)o is extendable, that is, there exist (vg ..., v,—1) €

(Bf )" and Jg x - -+ x J,,—1 € I" such that

(Vo s Voo, Vpaw)o)" = (w/75,, ..., w7y, o™

Then since (vo, ..., Vy—2, Vy—1W)o stabilizes Jo X - -+ x J,,—1, we have J; = ViJ; 11
for i < n—1 so that J; € I for all . By the same conjugation as in the
first line of the proof (by (1,vg,voVvi,...,voVy---V,_2)) the above equality con-
jugates to ((1,...,vg---v,_1w)o)" = (w/m3,,...,m/m73,) ™, or equivalently
(Vo Vp1wo)? = (m/m3,)F¢?, thus wo is extendable. O
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10.2. Case of irreducible Coxeter cosets. We are going to give, for each ir-
reducible finite Coxeter group W, each possible corresponding coset W¢ where ¢
preserves a chamber of the corresponding hyperplane arrangement, and each possi-
ble d, a representative w¢ of the d-good maximal elements. Since conjecturally all
non-extendable (d, 2)-periodic elements are conjugate in the ribbon category (see
Conjecture B9, this should describe also these elements.

We also describe the corresponding (g4-eigenspace V where (g = e2™/?  the set I
and the relative complex reflection group W(w¢) := Ny (V)/Cw (V). In the cases
where the injection Cy(wgp) — Nw (V)/Cw (V) = W(we) of the remark after
Lemma [BT4] is surjective, where W’ = Cy (V1) and V; is the fixed point subspace
of w¢ in the space spanned by the root lines of Wy, we use it to deduce W (w¢)
from W’ = Cyw (V1) using the description of centralizers of regular elements in [BM]|
Annexe 1].

Types A, and 24, O—---O. 24, is defined by the diagram automorphism ¢
S1 S2 Sn

which exchanges s; and s,41—;.
For any integer 1 < d < n + 1, we define

d+1 d
Ud = 8152 Sy | d|SnSn—1" " S| at1 | and Jg = {s; | L%J +1<i<n-— \_ij}
If d is odd we have vg = Ufi%fiv where v/, = 5159 - - - Sp_|d]-

Now, for 1 < d < n+ 1, let kd be the largest multiple of d less than or equal to
n+1, so that ”TH <kd<n+1landk= L"THJ We then define wy = U,’jd, Iy = Jra
and if d is odd we define w); by

vho@)Fif kis odd,
o= {0 )
Vi if k£ is even,
Theorem 10.4. For W = W(A4,,), d-good mazimal elements exist for 1 < d <
n+ 1; a representative is wq, with I = Iq and W(wq) = G(d, 1, |2 ]).

For W¢, d-good maximal elements exist for the following d with representatives
as follows:

e d=0(mod4), 1 <d<n+1; arepresentative is wap with I = I and
W(wad) = G(d,1, [251]).

e d=2 (mod 4), 1 <d<2(n+1); a representative is w&/z(b with I = 145
and W (w} ,¢) = G(d/2,1, 2052 ]).

e dodd 1<d< "TH If d # 1 a representative is w3;¢ with I = Isq and
W (w3,0) = G(2d, 1, [ %55 ]).

Proof. We identify the Weyl group of type A,, as usual with &,, 1 by s; — (i,i+1);
the automorphism ¢ maps to the exchange of i and n+ 2 —4. An easy computation
shows that the element vg maps to the d-cycle (1,2,..., L%J n+ln,...,.n+2—
|4]) and that for d odd v/, maps to the cycle (1,2,...,n— 432).

Lemma 10.5. If d is even vg and wq are ¢-stable. If d is odd we have wqg = wl’i.‘z’w&.

Proof. That d is even implies L%J = L%J, thus in the above cycle ¢ exchanges
the two sequences 1,2;.. ., L%J andn+1,n,...,n+2— L%J, thus vy is ¢-stable.

The same follows for wy, with k = |2t |, since kd is even if d is even.



PARABOLIC DELIGNE-LUSZTIG VARIETIES. 63

For d odd we have
/ ¢ ;o (w&¢)2 _ {(U;qd¢)2k if kis Odd,

w,; =
’ 1’150/12-%”%2) if k is even.

