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PARABOLIC DELIGNE-LUSZTIG VARIETIES.

FRANÇOIS DIGNE AND JEAN MICHEL

Abstract. Motivated by the Broué conjecture on blocks with abelian defect
groups for finite reductive groups, we study “parabolic” Deligne-Lusztig va-
rieties and construct on those which occur in the Broué conjecture an action
of a braid monoid, whose action on their ℓ-adic cohomology will conjecturally
factor trough a cyclotomic Hecke algebra. In order to construct this action,
we need to enlarge the set of varieties we consider to varieties attached to a
“ribbon category”; this category has a Garside family, which plays an impor-
tant role in our constructions, so we devote the first part of our paper to the
necessary background on categories with Garside families.

1. Introduction

In this paper, we study “parabolic” Deligne-Lusztig varieties, one of the main
motivations being the Broué conjecture on blocks with abelian defect groups for
finite reductive groups.

Let G be a connected reductive algebraic group over an algebraic closure Fp of
the prime field Fp of characteristic p. Let F be an isogeny on G such that some
power F δ is a Frobenius endomorphism attached to a split structure over the finite
field Fqδ ; this defines a real number q such that qδ is an integral power of p. When

G is quasi-simple, any isogeny F such that the group of fixed points GF is finite is
of the above form; such a group GF is called a “finite reductive group” or a “finite
group of Lie type”.

Let L be an F -stable Levi subgroup of a (non necessarily F -stable) parabolic
subgroup P of G. Then, for ℓ a prime number different from p, Lusztig has con-
structed a “cohomological induction” RG

L which associates to any QℓL
F -module a

virtual QℓG
F -module. We study the particular case RG

L (Id), which is given by the
alternating sum of the ℓ-adic cohomology groups of the variety

XP = {gP ∈ G/P | gP ∩ F (gP) 6= ∅}
on which GF acts on the left. We will construct a monoid of endomorphisms M
of XP related to the braid group, which conjecturally will induce in some cases a
cyclotomic Hecke algebra on the cohomology of XP. To construct M we need to
enlarge the set of varieties we consider, to include varieties attached to morphisms
in a “ribbon category” — the “parabolic Deligne-Lusztig varieties” of this paper;
M corresponds to the endomorphisms in the “conjugacy category” of this ribbon
category of the object attached to XP.

The relationship with Broué’s conjecture for the principal block comes as follows:
assume, for some prime number ℓ 6= p, that the ℓ-Sylow S of GF is abelian. Then
Broué’s conjecture predicts in this special case an equivalence of derived categories

This work was partially supported by the “Agence Nationale pour la Recherche” project
“Théories de Garside” (number ANR-08-BLAN-0269-03).
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2 F. DIGNE AND J. MICHEL

between the principal block of ZℓG
F and that of ZℓNGF (S). Now L := CG(S) is a

Levi subgroup of a (non F -stable unless ℓ|q − 1) parabolic subgroup P; restricting
to unipotent characters and discarding an eventual torsion by changing coefficients
from Zℓ to Qℓ, this translates into conjectures about the cohomology of XP, see
10.1; these conjectures predict in particular that the image in the cohomology of
our monoid M is a cyclotomic Hecke algebra.

The main feature of the ribbon categories we consider is that they have Garside
families. This concept has appeared in recent work to understand the ordinary
and dual monoids attached to the braid groups; in the first part of this paper, we
recall its basic properties and go as far as computing the centralizers of “periodic
elements”, which is what we need in the applications.

In the second part, we first define the parabolic Deligne-Lusztig varieties which
are the aim of our study, and then go on to establish their properties. We extend
to this setting in particular all the material in [BM] and [BR2].

We thank Cédric Bonnafé and Raphaël Rouquier for discussions and an initial
input which started this work, and Olivier Dudas for some useful remarks.

After this paper was written, we received a preprint from Xuhua He and Sian
Nie (see [HN]) where, amidst other interesting results, they also prove Theorem 9.1
and Corollary 9.3.

I. Garside families

This part collects some prerequisites on categories with Garside families. It is
mostly self-contained apart from the next section where the proofs are omitted; we
refer for them to the book [DDGKM] to appear.

2. Basic results on Garside families

Given a category C, we write f ∈ C to say that f is a morphism of C, and
C(x, y) for the set of morphisms from x ∈ ObjC to y ∈ ObjC. We write fg for
the composition of f ∈ C(x, y) and g ∈ C(y, z), and C(x) for C(x, x). By S ⊂ C we
mean that S is a set of morphisms in C.

All the categories we consider will be left-cancellative, that is a relation hf =
hg implies f = g, and right-cancellative, so f = g is also implied by fh = gh;
equivalently every morphism is a monomorphism and an epimorphism. We say
that f left divides g, written f 4 g, if there exists h such that g = fh. Similarly
we say that f right divides g and write g < f if there exists h such that g = hf .

We denote by C× the set of invertible morphisms of C, and write f =× g if there
exists h ∈ C× such that fh = g (or equivalently there exists h ∈ C× such that
f = gh).

Definition 2.1. A Garside family in C is a subset S ⊂ C such that;

• S together with C× generates C.
• C×S ⊂ SC× ∪ C×.
• For every product fg with f, g ∈ S − C×, either fg ∈ SC× in which case
we say that the 1-term sequence (fg) is the S-normal decomposition of fg,
or we have fg = f1g1, where f1 ∈ S, g1 ∈ SC× − C× are such that any
relation h 4 kf1g1 with h ∈ S implies h 4 kf1; in this case we say that
the 2-term sequence (f1, g1) is an S-normal decomposition of fg.
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We extend S-normal decompositions to longer lengths by saying that (x1, . . . , xn)
is an S-normal decomposition of x = x1 . . . xn if for each i the sequence (xi, xi+1)
is an S-normal decomposition. In a category with a Garside family every non-
invertible element x admits an S-normal decomposition. We will just say “normal
decomposition” if S is clear from the context. Normal decompositions are unique
up to invertibles, precisely

Lemma 2.2. If (x1, . . . , xn) and (x′1, . . . , x
′
n′) are two normal decompositions of x

then n = n′ and for any i we have x1 . . . xi =
× x′1 . . . x

′
i.

Head functions. We have the following criterion to be Garside:

Proposition 2.3. Let S ⊂ C together with C× generate C, and let H be a function

C − C× H−→ S. Consider the following properties

(i) ∀g ∈ C − C×, H(g) 4 g.
(ii) ∀g ∈ C − C×, ∀h ∈ S, h 4 g ⇒ h 4 H(g).
(iii) ∀f ∈ C, ∀g ∈ C − C×, H(fg) =× H(fH(g)).
(iv) SC× ∪ C× is closed under right-divisor.

Then S is Garside if (i), (ii), (iii) hold for some H, or if (i) and (ii) hold for some
H, and (iv) holds. Conversely if S is Garside then (iv) holds and there exists H
satisfying (i) to (iii) above; such a function is called an S-head function.

An S-head function H computes the first term of a normal decomposition in the
sense that if (x1, . . . , xn) is a normal decomposition of x then H(x) =× x1.

For f ∈ C we define lgS(f) to be the minimum number k of morphisms s1, . . . , sk ∈
S such that s1 . . . sk =× f , thus lgS(f) = 0 if f ∈ C×; if f /∈ C× then lgS(f) is
also the number of terms in a normal decomposition of f . We have the following
property:

Lemma 2.4. Let H be an S-head function, and for x ∈ C −C× let x′ be defined by
x = H(x)x′. Then lgS(x

′) < lgS(x).

The following shows that S “determines” C up to invertibles; we say that a subset
C1 of C is closed under right quotient if an equality f = gh with f, g ∈ C1 implies
h ∈ C1.
Lemma 2.5. Let S be a Garside family in C. Let C1 be a subcategory of C closed
under right-quotient which contains S. Then C = C1C× and S is a Garside family
in C1.
Categories with automorphism. Most categories we want to consider will have
no non-trivial invertible element, which simplifies Definition 2.1. The only source
of invertible elements will be the following construction.

An automorphism of a category C is a functor F : C → C which has an inverse.
Given an automorphism F of finite order of the category C, we define

Definition 2.6. The semi-direct product category C ⋊ 〈F 〉 is the category whose
objects are the objects of C and whose morphisms with source x are the pairs (g, F i),
which will be denoted by gF i, where g is a morphism of C with source x and i
is an integer. The target of this morphism is F−i(target(g)), where target(g) is
the target of g. The composition rule is given by gF i · hF j = gF i(h)F i+j when
source(h) = F−i(target(g)).
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The conventions on F are such that the composition rule is natural. However,
they imply that the morphism F of the semi-direct product category represents the
functor F−1: it is a morphism from the object F (A) to the object A and we have
the commutative diagram:

F (A)
F (f) //

F

��

F (B)

F

��
A

f // B

When C has Garside family S, we call Garside automorphism of (C,S), an
automorphism F which preserves SC×.

Lemma 2.7. If S is a Garside family in C, and F a Garside automorphism of
(C,S), then S is also a Garside family in C ⋊ 〈F 〉.

If (f1, . . . fk) is an S-normal decomposition of f ∈ C then (f1, . . . , fkF
i) is an S-

normal decomposition of fF i ∈ C⋊ 〈F 〉. Note that if C has no non-trivial invertible
element, then the only invertibles in C ⋊ 〈F 〉 are {F i}i∈Z. In general, if a, b ∈ C
then aF i 4 bF j if and only if a 4 b.

We have the following property

Proposition 2.8. Assume that C has a Garside family S and has no non-trivial
invertible morphisms. Left F be a Garside automorphism of C. Then the subcate-
gory of fixed objects and morphisms CF has a Garside family which consists of the
fixed points SF .
Gcds and lcms, Noetherianity. The existence of gcds and lcms are related when
C is right-Noetherian, which means that there is no infinite sequence f0 < f1 . . . <
fn < . . . where fi+1 is a proper right divisor of fi, that is we do not have fi =

× fi+1.
It means equivalently since C is left cancellative that there is no infinite sequence
f0 4 f1 . . . 4 fn 4 . . . 4 f where fi is a proper left divisor of fi+1.

We say that C admits local right lcms if, whenever f and g have a common right
multiple, they have a right lcm. We then have:

Proposition 2.9. If C is right Noetherian and admits local right lcms, then any
family of morphisms of C with the same source has a left gcd.

Here is a more general situation when a Garside family of a subcategory can be
determined. If C admits local right lcms we say that a subset X ⊂ C is closed under
right lcm if whenever two elements of X have a right lcm in C this lcm is in X .

Lemma 2.10. Let S be a Garside family in C assumed right-Noetherian and having
local right lcms. Let S1 ⊂ S be a subfamily such that S1C× is as a subset of
SC× closed under right-lcm and right-quotient; then S1 is a Garside family in the
subcategory C1 generated by S1C×. Moreover C1 is a subcategory closed under right-
quotient.

The following lemma about Noetherian categories will also be useful:

Lemma 2.11. Let C be a category and S be a set of morphisms which generates
C. Let X be a set of morphisms of C with same source satisfying

(i) X is closed under left divisor and X = XC×.
(ii) X is a bounded and right Noetherian poset.
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(iii) If f ∈ X, g, h ∈ S and fg, fh ∈ X then g and h have a common right-
multiple m such that fm ∈ X.

Then X is the set of left-divisors of some morphism of C.

Garside maps. An important special case is when S is attached to a Garside map.

A Garside map is a map Obj C ∆−→ C where ∆(x) ∈ C(x,−) such that SC× ∪ C× is
the set of left divisors of ∆. Since by Proposition 2.3(iv) the set SC× ∪C× is stable
by right divisor, it is also the set of right divisors of ∆.

This allows to define a functor Φ, first on objects by taking for Φ(x) the target
of ∆(x), then on morphisms, first on morphisms s ∈ S by, if s ∈ C(x,−) defining
s′ by ss′ = ∆ (we omit the source of ∆ if it is clear from the context) and then
Φ(s) by s′Φ(s) = ∆. We then extend ∆ by using normal decompositions; it can
be shown that this is well-defined and defines a functor such that for any f ∈ C we
have f∆ = ∆Φ(f). It can also be shown that the right-cancellativity of C implies
that Φ is an automorphism.

The automorphism Φ is a typical example of a Garside automorphism that we
will call the canonical Garside automorphism.

If S is attached to a Garside map, we then have the following properties:

Proposition 2.12. (i) If f 4 g then lgS(f) ≤ lgS(g).
(ii) Assume f, g, h ∈ S and (f, g) is S-normal; then lgS(fgh) ≤ 2 implies

gh ∈ SC×.

We will write ∆p for the map which associates to an object x the morphism
∆(x)∆(Φ(x)) . . .∆(Φp−1(x)). For any f ∈ C(x,−) there exists p such that f 4

∆p(x).

Example 2.13. An example of a category with a Garside family is a Garside
monoid, which is just the case where C has one object. In this case we will say
Garside element instead of Garside map. A classical example is given by the Artin
monoid (B+,S) associated to a Coxeter system (W,S). Then B+ is left and right-
cancellative, Noetherian, admits local left-lcms and right-lcms and has a Garside
family, the canonical lift W of W in B+, which consists of the elements whose
length with respect to S is equal to the length with respect to S of their image in
W . The Garside family W is attached to a Garside element if and only if W is
finite. In this case the Garside element is the lift in W of the longest element of
W .

3. The conjugacy category

The context for this section is a left and right-cancellative category C.
Definition 3.1. Given a category C, we define the conjugacy category Ad C of C
as the category whose objects are the endomorphisms of C and where, for w ∈ C(A)
and w′ ∈ C(B) we set Ad C(w,w′) = {x ∈ C(A,B) | xw′ = wx}. We say that x
conjugates w to w′ and call centralizer of w the set Ad C(w). The composition of
morphisms in Ad C is given by the composition in C, which is compatible with the
defining relation for Ad C.

Note that the definition of Ad C(w,w′) is what forces the objects of Ad C to be
endomorphisms of C.
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Since C is left-cancellative, the data x and w determine w′ (resp. since C is right-
cancellative x and w′ determine w). This allows us to write wx for w′ (resp. xw′ for
w); this illustrates that our category Ad C is a right conjugacy category; we could
call left conjugacy category the opposed category.

A proper name for an element of Ad C(w,w′) should be a triple w
x−→ w′, since

x by itself does specify neither its source w nor its target w′, but we will use
just x when the context makes clear which source w is meant (or which target is

meant). The functor I which sends w ∈ Obj(Ad C) to source(w) and w
x−→ w′ to

x is faithful, though not injective on objects. The faithfulness of I allows us to
identify Ad C(w,−) to the subset {x ∈ C(source(w),−) | x 4 wx} (resp. identify
Ad C(−, w) to the subset {x ∈ C(−, source(w)) | xw < x}).

It follows that the category Ad C inherits automatically from C properties such as
cancellativity or Noetherianity. The functor I maps (Ad C)× surjectively to C×, so
in particular the subset Ad C(w,−) of C(source(w),−) is closed under multiplication
by C×. In the proofs and statements which follow we identify Ad C to a subset of
C and (Ad C)× to C×; for the statements obtained about Ad C to make sense, the
reader has to check that the sources and target of morphisms viewed as morphisms
in Ad C make sense.

Lemma 3.2. • The subset Ad C of C is closed under right-quotient, that is
if we have an equality y = xz where y ∈ Ad C(w,w′), x ∈ Ad C(w,−) and
z ∈ C(−, source(w′)), then z ∈ Ad C(−, w′).

• The subset Ad C(w,−) of C(source(w),−) is closed under right-lcm, in the
sense that if x, y ∈ Ad C(w,−) have a right-lcm in C(source(w),−) then
this right-lcm is in Ad C(w,−) and is a right-lcm of x and y in Ad C. In
particular if C admits local right-lcms then so does Ad C.

Similarly Ad C(−, w) is a subset of C(−, source(w)) closed under left-lcm and
left-quotient.

Proof. We show the stability by right-quotient. If y, x, z are as in the statement,
we have x 4 wx and yw′ = wy. By cancellation, let us define w′′ by xw′′ = wx.
Then from xz = y 4 wy = wxz = xw′′z we deduce by cancellation that z 4 w′′z,
so z ∈ Ad C(w,w1) where zw1 = w′′z. Now since y = xz the equality yw′ = wy
gives xzw′ = wxz = xw′′z = xzw1 which shows by cancellation that w1 = w′.

We now show stability by right-lcm. x, y ∈ Ad C(w,−) means that x 4 wx
and y 4 wy. Suppose now that x and y have a right-lcm z in C. Then x 4 wz
and y 4 wz from which it follows that z 4 wz, that is z ∈ Ad C(w,−), and z is
necessarily the image of a right-lcm of x and y in Ad C.

The proof of the second part is just a mirror symmetry of the above proof. �

Proposition 3.3. Assume that S is a Garside family in C; then Ad C ∩ S is a
Garside family in Ad C and S-normal decompositions of an element of Ad C are
Ad C ∩ S-normal decompositions.

Proof. We will use Proposition 2.3 by showing that (Ad C ∩S)∪C× generates Ad C
and exhibiting a function H : Ad C − C× → Ad C ∩ S which satisfies Proposition
2.3(i), (ii) and (iii).

Let H be a S-head function in C. We first show that the restriction of H to
Ad C takes its values in Ad C ∩ S. Indeed if x 4 wx then H(x) 4 H(wx) =×

H(wH(x)) 4 wH(x).
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We now deduce by induction on lgS that (Ad C ∩ S) ∪ C× generates Ad C. If
x ∈ Ad C is such that lgS(x) = 1 then x = sε with s ∈ S and ε ∈ C×. Since Ad C is
closed under multiplication by C× we have s ∈ Ad C ∩S, whence x ∈ (Ad C ∩S)C×.
Assume now that x ∈ Ad C is such that lgS(x) = n and define x′ by x = H(x)x′.
Since we know that H(x) ∈ Ad C, we deduce by Lemma 3.2 that x′ ∈ Ad C; by
Lemma 2.4 we have lgS(x

′) < n, whence the result.
It is obvious that the restriction of H to Ad C − C× still has properties (i), (ii),

(iii) of Proposition 2.3 thus is a head function, which proves that Ad C ∩ S is a
Garside family. The assertion about normal decompositions follows. �

Simultaneous conjugacy. A straightforward generalization of conjugacy cate-
gories is “simultaneous conjugation categories”, where objects are families of mor-
phisms w1, . . . , wn with same source and target, and morphisms verify x 4 wix for
all i. Most statements have a straightforward generalization to this case.

F -conjugacy. We want to consider “twisted conjugation” by an automorphism,
which will be useful for applications to Deligne-Lusztig varieties, but also for in-
ternal applications, with the automorphism being the one induced by a Garside
map.

Definition 3.4. Let F be an automorphism of the category C. We define the F -
conjugacy category of C, denoted by F -Ad C, as the category whose objects are
the morphisms in some C(A,F (A)) and where, for w ∈ C(A,F (A)) and w′ ∈
C(B,F (B)) we set F -Ad C(w,w′) = {x ∈ C | xw′ = wF (x)}. We say that x
F -conjugates w to w′ and we call F -centralizer of a morphism w of C the set
F -Ad C(w).

Note that F -conjugacy specializes to conjugacy when F = Id and that the F -
centralizer of x is empty unless x ∈ C(A,F (A)) for some object A.

We explore now how these notions relate to conjugation in a semi-direct product
category.

• Consider the application which sends w ∈ C(A,F (A)) ⊂ Obj(F -Ad C)
to wF ∈ (C ⋊ 〈F 〉)(A) ⊂ Obj(Ad(C ⋊ 〈F 〉)). Since x(w′F ) = (wF )x is
equivalent to xw′ = wF (x), this extends to a functor J from F - Ad C to
Ad(C ⋊ 〈F 〉). This functor is clearly an isomorphism onto its image.

The image J(Obj(F - Ad C)) is the subset of C ⋊ 〈F 〉 which consists of endomor-
phisms which lie in CF ; and J(F - Ad C) identifies via I to the subset of C ⋊ 〈F 〉
whose elements are both in Ad(C ⋊ 〈F 〉) and in C.

As in Ad(C⋊ 〈F 〉) there is no morphism between two objects which do not have
the same power of F , the full subcategory that we will denote Ad(CF ) of Ad(C⋊〈F 〉)
whose objects are in CF is a union of connected components of Ad(C ⋊ 〈F 〉); thus
many properties will transfer automatically from Ad(C ⋊ 〈F 〉) to Ad(CF ).

In particular, if C has a Garside family S and F is a Garside automorphism,
then S is still a Garside family for C ⋊ 〈F 〉 by 2.7, and by Proposition 3.3 and the
above gives rise to a Garside family S ∩Ad(CF ) of Ad(CF ). The image of J is the
subcategory of Ad(CF ) consisting (via I) of the morphisms in C, thus satisfies the
assumptions of Lemma 2.5: it is closed under right quotient, because in a relation
fg = h if f and h do not involve F the same must be true for g, and contains the
Garside family S ∩ Ad(CF ) of Ad(CF ).
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This will allow to generally translate statements about conjugacy categories to
statements about F -conjugacy categories. For example, J−1(S ∩ Ad(CF )) is a
Garside family for F -Ad C; this last family is just F - Ad C ∩ S when identifying
F -Ad C to a subset of C.

If F has finite order, since (xF )x = Fx = (xF )F
−1

two morphisms in CF are
conjugate in C ⋊ 〈F 〉 if and only if they are conjugate by a morphism of C.

4. The cyclic conjugacy category

A restricted form of conjugation called “cyclic conjugacy” will be important in
applications. In particular, it turns out (a particular case of Proposition 4.5) that
two periodic braids are conjugate if and only if they are cyclically conjugate.

Definition 4.1. We define the cyclic conjugacy category cyc C of C as the subcat-
egory of Ad C generated by {x ∈ Ad C(w,w′) | x 4 w}.

That is, cyc C has the same objects as Ad C but contains only the products of

elementary conjugations of the form w = xy
x−→ yx = w′. Note that since C is left-

and right-cancellative, then ∪w{x ∈ Ad C(w,w′) | x 4 w} = ∪w{x ∈ Ad C(w,w′) |
w′ < x} so cyclic conjugacy “from the left” and “from the right” are the same. To
be more precise, the functor which is the identity on objects, and when w = xy and
w′ = yx, sends x ∈ cyc C(w,w′) to y ∈ cyc C(w′, w), is an isomorphism between
cyc C and its opposed category.

Proposition 4.2. Assume C is right-Noetherian and admits local right-lcms; if S
is a Garside family in C then the set S1 = ∪w{x ∈ Ad C(w,−) | x 4 w and x ∈ S}
is a Garside family in cyc C.
Proof. We first observe that S1C× generates cyc C. Indeed if x 4 w and we choose
a decomposition x = s1 . . . sn as a product of morphisms in SC× it is clear that
each si is in cyc C, so is in S1.

The proposition then results from Lemma 2.10, which applies to cyc C since S1C×

is closed under right-divisor and right-lcm; this is obvious for right-divisor and for
right-lcm results from the facts that S, being a Garside family, is closed under
right-lcm and that a right-lcm of two divisors of w is a divisor of w. �

We also see by Lemma 2.10 that cyc C is closed under right-quotient in Ad C.
We now prove that independently of the choice of a Garside family S in C the

category cyc C has a natural Garside family defined by a Garside map; this Garside
family is usually larger than the Garside family S1 of Proposition 4.2, since it
contains all left divisors of w even if w is not in S.
Proposition 4.3. Assume C is right Noetherian and admits local right-lcms; then
the set S ′ = ∪w{x ∈ Ad C(w,−) | x 4 w} is a Garside family in cyc C attached
to the Garside map ∆ such that ∆(w) = w ∈ cyc C(w); the corresponding Garside
automorphism Φ is the identity functor.

Proof. The set S ′ generates cyc C by definition of cyc C. It is closed under right-
divisors since xy 4 w implies x 4 w so that wx is defined and y 4 wx; since C is
right Noetherian and admits local right-lcms, any two morphisms of C with same
source have a gcd by Proposition 2.9. We define a function H : cyc C → S ′ by
letting H(x) be an arbitrarily chosen left-gcd of x and w if x ∈ cyc C(w,−). Since
cyc C is closed under right-divisor, the restriction of H to non invertible elements
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satisfies properties Proposition 2.3 (i), (ii) and (iv), so S ′ is a Garside family for
cyc C. The set of morphisms in S ′ with source w has w as a lcm. Moreover if
v is a right-divisor of ∆(w) = w in cyc C, which defines v′ such that w = v′v,
then v′ ∈ cyc C(w, vv′) thus the source of v is vv′ and v divides vv′, so v ∈ S ′; all
conditions of Proposition 2.3 are fulfilled, and ∆ is a Garside map since S ′(w,−)
is the set of left divisors of ∆(w). The equation xwx = wx shows that Φ is the
identity. �

Proposition 4.4. Assume C is right-Noetherian and admits local right-lcms; then
the subcategory cyc C of Ad C is closed under left-gcd (that is, a gcd in Ad C of two
morphisms in cyc C is in cyc C).
Proof. Let (x1, . . . , xn) and (y1, . . . , ym) be S ′-normal decompositions respectively
of x ∈ cyc C(w,−) and y ∈ cyc C(w,−) where S ′ is as in Proposition 4.3.

We first prove that if gcd(x1, y1) =× 1 then gcd(x, y) =× 1 (here we consider
left-gcds in Ad C). We proceed by induction on inf{m,n}. We write ∆ for ∆(w)
when there is no ambiguity on the source w. We have that gcd(x, y) divides

gcd(x1 . . . xn−1∆, y1 . . . ym−1∆) =× gcd(∆x1 . . . xn−1,∆y1 . . . ym−1)

=× ∆gcd(x1 . . . xn−1, y1 . . . ym−1) =
× ∆ = w,

where the first equality uses that Φ is the identity and the one before last results
from the induction hypothesis. So we get that gcd(x, y) divides w in Ad C, so
gcd(x, y) ∈ S ′; thus gcd(x, y) divides x1 and y1, so is trivial.

We now prove the proposition. If gcd(x1, y1) =
× 1 then gcd(x, y) =× 1 thus is in

cyc C and we are done. Otherwise let d1 be a gcd of x1 and y1 and let x(1), y(1) be
defined by x = d1x

(1), y = d1y
(1). Similarly let d2 be a gcd of the first terms of a

normal decomposition of x(1), y(1) and let x(2), y(2) be the remainders, etc. . . Since
C is right-Noetherian the sequence d1, d1d2, . . . of increasing divisors of x must
stabilize at some stage k, which means that the corresponding remainders x(k) and
y(k) have first terms of their normal decomposition coprime, so by the first part are
themselves coprime. Thus gcd(x, y) =× d1 . . . dk ∈ cyc C. �

We now give a quite general context where cyclic conjugacy is the same as
conjugacy.

Proposition 4.5. Let C be a right Noetherian category with a Garside map ∆, and
let x be an endomorphism of C such that for n large enough we have ∆ 4 xn. Then
for any y we have cyc C(x, y) = Ad C(x, y).
Proof. We first show that the property ∆ 4 xn is stable by conjugacy (up to
changing n). Indeed, if u ∈ Ad C(x,−) then there exists k such that u 4 ∆k. Then
(xu)n(k+1) = (xn(k+1))u = (u−1xn(k+1))u is divisible by ∆ since ∆k+1 4 xn(k+1).

It follows that it is sufficient to prove that if f ∈ Ad C(x, y), f /∈ C×, then
gcd(f, x) /∈ C×. Indeed write f = uf1 where u = gcd(f, x) then since u ∈
cyc C(x, xu) it is sufficient to prove that f1 ∈ Ad C(xu, y) is actually in cyc C(xu, y),
which we do by induction since C is Noetherian and xu still satisfies the same
condition.

Since as observed any u ∈ Ad C(x,−) divides some power of x (xnk if u 4 ∆k) it
is enough to show that if u ∈ Ad C(x,−), u /∈ C× and u 4 xn, then gcd(u, x) /∈ C×.
We do this by induction on n. From u ∈ Ad C(x,−) we have u 4 xu, and from
u 4 xn we deduce u 4 x gcd(u, xn−1). If gcd(u, xn−1) ∈ C× then u 4 x and we are
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done: gcd(x, u) = u. Otherwise let u1 = gcd(u, xn−1). We have u1 4 xu1, u1 /∈ C×

and u1 4 xn−1 thus we are done by induction. �

The F -cyclic conjugacy. Let F be a finite order automorphism of the category C.
We define F - cyc C as the subcategory of F -Ad C generated by {x ∈ F -Ad C(w,w′) |
x 4 w}, or equivalently, since C is left- and right-cancellative, by {x ∈ Ad C(w,w′) |
w′ < F (x)}. By the functor J , the morphisms in F - cyc C(w,w′) identify to the
morphisms in cyc(C ⋊ 〈F 〉)(wF,w′F ) which lie in C. To simplify notation, we will
denote by cyc C(wF,w′F ) this last set of morphisms. If C is right-Noetherian and
admits local right-lcms, then C ⋊ 〈F 〉 also. If S is a Garside family in C and F
is a Garside automorphism, and we translate Proposition 4.2 to the image of J
and then to F - cyc C, we get that ∪w{x ∈ F -Ad C(w,−) | x 4 w and x ∈ S} is a
Garside family in F - cyc C.

Similarly Proposition 4.3 says that the set ∪w{x ∈ F - Ad C(w,−) | x 4 w} is a
Garside family in F - cyc C attached to the Garside map ∆ which sends the object
w to the morphism w ∈ F - cyc C(w,F (w)); the associated Garside automorphism
is the functor F .

Finally Proposition 4.4 says that under the assumptions of Proposition 4.3 the
subcategory F - cyc C of F - Ad C is closed under left-gcd.

5. An example: ribbon categories

In the context of an Artin monoid (B+,S) (see Example 2.13) we want to study
the conjugates and the normalizer of a parabolic submonoid (the submonoid gen-
erated by a subset of the atoms S). The “ribbon” category that we consider in this
section occurs in the work of Paris [Pa] and Godelle [G] on this topic. In Section
8 we will attach parabolic Deligne-Lusztig varieties to the morphisms of the rib-
bon category and endomorphisms of these varieties to morphisms in the conjugacy
category of this ribbon category.

Since most results work in the more general situation of a Garside monoid and
a parabolic submonoid we will place ourselves in this context.

Definition 5.1. Let M be a (cancellative) right-Noetherian monoid which admits
local right lcm’s. We say that a submonoid M ′ is parabolic if it is closed by left-
divisor and right-lcm.

Lemma 5.2. The above assumption is satisfied when we take for M an Artin
monoid B+ and for M ′ the “parabolic” submonoid B+

I generated by I ⊂ S.

Proof. We first show that B+
I is closed by left-divisors. Since both sides of each

defining relation for B+ involve the same generators, two equivalent words involve
the same generators. Hence if xy = z with z ∈ B+

I then x has an expression

involving only elements in I so is in B+
I . This implies also that if two elements have

a right-lcm δ in B+
I , then δ is divisible by their right-lcm in B+, so has to be equal

to that right lcm. It remains to show that two elements which have a common
multiple in B+ have a common multiple (hence a right-lcm) in B+

I . Taking heads
we see that it is sufficient to prove that two elements of WI which have a common
right-multiple in W have a common multiple in WI. This is true since any element
of W can be written uniquely as vw with v ∈ WI and w not divisible by any
element of I . �
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In the rest of this section we fix a cancellative right-Noetherian monoidM which
admits local right lcms and a Garside family S in M .

Lemma 5.3. Let M ′ be a parabolic submonoid of M . Then any u ∈ M has a
maximal left-divisor αM ′(u) in M ′.

Proof. The set X = {x ∈ M ′ | x 4 u} is a subset of M ′ which satisfies the
assumptions of Lemma 2.11: it is closed under left-divisor, it is right-Noetherian
and if xg and xh are in X with g, h ∈ M ′, then lcm(g, h) exists, since g and h
left-divide x−1u, hence x lcm(g, h) is in X since it divides u and lcm(g, h) ∈ M ′.
Thus X is the set of divisors of some morphism αM ′ (u). �

Lemma 5.4. Let M ′ be a parabolic submonoid of M and S be a Garside family in
M ; assume that S ′ = S ∩M ′ together with M ′× generates M ′, then S ′ is a Garside
family in M ′.

Proof. Let H be an S-head function in M . Since M ′ is closed under left-divisor,
for g ∈M ′ −{1} we have H(g) ∈ S ′. It is then straightforward that the restriction
of H to M ′ −{1} satisfies properties (i), (ii) and (iii) of 2.3, whence the result. �

The simultaneous conjugacy category. We now consider a submonoid of M
generated by a subset of the atoms. Let S be the set of atoms of M ; for I ⊂ S we
denote by MI the submonoid generated by I.

Assumption 5.5. We assume that for s ∈ S any conjugate t in M of s is in S

(that is, if sf = ft with f and t in M then t ∈ S).

The above assumption is automatic if M has homogeneous relations, or equiv-
alently has an additive length function with atoms of length 1. This is clearly the
case for Artin monoids.

Under this assumption a conjugate of a subset of S is a subset of S. In the
following we fix an orbit I under conjugacy of subsets of S and we make the
following assumption:

Assumption 5.6. For any I ∈ I the monoid MI is parabolic.

Let Ad(M, I) be the connected component of the simultaneous conjugacy cat-
egory of M whose objects are the elements of I. A morphism in Ad(M, I) with
source I ∈ I is a b ∈ M such that for each s ∈ I we have sb ∈ M , which by
Assumption 5.5 implies sb ∈ S. We denote such a morphism in Ad(M, I)(I,J) by

I
b−→ J where J = {sb | b ∈ I}, and in this situation we write J = Ib.

By Proposition 3.3 the set {I b−→ Ib | b ∈ S} is a Garside family in Ad(M, I).

The ribbon category. In our context we will just write αI for αMI
and denote

by ωI(b) the element defined by b = αI(b)ωI(b). We say that b ∈M is I-reduced
if it is left-divisible by no element of I, or equivalently if αI(b) = 1.

Definition 5.7. We define the ribbon categoryM(I) as the subcategory of Ad(M, I)
obtained by restricting the morphisms to the I

b−→ J such that b is I-reduced.

That the above class of morphisms is stable by composition is the object of (ii)
in the next proposition; and (i) is a motivation for restricting to the I-reduced
morphisms by showing that we “lose nothing” in doing so.
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Proposition 5.8. (i) (I
b−→ J) ∈ Ad(M, I) if and only if (I

αI(b)−−−→ I) ∈
Ad(M, I) and (I

ωI(b)−−−→ J) ∈M(I).
(ii) If (I

b−→ J) ∈ Ad(M, I) then for any b′ ∈ M we have αJ(b
′) = αI(bb

′)b.

In particular if (I
b−→ J) ∈ M(I) and (J

b′

−→ K) ∈ Ad(M, I) then (I
bb′

−−→
K) ∈M(I) if and only if (J

b′

−→ K) ∈M(I).
(iii) Let I

b−→ J and I
b′

−→ J′ be two morphisms of Ad(M, I) and let I
c−→ Ic

be their right lcm which by Lemma 3.2 exists and is obtained for c the
right-lcm in M of b and b′; then if b and b′ are I-reduced, then c is also.

Proof. Let us prove (i). We prove by induction on the length of b that if s ∈ I

and sb ∈ M then sαI(b) ∈ I. This will prove (i) in one direction. The converse is
obvious.

By Assumption 5.5 we have sb = bt for some t ∈ S. If s 4 b we write b = sb′

so that sb′ = b′t. We have αI(b) = sαI(b
′) and we are done by induction. If s

does not divide b then the lcm of s and αI(b) divide sb = bt and this lcm can be
written sv = αI(b)u, with v and u in MI since MI is closed by right-lcm. We get
then that v divides b, so divides αI(b); thus αI(b)u = vau for some a ∈ M . By
Assumption 5.5 we have that au ∈ S, thus a = 1 and u ∈ S, hence u ∈ I which is
the result.

Let us prove (ii). For s ∈ I let s′ = sb ∈ J. Assume first that s 64 b. Then
bs′ = sb is a common multiple of s and b which has to be their lcm since s′ is
an atom. So for s ∈ I we have s 4 bb′ if and only if bs′ 4 bb′, that is, sb 4 b′

whence the result. Now if s 4 b we write b = skb1 with s 64 b1; we have s′ = sb1

and the above proof, with b1 instead of b, applies.
To prove (iii) we will actually show the stronger statement that if for b, c ∈ M

we have b 4 c, Ib ⊂ S then αI(b) 4 αI(c) (which is obvious) and ωI(b) 4 ωI(c)
(then in the situation of (iii) we get that ωI(c) is a common multiple of b and b′,
thus c 4 ωI(c), which is impossible unless αI(c) = 1). By dividing b and c by αI(b)
we may as well assume that αI(b) = 1 since IωI(b) ⊂ S by (i). We write c = bb1

and J = Ib. By (ii) we have αI(c)
b = αJ(b1), whence αI(c)b = bαJ(b1) 4 bb1 =

c = αI(c)ωI(c). Left-canceling αI(c) we get b 4 ωI(c) which is what we want since
b = ωI(b). �

Note that by Proposition 5.8(i) a morphism in M(I) with source I is the same
as an element b ∈M such that αI(b) = 1 and for each s ∈ I we have sb ∈M . We
will thus sometimes just denote by b such a morphism in M(I) when the context
makes its source clear.

Next proposition shows that S ∩M(I) generates M(I).
Proposition 5.9. All the terms of the normal decomposition in Ad(M, I) of a
morphism of M(I) are in M(I).

Proof. Let (I
b−→ J) ∈ M(I) and let b = w1 . . .wk be its normal decomposition

in Ad(M, I) (it is also the normal decomposition in M by Proposition 3.3). As
wi ∈ Ad(M, I), the source of wi is Ii = Iw1...wi−1 ⊂ S. Now, w1...wi−1αIi(wi) ∈MI

and
w1...wi−1αIi(wi) 4 w1 . . .wi−1αIi(wi) 4 w1 . . .wi−1wi 4 b

so divides αI(b), thus this element has to be 1, whence the result. �
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By Proposition 5.8 items 5.8(ii) and 5.8(iii) the subcategoryM(I) of Ad(M, I) is
closed under right-quotient and right-lcm. By Lemma 2.10 Proposition 5.8 together
with 5.9 implies

Corollary 5.10. The set S ∩M(I) = {(I w−→ J) ∈ Ad(M, I) | w ∈ S and αI(w) =
1} is a Garside family in M(I).

We can describe the atoms of M(I) when M is any Garside monoid which has
a Garside element and satisfies some additional assumptions. In that case (which
includes the particular case of spherical Artin groups) we will give also a convenient
criterion to decide whether b ∈M is in M(I). Unless stated otherwise, we assume
until the end of this section that M has a Garside element ∆.

Lemma 5.11. Let MI be a parabolic submonoid of M generated by a subset I of
atoms of M . Then ∆I = αI(∆) is a Garside element in MI.

Proof. Let S be the set of divisors of ∆; then S ∩MI generates MI so that we can
apply Lemma 5.4 which gives that S ∩MI is a Garside family in MI. Now the
divisors of ∆ which are in MI are by definition of αI the divisors of ∆I, so that ∆I

is a Garside element in MI. �

We denote by ΦI the associated Garside automorphism. Since MI is parabolic,
I is the whole set of atoms of MI, thus ΦI(I) = I.

Proposition 5.12. M(I) has a Garside map defined by the collection of morphisms

I
∆−1

I
∆−−−−→ Φ(I) for I ∈ I.

Proof. By definition of ∆I, we have αI(∆
−1
I ∆) = 1, so that ∆−1

I ∆ is an element of

S∩M(I). We have to show that any I
b−→ J in S∩M(I) divides I ∆−1

I
∆−−−−→ Φ(I), which

is equivalent to ∆Ib dividing ∆. Since ∆I and b divide ∆, their right lcm δ divides
∆. We claim that δ = ∆Ib. Let us write δ = bx. We have δ 4 ∆Ib = b∆J, so that
x 4 ∆J. Thus δ = bx = yb with y 4 ∆I. By definition of δ we have ∆I 4 δ = yb,
so that y−1∆I 4 b which implies y = ∆I since αI(b) = 1. Hence δ = ∆Ib and we
are done. �

Proposition 5.13. Let I ∈ I and let J ) I be such that MJ is parabolic. Then

I
v(J,I)−−−−→ ΦJ(I) defined by (I

∆J−−→ ΦJ(I)) = (I
∆I−−→ I

v(J,I)−−−−→ ΦJ(I)) is a morphism in
M(I).
Proof. As noted after Proposition 5.8 we have to show that αI(v(J, I)) = 1 and
that any t ∈ I is conjugate by v(J, I) to an element of M . Since ∆−1

I ∆J divides

∆−1
I ∆, and αI(∆

−1
I ∆) = 1, by definition of ∆I, we get the first property. The

second is clear since by definition v(J, I) conjugates t to ΦJ(Φ
−1
I (t)). �

To describe the atoms we now need the following assumption:

Assumption 5.14. Let I ∈ I and let J be the set of atoms of a parabolic submonoid
MJ ofM , strictly containingMI, and minimal for this property. Then for any atom
s ∈ J− I, the right-lcm of s and ∆I is ∆J.

Note that this assumption holds for Artin monoids since for them a J as above
is of the form I ∪ {s} for some atom s. We have

Proposition 5.15. Under the Assumptions 5.5, 5.6, and 5.14,
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(i) Let I ∈ I and g ∈M such that αI(g) = 1 and such that there exists p > 0
such that (∆p

I )
g ∈M . Then g ∈M(I).

(ii) The atoms of M(I) are the v(J, I) not strictly divisible by another v(J′, I)
for I ∈ I.

Proof. (i) is a generalization of result of Luis Paris [Pa, 5.6]. SinceM is Noetherian,
for (i) it suffices to prove that under the assumption g is either invertible or left

divisible by some non-invertible v ∈M(I); indeed if g = vg′ where I
v−→ I′ ∈M(I)

then by 5.8(ii) we have αI′(g
′) = 1 and since Iv = I′ we have (∆p

I′)
g′ ∈ M , so

(i) is equivalent to the same property for g′ and by Noetherianity the sequence
g, g′, g′′, . . . thus constructed terminates with an invertible element. Let s be an
atom such that s 4 g; by assumption s /∈MI thus there exists a minimal parabolic
submonoid MJ containing s and MI since the intersection of parabolic submonoids
is parabolic. We will prove that v(J, I) 4 g which will thus imply (i). We proceed
by decreasing induction on p. We show that if for i > 0 we have t 4 ∆i

Ig for some

t ∈ J− I (note this holds for i = p since s 4 g 4 ∆p
Ig) then v(J, I) 4 ∆i−1

I g. The
right lcm of t and ∆I is ∆J by Assumption 5.14 thus from t 4 ∆ig and ∆I 4 ∆i

Ig

we deduce ∆J 4 ∆i
Ig. Since ∆J = ∆Iv(J, I) we get as claimed v(J, I) 4 ∆i−1

I g.
Since any atom t′ such that t′ 4 v(J, I) is in J − I the induction can go on while
i− 1 > 0.

We get (ii) from the proof of (i): any element g ∈M(I) satisfies the assumption
of (i) for p = lgS(g) and I equal to the source of g; whence the result since in the
proof of (i) we have seen that g is a product of some v(J,K). �

Though in the current paper we need only finite Coxeter groups, we note that
the above description of the atoms also extends to the case of Artin monoids which
are associated to infinite Coxeter groups (and thus do not have a Garside element).
Proposition 5.16 below can be extracted from the proof of Theorem 0.5 in [G].

In the case of an Artin monoid (B+,S) the Garside family of 5.10 in B+(I) is

W ∩ B+(I) = {I w−→ J ∈ AdB+(I) | w ∈ W and αI(w) = 1}. For I ⊂ S and
s ∈ S we denote by I(s) the connected component of s in the Coxeter diagram
of I ∪ {s}, that is the vertices of the connected component of s in the graph with
vertices I∪{s} and an edge between s′ and s′′ whenever s′ and s′′ do not commute.

It may be that the subgroup WI generated by I is finite even though W is not
(we say then that I is spherical), in which case we denote by wI the image in W

of the longest element of WI . With these notations, we have

Proposition 5.16. The atoms of B+(I) are the morphisms I
v(s,I)−−−→ v(s,I)I where I

is in I and s ∈ S−I is such that I(s) is spherical, and where v(s, I) = wI(s)wI(s)−{s}.

6. Periodic elements

Definition 6.1. Let C be a category with a Garside map ∆; then an endomorphism
f of C is said to be (d, p)-periodic if fd ∈ ∆pC× for some non-zero integers d, p.

In the above, we have written ∆p for ∆p(source(f)).
Note that if f is (d, p)-periodic it is also (nd, np)-periodic for any non-zero integer

n. We call d/p the period of f . If Φ is of finite order, then a conjugate of a
periodic element is periodic of the same period (though the minimal pair (d, p) may
change). It can be shown that, up to cyclic conjugacy, the notion of being (d, p)-
periodic depends only on the fraction d/p; it results from Proposition 4.5 that two
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periodic morphisms are conjugate if and only if they are cyclically conjugate; our
interest in periodic elements comes mainly from the fact that one can describe their
centralizers.

We deal in this paper with the case p = 2. We show by elementary computations
that a (d, 2)-periodic element of C is the same up to cyclic conjugacy as a (d/2, 1)-
periodic element when d is even, and get a related characterization when d is odd.

We denote by S a Garside family attached to ∆ (that is such that SC× ∪ C× is
the set of divisors of ∆).

Lemma 6.2. Let f be an endomorphism in C such that fd ∈ ∆2C×, and let e = ⌊d2⌋.
Then there exists g ∈ Obj(cyc C) such that cyc C(f, g) 6= ∅ and ge ∈ SC× and
gd ∈ ∆2C×.

Further, if g is as in the conclusion above, that is gd ∈ ∆2C× and ge ∈ SC×,
then if d is even we have ge ∈ ∆C×, and if d is odd there exists h ∈ SC× such that
g = hΦ(h)ε and geh = ∆, where ε ∈ C× is defined by gd = ∆2ε.

Proof. We will prove by increasing induction on i that for i ≤ d/2 there exists
v ∈ cyc C such that (fv)i ∈ SC× and (fv)d ∈ ∆2C×. We start the induction with
i = 0 where the result holds trivially with v = 1.

We consider now the general step: assuming the result for i such that i + 1 ≤
d/2, we will prove it for i + 1. We thus have a v for step i, thus replacing if
needed f by fv we may assume that f i ∈ SC× and fd ∈ ∆2C×; we will conclude
by finding v ∈ S such that v 4 f and (fv)i+1 ∈ SC× and (fv)d ∈ ∆2C×. If
f i+1 4 ∆ we have the desired result with v = 1. We may thus assume that
lgS(f

i+1) ≥ 2. Since f i+1 4 ∆2 we have actually lgS(f
i+1) = 2 (see Proposition

2.12(i)); let (f iv, w) be a normal decomposition of f i+1 where f iv ∈ S and w ∈
SC×. As f ivw(f iv) 4 f ivw(f ivw) = f2(i+1) 4 fd =× ∆2, we still have 2 =
lgS((f

iv)w(f iv)) = lgS((f
iv)w). By Proposition 2.12(ii) we thus have w(f iv) ∈

SC×. Then SC× ∋ w(f iv) = w((vw)i)v = (fv)i+1 and v 4 f .
So v will do if we can show (fv)d ∈ ∆2C×. Since fd = ∆2ε with ε ∈ C×, we

have that f commutes with ∆2ε, thus f i+1 also, that is Φ2(f i+1)ε = εf i+1 or
equivalently Φ2(f iv)Φ2(w)ε = εf ivw. Now (Φ2(f iv),Φ2(w)ε) is an SC×-normal
decomposition and since (f iv, w) is a normal decomposition, by Lemma 2.2 there
exists ε′ ∈ C× such that Φ2(f iv)ε′ = εf iv. We have f i∆2Φ2(v)ε′ = ∆2Φ2(f iv)ε′ =
∆2εf iv = f i∆2εv, the last equality sincef i commutes with ∆2ε. Canceling f i∆2

we get Φ2(v)ε′ = εv. We have then v(fv)d = fdv = ∆2εv = ∆2Φ2(v)ε′ = v∆2ε′

whence the result by canceling v on the left.
We prove now the second part. From ge ∈ SC× we get that there exists h ∈ SC×

such that geh = ∆. If gd = ∆2ε with ε ∈ C× we get geh∆ε = ∆2ε = gd, whence by
cancellation h∆ε = gega with a = 1 if d is odd and a = 0 if d is even. We deduce
gega = h∆ε = ∆Φ(h)ε = gehΦ(h)ε, thus hΦ(h)ε = ga.

If d is odd we get the statement of the lemma, and if d is even we get hΦ(h) ∈ C×,
so h ∈ C×, so ge ∈ ∆C×. �

F -periodic elements. Let us apply Lemma 6.2 to the case of a semi-direct prod-
uct category C ⋊ 〈F 〉 with F a Garside automorphism of finite order, where C has
no non-trivial invertible element and the Garside family S of C⋊ 〈F 〉 is in C. Then
a morphism yF ∈ CF is (d, p) periodic if and only if target(y) = F (source(y)) and
(yF )d = ∆pF d.