If k is odd we have (v},0)%* = (v},%v},)F = vF;, = wg. If k is even then vyq is
¢-stable thus v/ ?(vF/?) = vk, = wg. O

Lemma 10.6. For1<d<n+1,

e the element vg is Jg-reduced and stabilizes J,.
e the element wy is Iz-reduced and stabilizes 1.
o for d odd, the element v/, is Jq-reduced and vi¢ stabilizes Jq.
o for d odd, the element w/; is Iq-reduced and w)¢ stabilizes 1.

Proof. The property for wq (resp. w}) follows from that for vy (resp. v}) and the
definitions since being Iz-reduced and stabilizing Iy are properties stable by taking
a power.

It is clear on the expression of vy as a cycle that it fixes ¢ and ¢ + 1 if s; € Jy
thus it fixes the simple roots corresponding to J;, whence the lemma for vg.

For dodd, 1 < d < n+1, an easy computation shows that v/, = (1,2,... ,n—%),
and that v/;¢ preserves the simple roots corresponding to Jg. (|

Lemma 10.7. For1<d<n+1 and for 0 <i < 2], we have
o [(v) = 2Zl(w] wo) and l(w}) = %l(wﬂlwo)
o (for d odd) ((;0)'6~) = Sl(wyiwo) and L((whd)'6~) = 21wy wo).

Proof. 1t is straightforward to see that the result for wy (resp. w);) results from the

result for vg (resp. v} or vg) and the definitions.

Note that the group W, is of type A,,_q, thus l(w;dlwo) = "("2+1) — ("_d)(’;_d"’l) =

(2n— d+1)d

We ﬁrst prove the result for vy and v when ¢ = 1. For odd d we have by
definition I(v}}) = n — 5% = 22=4H which is the formula we want for v);. To find

the length of vy one can use that s,8,_1-- 8| di1 is {s1,82,...,8n—1}-reduced,
2
thus adds to sysz---s, |4, which gives l(vg) = 2n — d + 1, the result for vg.
We now show by direct computation that when d is even vj/ 2= w;dl wp. Rais-

n+1,n,...,n+2— %) to the d/2-th power we get

ing the cycle (1,2,..., 2, g

(Ln+1)(2,n) - (%,n+2- %) Wthh gives the result since wy, = (4 + 1,n +
1— 4. ([2],|=]). The lemma follows for v4 with d even since its truth for
i=1and = % implies its truth for all ¢ between these values.

We show now similarly that for odd d we have (v/,¢)% = w;dl wop?. Since ¢ acts
on W by the inner automorphism given by wy, this is the same as (v/wg)? = w,,.
We find that (1,2 n—d—23)wo—(1,n+1,2,n,3,n—1, n—d;f,%)(d%g,n—
o8y (2, L%J) as a product of disjoint cycles, which gives the result since
(1,n+1,2,n,3,n—1,...,n—953, ﬂ) isad-cycleand (442, n—432). .. (|23 ], (22 ]) =
w,y,. This proves the 1emma for w/, by interpolating the other values of ¢ as above.

It remains the case of vy for odd d. We then have vg = (v/;¢)? where the lengths

add, and we deduce the result for v4 from the result for v/ O

Lemma 10.8. The following elements are d-good
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For1<d<n+1, the elements vqg and wg.
Ford=0 (mod 4),d < n+1 the elements vg¢ and wqd.
For d=2 (mod 4),d < 2(n+1) the elements v} ,¢ and wy 5.

e Ford odd, d < "TH the elements v3,¢ and w3 ;¢.

Proof. In view of the previous lemmas, the only thing left to check is that in each
case, the chosen element x in W (resp. W¢) satisfies 2¢ = 1 (resp. (z¢)? = ¢9).
Once again, it is easy to check that the property for wq (resp. w/) results from that
for vg (resp. v} or vg) and the definitions.