From the lemma we can deduce the following.
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Corollary 6.3. Assume Φ2 = Id and that yF ∈ CF satisfies (yF )d = ∆2F d. Then

(i) If d = 2e is even, there exists x such that cyc C(yF, xF ) 6= ∅ and (xF )e =
∆F e. The centralizer of xF in C identifies to cyc C(xF ). Further, we may
compute these endomorphisms in the category of fixed points (cyc C)ΦF e

since the morphisms in cyc C(xF ) are ΦF e-stable.
(ii) If d = 2e+1 is odd, there exists x such that cyc C(yF, xF ) 6= ∅ and (xF )d =

∆2F d and (xF )eF−e 4 ∆. The element s defined by (xF )esF−e = ∆ is
such that, in the category C⋊ 〈Λ〉 with Λ = Φ−1F−e, we have xΛ2 = (sΛ)2

and (sΛ)d = ∆Λd. The centralizer of xF in C identifies to cyc C(sΛ).
Further, we may compute these endomorphisms in the category of fixed

points (cyc C)Fd

since cyc C(sΛ) is stable by F d.

Note that 2.8 describes Garside families for the fixed point categories mentioned
above.

Proof. Lemma 6.2 shows that y is cyclically F -conjugate to an x such that (xF )e ∈
SF e and (xF )d = ∆2F d and that if d is even then (xF )e = ∆F e. If d is odd Lemma
6.2 gives the existence of h ∈ SC× such that xF = hΦ(h)F d and that (xF )eh = ∆.
Hence we have h = sF−e with s ∈ S, and x = sF−eΦ(sF−e)F d−1 = sΛ(s). This
can be rewritten xΛ2 = (sΛ)2. Since the elements of Ad C(xF ) commute to F d and
xF = xΛ2F d, we have Ad C(xF ) = Ad C(xΛ2); hence from (xF )es = ∆F e we get
Ad C(xF ) ⊂ Ad C(sΛ). Using xΛ2 = (sΛ)2 we get the reverse inclusion, whence
Ad C(xF ) = Ad C(sΛ).

We get the corollary if we know that the centralizer of xF , for d even (resp. sΛ,
for d odd) is the same as cyc C(xF ) (resp. cycC(sΛ)). But this is an immediate
consequence of Proposition 4.5. �

Conjugacy of periodic elements.

Theorem 6.4. Let B+ be the Artin monoid (see 2.13) attached to a finite Coxeter
group (W,S). Then two periodic elements of B+ of same period are cyclically
conjugate.

Proof. This results from the work of David Bessis on the dual braid monoid. Two
periodic elements of same period in the classical Artin monoid are also periodic and
have equal periods in the dual monoid. By [B1, 11.21], such elements are conjugate
in the dual monoid, so are conjugate in the Artin group, hence are conjugate in the
classical monoid. By Proposition 4.5 they are cyclically conjugate in the classical
monoid. �

We conjecture that the same results extend to the case of F -conjugacy, where F
is an automorphism of (W,S), which thus induces a Garside automorphism of B+

via its action of W.
We conjecture further that for any conjugacy class I of subsets of S, all periodic

elements in C(I) of a given period are conjugate (thus cyclically conjugate); and
that this extends also to the case of F -conjugacy.

Two examples. In two cases we show a picture of the category associated to the
centralizer of a periodic element.

We first look at C = B+(W (D4)) and w ∈ C such that w2 = ∆; following
Corollary 6.3(i) we describe the component of w in the category cyc CΦ. As in
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Theorem 11.12, we choose w given by the word in the generators 123423 where the
labeling of the Coxeter diagram is

©
1

©2

©
3

©
4

By Corollary 6.3(i) the monoid of endomorphisms cyc C(w) generates CB(w); by
[B1, 12.5(ii)], CB(w) is the braid group of CW (w) ≃ G(4, 2, 2). This braid group
has presentation 〈x,y, z | xyz = yzx = zxy〉. The automorphism x 7→ y 7→ z

corresponds to the triality in D4. One of the generators x corresponds to the
morphism 24 in the diagram below. The other generators are the conjugates of the
similar morphisms 41 and 21 in the other squares.

123243
1 //

2

��

232431

2

��

3 // 231431
2 //

4

��

314312

4

��

3

{{

132432
1 //

4

JJ

324312

4

JJ

3

��

123143

1

JJ

2 // 131432

1

JJ

3

ll

231234

2

��

3

BB

243123

2

��

4
oo

131234

1

JJ

3

HH

143123

1

JJ

4
oo

We now look at the case of a w in the braid monoid C = B+(W (A5)) such that
w3 = ∆2, and following Corollary 6.3(ii) we describe the component of sΦ−1 in the
category cyc C ⋊ 〈Φ−1〉 where s is such that w = sΦ(s). By Corollary 6.3(ii) the
monoid of endomorphisms cyc C(sΦ−1) generates CB(w) and again by the results
of Bessis CB(w) is the braid group of CW (w) ≃ G(3, 1, 2) (see Theorem 11.5). We
choose w such that s is given by the word 21325 in the generators. The generator
of CB(w) lifting the generator of order 3 of G(3, 1, 2) is given by the word 531. The
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other one is the conjugate of any of the length 2 cycles 23 in the diagram.

21435

2

))

4

55

43543

5

!!D
DD

DD
DD

DD
DD

4

OO35432

5

HH

3

II25432

5

HH

2

		

24543

5

aaDDDDDDDDDDD

2

��

4

��

32145
3

oo

12143

1

}}{{
{{
{{
{{
{{
{

2

OO

4

YY

12343

1

��

4

II12324

1

��

3

		

12132

2

��

1

=={{{{{{{{{{{

14354

1

=={{{{{{{{{{{

4

UU

21325

2

		

5

!!D
DD

DD
DD

DD
DD

34354
3

oo

4

EE

23435

2

��

4

II23245

3

		

2

OO32454
3

oo
5

hhQQQQQQQQQQQQQQQQQQ

12543

1

vvmmm
mm
mm
mm
mm
mm
mm
mm
m

5

hhQQQQQQQQQQQQQQQQQQ

13214
3oo

1

vvmmm
mm
mm
mm
mm
mm
mm
mm
m

34321

3

II

4

��

24321

2

		

4

OO21321
3oo

2

��

13254

1

}}{{
{{
{{
{{
{{
{3

oo

5

aaDDDDDDDDDDD
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7. Representations into bicategories

We give here a theorem on categories with Garside families which generalizes
a result of Deligne [D, 1.11] about representations of spherical braid monoids into
a category; just as this theorem of Deligne was used to attach a Deligne-Lusztig
variety to an element of the braid group, our theorem will be used to attach a
Deligne-Lusztig variety to a morphism of a ribbon category. Note that our theorem
covers in particular the case of non-spherical Artin monoids.

We follow the terminology of [McL, XII.6] for bicategories. By “representation
of category C into bicategory X” we mean a morphism of bicategories between C
viewed as a trivial bicategory into the given bicategory X . This amounts to give
a map T from Obj(C) to the 0-cells of X , and for f ∈ C of source x and target
y, an element T (f) ∈ V (T (x), T (y)) where V (T (x), T (y)) is the category whose
objects (resp. morphisms) are the 1-cells of X with domain T (x) and codomain
T (y) (resp. the 2-cells between them), together with for each composable pair (f, g)

an isomorphism T (f)T (g)
∼−→ T (fg) such that the resulting square

(7.1) T (f)T (f ′)T (f ′′)
∼ //

∼

��

T (ff ′)T (f ′′)

∼

��
T (f)T (f ′f ′′)

∼ // T (ff ′f ′′)

commutes.
We define a representation of the Garside family S as the same, except that the

above square is restricted to the case where f , ff ′ and ff ′f ′′ are in S, (which
implies f ′, f ′′, f ′f ′′ ∈ S since S is closed under right divisors). We then have

Theorem 7.2. Let C be a right Noetherian category which admits local right lcms
and has a Garside family S. Then any representation of S into a bicategory extends
uniquely to a representation of C into the same bicategory.

Proof. The proof goes exactly as in [D], in that what must been proven is a simple
connectedness property for the set of decompositions as a product of elements of S
of an arbitrary morphism in C— this generalizes [D, 1.7] and is used in the same way.
In his context, Deligne shows more, the contractibility of the set of decompositions;
on the other hand our proof, which follows a suggestion by Serge Bouc to use a
version of [Bouc, lemma 6], is simpler and holds in our more general context.

Fix g ∈ C with g /∈ C×. We denote by E(g) the set of decompositions of g into
a product of elements of S − C×.

Then E(g) is a poset, the order being defined by

(g1, . . . , gi−1, gi, gi+1, . . . , gn) > (g1, . . . , gi−1, a, b, gi+1, . . . , gn)

if ab = gi ∈ S.
We recall the definition of homotopy in a poset E (a translation of the corre-

sponding notion in a simplicial complex isomorphic as a poset to E). A path from
x1 to xk in E is a sequence x1 . . . xk where each xi is comparable to xi+1. The
composition of paths is defined by concatenation. Homotopy, denoted by ∼, is the
finest equivalence relation on paths compatible with concatenation and generated
by the two following elementary relations: xyz ∼ xz if x ≤ y ≤ z and both xyx ∼ x
and yxy ∼ y when x ≤ y. Homotopy classes form a groupoid, as the composition of
a path with source x and of the inverse path is homotopic to the constant path at
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x. For x ∈ E we denote by Π1(E, x) the fundamental group of E with base point
x, which is the group of homotopy classes of loops starting from x.

A poset E is said to be simply connected if it is connected (there is a path linking
any two elements of E) and if the fundamental group with some (or any) base point
is trivial.

Note that a poset with a smallest or largest element x is simply connected since
any path (x, y, z, t, . . . , x) is homotopic to (x, y, x, z, x, t, x, . . . , x) which is homo-
topic to the trivial loop.

Proposition 7.3. The set E(g) is simply connected.

Proof. First we prove a version of a lemma from [Bouc] on order preserving maps
between posets. For a poset E we put E≥x = {x′ ∈ E | x′ ≥ x}, which is a
simply connected subposet of E since it has a smallest element. If f : X → Y
is an order preserving map it is compatible with homotopy (it corresponds to a
continuous map between simplicial complexes), so it induces a homomorphism f∗ :
Π1(X, x) → Π1(Y, f(x)).

Lemma 7.4 (Bouc). Let f : X → Y an order preserving map between two posets.
We assume that Y is connected and that for any y ∈ Y the poset f−1(Y≥y) is
connected and non empty. Then f∗ is surjective. If moreover f−1(Y≥y) is simply
connected for all y then f∗ is an isomorphism.

Proof. Let us first show that X is connected. Let x, x′ ∈ X ; we choose a path
y0 . . . yn in Y from y0 = f(x) to yn = f(x′). For i = 0, . . . , n, we choose xi ∈
f−1(Y≥yi) with x0 = x and xn = x′. Then if yi ≥ yi+1 we have f−1(Y≥yi) ⊂
f−1(Y≥yi+1) so that there exists a path in f−1(Y≥yi+1) from xi to xi+1; otherwise

yi < yi+1, which implies f−1(Y≥yi) ⊃ f−1(Y≥yi+1) and there exists a path in
f−1(Y≥yi) from xi to xi+1. Concatenating these paths gives a path connecting x
and x′.

We fix now x0 ∈ X . Let y0 = f(x0). We prove that f∗ : Π1(X, x0) → Π1(Y, y0)
is surjective. Let y0y1 . . . yn with yn = y0 be a loop in Y . We lift arbitrarily
this loop into a loop x0— · · ·—xn in X as above, (where xi—xi+1 stands for a
path from xi to xi+1 which is either in f−1(Y≥yi) or in f−1(Y≥yi+1). Then the
path f(x0—x1— · · ·—xn) is homotopic to y0 . . . yn; this can be seen by induc-
tion: let us assume that f(x0—x1 · · ·—xi) is homotopic to y0 . . . yif(xi); then
the same property holds for i + 1: indeed yiyi+1 ∼ yif(xi)yi+1 as they are two
paths in a simply connected set which is either Y≥yi or Y≥yi+1 ; similarly we have
f(xi)yi+1f(xi+1) ∼ f(xi—xi+1). Putting things together gives

y0 . . . yiyi+1f(xi+1) ∼ y0y1 . . . yif(xi)yi+1f(xi+1)

∼ f(x0— · · ·—xi)yi+1f(xi+1)

∼ f(x0— · · ·—xi—xi+1).

We now prove injectivity of f∗ when all f−1(Y≥y) are simply connected.
We first prove that if x0— · · ·—xn and x′0— · · ·—x′n are two loops lifting the

same loop y0 . . . yn, then they are homotopic. Indeed, we get by induction on i
that x0— · · ·—xi—x′i and x′0— · · ·—x′i are homotopic paths, using the fact that
xi−1, xi, x

′
i−1 and x′i are all in the same simply connected sub-poset, namely either

f−1(Y≥yi−1) or f
−1(Y≥yi).

It remains to prove that we can lift homotopies, which amounts to show that
if we lift as above two loops which differ by an elementary homotopy, the liftings
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are homotopic. If yy′y ∼ y is an elementary homotopy with y < y′ (resp. y > y′),
then f−1(Y≥y′) ⊂ f−1(Y≥y) (resp. f−1(Y≥y) ⊂ f−1(Y≥y′)) and the lifting of yy′y
constructed as above is in f−1(Y≥y) (resp. f

−1(Y≥y′)) so is homotopic to the trivial
path. If y < y′ < y′′, a lifting of yy′y′′ constructed as above is in f−1(Y≥y) so is
homotopic to any path in f−1(Y≥y) with the same endpoints. �

We now prove Proposition 7.3 by contradiction. If it fails we choose g ∈ C
minimal for proper right divisibility such that E(g) is not simply connected.

Let L be the set of elements of S−C× which are left divisors of g. For any I ⊂ L,
since the category admits local right lcms and is right Noetherian, the elements of I
have an lcm. We fix such an lcm ∆I . Let EI(g) = {(g1, . . . , gn) ∈ E(g) | ∆I 4 g1}.
We claim that EI(g) is simply connected for I 6= ∅. This is clear if g ∈ ∆IC×, in
which case EI(g) = {(g)}. Let us assume this is not the case. In the following, if
∆I 4 a, we denote by aI the element such that a = ∆Ia

I . The set E(gI) is defined
since g 6∈ ∆IC×. We apply Lemma 7.4 to the map f : EI(g) → E(gI) defined by

(g1, . . . , gn) 7→
{

(g2, . . . , gn) if g1 = ∆I

(gI1 , g2, . . . gn) otherwise
.

This map preserves the order and any set f−1(Y≥(g1,...,gn)) has a least element,
namely (∆I , g1, . . . , gn), so is simply connected. As by minimality of g the set
E(gI) is simply connected Lemma 7.4 implies that EI(g) is simply connected.

Let Y be the set of non-empty subsets of L. We now apply Lemma 7.4 to the
map f : E(g) → Y defined by (g1, . . . , gn) 7→ {s ∈ L | s 4 g1}, where Y is
ordered by inclusion. This map is order preserving since (g1, . . . , gn) < (g′1, . . . , g

′
n)

implies g1 4 g′1. We have f−1(Y≥I) = EI(g), so this set is simply connected. Since
Y , having a greatest element, is simply connected, 7.4 gives that E(g) is simply
connected, whence the proposition. �

�

II. Deligne-Lusztig varieties and eigenspaces

In this part, we study the Deligne-Lusztig varieties which give rise to a Lusztig
induction functor RG

L (Id); in Section 8 we generalize these varieties to varieties
attached to elements of a ribbon category.

In Section 9 we consider the particular ribbons associated to varieties which play
a role in the Broué conjectures, because they are associated to maximal eigenspaces
of elements of the Weyl group.

Finally in Section 10 we spell out the geometric form of the Broué conjectures,
involving the factorization of the endomorphisms of our varieties in the conjugacy
category of the ribbon category through the action of a cyclotomic Hecke algebra
on their cohomology.

8. Parabolic Deligne-Lusztig varieties

Let G be a connected reductive algebraic group over Fp, and let F be an isogeny
on G such that some power F δ is a Frobenius for a split Fqδ -structure (this defines

a positive real number q such that qδ is an integral power of p).
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Let L be an F -stable Levi subgroup of a (non-necessarily F -stable) parabolic
subgroup P of G and let P = LV be the corresponding Levi decomposition of P.
Let

XV = {gV ∈ G/V | gV ∩ F (gV) 6= ∅} = {gV ∈ G/V | g−1Fg ∈ VFV}
≃ {g ∈ G | g−1Fg ∈ FV}/(V ∩ FV).

On this variety GF acts by left multiplication and LF acts by right multiplication.
We choose a prime number ℓ 6= p. Then the virtual GF -module-LF given by

M =
∑

i(−1)iHi
c(XV,Qℓ) defines the Lusztig induction RG

L which by definition
maps an LF -module λ to M ⊗

QℓL
F λ.

The map gV 7→ gP makes XV an LF -torsor over

XP = {gP ∈ G/P | gP ∩ F (gP) 6= ∅} = {gP ∈ G/P | g−1Fg ∈ PFP}
≃ {g ∈ G | g−1Fg ∈ FP}/(P ∩ FP),

a GF -variety such that RG
L (Id) =

∑

i(−1)iHi
c(XP,Qℓ). The variety XP is the

prototype of the varieties we want to study.
Let T ⊂ B be a pair of an F -stable maximal torus and an F -stable Borel

subgroup of G. To this choice is associated a basis Π of the root system Φ of G
with respect to T, and a Coxeter system (W,S) for the Weyl groupW = NG(T)/T.
Let XR = X(T)⊗R; on the vector space XR, the isogeny F acts as qφ where φ is of
order δ and stabilizes the positive cone R+Π; we will still denote by φ the induced
automorphism of (W,S).

To a subset I ⊂ Π corresponds a subgroup WI ⊂ W , a parabolic subgroup
PI =

∐

w∈WI
BwB, and the Levi subgroup LI of PI which contains T.

Given any P = LV as above where L is F -stable, there exists I ⊂ Π such that
(L,P) is G-conjugate to (LI ,PI); if we choose the conjugating element such that
it conjugates a maximally split torus of L to T and a rational Borel subgroup
of L containing this torus to B ∩ LI , then this element conjugates (L,P, F ) to
(LI ,PI , ẇF ) where ẇ ∈ NG(T) is such that wφI = I, where w is the image of ẇ
in W .

It will be convenient to consider I as a subset of S instead of a subset of Π; the
condition on w must then be stated as “Iw = φI and w is I-reduced”. Via the
above conjugation, the variety XP is isomorphic to the variety

X(I, wφ) = {gPI ∈ G/PI | g−1Fg ∈ PIw
FPI}.

We will denote by XG(I, wφ) this variety when there is a possible ambiguity on the
group. If we denote by UI the unipotent radical of PI , we have dimX(I, wφ) =
dimUI − dim(UI ∩ wFUI) = l(w). The ℓ-adic cohomology of the variety X(I, wφ)
gives rise to the Lusztig induction from LẇFI to GF of the trivial representation; to
avoid ambiguity on the isogenies involved, we will sometimes denote this Lusztig

induction by RG,F
LI ,ẇF

(Id).

Definition 8.1. We say that a pair (P,Q) of parabolic subgroups is in relative po-
sition (I, w, J), where I, J ⊂ S and w ∈ W , if (P,Q) is G-conjugate to (PI ,

wPJ ).

We denote this as P
I,w,J−−−→ Q.

Since any pair (P,Q) of parabolic subgroups share a common maximal torus,
it has a relative position (I, w, J) where I, J is uniquely determined as well as the
double coset WIwWJ .
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Let PI be the variety of parabolic subgroups conjugate to PI ; this variety is
isomorphic to G/PI . Via the map gPI 7→ gPI we have an isomorphism

X(I, wφ) ≃ {P ∈ PI | P I,w,φI−−−−→ FP};
it is a variety over PI × PφI by the first and second projection.

The parabolic braid category B+(I). In order to have a rich enough monoid of
endomorphisms (see Definition 8.23), we need to generalize the pairs (I, wφ) which
label our varieties to the larger set of morphisms of a “ribbon category” that we
proceed to define.

Let B+ (resp. B) denote the Artin-Tits monoid (resp. Artin-Tits group) of W ,
and let S be its generating set, which is in canonical bijection with S. To I ⊂ S
corresponds I ⊂ S and the submonoid B+

I generated by I. By Lemma 5.3 every

element of b ∈ B+ has a unique longest divisor αI(b) in B
+
I . As in Definition 5.7

we define:

Definition 8.2. Let I be the set of conjugates of some subset of S. Then B+(I)
is the category whose objects are the elements of I and the morphisms from I to J

are the b ∈ B+ such that Ib = J and αI(b) = 1.

If b ∈ B+ determines an element of B+(I)(I,J) for some objects I,J of I, we
will denote by I

b−→ J this morphism to lift ambiguity on its source and target.
We have shown in Proposition 5.8 that the above definition makes sense, that is

if we have a composition I
b−→ J

c−→ K in B+(I), then αI(bc) = 1. When I = {∅},
B+(I) reduces to the Artin-Tits monoid B+.

The canonical lift W
∼−→ W of W in B+ is denoted by w 7→ w; it is a Garside

family in B+. For w ∈ W we denote by w its image in W . By Corollary 5.10 and

Proposition 5.12 B+(I) has a Garside family consisting of the morphisms I
w−→ J

where w ∈ W and a Garside map ∆I given on the object I by the morphism

I
w

−1
I

w0−−−−−→ Iw0 where we denote by wI the lift to W of the longest element of WI ,
and write w0 for wS. This includes the following:

Lemma 8.3. (i) S = {I w−→ J | w ∈ W} generates B+(I); specifically, if

I
b−→ J ∈ B+(I) and (w1, . . . ,wk) is the W-normal decomposition of b,

there exist subsets Ii with I1 = I, Ik+1 = J such that for all i we have

Ii+1 = Iwi

i ; thus I
w1−−→ I2 → · · · → Ik

wk−−→ J is a decomposition of I
b−→ J

in B+(I) as a product of elements of S.
(ii) The relations (I

w1−−→ J
w2−−→ K) = (I

w−→ K) when w = w1w2 ∈ W form a
presentation of B+(I).

We set α(b) to be the left gcd of b and w0; its restriction to B+ − {1} is an
S-head function. Lemma 8.3 implies:

Lemma 8.4. For I
w−→ I′ ∈ B+(I) and v ∈ B+

I we have α(vw) = α(v)α(w).

Proof. We have α(vw) = α(vα(w)) = α(α(w)vα(w)) = α(α(w)α(vα(w))), the first
and last equalities from Proposition 2.3 (iii). Since by Lemma 8.3(i) Iα(w) ⊂ S, by
Lemma 5.11 we have α(vα(w)) = α(v)α(w), so that α(vw) = α(α(w)α(v)α(w)) =
α(α(v)α(w)). Since α(w) is I-reduced we have α(v)α(w) ∈ W, hence α(α(v)α(w)) =
α(v)α(w). �



24 F. DIGNE AND J. MICHEL

We now look at the compatibility of morphisms in B+(I) with a “parabolic”
situation. In our case, the only invertible in B+ is 1 and we extend the normal
decomposition to all of B+ by deciding that the normal decomposition of 1 is the
empty sequence.

Proposition 8.5. Fix I ∈ I, and for J ⊂ I, let J be the set of B+
I -conjugates of J.

Let (I
w−→ I′) ∈ B+(I) and let (J

v−→ J′) ∈ B+
I (J ). Let (u1, . . . ,uk) be the normal

decomposition of vw and let (w1,w2, . . . ,wk) be the normal decomposition of w,
with perhaps some 1’s added at the end so they have same length; if for each i we
define vi by ui = viwi then (v1,

w1v2,
w1w2v3, . . .) is the normal decomposition of

v with perhaps some added 1’s at the end.

Proof. We proceed by induction on k. By Lemma 8.4, we have u1 = α(v)α(w) =
v1w1, so that u2 . . .uk = ω(v)α(w)ω(w). The induction hypothesis applied to
ω(v)α(w), which represents both a map in B+(J ) and an element of B+

Iα(w) , and to

ω(w) ∈ B+(I) gives the result. �

The varieties O attached to B+(I). In this subsection, we shall define a repre-
sentation of B+(I) into the bicategory X of varieties over PI ×PJ , where I, J vary
over I. The bicategory X has 0-cells which are the elements of I, has 1-cells with
domain I and codomain J which are the PI × PJ -varieties and has 2-cells which
are isomorphisms of PI × PJ -varieties. We denote by V (I,J) the category whose
objects (resp. morphisms) are the 1-cells with domain I and codomain J (resp. the
2-cells between them); in other words, V (I,J) is the category of PI × PJ -varieties
endowed with the isomorphisms of PI × PJ -varieties. The horizontal composition
bifunctor V (I,J) × V (J,K) → V (I,K) is given by the fibered product over PJ .
The vertical composition is given by the composition of isomorphisms.

The representation of B+(I) in X we construct will be denoted by T , following

the notations of Section 7. We will also write O(I,b) for T (I
b−→ J), to lighten the

notation. We first define T on the Garside family S.
Definition 8.6. For (I

w−→ J) ∈ S, if I, w, J are the images in W of I, w, J

respectively, we define O(I,w) to be the variety {(P,P′) ∈ PI ×PJ | P I,w,J−−−→ P′}.
The following lemma constructs the isomorphism T (f)T (g)

∼−→ T (fg) when
f, g, fg ∈ S:
Lemma 8.7. Let (I

w1−−→ I2
w2−−→ J) = (I

w−→ J) where w = w1w2 ∈ W be a defining

relation of B+(I). Then (p′, p′′) : O(I,w1) ×PI2
O(I2,w2)

∼−→ O(I,w1w2) is an

isomorphism, where p′ and p′′ are respectively the first and last projections..