It is clear that vg = 1 since then it is a d-cycle, from which it follows that when

d =2 (mod 4) we have (’U&/Q(b)d = Ugg = 1. The other cases are obvious. O

To prove the theorem, it remains to check that:

e The possible d for which the (4-rank of W (resp. W¢) is non-zero are as
described in the theorem. In the untwisted case they are the divisors of one of
the degrees, which are 2,...,n + 1. In the twisted case the pairs of degrees and
factors are (2,1),...,(i,(=1)%),...,(n + 1,(=1)""1) and we get the given list by
the formula for the {4-rank recalled above Proposition [[0.11

e The coset Wrw¢ has (4-rank 0 on the subspace spanned by the root lines of
Wr. For this we first have to describe the type of the coset, which is a consequence
of the analysis we did to show that w¢ stabilizes I. We may assume I non-empty.

Let us look first at the untwisted case. We found that wy acts trivially on Iy,
so the coset is of untwisted type A, _rq where k = L"T'HJ Since 1 +n — kd < d by
construction, this coset has (gz-rank 0.

In the twisted case, if d =0 (mod 4), the coset is W, wq¢, which since wq acts
trivially on I and ¢ acts by the non-trivial diagram automorphism, is of type
?Ap—ka where k = 21| Since n — kd = n — |2 ]d < d — 1, this coset has
Ca-rank 0.

If d is odd, the coset is Wp,,w3,¢, which since waq acts trivially on Izq and ¢
acts by the non-trivial diagram automorphism, is of type 2A,,_szq where k = L"Q—tllj
Since n —2kd =n — L”Q—tllﬂd < 2d, this coset has (4-rank 0.

Finally, if d = 2 modulo 4, the coset is Wld/Zw/d/2¢' Let k = L@J; then
Wi,,, is of type Ay _kaje- If k is even then w(’i/2 = wZﬁQ and the coset is of type
2An,kd/2. Since n — kd/2 < d/2 — 1, this coset has (g-rank 0. Finally if k is odd
w&/2¢ = (w;cd/Q(b)k. Since kd/2 is odd, we found that w;cd/QqS acts trivially on I35
so the coset is of type A,_yq/2, and has also has (4-rank 0.

e Determine the group W (we¢) (resp. W(w)) in each case, We first give V; and
the coset Cw (V1)we or Cy (Vi)w. In the untwisted case wy acts trivially on the
roots of Wr,, hence V; is spanned by these roots and Cy (V7) is generated by the
reflection with respect to the roots orthogonal to those, which gives that Cy (V1) is
of type Ayjnea)_, if d Jn and A, otherwise. In the twisted case if d = 0 (mod 4)
since wq acts trivially on the roots of Wiy, the space V; is spanned by the sums
of the orbits of the roots under ¢ which is the non-trivial automorphism of that
root system. Hence the type of the coset Cw (V1)wa¢ is 2AdL"T“J—1 if n is odd

and 2AdL"T“J if n is even. If d is odd a similar computation gives that the type

of the coset Cyy (V1)w3 ¢ is QAzdL%J—l if n is odd and 2A2dLL+le if n is even. If
2 2

d =2 (mod 4) w/ /2@ acts also by the non-trivial automorphism on W7, ,, and we
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get that the coset Cy (V1)w',,,¢ is of type 24, 241y, if n and 2ntD) | have the
d/2 | 2ntD) | d
2 d

same parity and 24, (21, otherwise.
2 d

Knowing the type of the coset in each case, we deduce the group W(w¢) (resp.

W (w)) as in the remark at the beginning of Subsection O
Type B, C=C—---(. For d even, 2 < d < 2n we define
S1 S2 s3 Sn

Vg = Spy1—dj2 - 525182 sp and Jg = {s; | 1 <i <n—d/2}.

Note that vg, is the Coxeter element s1s9---s,. Now for 1 < d < 2n, that we
require even if d > n, we define wy as follows: let kd be the largest even multiple
of d less than or equal to 2n so that k = [22] if d is even and k = 2| 2] is d is odd.

We define wg = v’,jd and Iy = Jiq.

Theorem 10.9. For W = W (B,,), d-good mazimal elements exist for odd d less
than or equal to n and even d less than or equal to 2n. A representative is wgq, with
I = I4; we have W(wq) = G(d, 1, |22]) if d is even and W (wq) = G(2d,1, [2]) if
d is odd.