Proof. First notice that for two parabolic subgroups (P′,P′′) ∈ PI × PJ we have

P′ I,w,J−−−→ P′′ if and only if the pair (P′,P′′) is conjugate to a pair containing

termwise the pair (B, wB). This shows that if P′ I,w1,I2−−−−−→ P1 and P1
I2,w2,J−−−−−→ P′′

then P′ I,w1w2,J−−−−−−→ P′′, so (p′, p′′) goes to the claimed variety.

Conversely, we have to show that given P′ I,w,J−−−→ P′′ there is a unique P1 such

that P′ I,w1,I2−−−−−→ P1
I2,w2,J−−−−−→ P′′. The image of (B, wB) by the conjugation which

sends (PI ,
wPJ ) to (P′,P′′) is a pair of Borel subgroups (B′ ⊂ P′,B′′ ⊂ P′′) in

position w. Since l(w1) + l(w2) = l(w), there is a unique Borel subgroup B1 such

that B′ w1−−→ B1
w2−−→ B′′. The unique parabolic subgroup of type I2 containing B1
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has the desired relative positions, so P1 exists. And any other parabolic subgroup
P′

1 which has the desired relative positions contains a Borel subgroup B′
1 such that

B′ w1−−→ B′
1
w2−−→ B′′ (take for B′

1 the image of w1B by the conjugation which maps
(PI ,

w1PI2) to (P′,P′
1)), which implies that B′

1 = B1 and thus P′
1 = P1. Thus our

map is bijective on points. To show it is an isomorphism, it is sufficient to check
that its target is a normal variety, which is given by

Lemma 8.8. For (I
w−→ J) ∈ S the variety O(I,w) is smooth.

Proof. Consider the locally trivial fibrations with smooth fibers given by G×G
p−→

PI × PJ : (g1, g2) 7→ (g1PI ,
g2wPJ ) and G × G

q−→ G : (g1, g2) 7→ g−1
1 g2. It is

easy to check that O(I,w) = p(q−1(wPJ)) thus by for example [DMR, 2.2.3] it is
smooth. �

�

From the above lemma we see also that the square 7.1 commutes for elements
of S, since the isomorphism “forgetting the middle parabolic” has clearly the cor-
responding property. We have thus defined a representation T of S in X.

The extension of T to the whole of B+(I) associates to a composition I
w1−−→

I2 → · · · → Ik
wk−−→ J with wi ∈ W the variety

O(I,w1)×PI2
. . .×PIk

O(Ik,wk) = {(P1, . . . ,Pk+1) | Pi
Ii,wi,Ii+1−−−−−−→ Pi+1},

where I1 = I and Ik+1 = J . It is a PI×PJ -variety via the first and last projections
mapping respectively (P1, . . . ,Pk+1) to P1 and Pk+1, and Lemma 8.7 shows that

up to isomorphism it does not depend on the chosen decomposition of I
w1...wk−−−−−→ J.

Theorem 7.2 shows that there is actually a unique isomorphism between the various
models attached to different decompositions, so T defines a variety for any element
of B+(I).

Definition 8.9. For I
b−→ J ∈ B+(I) we denote by O(I,b) the variety defined by

Theorem 7.2. For any decomposition (I
b−→ φI) = (I1

w1−−→ I2 → · · · wk−−→ φI) in

elements of S it has the model {(P1, . . . ,Pk+1) | Pi
Ii,wi,Ii+1−−−−−−→ Pi+1}.

The Deligne-Lusztig varieties attached to B+(I). The automorphism φ lifts
naturally to an automorphism of B+ which stabilizes S, which we will still denote

by φ, by abuse of notation. If (I
w−→ φI) ∈ S, then X(I, wφ) is the intersection

of O(I,w) with the graph of F , that is, points whose image under (p′, p′′) has the
form (P, FP). More generally,

Definition 8.10. Let I
b−→ φI be any morphism of B+(I); we define the variety

X(I,bφ) as the intersection of O(I,b) with the graph of F . For any decomposition

(I
b−→ φI) = (I1

w1−−→ I2 → · · · wk−−→ φI) in elements of S the variety O(I,b) has the

model {(P1, . . . ,Pk+1) | Pi
Ii,wi,Ii+1−−−−−−→ Pi+1 and Pk+1 = F (P1)}.

The above model may be interpreted as an “ordinary” parabolic Deligne-Lusztig
variety in a group which is a descent of scalars:

Proposition 8.11. Let I = I1
w1−−→ I2 → · · · → Ik

wk−−→ φI be a decomposition

into elements of S of I
b−→ φI ∈ B+(I), let F1 be the isogeny of Gk defined by
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F1(g1, . . . , gk) = (g2, . . . , gk, F (g1)) and let φ1 be the corresponding automorphism
of W k. Then XG(I,bφ) ≃ XGk(I1× . . .×Ik, (w1, . . . , wk)φ1). By this isomorphism
the action of F δ corresponds to that of F kδ1 and the action of GF corresponds to
that of (Gk)F1 .

Proof. An element P1× . . .×Pk ∈ XGk(I1× . . .× Ik, (w1, . . . , wk)φ1) by definition
satisfies

P1 × . . .×Pk
I1×...Ik,(w1,...,wk),I2×...Ik×

φI1−−−−−−−−−−−−−−−−−−−−−→ P2 × . . .×Pk × FP1

thus is equivalently given by a sequence (P1, . . . ,Pk+1) such thatPi
Ii,wi,Ii+1−−−−−−→ Pi+1

with Pk+1 = FP1 and Ik+1 = φI1, which is the same as an element

(P1, . . . ,Pk+1) ∈ O(I1,w1)×PI2
O(I2,w2) . . .×PIk−1

O(Ik,wk)

such that Pk+1 = FP1. But this is a model of XG(I,bφ) as explained above.
One checks easily that this sequence of identifications is compatible with the

actions of F δ and GF as described by the proposition. �

Proposition 8.12. The variety X(I,bφ) is irreducible if and only if I∪c(b) meets
all the orbits of φ on S, where c(b) is the set of elements of S which appear in a
decomposition of b.

Proof. This is, using Proposition 8.11, an immediate translation in our setting of
the result [BR, Theorem 2] of Bonnafé-Rouquier. �

The varieties X̃(I,wφ). The conjugation which transforms XP into X(I, wφ)
maps XV to the GF -variety-LẇFI given by

X̃(I, ẇF ) = {gUI ∈ G/UI | g−1Fg ∈ UI ẇ
FUI},

where ẇ is a representative of w (any representative can be obtained by choosing an

appropriate conjugation). The map gUI 7→ gPI makes X̃(I, ẇF ) a LẇFI -torsor over

X(I, wφ). We will sometimes write X̃(I, ẇ.F ) to separate the Frobenius endomor-
phism from the representative of the Weyl group element. This will be especially
useful when the ambient group is a Levi subgroup with Frobenius endomorphism
of the form ẋF .

In this section, we define a variety X̃(I,wφ) which generalizes X̃(I, ẇF ) by
replacing ẇ by elements of the braid group. Since ẇ represents a choice of a lift of
w to NG(T), we have to make uniformly such choices for all elements of the braid
group, which we do by using a “Tits homomorphism”.

First, we need, when w ∈ W, to define a variety Õ(I, ẇ) “above” O(I,w) such

that X̃(I, ẇF ) is the intersection of Õ(I, w) with the graph of F , and then we
extend this construction to B+(I).

Definition 8.13. Let (I
w−→ J) ∈ S, and let ẇ ∈ NG(T) be a representative of w.

We define Õ(I, ẇ) = {(gUI , g
′UJ ) ∈ G/UI ×G/UJ | g−1g′ ∈ UI ẇUJ}.

We can prove an analogue of Lemma 8.7.

Lemma 8.14. Let (I
w1−−→ I2

w2−−→ J) = (I
w1w2−−−−→ J) where w1w2 ∈ W be a defining

relation of B+(I), and let ẇ1, ẇ2 be representatives of the images of w1 and w2 in

W . Then (p′, p′′) : Õ(I, ẇ1) ×G/UI2
Õ(I2, ẇ2)

∼−→ Õ(I, ẇ1ẇ2) is an isomorphism

where p′ and p′′ are the first and last projections.
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Proof. We first note that if I
w−→ J ∈ B+(I) and ẇ is a representative in NG(T) of

the image of w in W , then UIẇUJ is isomorphic by the product morphism to the
direct product of varieties (UI ∩ wU−

J )ẇ ×UJ , where U−
J is the unipotent radical

of the parabolic subgroup opposed to PJ containing T. We now use the lemma:

Lemma 8.15. Under the assumptions of Lemma 8.14, the product gives an iso-
morphism (UI ∩ ẇ1U−

I2
)ẇ1 × (UI2 ∩ ẇ2U−

J )ẇ2
∼−→ (UI ∩ ẇ1ẇ2U−

J )ẇ1ẇ2.

Proof. As a product of root subgroups, we have UI ∩ wU−
J =

∏

−α∈wN(w) Uα,

where N(w) = {α ∈ Φ+ | wα ∈ Φ−}. The lemma is then a consequence of the
equality N(w1)

w2
∐

N(w2) = N(w1w2) when l(w1) + l(w2) = l(w1w2). �

The lemma proves in particular that if g−1
1 g2 ∈ UIẇ1UI2 and g−1

2 g3 ∈ UI2 ẇ2UJ

then g−1
1 g3 ∈ UI ẇ1UI2ẇ2UJ = (UI ∩ ẇ1U−

I2
)ẇ1(UI2 ∩ ẇ2U−

J )ẇ2UJ = (UI ∩
ẇ1ẇ2U−

J )ẇ1ẇ2UJ = UI ẇ1ẇ2UJ , so the image of the morphism (p′, p′′) in Lemma

8.14 is indeed in the variety Õ(I, ẇ1ẇ2).

Conversely, we have to show that given (g1UI , g3Uj) ∈ Õ(I, ẇ1ẇ2), there exists

a unique g2UI2 such that (g1UI , g2UI2) ∈ Õ(I, ẇ1) and (g2UI2 , g3UI3) ∈ Õ(I2, ẇ2).
The varieties involved being invariant by left translation by G, it is enough to solve
the problem when g1 = 1. Then we have g3 ∈ UI ẇ1ẇ2UJ , and the conditions for
g2UI2 is that g2UI2 ⊂ UIẇ1UI2 . Any such coset has then a unique representative
in (UI ∩ ẇ1U−

I2
)ẇ1 and we will look for such a representative g2. But we must have

g−1
2 g3 ∈ UI2ẇ2UJ = (UI2 ∩ ẇ2U−

J )ẇ2UJ and since by the lemma the product gives

an isomorphism between (UI ∩ ẇ1U−
I2
)ẇ1 × (UI2 ∩ ẇ2U−

J )ẇ2UJ and UIẇ1ẇ2UJ ,

the element g3 can be decomposed in one and only one way in a product g2(g
−1
2 g3)

satisfying the conditions. To conclude as in 8.7 we show that the variety Õ(I, ẇ1ẇ2)
is smooth. An argument similar to the proof of 8.8, replacing PI and PJ by G/UI

and G/Uj respectively gives the result. �

We will now use a Tits homomorphism, which is a homomorphism B
t−→ NG(T)

which factors the projection B →W (their existence is proved in [T]). Theorem 7.2

implies that, setting T (I
w−→ J) = Õ(I, t(w)) for (I

w−→ J) ∈ S and replacing Lemma

8.7 by Lemma 8.14, we can define a representation of B+(I) in the bicategory X̃

of varieties above G/UI ×G/UJ for I, J ∈ I.

Definition 8.16. The above representation defines for any I
b−→ J ∈ B+(I) a

variety Õ(I,b) which for any decomposition (I
b−→ J) = (I

w1−−→ I2 → . . . → Ik
wk−−→

J) into elements of S has the model Õ(I, t(w1))×G/UI2
. . .×G/UIk

Õ(Ik, t(wk)).

Proposition 8.17. There exists a Tits homomorphism t which is F -equivariant,
that is such that t(φ(b)) = F (t(b)).

Proof. To any simple reflection s ∈ S is associated a quasi-simple subgroup Gs

of rank 1 of G, generated by the root subgroups Uαs and U−αs ; the 1-parameter
subgroup of T given by T ∩Gs is a maximal torus of Gs. By [T, Theorem 4.4] if
for any s ∈ S we choose a representative ṡ of s in Gs, then these representatives
satisfy the braid relations, which implies that s 7→ ṡ induces a well defined Tits
homomorphism. We claim that if s is fixed by some power φd of φ then there exists
ṡ ∈ Gs fixed by F d; we then get an F -equivariant Tits homomorphism by choosing
arbitrarily ṡ for one s in each orbit of φ. If s is fixed by φd then Gs is stable
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by F d; the group Gs is isomorphic to either SL2 or PSL2 and F d is a Frobenius
endomorphism of this group. In either case the simple reflection s of Gs has an
F d-stable representative in NGs(T ∩Gs). �

Notation 8.18. We assume now that we have chosen, once and for all, an F -
equivariant Tits homomorphism t which is used to define the varieties Õ(I,b). For
w ∈ W we will write ẇ for t(w) where w ∈ W is the canonical lift of w.

Definition 8.19. For any morphism (I
b−→ φI) ∈ B+(I) we define X̃(I,bφ) = {x ∈

Õ(I,b) | p′′(x) = F (p′(x))}.

When w ∈ W we have X̃(I,wφ) = X̃(I, ẇF ) (the variety defined at the begin-
ning of this section).

Lemma 8.20. For any (I
w−→ φI) ∈ B+(I), there is a natural projection X̃(I,wφ)

π−→
X(I,wφ) which makes X̃(I,wφ) a L

t(w)F
I -torsor over X(I,wφ), where the action

of L
t(w)F
I is compatible with the first projection X̃(I,wφ) → G/UI .

Proof. Let I
w1−−→ I2 → · · · → Ir

wr−−→ φI be a decomposition into elements of S of

I
w−→ φI, so that X̃(I,wφ) identifies to the set of sequences (g1UI , g2UI2 , . . . , grUIr )

such that g−1
j gj+1 ∈ UIj t(wj)UIj+1 for j < r and g−1

r
Fg1 ∈ UIr t(wr)UφI . We

define π by gjUIj 7→ gjPIj . It is easy to check that the morphism π thus de-
fined commutes with an “elementary morphism” in the bicategories of varieties
X̃ or X consisting of passing from the decomposition (w1, . . . ,wi,wi+1, . . . ,wr)

to (w1, . . . ,wiwi+1, . . . ,wr) when (Ii
wiwi+1−−−−−→ Ii+2) ∈ S. Thus by 7.1 the mor-

phism π is well-defined independently of the decomposition chosen of w. We
claim that π makes X̃(I,wφ) a Lt(w)F -torsor over X(I,wφ). Indeed, the fiber

π−1((g1PI ,
g2PI2 , . . . ,

grPIr )) consists of the (g1l1UI , . . . , grlrUIr ) ∈ X̃(I,wφ) with
lj ∈ LIj , that is such that

for j < r we have g−1
j gj+1 ∈ (UIj t(wj)UIj+1 ) ∩ lj(UIj t(wj)UIj+1 )l

−1
j+1

and g−1
r

Fg1 ∈ (UIr t(wr)UφI) ∩ lr(UIr t(wr)UφI)
F l−1

1 .

Now

(UIj t(wj)UIj+1 )∩lj(UIj t(wj)UIj+1 )l
−1
j+1 = (UIj t(wj)UIj+1 )∩UIj t(wj)UIj+1 l

t(wj)
j l−1

j+1

and the intersection is non-empty if and only if U
t(wj)
Ij

∩UIj+1 l
t(wj)
j l−1

j+1 6= ∅, which,
since P

t(wj)
Ij

and PIj+1 are two parabolic subgroups with the same Levi subgroup,

occurs only if l
t(wj)
j = lj+1. Similarly we get l

t(wr)
r = F l1, so in the end the fiber is

given by the l1 such that l1 = t(w)F l1. �

We give an analogue of Proposition 8.11 for X̃(I,bφ).

Proposition 8.21. Let I = I1
w1−−→ I2 → · · · → Ik

wk−−→ φI be a decomposition into

elements of S of I
b−→ φI ∈ B+(I), let F1 be the isogeny of Gk as in Proposition

8.11.
Then X̃G(I,bφ) ≃ X̃Gk(I1 × . . .× Ik, (ẇ1, . . . , ẇk)F1). By this isomorphism the

action of F δ corresponds to that of F kδ1 , the action of GF corresponds to that of

(Gk)F1 , and the action of L
t(b)F
I corresponds to that of (LI1 ×· · ·×LIk )

(ẇ1,...,ẇk)F1 .
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Proof. An element x1UI1 × . . . × xkUIk ∈ X̃Gk(I1 × . . . × Ik, (ẇ1, . . . , ẇk)F1) by

definition satisfies (xiUIi , xi+1UIi+1) ∈ Õ(Ii, ẇi) for i = 1, . . . , k, where we have

put Ik+1 = FI1 and xk+1UIk+1 = F(x1UI1 ). This is the same as an element in the

intersection of Õ(I1,w1)×G/UI2
Õ(I2,w2) . . .×G/UIk−1

Õ(Ik,wk) with the graph

of F . Since, by definition, we have

Õ(I,b) ≃ Õ(I1,w1)×G/UI2
Õ(I2,w2) . . .×G/UIk−1

Õ(Ik,wk),

via this last isomorphism we get an element of Õ(I,b) which is in X̃G(I,bφ).
One checks easily that this sequence of identifications is compatible with the

actions of F δ, of GF and of L
t(b)F
I as described by the proposition. �

We give an isomorphism which reflects the transitivity of Lusztig’s induction.

Proposition 8.22. Let I
w−→ φI ∈ B+(I), and let w be the image of w in W ; the

automorphism wφ lifts to an automorphism that we will still denote by wφ of B+
I .

For J ⊂ I, let J be the set of B+
I -conjugates of J and let J

v−→ wφJ ∈ B+
I (J ). Then

(i) We have an isomorphism X̃(I,wφ)×
L

t(w)F
I

X̃LI (J,vwφ)
∼−→ X̃(J,vwφ) of

GF -varieties-L
t(vw)F
J . This isomorphism is compatible with the action of

Fn for any n such that I, J, v and w are φn-stable.

(ii) Through the quotient by L
t(vw)F
J (see Lemma 8.20) we get an isomorphism

of GF -varieties

X̃(I,wφ) ×
L

t(w)F
I

XLI (J,vwφ)
∼−→ X(J,vwφ).

Proof. We first look at the case w,v ∈ W (which implies vw ∈ W), in which case
the isomorphism we seek is

X̃(I, ẇF )×LẇF
I

X̃LI (J, v̇.ẇF )
∼−→ X̃(J, v̇ẇF )

where v is the image of v in W . This is the content of Lusztig’s proof of the
transitivity of his induction (see [Lu, lemma 3]), that we recall and detail in our
context. We claim that (gUI , lVJ) 7→ gUI lVJ = glUJ where VJ = LI ∩ UJ

induces the isomorphism we want. We have

UJ v̇ẇ
FUJ = UIVJ v̇ẇ

FVJ
FUI = UIVJ v̇

ẇFVJ ẇ
FUI .

Since VJ v̇
ẇFVJ is in LI , so normalizes UI we get finally

UJ v̇ẇ
FUJ = VJ v̇

ẇFVJUI ẇ
FUI .

Hence if (gUI , lVJ) ∈ X̃(I, ẇF )× X̃LI (v̇ẇφ), we have

(gl)−1F (gl) ∈ l−1UI ẇ
FUI

F l = l−1UI
ẇF lẇFUI

= l−1 ẇF lUIẇ
FUI ⊂ VJ v̇

ẇFVJUIẇ
FUI = UJ v̇ẇ

FUJ .

Hence we have defined a morphism X̃(I, ẇF ) × X̃LI (v̇.ẇφ) → X̃(J, v̇ẇF ) of GF -
varieties-Lv̇ẇFJ . We show now that it is surjective. The product LI .(UI ẇ

FUI) is
direct: a computation shows that this results from the unicity in the decomposition
PI ∩ ẇFUI = LI .(UI ∩ ẇFUI). Hence an element x−1Fx ∈ UJ v̇ẇ

FUJ defines
unique elements l ∈ VJ v̇

ẇFVJ and u ∈ UI ẇ
FUI such that x−1Fx = lu. If, using

Lang’s theorem, we write l = l′−1 ẇF l′ with l′ ∈ LI , the element g = xl′−1 satisfies
g−1Fg = l′x−1FxF l′−1 = ẇF l′uF l′−1 ∈ ẇF l′UI ẇ

FUI
F l′−1 = UIẇ

FUI . Hence
(gUI , l

′VJ) is a preimage of xUJ in X̃(I, ẇF )× X̃LI (J, v̇ẇφ).
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Let us look now at the fibers of the above morphism. If g′UI l
′VJ = gUI lVJ

then g′−1g ∈ PI so up to UI we may assume g′ = gλ with λ ∈ LI ; we have then
λl′UJ = lUJ , so that l−1λl′ ∈ UJ ∩ LI = VJ ; moreover if gλUI ∈ X̃(I, ẇF ) with
λ ∈ LI , then λ

−1UIẇ
FUI

Fλ = UI ẇ
FUI which implies λ ∈ LẇFI . Conversely, the

action of λ ∈ LẇFI given by (gUI , lVJ) 7→ (gλUI , λ
−1lVJ) preserves the subvariety

X̃(I, ẇF ) × X̃LI (v̇wφ), of G/UI × LI/VJ . Hence the fibers are the orbits under
this action of LẇFI .

Now the morphism j : (gUI , lVJ) 7→ glUJ is an isomorphism G/UI ×LI

LI/VJ ≃ G/UJ since gUJ 7→ (gUI ,VJ ) is its inverse. By what we have seen

above the restriction of j to the closed subvariety X̃(I, ẇF ) ×LẇF
I

X̃LI (J, v̇ẇφ)

maps this variety surjectively on the closed subvariety X̃(J, v̇ẇF ) of G/UJ , hence
we get the isomorphism we want.

We now consider the case of generalized varieties. Let k be the number of terms of

the normal decomposition of vw and let I
w1−−→ I2

w2−−→ I3 → · · · → Ir
wr−−→ φI be the

normal decomposition of I
w−→ φI, perhaps extended by some identity morphisms.

We have X̃(I,wφ) ≃ X̃(I1 × I2 × · · · × Ik, (t(w1), . . . , t(wk))F1), where F1 is as in
Proposition 8.11. Let us write (v1w1, . . . ,vkwk) for the normal decomposition of
vw, with same notation as in Proposition 8.5. Let J1 = J and Jj+1 = J

vjwj

j ⊂ Ij+1

for j = 1, . . . , k − 1. We apply the first part of the proof to the group Gk with
isogeny F1 with I, J , w, and v replaced respectively by I1 × · · · × Ik, J1 × · · · × Jk,
(w1 . . . , wk) and (v1, . . . , vk). Using the isomorphisms from Proposition 8.21;

X̃Gk(J1 × · · · Jk, (v̇1ẇ1, . . . , v̇kẇk)φ1) ≃ X̃(J,vwφ)

and

X̃LI1×···×Ik
(J1 × · · · × Jk, (v1, . . . , vk).(t(w1), . . . , t(wk))F1) ≃ X̃LI (J,vwφ),

we get (i). Now (ii) is immediate from (i) taking the quotient on both sides by

L
t(vw)F
J . �

Endomorphisms of parabolic Deligne-Lusztig varieties — the conjugacy

category D+(I).

Definition 8.23. Given any morphism I
v−→ J ∈ B+(I) which is a left divisor of

I
w−→ φI we define morphisms of varieties:

(i) Dv : X(I,wφ) → X(J,v−1wφv) as the restriction of the morphism

(a, b) 7→ (b, Fa) : O(I,w) = O(I,v) ×PJ O(J,v−1w) →
O(J,v−1w)×PφI

O(φI, φv) = O(J,v−1wφv).

(ii) D̃v : X̃(I,wφ) → X̃(J,v−1wφv) as the restriction of the morphism

(a, b) 7→ (b, Fa) : Õ(I,w) = Õ(I,v)×G/UJ
Õ(J,v−1w) →

Õ(J,v−1w)×G/UφI
Õ(φI, φv) = Õ(J,v−1wφv).

Note that the existence of well-defined decompositions as above ofO(I,w) and of

Õ(I,w) are consequences of Theorem 7.2. We have written v−1wφv for v−1wφvφ.
Note that when v, w and v−1wφv are in W the endomorphism Dv maps

gPI ∈ X(I, wφ) to g′PJ ∈ X(J, v−1wφv) such that g−1g′ ∈ PIvPJ and g′−1Fg ∈
PJv

−1wFPI and similarly for D̃v.