Proof. We identify as usual the Weyl group of type B, with the group of signed
permutations on {1,...,n} by s; — (i — 1,i) for ¢ > 2 and s; — (1,—1). The
element vy maps to the d-cycle (or signed d/2-cycle) given by (n+1—d/2,n+2—
d/2,...,n—1,n,d/2—n—1,d/2—n—2,...,—n). This element normalizes J; and
acts trivially on the corresponding roots, so is Jgz-reduced. The same is thus true
for wg and Iy, since these properties carry to powers.

Lemma 10.10. For 0 < i < |4] we have [(v}) = %l(w}dlwo) and l(w}) =
%l(wl_dlwo).

Proof. As in Lemma [I0.7 it is sufficient to prove the lemma for vy, which we do
now. To find the length of vy we note that sysg - s, is {s2, s3, .. ., $n }-reduced so
that the lengths of s, 1_g/2---s2 and of 5153 - - - s, add, whence [(vq) = 2n —d/2.
Since I(wg) = n? and l(wys,) = (n — d/2)? we have l(wl_dlwo) = nd — d*/4, which
gives the result for ¢+ = 1. Written as permutations wq is the product of all sign

changes and wy, is the product of all sign changes on the set {1,...,n —d/2}; a

/

direct computation shows that vg % is the product of all sign changes on {n+ 1 —

d/2,...,n}, hence vgm = wl_dl wg. The lemma follows for the other values of d. [
Since v3/2 = wy, wo we have vfll = 1, so the same property is true for wy, thus
the above lemma shows that vy and wy are d-good elements.

Note also that Theorem describes all d such that W has non-zero (4-rank
since the degrees of W(B,,) are all the even integers from 2 to 2n. We prove now
the maximality property BI0(iv) for wg. If k is as in the definition of wg, the group
Wi, is a Weyl group of type B,,_1q/2 and wq acts trivially on I. Since n—kd/2 < d
the (g-rank of Wy, wq is zero on the subspace spanned by the roots corresponding
to Id.

It remains to get the type of W(wy). Since wq acts trivially on I; the space V3
of Lemma [RI4] is spanned by the root lines of W;, and Cy (V1) is spanned by the
roots orthogonal to those, so is of type Bjg/2. We then deduce the group W (wq) as
in the remark at the beginning of Subsection [[0.2] as the centralizer of a (4-regular
element in a group of type Bygq/z- O

1
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Types D,, and 2D, Q—i—@ Q 2D,, is defined by the diagram automorphism

¢ which exchanges 51 and So and ﬁxes s; for i > 2.
For d even, 2 < d < 2(n — 1) we define

pifd=2(n—-1)

Vd = Spi1-dj2 " 83525183+~ Sp and Jy = {{s 11<i<n— d/2) otherwise
3 — — .

Note that vy(,—1) is a Coxeter element. Then for 1 < d < 2(n — 1), that we require
even if d > n, we let kd be the largest even multiple of d less than 2n, so that
k= |252] if d is even and k = 2|2} | if d is odd, and define wy = v}, and
1y = Jiq.

Note that vg4, and thus wg, are ¢-stable.

Theorem 10.11. o For W = W(D,,) there exist d-good mazimal elements
for odd d less than or equal to n and even d less than or equal to 2(n—1).
When d does not divide n a representative is wq, with I = Ig; in this
case, if d is odd W(wq) = G(2d,1,[2F]) and if d is even W(wq) =
G(d, 1, L2" 2)).

If d|n a representative is wn/ where w, = $18283 -+ 58,5283 - Sp—1. In

this case I =0 and W(w n/d) G(2d,2,n/d).
o For W ¢ there exist d-good mazximal elements for odd d less than n, for even
d less than 2(n — 1) and for d = 2n. FEzcept in the case when d divides
2n and 2n/d is odd a representative is wqd, with I = Iy and W(wqp) =

G(2d, 1,21 ]) if d is odd and W (wa¢) = G(d, 1, |2%-2]) if d is even. In
)Qn/d

the excluded case a representative is (wan @ where W, = 515354+ - Sp.

In this case I = () and W ((wa,¢)*™ %) = G(d,2,2n/d).

Proof. The cases D,, with d|n or 2D,, with d|2n and 2n/d odd involve regular
elements, so are dealt with in [BM]. We thus consider only the other cases.
We identify the Weyl group of type D,, with the group of signed permutations

on {1,...,n} with an even number of sign changes, by mapping s; to (i — 1,4) for
i # 2 and sg to (1,—2)(—1,2). For d even vg maps to (1,—-1)(n+1—d/2,n+ 2 —
d/2,....,n —1,n,d/2—n—1,...,1 —n,—n). This element normalizes J;: when

Jg # 0, it exchanges the simple roots corresponding to s; and s3 and acts trivially
on the other simple roots indexed by Jy, so it is Jgz-reduced. It follows that wy
normalizes I and is I;-reduced.

Lemma 10.12. For 0 < i < |4] we have l(v}) = %l(w;dlwo) and l(wh) =
%l(w;cllwo).

Proof. As in Lemma [I0.7 it is sufficient to prove the lemma for vy. To find the
length of vy we note that sos18384 -+ - $p, 18 {83, ..., s, }-reduced so that the lengths
of 8,41-4/2---s3 and of sg5183---s, add, whence [(vq) = 2n — 1 — d/2. Since
l(wg) = n? —n and l(wy,) = (n — d/2)?> — (n — d/2), we have l(w;dlwo) =
d/2(2n — 1 — d/2). which gives the result for ¢ = 1. Written as permutations
wo = (1,-1)"(2,=2) -+ (n,—n) and wy, = (1, =1)""42(2,-2)--- (n—d/2,d/2—n);
a direct computation shows that vg/2 = (1,-1)%?(n+1-d/2,d/2—n—1) - - - (n, —n),

hence vg/ 2= w;dl wp. The lemma follows for smaller . (I
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Since vj/ 2= w;dlwo and Jy is wp stable we have v4 = 1, so the same property
follows for wy which shows that vy and wy are d-good elements.

We also note that the theorem describes all d such that the (4-rank is not zero,
since the degrees of W(D,,) are all the even integers from 2 to 2n — 2 and n, and in
the twisted case the factor associated with the degree n is -1 and the other factors
are equal to 1.

Since wy is ¢-stable the element wq¢ is also d-good.

We now check LemmaB.T0(iv), that is that the (4-rank of W, wy in the untwisted
case, resp. Wi, wq¢ in the twisted case is 0 on the subspace spanned by the roots
corresponding to I;. This property is clear if I; = (). Otherwise:

e In the untwisted case the type of the coset is D,, _pq/2 if k is even and 2Dn_kd/2
if k£ is odd, where k is as in the definition of wg. In both cases the set of values i
such that the (;-rank is not 0 consists of the even i less than 2n — kd, the odd i
less than n — kd/2 and in the twisted case (k odd) i = 2n — kd. Since if d is even
we have 2n — kd < d and if d is odd we have n — kd/2 < d, the only case where d
could be in this set is k odd and d = 2n — kd, which means that k—;rld =n. Butd
is assumed not to divide n, so this case does not happen.

e In the twisted case the type of the coset is D,,_rq/2 if k is odd and 2Dn_kd/2
if k is even. In both cases the set of values ¢ such that the (;-rank is not 0 consists
of the even i less than 2n — kd, the odd 7 less than n — kd/2 and in the twisted case
(k even) i = 2n — kd. Since if d is even we have 2n — kd < d and if d is odd we have
n — kd/2 < d, the only case where d could be in this set is k even and d = 2n — kd,
which means that (k4 1)d = 2n. But this is precisely the excluded case.