PARABOLIC DELIGNE-LUSZTIG VARIETIES. 31

Note also that Dv and D̃v are equivalences of étale sites; indeed, the proof of
[DMR, 3.1.6] applies without change in our case.

The definition of D̃v and Dv shows the following property:

Lemma 8.24. The following diagram is commutative:

X̃(I,wφ)
D̃v //

��

X̃(J,v−1wφv)

��
X(I,wφ)

Dv // X(J,v−1wφv)

where the vertical arrows are the respective quotients by L
t(w)F
I and L

t(v−1wφv)F
J

(see Lemma 8.20); for l ∈ L
t(w)F
I we have D̃v ◦ l = lt(v) ◦ D̃v.

Definition 8.25. We denote by D+(I) the category φ- cycB+(I); that is the ob-

jects of D+(I) are the morphisms in B+(I) of the form I
w−→ φI and the morphisms

are generated by the “simple” morphisms that we will denote by adv, for v 4 w;

such a morphism, more formally denoted by I
adv−−→ J, where J = Iv, goes from

I
w−→ φI to J

v−1wφv−−−−−→ φJ. The relations are given by the equalities adv1 . . . advk =
adv′

1 . . . adv
′
k′ whenever advi are simple and v1 . . .vk = v′

1 . . .v
′
k′ in B

+.

If v = v1 . . .vk ∈ B+ with the advi simple morphisms of D+(I), we will still

denote by I
ad v−−→ J the composed morphism of D+(I).

As a further consequence of Theorem 7.2, the map which sends a simple mor-

phism adv to Dv extends to a natural morphism of monoids D+(I)(I w−→ φI) →
EndGF (X(I,wφ)), whose image consists of equivalences of étale sites. We still
denote by Dv the image of v by this morphism.

By Proposition 4.2 the category D+(I) has a Garside family consisting of the

simple morphisms. Those of source I
w−→ φI correspond to the set of v 4 w such

that Iv ⊂ S. For J ⊂ I we will denote by J the set of B+
I -conjugates of J and by

D+
I (J ) the analogous category where B+ is replaced by B+

I and I by J .

Proposition 8.26. With same assumptions and notation as in Proposition 8.22,

let J
x−→ Jx ∈ B+

I (J ) be a left divisor of J
v−→ wφJ. The following diagram is

commutative:

X̃(I,wφ) ×LẇF
I

X̃LI (J,v · wφ) ∼ //

Id×D̃x

��

X̃(J,vwφ)

D̃x

��
X̃(I,wφ) ×LẇF

I
X̃LI (J

x,x−1(v · wφ)x) ∼ // X̃(Jx,x−1vwφx)

Proof. Decomposing x into a product of simples in D+
I (J ) the definitions show that

it is sufficient to prove the result for x ∈ W. We use then Proposition 8.21 to reduce
the proof to the case where vw and v−1wφv are inW (in which casew and v−1wφw

are in W too). We can make this reduction if we know that the isomorphism of
Proposition 8.21 is compatible with the action of Dx for x ∈ W (we will then use

this fact in G and in LI). Take (I,y, φI) ∈ B+(I) and x ∈ W such that I
x−→ Ix

is a left divisor of I
y−→ φI. Let y = y1 . . .yk be a decomposition of y as a product

of elements of W such that x = y1. The endomorphism Dx maps the sequence
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(g1U1, . . . , gkUk) such that g−1
i gi+1 ∈ UiẏiUi+1 and g−1

k
Fg1 ∈ Ukẏk

FU1 to the
sequence (g2U2, . . . , gkUk,

Fg1
FU1). On the other hand, via the isomorphism of

Proposition 8.21, using the decomposition (y1,y2, . . . ,yk, 1) of y, the sequence

(g1U1, . . . , gkUk) corresponds to ((g1, . . . , gk,
Fg1)(U1, . . . ,Uk,

FU1) ∈ X̃Gk+1(I1×
. . . × Ik × FI1, (ẏ1, . . . , ẏk, 1)F1). This element is mapped by D(y1,1,...,1) to the

element (g2, g2, . . . , gk,
Fg1)(U2,U2, . . . ,Uk,

FU1) which is in X̃Gk+1(I2× I2× I3×
. . . × Ik × FI1, (1, ẏ2, . . . , ẏk,

Fy1)F1). Since this last element corresponds by the
isomorphism of Proposition 8.21 to (g2U2, . . . , gkUk,

Fg1
FU1), we have proved the

compatibility we want.
Assume now vw and v−1wφv in W. We start with (gUI , lVJ) ∈ X̃(I, ẇF ) ×

X̃LI (J, vwφ). This element is mapped by the top isomorphism of the diagram to
glUJ . As we have seen above Lemma 8.24 it is mapped by Id×Dx to (gUI , l

′VJx)
where l−1l′ ∈ VJxVJx and l′−1 ẇF l ∈ VJxx−1vwFVJ . This element is mapped
to gl′UJx by the bottom isomorphism of the diagram. We have to check that
gl′UJx = Dx(glUJ). But (gl)

−1gl′ = l−1l′ is in VJxVJx ⊂ UJxUJx and

(gl′)−1F(gl) = l′−1g−1FgF l ∈ l′−1UI ẇ
FUI

F l = UI l
′−1 ẇF lẇFUI

⊂ UIVJxx−1vwFVJ
FUI = UJxx−1vwFUJ ,

so that (gl′UJx) = Dx(glUJ). �

Using Proposition 8.22(ii) and Lemma 8.24 we get

Corollary 8.27. The following diagram is commutative:

X̃(I,wφ) ×LẇF
I

XLI (J,v · wφ) ∼ //

Id×Dx

��

X(J,vwφ)

Dx

��
X̃(I,wφ) ×LẇF

I
XLI (J

x,x−1(v · wφ)x) ∼ // X(Jx,x−1vwφx)

We now give a general case where we can describe D+(I)(I w−→ φI).

Theorem 8.28. Assume that some power of wφ is divisible on the left by w−1
I w0.

Then D+(I)(I w−→ φI) consists of the morphisms I
adb−−−→ I where b runs over the

submonoid B+
w = {b ∈ CB+(wφ) | Ib = I and αI(b) = 1}.

Proof. This is an immediate translation of Proposition 4.5, since the Garside map

of B+(I) is I
w

−1
I

w0−−−−−→ Iw0 ; the submonoid B+
w is the centralizer of the morphism

I
w−→ φI of B+(I). �

Note that if k is the smallest power such that φk

I = I and φk

w = w, then

w(k) := wφw . . . φ
k−1

w is in B+
w. Since I

adw−−−→ φI is the Garside map of D+(I)
described in Proposition 4.3, it follows that under the assumptions of Theorem
8.28 every element of B+

w divides a power of w(k). In particular, in the case I = ∅,
the group CB(wφ) is generated as a monoid, with the notations of [DM2, 2.1], by
EndD+(w) and (w(k))−1. Thus Theorem 8.28 in this particular case gives a positive
answer to conjecture [DM2, 2.1].

Definition 8.29. We define π = w2
0 (it is a generator of the center of the pure

braid group) and similarly for I ⊂ S we define πI = w2
I .
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As an example of Theorem 8.28 we get D+(I)(I π/πI−−−→ φI) = B+(I)(I)φ.

Affineness. Until the end of the text, we will consider varieties which satisfy the
assumption of Theorem 8.28. They have many nice properties. We show in this
subsection that they are affine, by adapting the proof of Bonnafé and Rouquier
[BR2] to our case; we use the existence of the varieties Õ(I,b) and X̃(I,bφ) to
replace doing a quotient by LI by doing a quotient by LFI .

Proposition 8.30. Assume the morphism I
b−→ J ∈ B+(I) is left-divisible by ∆I .

Then the variety Õ(I,b) is affine.

Proof. By assumption there exists a decomposition into elements of S of I
b−→ J of

the form I
w

−1
I

w0−−−−−→ I1
v1−→ I2

v2−→ I3 → · · · → Ir
vr−→ J. We show that the map ϕ

defined by:

G×
i=r
∏

i=1

(UIi ∩ viU−
Ii+1

)v̇i →

Õ(I,ẇ−1
I ẇ0)×G/UI1

Õ(I1, v̇1) . . .×G/UIr
Õ(Ir , v̇r)

(g, h1, . . . , hr) 7→
(gUI ,gẇ

−1
I ẇ0UI1 , gẇ

−1
I ẇ0h1UI2 , . . . , gẇ

−1
I ẇ0h1 . . . hrUJ )

is an isomorphism; since the first variety is a product of affine varieties this will
prove our claim.

Since UIi v̇iUIi+1 is isomorphic to (UIi ∩ viU−
Ii+1

)v̇i × UIi+1 , by composition

with the first projection we get a morphism ηi : UIi v̇iUIi+1 → (UIi ∩ viU−
Ii+1

)v̇i
for i = 1, . . . , r, where Ir+1 = J . For x = (gUI , g1UI1 , g2UI2 , . . . , grUIr , gr+1UJ )

in Õ(I, ẇ−1
I ẇ0) ×G/UI1

Õ(I1, v̇1) . . . ×G/UIr
Õ(Ir, v̇r) we put ψ(x) = gη(g−1g1),

ψ1(x) = ψ(x)ẇ0, ψi(x) = ηi((ψ(x)ψ1(x) . . . ψi−1(x))
−1gi). We claim that the maps

ψ (resp. ψi) are well defined, that is do not depend on the representative g (resp.
gi) chosen; the morphism x 7→ (ψ(x), ψ1(x), . . . , ψr(x)) is then clearly inverse to ϕ.
Since ηi(hu) = ηi(h) for all h ∈ UIi v̇iUIi+1 and all u ∈ UIi+1 , we get that all ψi
are well-defined. Since moreover η(uh) = uη(h) for all h ∈ UIẇ

−1
I ẇ0UI1 and all

u ∈ UI , we get that ψ also is well-defined, whence our claim. �

Proposition 8.31. Assume that we are under the assumptions of Theorem 8.28,

that is (I
w−→ φI) ∈ B+(I) has some power divisible by ∆I , or equivalently some

power of wφ is divisible on the left by w−1
I w0. Assume further that the Tits homo-

morphism t has been chosen F -equivariant. Then X̃(I,wφ) is affine.

Proof. Let us define k as the smallest integer such that φk

I = I, φ
k

w = w and

w−1
I w0 4 w(k), where w(k) := wφw . . . φ

k−1

w.

We will embed X̃(I,wφ) as a closed subvariety in Õ(I,w(k)), which will prove it
to be affine.
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Let I
w1−−→ I2

w2−−→ I3 → · · · → Ir
wr−−→ φI be a decomposition of I

w−→ φI into
elements of S, so that Õ(I,w(k)) identifies to the set of sequences

(g1,1UI , g1,2UI2 , . . . , g1,rUIr ,

g2,1UφI , g2,2UφI2 , . . . , g2,rUφIr ,

. . . ,

gk,1Uφk−1I , gk,2Uφk−1I2
, . . . , gk,rUφk−1Ir

,

gk+1,1UI)

such that for j < r we have g−1
i,j gi,j+1 ∈ Uφi−1Ij

F i−1

ẇjUφi−1Ij+1
and g−1

i,r gi+1,1 ∈
Uφi−1Ir

F i−1

ẇrUφiI ; note that we have used the F -equivariance of t to write F i

ẇj

for t(φ
i

wj).

Similarly X̃(I,wφ) identifies to the set of sequences (g1UI , g2UI2 , . . . , grUIr )
such that g−1

j gj+1 ∈ UIj ẇjUIj+1 for j < r and g−1
r

Fg1 ∈ UIr ẇrUφI . It is thus
clear that the map

(g1UI , g2UI2 , . . . , grUIr ) 7→ (g1UI , g2UI2 , . . . , grUIr ,

Fg1UφI ,
Fg2UφI2 , . . . ,

FgrUφIr ,

. . . ,

Fk−1

g1Uφk−1I , . . . ,
Fk−1

grUφk−1Ir
, F

k

g1UI)

identifies X̃(I,wφ) to the closed subvariety of Õ(I,w(k)) defined by gi+1,jUφiIj
=

F(gi,jUφi−1Ij
) for all i, j. �

Corollary 8.32. Under the assumptions of Theorem 8.28, that is (I
w−→ φI) ∈

B+(I) has some power divisible by ∆I, or equivalently some power of wφ is divisible
on the left by w−1

I w0, the variety X(I,wφ) is affine.

Proof. Indeed, by Proposition 8.31 and Lemma 8.20, it is the quotient of an affine
variety by a finite group, so is affine. �

Shintani descent identity. In this subsection we give a formula for the Leftschetz
number of a variety X(I,wF ) which we deduce from a “Shintani descent identity”.

Let m be a multiple of δ and let eB = |BFm |−1|∑b∈BFm b; the GFm

-module

Qℓ[(G/B)F
m

] identifies with Qℓ[G
Fm

]eB. Its endomorphism algebra Hqm(W ) :=

EndGFm (Qℓ[(G/B)F
m

]) identifies with eBQℓ[G
Fm

]eB acting by right multiplica-
tion. It has a basis consisting of the operators Tw = |BFm∩wBFm |∑g∈BFmwBFm g =

eBweB for w ∈ W , since W is a set of representatives of BFm\G/BFm

(see [Bou]
IV, §2 exercice 22). If we identify G/B to the variety B of Borel subgroups of G,
the operator Tw becomes

Tw : B′ 7→
∑

{B′′∈BFm |B′′
w−→B′}

B′′.

Similarly the algebra Hqm(W,WI) := EndGFm (Qℓ[(G/PI)
Fm

]) has a Qℓ-basis

consisting of the operators Xw = |PFm

I ∩wPF
m

I |∑g∈PFm

I wPFm

I
g = ePIwePI where

ePI = |PFm

I |−1
∑

p∈PFm

I
p and w runs over a set of representatives of the double
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cosets PF
m

I \GFm

/PF
m

I ≃ WI\W/WI . Identifying G/PI to the variety PI of the
parabolic subgroups G-conjugate to PI we have

Xw : P 7→
∑

{P′∈PFm

I |P′
I,w,I−−−→P}

P′,

The multiplication by the idempotent X1 = ePI =
∑

v∈WI
|BFm ∩ vBFm |−1Tv

makes Qℓ[(G/PI)
Fm

] into a direct factor of Qℓ[(G/B)F
m

] and the equality Xw =
X1TwX1 is compatible with this inclusion. Note that this inclusion maps a parabolic
P conjugate to PI in GFm

to the sum of all Fm-stable Borel subgroups of P.
We may define a Qℓ-representation of B+(I)(I) on Qℓ[(G/PI)

Fm

] by sending

I
w−→ I to the operator Xw ∈ H(W,WI) defined by

Xw(P) =
∑

{x∈O(I,w)Fm |p′′(x)=P}

p′(x).

The operator Xw identifies to X1TwX1 = X1Tw, the last equality since Iw = I.
When w ∈ W, with image w in W , the operators Xw and Xw coincide. In the
particular case where I = ∅ we get an operator denoted by Tw, defined for any w

in B+.
Similarly, to (I

w−→ φI) ∈ B+(I), we associate an endomorphismXwφ ofQℓ[(G/PI)
Fm

]
by the formula

Xwφ(P) =
∑

{x∈O(I,w)Fm |p′′(x)=F (P)}

p′(x).

When φ(I) = I we have Xwφ = Xwφ. In general we have Xwφ = X1Twφ on

Qℓ[(G/PI)
Fm

] seen as a subspace of Qℓ[(G/B)F
m

]: on the latter representation one
can separate the action of F ; the operator F sends the submodule Qℓ[(G/PI)

Fm

]
to Qℓ[(G/Pφ(I))

Fm

] which is sent back to Qℓ[(G/PI)
Fm

] by X1Tw. The endomor-

phism Xwφ commutes with GFm

like F , hence normalizes Hqm(W,WI); its action
identifies to the conjugation action of Twφ on Hqm(W,WI) inside Hqm(W )⋊ 〈φ〉 .

Recall that the Shintani descent ShFm/F is the “norm” map which maps the

F -class of g′ = h.Fh−1 ∈ GFm

to the class of g = h−1.F
m

h ∈ GF .

Proposition 8.33 (Shintani descent identity). Let I
w−→ φI be a morphism of

B+(I), and let m be a multiple of δ. Then

(g 7→ |X(I,wφ)gF
m |) = ShFm/F (g

′ 7→ Trace(g′Xwφ | Qℓ[(G/PI)F
m

]).

Proof. Let g = h−1.F
m

h and g′ = h.Fh−1, so that the class of g is ShFm/F of the

F -class of g′; we have X(I,wφ)gF
m

= {x ∈ O(I,w) | Fmhx = hx and p′′(hx) =
g′Fp′(hx)}. Taking hx as a variable in the last formula we get |X(I,wφ)gF

m | =
|{x ∈ O(I,w)F

m | p′′(x) = g′Fp′(x)}|. Putting P = p′(x) this last number be-

comes
∑

P∈PFm

I
|{x ∈ O(I,w)F

m | p′(x) = P and p′′(x) = g′FP}|. On the other

hand the trace of g′Xwφ is the sum over P ∈ PFm

I of the coefficient of P in
∑

{x∈O(I,w)Fm |p′′(x)=F (P)} g
′p′(x). This coefficient is equal to |{x ∈ O(I,w)F

m |
g′p′(x) = P and p′′(x) = FP}| = |{x ∈ O(I,w)F

m | p′(x) = P and p′′(x) =
g′FP}|, this last equality by changing g′x into x. �

By, for example, [DM1, II, 3.1] the algebras Hqm(W ) and Hqm(W ) ⋊ 〈φ〉) split

over Qℓ[q
m/2]; corresponding to the specialization qm/2 7→ 1 : Hqm(W ) → QℓW ,
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there is a bijection χ 7→ χqm : Irr(W ) → Irr(Hqm (W )). Choosing an extension
χ̃ to W ⋊ 〈φ〉 of each character in Irr(W )φ, we get a corresponding extension
χ̃qm ∈ Irr(Hqm (W ) ⋊ 〈φ〉) which takes its values in Qℓ[q

m/2]. If Uχ ∈ Irr(GFm

) is

the corresponding character of GFm

, we get a corresponding extension Uχ̃ of Uχ
to GFm

⋊ 〈F 〉 (see [DM1, III théorème 1.3 ]). With these notations, the Shintani
descent identity becomes

Proposition 8.34.

(g 7→ |X(I,wφ)gF
m |) =

∑

χ∈Irr(W )φ

χ̃qm(X1Twφ) ShFm/F Uχ̃

and the only characters χ in that sum which give a non-zero contribution are those
which are a component of IndWWI

Id.

Proof. We have Trace(g′Xwφ | Qℓ[(G/PI)F
m

]) = Trace(g′X1Twφ | Qℓ[(G/B)F
m

])

since X1 is the projector onto Qℓ[(G/PI)
Fm

]. Hence (g 7→ |X(I,wφ)gF
m |) =

∑

χ∈Irr(W )φ χ̃qm(X1Twφ) ShFm/F Uχ̃. Since X1 acts by 0 on the representation of

character χ if χ is not a component of IndWWI
Id, we get the second assertion. �

Finally, if λρ is the root of unity attached to ρ ∈ E(GF , 1) as in [DMR, 3.3.4],
the above formula translates, using [DM1, III, 2.3(ii)] as

Corollary 8.35.

|X(I,wφ)gF
m | =

∑

ρ∈E(GF ,1)

λm/δρ ρ(g)
∑

χ∈Irr(W )φ

χ̃qm(X1Twφ)〈ρ,Rχ̃〉GF ,

where Rχ̃ = |W |−1
∑

w∈W χ̃(wφ)RG
Tw

(Id). The only characters χ in the above sum

which give a non-zero contribution are those which are a component of IndWWI
Id.

Using the Lefschetz formula and taking the “limit for m → 0” (see for example
[DMR, 3.3.8]) we get the equality of virtual characters

Corollary 8.36.
∑

i

(−1)iHi
c(X(I,wφ),Qℓ) =

∑

{χ∈Irr(W )φ|〈ResWWI
χ,Id〉WI

6=0}

χ̃(x1wφ)Rχ̃,

where w is the image of w in W and x1 = |WI |−1
∑

v∈WI
v.

Cohomology. If π is the projection of Lemma 8.20, the sheaf π!Qℓ decomposes

into a direct sum of sheaves indexed by the irreducible characters of L
t(w)F
I . We

will denote by St the subsheaf indexed by the Steinberg character of L
t(w)F
I .

In the particular case where I = ∅ we write X(wφ) for X(I,wφ). Quite a few
theorems are known about the ℓ-adic cohomology of these varieties (see [DMR]).
The following corollary of Proposition 8.22 relates the cohomology of a general
variety to this particular case; its part (ii) is a refinement of Corollary 8.36.

Corollary 8.37. Let I
w−→ φI ∈ B+(I).

(i) For all v ∈ B+
I and all i we have the following inclusions of GF ⋊ 〈F δ〉-

modules:

Hi
c(X(I,wφ),Qℓ) ⊂ Hi+2l(v)

c (X(vwφ),Qℓ)(−l(v))
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and
Hi
c(X(I,wφ),St) ⊂ Hi+l(v)

c (X(vwφ),Qℓ)

(ii) For all i we have the following equality of GF ⋊ 〈F δ〉-modules:

Hi
c(X(wIwφ),Qℓ) =

∑

j+2k=i

Hj
c (X(I,wφ),Qℓ)⊗Qℓ

nI,k
(k)

where nI,k = |{v ∈ WI | l(v) = k}|, where wI is the longest element of
WI and the variety X(wIwφ) is the union

⋃

v∈WI
X(vwφ) as defined in

[DMR, 2.3.2].

Proof. For getting (i), we apply the Künneth formula to the isomorphism of Propo-
sition 8.22 when J = ∅. If we decompose the equality given by the Künneth formula

according to the characters of L
t(w)F
I , we get

⊕
χ∈Irr(L

t(w)F
I

)
⊕jHi−j

c (X̃(I,wφ),Qℓ)χ⊗L
t(w)F
I

Hj
c (XLI

(vwφ),Qℓ)χ ≃ Hi
c(X(vwφ),Qℓ).

We now use thatHi
c(X(I,wφ),Qℓ) = Hi

c(X̃(I,wφ),Qℓ)Id, andH
i
c(X(I,wφ),St) =

Hi
c(X̃(I,wφ),Qℓ)St where Id and St denote the identity and Steinberg characters

of L
t(w)F
I , and the facts that

• the only j such that Hj
c (XLI (vwφ),Qℓ)Id is non-trivial is j = 2l(v) and in

that case the cohomology group has dimension 1 and t(wF ) acts by ql(v)

(see [DMR, 3.3.14]).
• the only j such that Hj

c (XLI (vwφ),Qℓ)St is non-trivial is j = l(v) and
that isotypic component is of multiplicity one, with trivial action of t(wF )
(see [DMR, 3.3.15]).

Hence we have

⊕jHi−j
c (X̃(I,wφ),Qℓ)Id ⊗Hj

c (XLI
(vwφ),Qℓ)Id = Hi−2l(v)

c (X(I,wφ),Qℓ)(l(v)),

and similarly

⊕jHi−j
c (X̃(I,wφ),Qℓ)St ⊗Hj

c (XLI
(vwφ),Qℓ)St = Hi−l(v)

c (X(I,wφ),Qℓ).

We now prove (ii). Let BI be the variety of Borel subgroups of LI , identified

to LI/BI . We first prove that we have an isomorphism X̃(I,wφ) ×
L

wφ
I

BI ∼−→
X(wIwφ). The variety X(wIwφ) is the union

⋃

v∈WI
X(vwφ). The variety BI is

the union of the varietiesXLI (vwφ) when v runs overWI. The isomorphisms given
by Proposition 8.22 when J = ∅ and v running overWI can be glued together since
they are defined by a formula independent of v. We thus get a bijective morphism
X̃(I,wφ)×

L
wφ
I

BI → X(wIwφ) which is an isomorphism since X(wIwφ) is normal

(see [DMR, 2.3.5]). We now get (ii) from the fact that Hk
c (BI ,Qℓ) is 0 if k is odd

and if k = 2k′ is a trivial L
t(w)F
I -module of dimension nI,k′ , where F acts by the

scalar qk
′

; this results for example from the cellular decomposition into affine spaces

given by the Bruhat decomposition and the fact that the action of L
t(w)F
I extends

to the connected group LI . �

Corollary 8.38. (i) The GF -module Hi
c(X(I,wφ),Qℓ) is unipotent. The

eigenvalues of F δ on an irreducible GF -submodule ρ of Hi
c(X(I,wφ),Qℓ)

are in qδNλρωρ, where λρ is as in 8.35 and ωρ is the element of {1, qδ/2}
attached to ρ as in [DMR, 3.3.4]; they are both independent of i and w.

(ii) We have Hi
c(X(I,wφ),Qℓ) = 0 unless l(w) ≤ i ≤ 2l(w).
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(iii) The eigenvalues of F δ on Hi
c(X(I,wφ),Qℓ) are of absolute value less than

qδi/2.
(iv) The Steinberg representation does not occur in any cohomology group of

X(I,wφ) unless I = ∅ in which case it occurs with multiplicity 1 in

H
l(w)
c (X(wφ),Qℓ), associated to the eigenvalue 1 of F δ.

(v) The trivial representation occurs with multiplicity 1 in H
2l(w)
c (X(I,wφ),Qℓ),

associated to the eigenvalue qδl(w) of F δ, and does not occur in any other
cohomology group of X(I,wφ).

Proof. (i) is a straightforward consequence of Corollary 8.37(i) since the result is
known for Hj

c (X(vwφ),Qℓ) (see [DMR, 3.3.4] and [DMR, 3.3.10 (i)]).
(ii) and (iii) are similarly a straightforward consequence of Corollary 8.37(i)

applied with v = 1 and of [DMR, 3.3.22] and [DMR, 3.3.10(i)].
For (iv), we first note that by Corollary 8.37(i) applied with v = 1 and [DMR,

3.3.15] the Steinberg representation has multiplicity at most 1 inH
l(w)
c (X(I,wφ),Qℓ),

associated to the eigenvalue 1 of F δ, and does not occur in any other cohomology
group of X(I,wφ). To see when it does occur, it is enough then to use Proposition
8.34 and the Lefschetz formula. The only Uχ̃ such that the Steinberg representation
has a non-zero scalar product with ShFm/F Uχ̃ is the Steinberg representation, and
for the corresponding χ̃ we have

χ̃qm(X1Twφ) =

{

(−1)l(w) if I = ∅
0 otherwise

.

(v) is similarly a consequence of Corollary 8.37(i), [DMR, 3.3.14], 8.34, the Lef-
schetz formula, and that if χ̃qm corresponds to the trivial representation we have

χ̃qm(X1Twφ) = qml(w). �

9. Eigenspaces and roots of π/πI

Let ℓ 6= p be a prime such that the ℓ-Sylow S of GF is abelian.
Then “generic block theory” (see [BMM]) associates to ℓ a root of unity ζ and

some wφ ∈ Wφ such that its ζ-eigenspace in V in X := XR ⊗ C is non-zero
and maximal among ζ-eigenspaces of elements of Wφ; for any such ζ, there exists a
unique minimal subtorus S ofT such that V ⊂ X(S)⊗C. If the cosetWφ is rational
X(S)⊗C is the kernel of Φ(wφ), where Φ is the d-th cyclotomic polynomial, if d is
the order of ζ. Otherwise, in the “very twisted” cases 2B2,

2F4 (resp. 2G2) we have

to take for Φ the irreducible cyclotomic polynomial over Q(
√
2) (resp. Q(

√
3)) of

which ζ is a root. The torus S is then called a Φ-Sylow; we have |SF | = Φ(q)dimV .
The relationship with ℓ is that S is a subgroup of SF , and thus that |GF |/|SF |

is prime to ℓ; we have NGF (S) = NGF (S) = NGF (L) where L := CG(S) is a
Levi subgroup of G whose Weyl group is CW (V ). Conversely, any maximal ζ-
eigenspace for any ζ determines some primes ℓ with abelian Sylow, those which
divide Φ(q)dimV and no other cyclotomic factor of |GF |.

The classes CW (V )wφ, where V = Ker(wφ − ζ) is maximal, form a single orbit
under W -conjugacy [see eg. [Br, 5.6(i)]]; the maximality implies that all elements
of CW (V )wφ have same ζ-eigenspace.

We will see in Theorem 9.1(i) that up to conjugacy we may assume that CW (V )
is a standard parabolic group WI ; then the Broué conjectures predict that for an



PARABOLIC DELIGNE-LUSZTIG VARIETIES. 39

appropriate choice of coset CW (V )wφ in its NW (WI)-conjugacy class the cohomol-
ogy complex of the variety X(I,wφ) should be a tilting complex realizing a derived
equivalence between the unipotent parts of the ℓ-principal blocks of GF and of
NGF (S). We want to describe explicitly what should be a “good” choice of w (see
Definition 9.12).

Since it is no more effort to have a result in the context of any finite real reflection
group than for a context which includes the Ree and Suzuki groups, we give a more
general statement.

In what follows we look at real reflection cosets Wφ of finite order, that is W is
a finite reflection group acting on the real vector space XR and φ is an element of
NGL(XR)(W ), such thatWφ is of finite order δ, that is δ is the smallest integer such

that (Wφ)δ = W (equivalently φ is of finite order). Since W is transitive on the
chambers of the real hyperplane arrangement it determines, one can always choose
φ in its coset so that it preserves a chamber of this arrangement. Such elements φ
are the 1-regular elements of the coset (they have a fixed point outside the reflecting
hyperplanes), thus are of order δ.

Theorem 9.1. Let Wφ ⊂ GL(XR) be a finite order real reflection coset, such that
φ preserves a chamber of the hyperplane arrangement on XR determined by W , thus
induces an automorphism of the Coxeter system (W,S) determined by this chamber.
We call again φ the induced automorphism of the braid group B of W , and denote
by S,W the lifts of S,W to B (see around Definition 8.2).

Let ζd = e2iπ/d and let V be a subspace of X := XR ⊗C on which some element
of Wφ acts by ζd. Then we may choose V in its W -orbit such that:

(i) CW (V ) =WI for some I ⊂ S.
(ii) If WIwφ is the WI -coset of elements which act by ζd on V , where w is I-

reduced, then when d 6= 1 we have l(w) = (2/d)l(w0w
−1
I ) and l((wφ)iφ−i) =

il(w) if 2i ≤ d.

Further, when d 6= 1 the lift w ∈ W of a w as in (ii) satisfies wφI = I and
(wφ)d = φdπ/πI, where I ⊂ S is the lift of I.

Finally note that if d = 1 then w = 1 in (ii) and we may lift it to w := π/πI

and we still have wφI = I and (wφ)d = π/πIφ
d.

Note that in particular, for the w in (ii) we have (wφ)d = φd.

Proof. Since W 〈φ〉 is finite, we may find a scalar product on XR (extending to an
Hermitian product on X) invariant by W and φ. The subspace X ′

R of XR on which
W acts non-trivially (the subspace spanned by the root lines of W ) identifies to
the reflection representation of the Coxeter system (W,S) (see for example [Bou,
chap. 5, §3]). We will use the root system Φ on X ′

R consisting of the vectors of
length 1 for this scalar product along the root lines ofW , which is thus preserved by
W 〈φ〉. The strategy for the proof of (i) will be, rather than change V , to choose an
order on Φ such that the corresponding basis makes CW (V ) a standard parabolic
subgroup of W .

Let v be a regular vector in V , that is v ∈ V such that CW (v) = CW (V ).
Multiplying v if needed by a complex number of absolute value 1, we may assume
that for any α ∈ Φ we have ℜ〈v, α〉 = 0 if and only if 〈v, α〉 = 0. Then there exists
an order on Φ such that Φ+ ⊂ {α ∈ Φ | ℜ(〈v, α〉) ≥ 0}. Let Π be the corresponding
basis and let I = {α ∈ Π|ℜ(〈v, α〉) = 0}. Then for α ∈ Φ we have α ∈ ΦI if and
only if 〈v, α〉 = 0, thus CW (V ) = CW (v) =WI . This proves (i).
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We prove now (ii). The element wφ sends v to ζdv, thus preserves ΦI , and since
we chose w to be I-reduced we have wφI = I.

Note that (wφ)d = φd. Indeed (wφ)d fixes v, thus preserves the sign of any root
not in ΦI ; as

wφI = I, it also preserves the sign of roots in ΦI . It is thus equal to
the only element φd of Wφd which preserves the signs of all roots. We get also that
φd

I = I.
Since 〈v, (wφ)mα〉 = 〈(wφ)−m

v, α〉 = ζ−md 〈v, α〉, we get that all orbits of wφ on Φ−
ΦI have cardinality a multiple of d; it is thus possible by partitioning suitably those

orbits, to get a partition of Φ−ΦI in subsets O of the form {α, wφα, . . . , (wφ)d−1

α};
and the numbers {〈v, β〉 | β ∈ O} for a given O form the vertices of a regular d-gon
centered at 0 ∈ C; the action of wφ is the rotation by −2π/d of this d-gon. Looking
at the real parts of the vertices of this d-gon, we see that for m ≤ d/2, exactly m
positive roots in O are sent to negative roots by (wφ)m. Since this holds for all O,

we get that for m ≤ d/2 we have l(φ−m(wφ)m) = m|Φ−ΦI |
d ; thus if w is the lift of

w to W we have (wφ)i ∈ Wφi if 2i ≤ d.
If d = 1 since wφ = φ we have w = 1 so we may lift it to π/πI as stated.

Otherwise we finish with the following

Lemma 9.2. Assume that wφWI =WI , that w is I-reduced, that (wφ)d = φd and
that l((wφ)iφ−i) = (2i/d)l(w0w

−1
I ) if 2i ≤ d. Then if w is the lift of w to W we

have wφI = I and if d 6= 1 we have (wφ)d = φdπ/πI.

Proof. Since w is I-reduced and wφ normalizes WI we get that wφ stabilizes I,
which lifts to the braid group as wφI = I.

Assume first d even and let d = 2d′ and x = φ−d
′

(wφ)d
′

. Then l(x) = (1/2)l(π/πI) =
l(w0) − l(wI) and since x is reduced-I it is equal to the only reduced-I element
of that length which is w0w

−1
I . Since the lengths add we can lift the equality

(wφ)d
′

= φd
′

w0w
−1
I to the braid monoid as (wφ)d

′

= φd
′

w0w
−1
I . By a similar rea-

soning using that (wφ)d
′

φ−d
′

is the unique I-reduced element of its length, we get

also (wφ)d
′

= w−1
I w0φ

d′ . Thus (wφ)d = w−1
I w0φ

d′φd
′

w0w
−1
I = φdπ/πI, where

the last equality uses that φd = (wφ)d preserves I, whence the lemma in this case.

Assume now that d = 2d′ + 1; then (wφ)d
′

φ−d
′

is I-reduced and φ−d
′

(wφ)d
′

is
reduced-I. Using that any reduced-I element of W is a right divisor of w0w

−1
I

(resp. any I-reduced element of W is a left divisor of w−1
I w0), we get that there

exists t,u ∈ W such that φd
′

w−1
I w0 = t(wφ)d

′

and w0w
−1
I φd

′

= (wφ)d
′

u. Thus

φdπ/πI = w0w
−1
I φdw−1

I w0 = (wφ)d
′

uφt(wφ)d
′

, the first equality since φd

I = I.
The image in Wφd of the left-hand side is φd, and (wφ)d = φd. We deduce that the
image in Wφ of uφt is wφ. If d 6= 1 then d′ 6= 0 and we have l(u) = l(t) = l(w)/2;
thus uφt = wφ and (wφ)d = φdπ/πI. �

�

Note that Theorem 9.1 only handles the case of eigenspaces for the eigenvalue
ζd, and not for another primitive d-th root of unity ζkd . However, note that if the
coset Wφ preserves a Q-structure on XR (which is the case for cosets associated
to finite reductive groups, except for the “very twisted” cases 2B2,

2G2 and 2F4),
then if ζkd is an eigenvalue of wφ, the Galois conjugate ζd is also an eigenvalue, for a
Galois conjugate eigenspace. In general, since we assume Wφ real, we may assume
2k ≤ d since if ζkd is an eigenvalue of wφ the complex conjugate ζd−kd is also an
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eigenvalue, for the complex conjugate eigenspace. In this last case we may say the
following (here we assume d 6= 1):

Corollary 9.3. In the situation of Theorem 9.1, let ζ = ζkd with k prime to d and
2k ≤ d, and let V be a subspace of X on which some element of Wφ acts by ζ.
Then we may choose V in its W -orbit such that:

(i) CW (V ) =WI for some I ⊂ S.
(ii) If WIwφ is the WI-coset of elements which act by ζ on V , and w is the

unique I-reduced element of that coset, then l(w) = (2k/d)(l(w0w
−1
I )) and

l((wφ)iφ−i) = il(w) if 2ik ≤ d.

Further, if w is the lift of w as in (ii) to W and I ⊂ S is the lift of I, then wφI = I

and (wφ)d = φd(π/πI)
k.

Proof. The proof of (i) in Theorem 9.1 does not use that the eigenvalue is ζd, so
still applies. The beginning of the proof of (ii) also applies and proves that in the
W -orbit we may choose w such that CW (V ) =WI , (wφ)

d = φd and wφI = I.

Let d′, k′ be positive integers such that kk′ = 1 + dd′, and let w1φ1 = (wφ)k
′

,

where φ1 = φk
′

. Then w1φ1 acts on V by ζd, so we may apply Theorem 9.1 to
it. We have (w1φ1)

k = (wφ)kk
′

= (wφ)1+dd
′

= (wφ)(wφ)dd
′

= (wφ)φdd
′

, thus

WIwφ = (WIw1φ1)
kφ1−kk

′

, thus (WIwφ)
iφ−i = (WIw1φ1)

kiφ−ki1 , whence (ii).
Finally, by Theorem 9.1 the lift w1 of w1 to B satisfies w1φ1I = I and (w1φ1)

d =

φd1π/πI , thus if we define w by (w1φ1)
k = wφ1+dd

′

, then w is the lift of w and

satisfies the last part of the corollary, using φd

I = I. �

We give now a converse.

Theorem 9.4. Let (W,S), φ, XR, X, S, B,B+ be as in Theorem 9.1 For d ∈ N,
let w ∈ B+ be such that (wφ)d = φdπ/πI for some φd-stable I ⊂ S. Then

(i) wφI = I.

Denote by w and I the images in W of w and I, let ζd = e2iπ/d, let V ⊂ X be the
ζd-eigenspace of wφ, and let XWI be the fixed point space of WI ; then

(ii) WI = CW (XWI ∩ V ), in particular CW (V ) ⊂WI .

Further, the following two assertions are equivalent:

(iii) w is maximal, that is, there do not exist a φd-stable J ( I and v ∈ B+
I

such that (vwφ)d = φdπ/πJ.
(iv) No element of the coset WIwφ has a non-zero ζd-eigenvector on the sub-

space spanned by the root lines of WI .

Proof. Notice that, since (wφ)d = (πI)
−1

πφd implies αI(w) = 1, condition (i)

is equivalent to require that I
w−→ φI is a morphism in the category B+(I) (this

morphism is then by assumption a d-th root of ∆2
I).

To prove (i) notice that by assumption wφ commutes to φdπ/πI, thus, since π

is central and φ-stable, it commutes to πIφ
−d. Thus, if δ is the order of φ, since

πI is φd-stable, wφ commutes to π
δ
I , hence (πδI)

w = π
δ
φI
. By Proposition 5.15(i)

we deduce (i).
In our setting Lemma 6.2 thus reduces to the following generalization of [BM,

lemme 6.9]

Lemma 9.5. Let w ∈ B+ and I ⊂ S be a φd-stable subset such that (wφ)d =

φdπ/πI. Then there exists v ∈ (B+)φ
d

such that (wφ)v ∈ B+φ, Iv ⊂ S and
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((wφ)v)⌊
d
2 ⌋ ∈ Wφ⌊

d
2 ⌋. Further, adv defines a morphism in D+(I)φd

(that is, the
conjugation is by “φd-stable cyclic permutations”).

Thus if we define w′ and J by (wφ)v = w′φ and Iv = J, we have (w′φ)d =

φdπ/πJ and w′φJ = J.
As (ii) and the equivalence of (iii) and (iv) are invariant by a conjugacy in B

which sends wφ to B+φ and I to another subset of S, we may replace (wφ, I) by
a conjugate as in Lemma 9.5, thus assume that w and I satisfy the assumptions of
the next lemma.

To state the next lemma we extend the length function from W to W ⋊ 〈φ〉 by
setting l(wφi) = l(w).

Lemma 9.6. Let w ∈ W, I ⊂ S be such that (wφ)d = φd, wφI = I and such that
l((wφ)i) = 2i

d l(w
−1
I w0) for any i ≤ d/2. We have

(i) If Φ be a φ-stable root system for W (as in the proof of Theorem 9.1),

then Φ−ΦI is the disjoint union of sets of the form {α, wφα, . . . , (wφ)d−1

α}
with α, wφα, . . . , (wφ)

⌊d/2⌋−1

α of same sign and (wφ)⌊d/2⌋α, . . . , (wφ)
d−1

α of
the opposite sign.

(ii) The order of wφ is lcm(d, δ).
(iii) If d > 1, then WI = CW (XWI ∩ ker(wφ − ζd)).

Proof. The statement is empty for d = 1 so in the following proof we assume d > 1.
For x ∈ W ⋊ 〈φ〉 let N(x) = {α ∈ Φ+ | xα ∈ Φ−}; it is well known that for

x ∈ W we have l(x) = |N(x)|. This still holds for x = wφi ∈ W ⋊ 〈φ〉 since

N(wφi) = φ−i

N(w). It follows that for x, y ∈ W ⋊ 〈φ〉 we have l(xy) = l(x)+ l(y) if

and only if N(xy) = N(y)
∐

y−1

N(x). In particular l((wφ)i) = il(wφ) for i ≤ d/2

implies (wφ)−i

N(wφ) ⊂ Φ+ for i ≤ d/2− 1.
Let us partition each wφ-orbit in Φ − ΦI into “pseudo-orbits” of the form

{α, wφα, . . . , (wφ)k−1

α}, where k is minimal such that (wφ)kα = φk

α (then k di-
vides d); a pseudo-orbit is an orbit if φ = 1. The action of wφ defines a cyclic
order on each pseudo-orbit. The previous paragraph shows that when there is a
sign change in a pseudo-orbit, at least the next ⌊d/2⌋ roots for the cyclic order have
the same sign. On the other hand, as φk preserves Φ+, each pseudo-orbit contains
an even number of sign changes. Thus if there is at least one sign change we have
k ≥ 2⌊d/2⌋. Since k divides d, we must have k = d for pseudo-orbits which have a
sign change, and then they have exactly two sign changes. As the total number of
sign changes is 2l(w) = 2|Φ− ΦI |/d, there are |Φ− ΦI |/d pseudo-orbits with sign
changes; their total cardinality is |Φ − ΦI |, thus there are no other pseudo-orbits
and up to a cyclic permutation we may assume that each pseudo-orbit consists of
⌊d/2⌋ roots of the same sign followed by d − ⌊d/2⌋ of the opposite sign. We have
proved (i).

Let d′ = lcm(d, δ). The proof of (i) shows that the order of wφ is a multiple of
d. Since the order of (wφ)d = φd is d′/d, we get (ii).

We now prove (iii). Let V = ker(wφ − ζd). Since W 〈φ〉 is finite, we may find a
scalar product on X invariant by W and φ. We have then XWI = Φ⊥

I . The map

p = 1
d′

∑d′−1
i=0 ζ−id (wφ)i is the (unique up to scalar) wφ-invariant projector on V ,

thus is the orthogonal projector on V .
We claim that p(α) 6∈< ΦI > for any α ∈ Φ − ΦI . As p((wφ)iα) = ζidp(α)

it is enough to assume that α is the first element of a pseudo-orbit; replacing if
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needed α by −α we may even assume α ∈ Φ+. Looking at imaginary parts, we
have ℑ(ζid) ≥ 0 for 0 ≤ i < ⌊d/2⌋, and ℑ(ζid) < 0 for ⌊d/2⌋ ≤ i < d. Let λ be a
linear form such that λ is 0 on ΦI and is real strictly positive on Φ+ −ΦI ; we have

λ((wφ)
i

α) > 0 for 0 ≤ i < ⌊d/2⌋, and λ((wφ)iα) < 0 for ⌊d/2⌋ ≤ i < d; it follows

that ℑ(λ(ζid (wφ)
i

α)) = ℑ(ζidλ((wφ)
i

α)) > 0 for all elements of the pseudo-orbit. If
d′ = d we have thus ℑ(λ(p(α))) > 0, in particular p(α) 6∈< ΦI >. If d′ > d, since
φdα is also a positive root and the first term of the next pseudo-orbit the same
computation applies to the other pseudo-orbits and we conclude the same way.

Now CW (XWI ∩ V ) is generated by the reflections whose root is orthogonal to
XWI ∩V , that is whose root is in < ΦI > +V ⊥. If α is such a root we have p(α) ∈<
ΦI >, whence α ∈ ΦI by the above claim. This proves that CW (XWI ∩ V ) ⊂ WI .
Since the reverse inclusion is true, we get (iii). �

We return to the proof of Theorem 9.4. Assertion (iii) of Lemma 9.6 gives the
first assertion of the theorem. We now show ¬(iii)⇒ ¬(iv). If w is not maximal,
there exists a φd-stable J ( I and v ∈ B+

I such that (vwφ)d = φdπ/πJ, which
implies vwφJ = J. If we denote by ψ the automorphism of BI induced by the
automorphism wφ of I, we have vψJ = J and (vψ)d = ψdπI/πJ. Let XI be the
subspace of X spanned by ΦI . It follows from the first part of the theorem applied
with X , φ, w and w respectively replaced with XI , ψ, v and v that vψ = vwφ
has a non-zero ζd-eigenspace in XI , since if V ′ is the ζd-eigenspace of vwφ we get
CWI (V

′) ⊂WJ (WI ; this contradicts (iv).
We show finally that ¬(iv)⇒ ¬(iii). If some element of WIψ has a non-zero

ζd-eigenvector on XI , by Theorem 9.1 applied to WIψ acting on XI we get the
existence of J ( I and v ∈ B+

I satisfying vψJ = J and (vψ)d = ψdπI/πJ. Using
that (wφ)d = φdπ/πI, it follows that (vwφ)

d = (wφ)dπI/πJ = φdπ/πI ·πI/πJ =
φdπ/πJ so w is not maximal. �

The maximality condition (iii) or (iv) of Theorem 9.4 is equivalent to the con-
junction of two others, thanks to the following lemma which holds for any complex
reflection coset and any ζ.

Lemma 9.7. Let W be finite a (pseudo)-reflection group on the complex vector
space X and let φ be an automorphism of X of finite order which normalizes W .
Let V be the ζ-eigenspace of an element wφ ∈Wφ. Assume that W ′ is a parabolic
subgroup of W which is wφ-stable and such that CW (V ) ⊂ W ′, and let X ′ denote
the subspace of X spanned by the root lines of W ′. Then the condition

(i) V ∩X ′ = 0.

is equivalent to

(ii) CW (V ) =W ′.

While the stronger condition

(iv) No element of the coset W ′wφ has a non-zero ζ-eigenvector on X ′.

is equivalent to the conjunction of (ii) and

(iii) the space V is maximal among the ζ-eigenspaces of elements of Wφ.

Proof. SinceW 〈φ〉 is finite we may endow X with aW 〈φ〉-invariant scalar product,
which we shall do.

We show (i) ⇔ (ii). Assume (i); since wφ has no non-zero ζ-eigenvector in X ′

and X ′ is wφ-stable, we have V ⊥ X ′, so that W ′ ⊂ CW (V ), whence (ii) since the
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reverse inclusion is true by assumption. Conversely, (ii) implies that V ⊂ X ′⊥ thus
V ∩X ′ = 0.

We show (iv) ⇒ (iii). There exists an element of Wφ whose ζ-eigenspace V1 is
maximal with V ⊂ V1. Then CW (V1) ⊂ CW (V ) ⊂ W ′ and the CW (V1)-coset of
elements of Wφ which act by ζ on V1 is a subset of the coset CW (V )wφ of elements
which act by ζ on V . Thus this coset is of the form CW (V1)vwφ for some v ∈ W ′.
By (i) ⇒ (ii) applied with wφ replaced by vwφ we get CW (V1) =W ′. Since v ∈W ′

this implies that vwφ and wφ have same action on V1 so that wφ acts by ζ on V1,
thus V1 ⊂ V .

Conversely, assume that (ii) and (iii) are true. If there exists v ∈ W ′ such that
vwφ has a non-zero ζ-eigenvector in X ′, then since v acts trivially on V by (ii), the
element vwφ acts by ζ on V and on a non-zero vector of X ′ so has a ζ-eigenspace
strictly larger that V , contradicting (iii). �

Let us give now examples which illustrate the need for the conditions in Theorem
9.4 and Lemma 9.7.

We first give an example where wφ is a root of π/πI but is not maximal in the
sense of Theorem 9.4(iii) and ker(wφ− ζ) is not maximal: let us take W =W (A3),
φ = 1, d = 2, ζ = −1, I = {s2} (where the conventions for the generators of W are
as in the appendix, see Subsection 11.2), w = w−1

I w0. We have w2 = π/πI but
ker(w+1) is not maximal: its dimension is 1 and a 2-dimensional −1-eigenspace is
obtained for w = w0.