We now give Cy (V1), where V; is as in Lemma [814] in each case where I is not
empty. In the untwisted case, if d is odd the group Cw (V1) is of type DdLanlJ; if
d is even the group Cw (V1) is of type Dgjznzyy if [22-2] is odd and Dgj2n_z
if [22-2] is even. In the twisted case, if d is odd the coset Cyw (V1)w¢ is of type
2DdLanlJ+1 and if d is even the coset is of type QD%L%JH if |22-2] is even and

Dgj2n_s if [22-2 ] is odd. In all cases except if d is even and [ 2272 | is even (resp.
odd) in the untwisted case (resp. twisted case) we then deduce the group W (we)
(resp. W(w)) as in the remarks at the beginning of Subsection[I0.2land after Lemma
B4 since in these cases the centralizer of the regular element w¢ (resp. w) in the
parabolic subgroup W’ = Cy (V}) has the (known) reflection degrees of W (we)
(resp. W(w)). In the excluded cases the group Cw(w¢) or Cy(w) is isomorphic
to G(d, 2, | 2272 |) which does not have the reflection degrees of W (w¢), resp. W (w).
This means that the morphism of the remark after Lemma [B.14] is not surjective.
We can prove in this case that W (w¢) or W(w) is G(d, 1, 2%-2]) since it is an
irreducible complex reflection group by [Br2, 5.6.6] and it is the only one which
has the right reflection degrees apart from the exceptions in low rank given by
G5, Gro, G155, Gis, Gag; we can exclude these since they do not have G(d, 2, L%J)
as a reflection subgroup. (I

Types I>(n) and 2I(n). All eigenvalues ¢ such that the (-rank is non-zero are
regular, so this case can be found in [BM].

Exceptional types. Below are tables for exceptional finite Coxeter groups giving
information on d-good maximal elements for each d. They were obtained with the
GAP package Chevie (see [Chevie]): first, the conjugacy class of good (y-maximal
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elements as described in Lemma 813 was determined; then we determined I for an
element of that class, which gave I(w). The next step was to determine the elements
of the right length 2(I(wo) — I(wy))/d in that conjugacy class; this required care in
large groups like Eg. The best algorithm is to start from an element of minimal
length in the class (known by [GP]) and conjugate by Coxeter generators until all
elements of the right length are reached.

In the following tables, we give for each possible d and each possible I for that d a
representative good we¢, and give the number of possible w¢. We then describe the
coset Wiwe by giving, if I # (), in the column I the permutation induced by w¢ of
the nodes of the Coxeter diagram indexed by I. Then we describe the isomorphism
type of the complex reflection group Nw (Wrwe)/Wr = Nw(V)/Cw(V), where
V is the (4-eigenspace of w¢. Finally, in the cases where I # (), we give the
isomorphism type of W' = Cy (V;), where V; is the 1l-eigenspace of w¢ on the
subspace spanned by the root lines of I. We note that there are 3 cases where
Nw(V)/Cw: (V) < Nw(V)/Cw(V): for d=4 or 5 in E7 and for d =9 in Fg.

Hs: QiQ—O The reflection degrees are 2,6, 10.

1 2 3

d | representative w #good w Cw (w)
10 w10 = 123 4 ZlO
6 we = 32121 6 Ze
5 ’LU%O 4 ZlO
3 U)g 6 ZG
2 wo 1 H3
1 1 Hs

Hy: OiQ—Q—Q The reflection degrees are 2,12, 20, 30.
1 2 3 14

d | representative w  #good w Cyw(w)
30 ws3o = 1234 8 Zgo
20 wa0 = 432121 12 ZQQ
15 ’LU%O 8 Zgo
12 | wyp = 2121432123 22 VAP,
10 wiy or w 24 Gie
6 w3y or wiy 40 Gao
5 w§y or wip 24 Gie
4 why or Wiy 60 Gaa
3 w3 or wi, 40 Goo
2 wo 1 H4
1 . 1 H,
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2
3Dy: O—i—@ ¢ does the permutation (1,2,4). The reflection degrees are 2, 4,4, 6

1 3 4
with corresponding factors 1, (3, (3, 1.

d | representative w¢ #good wp Cyy (we)
12 wlqu = 13¢ 6 Z4
6 wﬁqS = 1243(]5 8 G4
3 wg(b 8 G4
2 ’LU()gb 1 G2
1 & 1 Go

Fy: O~ The reflection degrees are 2,6, 8,12.
i 2 3 1

d | representative w #good w Cy (w)
12 w12 = 1234 8 Z12
8 wg = 214323 14 Zg
6 w?, 16 Gs
4 wis or w3 12 Gs
3 wilQ 16 G5
2 wo 1 F4
1 . 1 Fy