In the above example we still have CW (V ) =WI but even this need not happen;
at the same time we illustrate that the maximality of V = ker(wφ−ζ) does not imply
the maximality of w if CW (V ) ( WI ; we take W = W (A3), φ = 1, d = 2, ζ = −1,
but this time I = {s1, s3}, w = w−1

I w0. We have w2 = π/πI and ker(w + 1) is
maximal (w is conjugate to w0, thus −1-regular) but w is not maximal. In this
case CW (V ) = {1}.

The smallest example with a maximal wφ and non-trivial I is for W =W (A4),
φ = 1, d = 3, w = s1s2s3s4s3s2 and I = {s3}. Then w3 = π/πI; this corresponds
to the smallest example with a non-regular eigenvalue: ζ3 is not regular in A4.

Finally we give an example which illustrates the necessity of the condition
φd(I) = I in 9.4. We take W = W (D4) and for φ the triality automorphism
s1 7→ s4 7→ s2. Let v = w0s

−1
1 s−1

2 s24. Then, for I = {s1} we have (wφ)2 = π/πIφ
2,

but Iwφ = {s4}. The other statements of 9.4 also fail: if V is the −1-eigenspace of
wφ the group CW (V ) is the parabolic subgroup generated by s1, s2 and s4.

Lemma 9.8. Let Wφ be a complex reflection coset and let V be the ζ-eigenspace
of wφ ∈ Wφ; then

(i) NW (V ) = NW (CW (V )wφ).
(ii) If Wφ is real, and CW (V ) = WI where (W,S) is a Coxeter system and

I ⊂ S, and w is I-reduced, then the subgroup {v ∈ CW (wφ) ∩ NW (WI) |
v is I-reduced} is a section of NW (V )/CW (V ) in W .

Proof. Let W1 denote the parabolic subgroup CW (V ). All elements of W1wφ have
the same ζ-eigenspace V , so NW (W1wφ) normalizes V ; conversely, an element
of NW (V ) normalizes W1 and conjugates wφ to an element w′φ with same ζ-
eigenspace, thus w and w′ differ by an element of W1, whence (i).
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For the second item, NW (WIwφ)/WI admits as a section the set of I-reduced
elements, and such an element will conjugate wφ to the element of the coset WIwφ
which is I-reduced, so will centralize wφ. �

Recall that given a category C with a Garside map ∆ and a Garside automor-
phism φ, we can consider the semi-direct product of C by φ (see Definition 2.6).
Then a morphism wφ ∈ Cφ is (p, q)-periodic if target(w) = φ(source(w)) and
(wφ)p = ∆qφp. An element satisfying the assumption of Theorem 9.4 is thus a

(d, 2)-periodic element of B+(I)φ, since ∆2
I starting from the object I is I

π/πI−−−→ I.
Lemma 9.5 shows that such an element is cyclically conjugate to an element which
satisfies in addition (wφ)d

′ ∈ Wφd
′

, where d′ = ⌊d2⌋. We will call good a periodic
element which satisfies the above condition.

The following proposition, which rephrases Corollary 6.3 in our setting, shows
that it makes sense to write a period of the form (d, 2) as a fraction d/2, since it
shows that when 2|d, a good (d, 2)-periodic element such that (wφ)d = ∆2

I satisfies

(wφ)d/2 = ∆I . We will thus call such elements d/2-periodic. In [DDGKM] the
analogous statement is shown for a general p/q.

Proposition 9.9. Assume the morphism I
w−→ φI is good d/2-periodic (which

means that w ∈ B+ satisfies wφI = I, (wφ)d = φdπ/πI and that in addition

(wφ)d
′ ∈ Wφd

′

, where d′ = ⌊d2⌋). Then if d is even we have (wφ)d
′

= w−1
I w0φ

d′ ,

and if d is odd there exists u ∈ WΦd

with Iu ⊂ S such that wφ = uφ · w0φ
d′

u and
(wφ)d

′

u = w−1
I w0φ

d′ .

Let us define the ζ-rank of a (complex) reflection coset Wφ ⊂ GL(X) as the
maximal dimension of a ζ-eigenspace of an element of Wφ, and the ζ-rank of an
element of Wφ as the dimension of its ζ-eigenspace.

Let us say that a periodic element of B+(I)φ is maximal if it is maximal in
the sense of Theorem 9.4(iii). Another way to state the maximality of a periodic
element is to require that |I| be no more than the rank of the centralizer of a

maximal ζd-eigenspace: indeed if I
w−→ φI is not maximal there exists J and v as

in Theorem 9.4(iii) and, since Theorem 9.4(iii) implies Lemma 9.7(iii), the element
vwφ has maximal ζd-rank, and the centralizer of its ζd-eigenspace has rank |J| < |I|.

A particular case of Theorems 9.1 and 9.4 is

Corollary 9.10. Let V ′ be the ζd-eigenspace of an element of Wφ of maximal ζd-
rank. Then there is a W -conjugate V of V ′ and I ⊂ S such that CW (V ) =WI and

the wφ defined in Theorem 9.1(ii) induces a d/2-periodic I
w−→ φI which is maximal.

Conversely, for a d/2-periodic maximal I
w−→ φI the image wφ in Wφ has maximal

ζd-rank.

Lemma 9.11. Let Wφ ⊂ GL(XR) be a finite order real reflection coset such that
φ preserves the chamber of the corresponding hyperplane arrangement determining
the Coxeter system (W,S).

Let w ∈ W and I ⊂ S and let w ∈ W and I ⊂ S be their lifts; let I be the

conjugacy orbit of I, then w induces a morphism I
w−→ φI ∈ B+(I) if and only if:

(i) wφI = I and w is I-reduced.

For d > 1, the above morphism I
w−→ φI is good d/2-periodic if and only if the

following two additional conditions are satisfied.
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(ii) l((wφ)iφ−i) = 2i
d l(w

−1
I w0) for 0 < i ≤ ⌊d2⌋.

(iii) (wφ)d = φd.

If, moreover,

(iv) WIwφ has ζd-rank 0 on the subspace spanned by the root lines of WI ,

then wφ is maximal in the sense of Theorem 9.4(iii).

Proof. By definition w induces a morphism I
w−→ φI if and only if it satisfies (i).

By definition again if this morphism is good d/2-periodic then (ii) and (iii) are
satisfied. Conversely, Lemma 9.2 shows that the morphism induced by the lift of a
w satisfying (i), (ii), (iii) is good d/2-periodic.

Property (iv) means that no element vwφ with v ∈ WI has an eigenvalue ζd on
the subspace spanned by the root lines of WI which is exactly the characterization
of Theorem 9.4(iv) of a maximal element. �

Note that d and I in the above assumptions (i), (ii), (iii) are uniquely determined
by w since d is the smallest power of wφ which is a power of φ and I is given uniquely
by (wφ)d = π/πIφ

d.

Definition 9.12. We say that wφ ∈ Wφ is ζd-good (relative to Wφ and I) if it
satisfies (i), (ii), (iii) in Lemma 9.11.

We say wφ is ζd-good maximal if it satisfies in addition (iv) in Lemma 9.11.

In particular, ζd-good elements lift to good d/2-periodic elements, and ζd-good
maximal elements lift to good maximal d/2-periodic elements.

The ζd-good maximal elements belong to a single conjugacy class of W . The
following lemma applied with ζ = ζd gives a characterization of this class.

Lemma 9.13. Let Wφ be a finite order real reflection coset such that φ preserves a
chamber of the corresponding hyperplane arrangement. The elements of Wφ which
have a ζ-eigenspace V of maximal dimension and among those, have the largest
dimension of fixed points, are conjugate.

Proof. Let w and V be as in the lemma. Since, by [S, Theorem 3.4(iii) and Theorem
6.2(iii)], the maximal ζ-eigenspaces are conjugate, we may fix V . Since CW (V ) is a
parabolic subgroup of the Coxeter groupW normalized by wφ, the coset CW (V )wφ
is a real reflection coset; in this coset there are 1-regular elements, which are those
which preserve a chamber of the corresponding real hyperplane arrangement; the
1-regular elements have maximal 1-rank, that is have the largest dimension of fixed
points, and they form a single CW (V )-orbit under conjugacy, whence the lemma.

�

Lemma 9.14. Let wφ be a ζd-good maximal element, let I be as in Lemma 9.11
and let V1 be the fixed point subspace of wφ in the space spanned by the root lines
of WI ; then wφ is regular in the coset CW (V1)wφ.

Proof. Let W ′ = CW (V1); we first note that since wφ normalizes V1 it normalizes
also W ′, so W ′wφ is indeed a reflection coset. We have thus only to prove that
CW ′(V ) is trivial, where V is the ζd-eigenspace of wφ. This last group is generated
by the reflections with respect to roots both orthogonal to V and to V1, which are
the roots of WI = CW (V ) orthogonal to V1. Since wφ preserves a chamber of WI ,
the sum v of the positive roots of WI with respect to the order defined by this
chamber is in V1 and is in the chamber: this is well known for a true root system;
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here we have taken all the roots to be of length 1 but the usual proof (see [Bou,
Chapitre VI §1, Proposition 29]) is still valid. Since no root is orthogonal to a vector
v inside a chamber, WI has no root orthogonal to V1, hence CW ′ (V ) = {1}. �

Note that the map CW ′(wφ) = NW ′(V ) → NW (V )/CW (V ) in the above proof
is injective, but not always surjective: if W of type E7, if φ = Id and ζ = i, a fourth
root of unity, thenNW (V )/CW (V ) is the complex reflection groupG8, whileW

′ is of
type D4 and NW ′(V )/CW ′(V ) is the complex reflection group G(4, 2, 2). However,
we will see in appendix 1 that there are only 4 such cases for irreducible groupsW ;
to see in the other cases that CW ′(wφ) ≃ NW (V )/CW (V ) it is sufficient to check
that they have same reflection degrees, which is a simple arithmetic check on the
reflection degrees of W and W ′.

10. Conjectures

The following conjectures extend those of [DM2, §2]. They are a geometric form
of Broué conjectures.

Conjectures 10.1. Let I
w−→ φI ∈ B+(I) be a maximal d/2-periodic morphism.

Then

(i) The group Bw generated by the monoid B+
w of Theorem 8.28 is isomorphic

to the braid group of the complex reflection group Ww := NW (WIwφ)/WI .

(ii) The natural morphism D+(I)(I w−→ φI) → EndGF (X(I,wφ)) (see below
Definition 8.25) gives rise to a morphism Bw → EndGF H∗

c (X(I,wφ))
which factors through a special representation of a ζd-cyclotomic Hecke
algebra Hw for Ww.

(iii) The odd and even Hi
c(X(I,wφ)) are disjoint, and the above morphism

extends to a surjective morphism Qℓ[Bw] → EndGF (H∗
c (X(I,wφ))).

Lemma 10.2. Let I
w−→ φI ∈ B+(I) be a maximal d/2-periodic morphism and

assume Conjectures 10.1; then for any i 6= j the GF -modules Hi
c(X(I,wφ)) and

Hj
c (X(I,wφ)) are disjoint.

Proof. Since the image of the morphism of Conjecture 10.1(ii) consists of equiva-
lences of étale sites, it follows that the action of Hw on H∗

c (X(I,wφ)) preserves
individual cohomology groups. The surjectivity of the morphism of (iii) implies that
for ρ ∈ Irr(GF ), the ρ-isotypic part of H∗

c (X(I,wφ)) affords an irreducible Hw-
module; this would not be possible if this ρ-isotypic part was spread over several
distinct cohomology groups. �

We will now explore the information given by the Shintani descent identity on
the above conjectures

Lemma 10.3. Let I
w−→ φI ∈ B+(I) be a d/2-periodic morphism. With the nota-

tions of Proposition 8.34, we have χ̃qm(X1Twφ) = qm
l(π)−l(πI)−aχ−Aχ

d χ̃(eIwF ) for
χ ∈ Irr(W )φ, where aχ (resp. Aχ) is the valuation (resp. the degree) of the generic
degree of χ and eI = |WI |−1

∑

v∈WI
v.

Proof. We have (X1Twφ)
d = X1Tπ/TπI

φd = q−l(πI)X1Tπφ
d since X1 commutes

with Twφ and since for any v ∈ WI we have X1Tv = ql(v)Tv. Since Tπ acts on the
representation of character χqm as the scalar qm(l(π)−aχ−Aχ) (see [BM, Corollary
4.20]), it follows that all the eigenvalues of X1Twφ on this representation are equal
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to qm
l(π)−l(πI)−aχ−Aχ

d times a root of unity. To compute the sum of these roots
of unity, we may use the specialization qm/2 7→ 1, through which χ̃qm(X1Twφ)
specializes to χ̃(eIwφ). �

Proposition 10.4. Let I
w−→ φI ∈ B+(I) be a d/2-periodic morphism. For any m

multiple of δ, we have

|X(I,wφ)gF
m | =

∑

ρ∈E(GF ,1)

λm/δρ qm
l(π)−l(πI)−aρ−Aρ

d 〈ρ,RG,F
LI ,ẇF

Id〉GF ρ(g),

where aρ and Aρ are respectively the valuation and the degree of the generic degree
of ρ.

Proof. We start with Corollary 8.35, whose statement reads, using the value of
χ̃qm(X1Twφ) given by Lemma 10.3:

|X(I,wφ)gF
m | =

∑

ρ∈E(GF ,1)

λm/δρ ρ(g)

∑

χ∈Irr(W )φ

qm
l(π)−l(πI)−aχ−Aχ

d χ̃(eIwφ)〈ρ,Rχ̃〉GF .

Using that for any ρ such that 〈ρ,Rχ̃〉GF 6= 0 we have aρ = aχ and Aρ = Aχ (see
[BM] around (2.4)) the right-hand side can be rewritten

∑

ρ∈E(GF ,1)

λm/δρ qm
l(π)−l(πI)−aρ−Aρ

d ρ(g)〈ρ,
∑

χ∈Irr(W )φ

χ̃(eIwφ)Rχ̃〉GF .

The proposition is now just a matter of observing that
∑

χ∈Irr(W )φ

χ̃(eIwφ)Rχ̃ = |WI |−1
∑

v∈WI

∑

χ∈Irr(W )φ

χ̃(vwφ)Rχ̃ =

|WI |−1
∑

v∈WI

RG
Tvw

(Id) = RG,F
LI ,ẇF

(Id).

Where the last equality is obtained by transitivity of RG
L and the equality IdLẇF

I
=

|WI |−1
∑

v∈WI
RLI ,ẇF

Tvw
(Id), a torus T of LI of type v for the isogeny ẇF being

conjugate to Tvw in G. �

Corollary 10.5. Let I
w−→ φI ∈ B+(I) be a maximal d/2-periodic morphism and

assume Conjectures 10.1; then for any ρ ∈ Irr(GF ) such that 〈ρ,RG,F
LI ,ẇF

(Id)〉GF 6= 0

the isogeny F δ has a single eigenvalue on the ρ-isotypic part of H∗
c (X(I,wφ)), equal

to λρq
δ

l(π/πI)−aρ−Aρ
d .

Proof. This follows immediately, in view of Lemma 10.2, from the comparison be-
tween Proposition 10.4 and the Lefschetz formula:

|X(I,wφ)gF
m | =

∑

i

(−1)iTrace(gFm | Hi
c(X(I,wφ),Qℓ)).

�

In view of Corollary 8.38(i) it follows that if 〈ρ,RG
LI
(Id)〉GF 6= 0 then if ωρ = 1

then
l(π/πI)−aρ−Aρ

d ∈ N, and if ωρ =
√

qδ then
l(π/πI)−aρ−Aρ

d ∈ N+ 1/2.
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Assuming Conjectures 10.1, we choose once and for all a specialization q1/a 7→
ζ1/a, where a ∈ N is large enough such that Hw ⊗ Qℓ[q

1/a] is split. This gives a
bijection ϕ 7→ ϕq : Irr(Ww) → Irr(Hw), and the conjectures give a further bijection
ϕ 7→ ρϕ between Irr(Ww) and the set {ρ ∈ Irr(GF ) | 〈ρ,RG

LI
(Id)〉GF 6= 0}, which is

such that 〈ρϕ, RG
LI
(Id)〉GF = ϕ(1).

Corollary 10.6. Under the assumptions of Corollary 10.5, if ωϕ is the central
character of ϕ, then

λρϕ = ωϕ((wφ)
δ)ζ−δ

l(π/πI)−aρϕ−Aρϕ
d .

Proof. We first note that it makes sense to apply ωϕ to (wφ)δ , since (wφ)δ is a cen-
tral element ofWw. Actually (wφ)δ is a central element ofBw and maps by the mor-
phism of Conjecture 10.1(iii) to F δ, thus the eigenvalue of F δ on the ρϕ-isotypic part

of H∗
c (X(I,wφ)) is equal to ωϕq ((wφ)

δ); thus ωϕq ((wφ)
δ) = λρϕq

δ
l(π/πI)−aρϕ−Aρϕ

d .

The statement follows by applying the specialization q1/a 7→ ζ1/a to this equal-
ity. �

11. Appendix 1: good ζd-maximal elements in reductive groups

We will describe, in a reductive group G, for each d, a ζd- good maximal element
wφ relative to Wφ and some I ⊂ S. Thus the variety X(I,wφ) will be the one
whose cohomology should be a tilting complex for the Broué conjectures for an ℓ
dividing Φ(q) (Φ as in the introduction of Section 9).

Since such an element depends only on the Weyl group, we may assume that
G is semi-simple and simply connected. Now, a semi-simple and simply connected
group is a direct product of restrictions of scalars of simply connected quasi-simple
groups. A ζd-good (resp. maximal) element in a direct product is the product of a
ζd-good (resp. maximal) element in each component. So we reduce immediately to
the case of restriction of scalars.

11.1. Restrictions of scalars. A restriction of scalars is a group of the form
Gn, with an isogeny F1 such that F1(x0, . . . , xn−1) = (x1, . . . , xn−1, F (x0)). Thus
(Gn)F1 ≃ GF .

If F induces φ on the Weyl group W of G then (Gn, F1) corresponds to the
reflection coset Wn · σ, where σ(x1, . . . , xn) = (x2, . . . , xn, φ(x1)).

In the first two propositions of this section, we will study such a “restriction
of scalars” for arbitrary complex reflection cosets. Thus we start with a reflection
coset Wφ, with W ⊂ GL(V ) a complex reflection group where V = Cr, and φ ∈
NGL(V )(W ). We denote by δ the order ofWφ (the minimal i such that (Wφ)i =W ).
We want to study the eigenvalues of elements in the coset Wn ·σ ⊂ GL(V n), where
σ(x1, . . . , xn) = (x2, . . . , xn, φ(x1)); we say that this coset is a restriction of scalars
of the coset Wφ.

Recall (see for example [Br]) that, if SW is the coinvariant algebra of W (the
quotient of the symmetric algebra of V ∗ by the ideal generated by theW -invariants
of positive degree), for any W -module X the graded vector space (SW ⊗X∗)W ad-
mits a homogeneous basis formed of eigenvectors of φ. The degrees of the elements
of this basis are called the X-exponents of W and the corresponding eigenvalues
of φ the X-factors of Wφ. For X = V , the V -exponents ni satisfy ni = di − 1
where the di’s are the reflection degrees of W , and the V -factors εi are equal to the
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factors of Wφ. For X = V ∗, the ni − 1 where ni are the V ∗-exponents are called
the codegrees d∗i of W and the corresponding V ∗-factors ε∗i are called the cofactors
of Wφ. By Springer [S, 6.4], the ζ-rank of Wφ is equal to |{i | ζdi = εi}|. By

analogy with the ζ-rank, we define the ζ-corank of Wφ as |{i | ζd∗i = ε∗i }|. By for
example [Br, 5.19.2] an eigenvalue is regular if it has same rank and corank.

Proposition 11.1. Let Wn · σ be a restriction of scalars of the complex reflection
coset Wφ. Then the ζ-rank (resp. corank) of Wn · σ is equal to the ζn-rank (resp.
corank) of Wφ.

In particular, ζ is regular for Wn · σ if and only if ζn is regular for W · φ.
Proof. The pairs of a reflection degree and the corresponding factor of σ for the
coset Wn · σ are the pairs (di, ζ

j
n

n
√
εi), where i ∈ {1, . . . , r}, j ∈ {1, . . . , n} and

where n
√
εi represents an n-th root of εi (that we choose arbitrarily for each i).

Similarly, the pairs of a reflection codegree and the corresponding cofactor are
(d∗i , ζ

j
n

n
√

ε∗i ).

In particular the ζ-rank of Wn · σ is |{(i, j) | ζdi = ζjn n
√
εi}| and the ζ-corank is

|{(i, j) | ζd∗i = ζjn
n
√

ε∗i }|.
Given a ∈ N, there is at most one j such that the equality ζa = ζjn n

√
εi holds,

and there is one j if and only if ζna = εi. Thus we have

|{(i, j) | ζdi = ζjn
n
√
εi}| = |{i | ζndi = εi}|

and similarly for the corank, whence the two assertions of the statement. �

We assume now that ζ = ζd; note that ζnd is a d/k-th root of unity, where
k = gcd(n, d), but it is not a distinguished root of unity. We have however the
following:

Proposition 11.2. Let Wn · σ be a restriction of scalars of the complex reflection
coset Wφ and for d ∈ N let k = gcd(n, d); then there exists m such that m(n/k) ≡ 1
(mod d/k) and gcd(m, δ) = 1, and for such an m the ζd-rank (resp. corank) ofW

n·σ
is equal to the ζd/k-rank (resp. corank) of W · φm.

Proof. We first show thatm exists. Choose anm such thatm(n/k) ≡ 1 (mod d/k).
Since m is prime to d/k it is prime to gcd(d/k, δ). By adding to m a multiple of
d/k we can add modulo δ any multiple of gcd(d/k, δ), thus we can reach a number
prime to δ, using the general fact that for any divisor δ′ of δ, the natural projection

Z/δZ
θ−→ Z/δ′Z is such that θ((Z/δZ)×) ⊃ (Z/δ′Z)×.

By Proposition 11.1, the ζd-rank (resp. corank) of Wn · σ is equal to the ζnd =

ζ
n/k
d/k -rank (resp. corank) of W · φ. Now εmi (resp. ε∗mi ) are the factors (resp. cofac-

tors) of W ·φm and since m is prime to δ and εδi = 1, we have |{i | ζdi = εi}| = |{i |
(ζm)di = εmi }|, (similarly for d∗i , ε

∗
i ); thus the ζ

n/k
d/k -rank (resp. corank) of W · φ is

equal in turn to the ζ
m·n/k
d/k -rank (resp. corank) of W · φm. Now, since m(n/k) ≡ 1

(mod d/k), we have ζ
m·n/k
d/k = ζd/k. �

We now assume, until the end of the subsection, that Wφ is a real reflection
coset of order δ, that φ preserves a chamber corresponding to the Coxeter system
(W,S), and that ζ = ζd is a distinguished root of unity. We will use the criteria of
Lemma 9.11 to check that an element is ζd-good (resp. maximal).
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Proposition 11.3. Under the assumptions of Proposition 11.2, let vφm be a ζd/k-
good element relative to Wφm and I. Then

• If either k = 1 or d/k is even, define w = (w0, . . . , wn−1) ∈ Wn by
wik = φim(v), and wj = 1 if j 6≡ 0 (mod k)

• If d/k is odd and k 6= 1, by Proposition 9.9 there exists v1, v2 ∈ W such

that vφm = v1φ
mv2 and (vφm)(

d
k−1)/2v1 = w−1

I w0φ
m( d

k−1)/2; define w =
(w0, . . . , wn−1) ∈Wn by

wj =











φim(v2) if j = ik

φ(i+1)m(v1) if j = ik + ⌊k2 ⌋
1 if j 6≡ 0, ⌊k2⌋ (mod k)

In each case wσ is a ζd-good element relative toWnσ and I where I = (I0, . . . , In−1) ⊂
Sn with Ij =

wjwj+1...wn−1φI and we have NWn(WIwσ)/WI ≃ NW (WIvφ
m)/WI .

If moreover vφm is maximal then wσ is also maximal.

Proof. To lighten the notation, we set n′ = n/k and d′ = d/k.

We recall that vφm being ζd′ -good means vφ
m

I = I and v is I-reduced, (vφm)d
′

=

φmd
′

, and l((vφm)iφ−im) = 2i/d′ · l(w−1
I w0) for 0 ≤ i ≤ ⌊d′2 ⌋. We have to show the

same conditions for wσ, that is

(i) wσ(I0, . . . , In−1) = (I0, . . . , In−1) and w is (I0, . . . , In−1)-reduced.
(ii) (wσ)d = σd.
(iii) l((wσ)iσ−i) = 2in

d l(w
−1
I w0) for 0 ≤ i ≤ ⌊d2⌋.

We first note:

Lemma 11.4. φd
′

stabilizes v and I (thus φgcd(d
′,δ) also).

Proof. As (vφm)d
′

= φmd
′

, we find that φmd
′

stabilizes vφm and I, thus v and I.