2Fy: ¢ does the permutation (1,4)(2,3). The factors, in increasing order of the
degrees, are 1, —1,1, —1.

d | representative w¢ #good wo Cy (we)
24 ’LU24¢ = 12@/) 6 Z12
12| wieg = 3231¢ 10 Zs

8 (w24¢)3 12 Gg

4 (w129)3 24 G12

2 ’LU()gb 1 IQ (8)

1 ¢ 1 15(8)

ﬁ)z

Es: O—O—O—O— The reflection degrees are 2,5,6,8,9,12.
i 3 4 35 6

d | representative w F#goodw I Ny (Wrw)/Wr Cw(V4)

12 w12 = 123654 8 Z12

9 | wy = 12342654 24 Zy

8 | wg = 123436543 14 Zg

6 ’LU%Q 16 G5

5 | 24231454234565 8 (3) Zs As
12435423456543 8 (4)
12314235423654 8 (5)

4 w? or w3, 12 Gs

3 wiy or w3 80 Gos

2 wo 1 F4

1 . 1 Es
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2Fs: ¢ does the permutation (1,6)(3,5). The factors, in increasing order of the
degrees, are 1,—1,1,1,—1,1.

d | representative w¢p F#goodwep I Ny (Wiwe)/Wr Cw (Vi)we

18] wisd — 12340 24 Zs

12 w12¢ = 123654¢ 8 Zlg

10 2431543¢) 8 (3) Zs 245
5423145¢ 8 (4)
31435426 8 (5)

8 | wse = 123436543 14 Zs

6 (w156)> 80 Gas

4 (w12¢)3 12 Gg

3 whyo 16 Gs

2 wogb 1 E6

1 ¢ 1 £

2
E7: O—Q—E—Q—Q—Q The reflection degrees are 2,6,8,10,12, 14, 18.

1 3 4 5 6 7

d representative w #good w I Nw (Wrw)/Wr  Cw (V1)

18 w18 = 1234567 64 Zlg
14 w14 = 123425467 160 214
12| wio = 1342546576 8 (2,5,7) AP Eg
10 | wioe = 134254234567 8 (2,4) Z10 Dy
wiop = 243154234567 8 (3,4)
wioe = 124354265437 8 (4,5)
9 wfg 64 Zlg
8 134234542346576 14 (2)(5,7) Zs Ds
7 wﬂ 160 214
6 wig or w, 800 Gae
5 w%oa 8 (2)(4) ZlO A5
W, 8 (B3
Wi, 8 (4)(5)
4 w? or w3, 12 (2)(5)(7) Gs Dy
3 wly or wi, 800 Gae
2 wo 1 E7
1 : 1 E,




PARABOLIC DELIGNE-LUSZTIG VARIETIES. 71

2
Eys: Q—Q—i—Q—Q—Q—Q The reflection degrees are 2, 8,12, 14,18, 20, 24, 30.

1

3 4 5 6 7 8

d representative w #good w 1 Ny (Wiw) /Wi Cw (V1)
30 wgo = 12345678 128 Z30
24 woq = 1234254678 320 Zay
20 woo = 123425465478 624 Z20
18| wise = 1342542345678 16 (2,4) Zis E;
wigy = 2431542345678 16 (3,4)
wige = 1243542654378 16 (4,5)
15 wgo 128 Z30
14 | wige = 13423454234565768 128 (2) Z14 Er
wyqp = 24231454234565768 88 (3)
Wi4e = 12435423456543768 108 (4)
wi4q = 12342543654276548 68 (5)
12 w2, 2696 G1o
10 w3y or w, 3370 Gie
9 wfga 16 (2)(4) Zlg E6
wi, 16 (3)(4)
why, 16 (@)
8 wl, 7748 Gy
7 w%4a 128 (2) Zl4 E7
Wiy, 88 (3)
Wige 108 (4)
Wiy 68 ()
6 w3, or way 4480 Gso
5 wSy or wiy 3370 Gie
4 wg4 or wgo 15120 G31
3 wi or w§, 4480 Gs2
2 wo 1 Eg
1 . 1 Fg
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