Since m is invertible modulo δ, we get that φd
′

stabilizes v and I. �

We first check that I ⊂ Sn. In the case d′ even, each Ij is of the form
φim(v)φ(i+1)m(v)...φ(n′−1)m(v)φI (where ik is the smallest multiple of k greater than j).

If d′ is odd Ij is either as above or of the form
φ(i−1)m(v2)φ

im(v)φ(i+1)m(v)...φ(n′−1)m(v)φI.

In the first case, since 1−mn′ ≡ 0 (mod d′) and φd
′

stabilizes I, by Lemma 11.4,
we can write

Ij =
φim(v)φ(i+1)m(v)...φ(n′−1)m(v)φmn′

I = φim(vφm)n
′−i

I = φim

I ⊂ S.

In the second case, if we put J = Iv1 = v2φ
m

I, a subset of S by Proposition 9.9, we

get Ij =
φ(i−1)m(v2)φ

im

I = φ(i−1)m

J .
We now check (i). The verification of wσ(I0, . . . , In−1) = (I0, . . . , In−1) reduces

to w0w1...wn−1φI = I, which itself reduces to vφm(v)...φ(n′−1)m(v)φI = I, which is
true by the case i = 0 of the above computation. Similarly, checking that wσ is
(I0, . . . , In−1)-reduced reduces to the check that for each j the element wj is Ij -
reduced, where Ij = wjwj+1...wn−1φI = Iw0...wj−1 , or equivalently that w0 . . . wj−1

is I-reduced. Thus in the d′ even case we have to check that vφm(v) . . . φim(v) is
I-reduced for 0 ≤ i < n′. This results from the fact that v is I-reduced and that vφm

normalizes I. In the d′ odd case we have also to check that vφm(v) . . . φ(i−1)m(v)φim(v1)
is I-reduced, which follows from the fact that v is I-reduced, that vφm normalizes
I and that v1 is also I-reduced, which we know by Proposition 9.9.



52 F. DIGNE AND J. MICHEL

For checking (ii) and (iii) we compute (wσ)i. For any (w0, . . . , wn−1) ∈ Wn

we have σ(w0, . . . , wn−1) = (w1, . . . , wn−1, φ(w0))σ, thus we find that if we define

for all j the element wj = φ
j−j0

n (wj0 ) = φ⌊
j
n ⌋(wj0 ) where j0 ≡ j (mod n) and

0 ≤ j0 < n, we have

(wσ)i = (w0 . . . wi−1, w1 . . . wi, . . . , wn−1 . . . wi+n−2)σ
i.

Each product wuwu+1 . . . wu+i−1 appearing in the above expression is, up to apply-
ing a power of φ, of the form (vφm)jφ−mj or in the d′ odd case additionally of one of
the forms (v2φ

mv1)
jφ−mj , (v1φ

mv2)
jv1φ

−mj or v2(v1φ
mv2)

jφ−mj , for some j which
depends on u and i. If i is a multiple of k the last two forms do not appear and
j = i/k. In particular if i = d we get either (vφm)d/kφ−md/k or (v2φ

mv1)
d/kφ−md/k.

Since (vφm)d
′

= φd
′m we have also (v2φ

mv1)
d′ = v−1

1 (vφm)d
′

v1 = φmd
′

, since v,

hence v1, is φ
md′-stable, whence (ii).

To check (iii) it is enough check it for i = 1, which is clear since l(w) = n′l(v) =
2in
d l(w

−1
I w0) and l(v) = l(v1)+ l(φm(v2)) (by Proposition 9.9) and to check that in

a product wuwu+1 . . . wu+i−1 the lengths add for all i ≤ ⌊d2⌋: the lengths will then

add in (wσ)i for i ≤ ⌊d2⌋ which gives (iii). In the d′ even case this is a result of the

lengths adding for (vφm)jφ−mj . In the d′ odd case, we know by Proposition 9.9
that the lengths add in a product of at most d′ terms of the form v1

φm

v2
φm

v1 . . .
or of the form v2

φm

v1
φmv2 . . .. We claim that to get more than d′ non-trivial

terms in the product wuwu+1 . . . wu+i−1 we need i > ⌊d2⌋. The maximal number
of non-trivial terms is obtained when the first or the last term is non trivial. To
get d′ + 1 non-trivial terms we need i ≥ d′+1

2 k + ⌊k2 ⌋, since d′ + 1 is even. But
d′+1
2 k + ⌊k2⌋ = ⌊kd′2 ⌋+ k > d

2 , whence our claim.
Computing now NWn(WIwσ), we find that (g0, . . . , gn−1) normalizes (WIwσ) if

and only if:

g0WI0 =WI0
w0g1

. . . = . . .

gn−2WIn−2 =WIn−2

wn−2gn−1

gn−1WIn−1 =WIn−1

wn−1φg0

which, using the value Ij =
wj ...wn−1φI = Iw0...wj−1 becomes

g0WI =WI
w0g1

. . . = . . .
w0...wn−3gn−2WI =WI

w0...wn−2gn−1

w0...wn−2gn−1WI =WI
w0...wn−1φg0

We now notice that an equality aWI = WIb is equivalent to: a normalizes WI ,
and aWI = bWI . Thus our equations are equivalent to: g0 normalizes WI , the
cosets WIg0, . . . ,WI

w0...wn−2gn−1 are equal (thus determined by g0) and WIg0 =
WI

w0...wn−1φg0. The last equality means that g0 normalizes WIw0 . . . wn−1φ; we

findNWn(WIwσ)/WI ≃ NW (WIw0 . . . wn−1φ)/WI = NW (WI(vφ
m)n

′

φ1−mn
′

)/WI .

Since 1 − mn′ ≡ 0 (mod d′), by Lemma 11.4 φ1−mn
′

commutes with vφm, thus

((vφm)n
′

φ1−mn
′

)m = (vφm)n
′mφm−mn′m. Let us write n′m = ad′ + 1; using that

(vφm)d
′

= φmd
′

we get (vφm)n
′mφm−mn′m = (vφm)ad

′+1φ−amd
′

= vφm, thus the
above coset has same normalizer as WIvφ

m.
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Assume now that vφm is maximal, that is WIvφ
m has ζd′-rank equal to 0. We

prove the same for wσ, that is (WI0 × . . .×WIn−1)wσ has ζd-rank 0. Identifying Ij
to I via wj . . . wn−1φ, the coset (WI0 × . . .×WIn−1)wσ identifies to Wn

I σ
′ where

σ′(x0, . . . , xn−1) = (x1, . . . , xn−1, (w0 . . . wn−1φ)(x0))

= (x1, . . . , xn−1, ((vφ
m)n

′

φ1−mn
′

)(x0)),

since in each case we have w0 . . . wn−1φ = ((vφm)n
′

φ1−mn
′

)(x0)). Now by Propo-
sition 11.2 the ζd-rank of this last coset is equal to the ζd′ -rank of the coset
W ((vφm)n

′

φ1−mn
′

)m. But we have checked above that ((vφm)n
′

nφ1−mn
′

)m = vφm,
thus the sought ζd′ -rank is the same as the ζd′-rank of WIvφ

m which is 0 by as-
sumption. �

11.2. Case of irreducible Coxeter cosets. We now look at the case of quasi-
simple simply connected reductive groups G, or equivalently at the case of irre-
ducible Coxeter cosets Wφ. We will look at any real Coxeter coset Wφ since it is
not much more effort than to look just at the rational ones.

We use the classification. We are going to give, for each irreducible type and
each possible d, a representative wφ of the ζd-good maximal elements, describing the
corresponding I; since conjecturally for a given d all such elements are conjugate in
the braid group, this describes all the ζd-good maximal elements. We also describe
the relative complex reflection groupW (wφ) := NW (V )/CW (V ), where V is the ζd-
eigenspace of wφ. In the cases where the injection CW ′(wφ) → NW (V )/CW (V ) =
W (wφ) of the remark after Lemma 9.14, is surjective, where W ′ = CW (V1) and
V1 is the fixed point subspace of wφ in the space spanned by the root lines of WI ,
we use it to deduce W (wφ) from W ′ = CW (V1) since the centralizers of regular
elements are known (see [BM, Annexe 1]).

Types An and 2An ©
s1

©
s2

· · ·©
sn

. 2An is defined by the diagram automorphism φ

which exchanges si and sn+1−i.
For any integer 1 < d ≤ n+ 1, we define

vd = s1s2 . . . sn−⌊ d
2 ⌋
snsn−1 . . . s⌊ d+1

2 ⌋ and Jd = {si | ⌊
d+ 1

2
⌋+ 1 ≤ i ≤ n− ⌊d

2
⌋}.

If d is odd we have vd = v′d
φv′d, where v

′
d = s1s2 . . . sn−⌊ d

2 ⌋
.

Now, for 1 < d ≤ n+ 1, let kd be the largest multiple of d less than or equal to
n+1, so that n+1

2 < kd ≤ n+1 and k = ⌊n+1
d ⌋. We then define wd = vkkd, Id = Jkd

and if d is odd we define w′
d by

w′
dφ =

{

(v′kdφ)
k if k is odd,

v
k/2
kd φ if k is even,

Theorem 11.5. For W = W (An), ζd-good maximal elements exist for 1 < d ≤
n+ 1; a representative is wd, with I = Id and W (wd) = G(d, 1, ⌊n+1

d ⌋).
For Wφ, ζd-good maximal elements exist for the following d with representatives

as follows:

• d ≡ 0 (mod 4), 1 < d ≤ n + 1; a representative is wdφ with I = Id and
W (wdφ) = G(d, 1, ⌊n+1

d ⌋).
• d ≡ 2 (mod 4), 1 < d ≤ 2(n+ 1); a representative is w′

d/2φ with I = Id/2

and W (w′
d/2φ) = G(d/2, 1, ⌊ 2(n+1)

d ⌋).
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• d odd, 1 < d ≤ n+1
2 . If d 6= 1 a representative is w2

2dφ with I = I2d and

W (w2
2dφ) = G(2d, 1, ⌊n+1

2d ⌋).
Proof. We identify the Weyl group of type An as usual with Sn+1 by si 7→ (i, i+1);
the automorphism φ maps to the exchange of i and n+2− i. An easy computation
shows that the element vd maps to the d-cycle (1, 2, . . . , ⌊d+1

2 ⌋, n+1, n, . . . , n+2−
⌊d2⌋) and that for d odd v′d maps to the cycle (1, 2, . . . , n− d−3

2 ).

Lemma 11.6. If d is even vd and wd are φ-stable. If d is odd we have wd = w′
d.
φw′

d.

Proof. That d is even implies ⌊d+1
2 ⌋ = ⌊d2⌋, thus in the above cycle φ exchanges

the two sequences 1, 2, . . . , ⌊d+1
2 ⌋ and n+ 1, n, . . . , n+ 2− ⌊d2⌋, thus vd is φ-stable.

The same follows for wd, with k = ⌊n+1
d ⌋, since kd is even if d is even.

For d odd we have

w′
d.
φw′

d = (w′
dφ)

2 =

{

(v′kdφ)
2k if k is odd,

v
k/2
kd .

φ(v
k/2
kd ) if k is even.

If k is odd we have (v′kdφ)
2k = (v′kd

φv′kd)
k = vkkd = wd. If k is even then vkd is

φ-stable thus v
k/2
kd .

φ(v
k/2
kd ) = vkkd = wd. �

Lemma 11.7. For 1 < d ≤ n+ 1,

• the element vd is Jd-reduced and stabilizes Jd.
• the element wd is Id-reduced and stabilizes Id.
• for d odd, the element v′d is Jd-reduced and v′dφ stabilizes Jd.
• for d odd, the element w′

d is Id-reduced and w′
dφ stabilizes Id.

Proof. The property for wd (resp. w′
d) follows from that for vd (resp. v′d) and the

definitions since being Id-reduced and stabilizing Id are properties stable by taking
a power.

It is clear on the expression of vd as a cycle that it fixes i and i + 1 if si ∈ Jd
thus it fixes the simple roots corresponding to Jd, whence the lemma for vd.

For d odd, 1 < d ≤ n+1, an easy computation shows that v′d = (1, 2, . . . , n− d−3
2 ),

and that v′dφ preserves the simple roots corresponding to Jd. �

Lemma 11.8. For 1 < d ≤ n+ 1 and for 0 < i ≤ ⌊d2⌋, we have

• l(vid) =
2i
d l(w

−1
Jd
w0) and l(w

i
d) =

2i
d l(w

−1
Id
w0)

• (for d odd) l((v′dφ)
iφ−i) = i

d l(w
−1
Jd
w0) and l((w

′
dφ)

iφ−i) = i
d l(w

−1
Id
w0).

Proof. It is straightforward to see that the result for wd (resp. w′
d) results from the

result for vd (resp. v′d or vd) and the definitions.

Note that the groupWJd
is of type An−d, thus l(w

−1
Jd
w0) =

n(n+1)
2 − (n−d)(n−d+1)

2 =
(2n−d+1)d

2 .
We first prove the result for vd and v′d when i = 1. For odd d we have by

definition l(v′d) = n− d−1
2 = 2n−d+1

2 which is the formula we want for v′d. To find
the length of vd one can use that snsn−1 . . . s⌊ d+1

2 ⌋ is {s1, s2, . . . , sn−1}-reduced,
thus adds to s1s2 . . . sn−⌊ d

2 ⌋
, which gives l(vd) = 2n− d+ 1, the result for vd.

We now show by direct computation that when d is even v
d/2
d = w−1

Jd
w0. Rais-

ing the cycle (1, 2, . . . , d2 , n + 1, n, . . . , n + 2 − d
2 ) to the d/2-th power we get

(1, n + 1)(2, n) . . . (d2 , n + 2 − d
2 ) which gives the result since wJd

= (d2 + 1, n +
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1 − d
2 ) . . . (⌊n2 ⌋, ⌊n+1

2 ⌋). The lemma follows for vd with d even since its truth for

i = 1 and i = d
2 implies its truth for all i between these values.

We show now similarly that for odd d we have (v′dφ)
d = w−1

Jd
w0φ

d. Since φ acts

on W by the inner automorphism given by w0, this is the same as (v′dw0)
d = wJd

.

We find that (1, 2, . . . , n− d−3
2 )w0 = (1, n+1, 2, n, 3, n−1 . . . , n− d−5

2 , d+1
2 )(d+3

2 , n−
d−3
2 ) . . . (⌊n+3

2 ⌋, ⌊n+4
2 ⌋) as a product of disjoint cycles, which gives the result since

(1, n+1, 2, n, 3, n−1, . . . , n− d−5
2 , d+1

2 ) is a d-cycle and (d+3
2 , n− d−3

2 ) . . . (⌊n+3
2 ⌋, ⌊n+4

2 ⌋) =
wJd

. This proves the lemma for w′
d by interpolating the other values of i as above.

It remains the case of vd for odd d. We then have vd = (v′dφ)
2 where the lengths

add, and we deduce the result for vd from the result for v′d. �

Lemma 11.9. The following elements are ζd-good

• For 1 < d ≤ n+ 1, the elements vd and wd.
• For d ≡ 0 (mod 4), d ≤ n+ 1 the elements vdφ and wdφ.
• For d ≡ 2 (mod 4), d ≤ 2(n+ 1) the elements v′d/2φ and w′

d/2φ.

• For d odd, d ≤ n+1
2 the elements v22dφ and w2

2dφ.

Proof. In view of the previous lemmas, the only thing left to check is that in each
case, the chosen element x in W (resp. Wφ) satisfies xd = 1 (resp. (xφ)d = φd).
Once again, it is easy to check that the property for wd (resp. w′

d) results from that
for vd (resp. v′d or vd) and the definitions.

It is clear that vdd = 1 since then it is a d-cycle, from which it follows that when

d ≡ 2 (mod 4) we have (v′d/2φ)
d = v

d/2
d/2 = 1. The other cases are obvious. �

To prove the theorem, it remains to check that:
• The possible d for which the ζd-rank of W (resp. Wφ) is non-zero are as

described in the theorem. In the untwisted case they are the divisors of one of
the degrees, which are 2, . . . , n + 1. In the twisted case the pairs of degrees and
factors are (2, 1), . . . , (i, (−1)i), . . . , (n + 1, (−1)n+1) and we get the given list by
the formula for the ζd-rank recalled above Proposition 11.1.

• The coset WIwφ has ζd-rank 0 on the subspace spanned by the root lines of
WI . For this we first have to describe the type of the coset, which is a consequence
of the analysis we did to show that wφ stabilizes I. We may assume I non-empty.

Let us look first at the untwisted case. We found that wd acts trivially on Id,
so the coset is of untwisted type An−kd where k = ⌊n+1

d ⌋. Since 1 + n− kd < d by
construction, this coset has ζd-rank 0.

In the twisted case, if d ≡ 0 (mod 4), the coset is WIdwdφ, which since wd acts
trivially on Id and φ acts by the non-trivial diagram automorphism, is of type
2An−kd where k = ⌊n+1

d ⌋. Since n − kd = n − ⌊n+1
d ⌋d < d − 1, this coset has

ζd-rank 0.
If d is odd, the coset is WI2dw

2
2dφ, which since w2d acts trivially on I2d and φ

acts by the non-trivial diagram automorphism, is of type 2An−2kd where k = ⌊n+1
2d ⌋.

Since n− 2kd = n− ⌊n+1
2d ⌋2d < 2d, this coset has ζd-rank 0.

Finally, if d ≡ 2 modulo 4, the coset is WId/2w
′
d/2φ. Let k = ⌊ 2(n+1)

d ⌋; then

WId/2 is of type An−kd/2. If k is even then w′
d/2 = w

k/2
kd/2 and the coset is of type

2An−kd/2. Since n − kd/2 < d/2 − 1, this coset has ζd-rank 0. Finally if k is odd

w′
d/2φ = (w′

kd/2φ)
k. Since kd/2 is odd, we found that w′

kd/2φ acts trivially on Id/2
so the coset is of type An−kd/2, and has also has ζd-rank 0.
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• Determine the group W (wφ) (resp. W (w)) in each case, We first give V1 and
the coset CW (V1)wφ or CW (V1)w. In the untwisted case wd acts trivially on the
roots of WId , hence V1 is spanned by these roots and CW (V1) is generated by the
reflection with respect to the roots orthogonal to those, which gives that CW (V1) is
of type Ad⌊n+1

d ⌋−1 if d 6 |n and An otherwise. In the twisted case if d ≡ 0 (mod 4)

since wd acts trivially on the roots of WId the space V1 is spanned by the sums
of the orbits of the roots under φ which is the non-trivial automorphism of that
root system. Hence the type of the coset CW (V1)wdφ is 2Ad⌊n+1

d ⌋−1 if n is odd

and 2Ad⌊n+1
d ⌋ if n is even. If d is odd a similar computation gives that the type

of the coset CW (V1)w
2
2dφ is 2A2d⌊n+1

2d ⌋−1 if n is odd and 2A2d⌊n+1
2d ⌋ if n is even. If

d ≡ 2 (mod 4) w′
d/2φ acts also by the non-trivial automorphism on WId/2 and we

get that the coset CW (V1)w
′
d/2φ is of type 2A d

2 ⌊
2(n+1)

d ⌋
if n and ⌊ 2(n+1)

d ⌋ have the

same parity and 2A d
2 ⌊

2(n+1)
d ⌋−1

otherwise.

Knowing the type of the coset in each case, we deduce the group W (wφ) (resp.
W (w)) as in the remark at the beginning of Subsection 11.2. �

Type Bn ©
s1

©
s2

©
s3

· · ·©
sn

. For d even, 2 ≤ d ≤ 2n we define

vd = sn+1−d/2 . . . s2s1s2 . . . sn and Jd = {si | 1 ≤ i ≤ n− d/2}.

Note that v2n is the Coxeter element s1s2 . . . sn. Now for 1 ≤ d ≤ 2n, that we
require even if d > n, we define wd as follows: let kd be the largest even multiple
of d less than or equal to 2n so that k = ⌊ 2n

d ⌋ if d is even and k = 2⌊nd ⌋ is d is odd.

We define wd = vkkd and Id = Jkd.

Theorem 11.10. For W =W (Bn), ζd-good maximal elements exist for odd d less
than or equal to n and even d less than or equal to 2n. A representative is wd, with
I = Id; we have W (wd) = G(d, 1, ⌊ 2n

d ⌋) if d is even and W (wd) = G(2d, 1, ⌊nd ⌋) if
d is odd.

Proof. We identify as usual the Weyl group of type Bn to the group of signed
permutations on {1, . . . n} by si 7→ (i − 1, i) for i ≥ 2 and s1 7→ (1,−1). The
element vd maps to the d-cycle (or signed d/2-cycle) given by (n+1− d/2, n+2−
d/2, . . . , n− 1, n, d/2−n− 1, d/2−n− 2, . . . ,−n). This element normalizes Jd and
acts trivially on the corresponding roots, so is Jd-reduced. The same is thus true
for wd and Id, since these properties carry to powers.

Lemma 11.11. For 0 < i ≤ ⌊d2⌋ we have l(vid) = 2i
d l(w

−1
Jd
w0) and l(wid) =

2i
d l(w

−1
Id
w0).

Proof. As in Lemma 11.8 it is sufficient to prove the lemma for vd, which we do
now. To find the length of vd we note that s1s2 . . . sn is {s2, s3, . . . , sn}-reduced so
that the lengths of sn+1−d/2 . . . s2 and of s1s2 . . . sn add, whence l(vd) = 2n− d/2.

Since l(w0) = n2 and l(wJd
) = (n − d/2)2 we have l(w−1

Id
w0) = nd − d2/4, which

gives the result for i = 1. Written as permutations w0 is the product of all sign
changes and wId is the product of all sign changes on the set {1, . . . , n − d/2}; a
direct computation shows that v

d/2
d is the product of all sign changes on {n+ 1 −

d/2, . . . , n}, hence vd/2d = w−1
Id
w0. The lemma follows for the other values of d. �
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Since v
d/2
d = w−1

Id
w0 we have vdd = 1, so the same property is true for wd, thus

the above lemma shows that vd and wd are ζd-good elements.
Note also that Theorem 11.10 describes all d such that W has non-zero ζd-rank

since the degrees of W (Bn) are all the even integers from 2 to 2n. We prove now
the maximality property 9.11(iv) for wd. If k is as in the definition of wd, the group
WId is a Weyl group of type Bn−kd/2 and wd acts trivially on Id. Since n−kd/2 < d
the ζd-rank of WIdwd is zero on the subspace spanned by the roots corresponding
to Id.

It remains to get the type of W (wd). Since wd acts trivially on Id the space V1
of Lemma 9.14 is spanned by the root lines of WId and CW (V1) is spanned by the
roots orthogonal to those, so is of type Bkd/2. We then deduce the groupW (wd) as
in the remark at the beginning of Subsection 11.2, as the centralizer of a ζd-regular
element in a group of type Bkd/2. �

Types Dn and 2Dn©
s1

©s2

©
s3

©
s4

· · ·©
sn

. 2Dn is defined by the diagram automorphism

φ which exchanges s1 and s2 and fixes si for i > 2.
For d even, 2 ≤ d ≤ 2(n− 1) we define

vd = sn+1−d/2 . . . s3s2s1s3 . . . sn and Jd =

{

∅ if d = 2(n− 1)

{si | 1 ≤ i ≤ n− d/2} otherwise.

Note that v2(n−1) is a Coxeter element. Then for 1 ≤ d ≤ 2(n− 1), that we require
even if d > n, we let kd be the largest even multiple of d less than 2n, so that
k = ⌊ 2n−2

d ⌋ if d is even and k = 2⌊n−1
d ⌋ if d is odd, and define wd = vkkd and

Id = Jkd.
Note that vd, and thus wd, are φ-stable.

Theorem 11.12. • For W =W (Dn) there exist ζd-good maximal elements
for odd d less than or equal to n and even d less than or equal to 2(n− 1).
When d does not divide n a representative is wd, with I = Id; in this
case, if d is odd W (wd) = G(2d, 1, ⌊n−1

d ⌋) and if d is even W (wd) =

G(d, 1, ⌊ 2n−2
d ⌋).

If d|n a representative is w
n/d
n where wn = s1s2s3 . . . sns2s3 . . . sn−1. In

this case I = ∅ and W (w
n/d
n ) = G(2d, 2, n/d).

• For Wφ there exist ζd-good maximal elements for odd d less than n, for
even d less than 2(n−1) and for d = 2n. Except in the case when d divides
2n and 2n/d is odd a representative is wdφ, with I = Id and W (wdφ) =
G(2d, 1, ⌊n−1

d ⌋) if d is odd and W (wdφ) = G(d, 1, ⌊ 2n−2
d ⌋) if d is even. In

the excluded case a representative is (w2nφ)
2n/d where w2n = s1s3s4 . . . sn.

In this case I = ∅ and W ((w2nφ)
2n/d) = G(d, 2, 2n/d).

Proof. The cases Dn with d|n or 2Dn with d|2n and 2n/d odd involve regular
elements, so are dealt with in [BM]. We thus consider only the other cases.

We identify the Weyl group of type Dn to the group of signed permutations
on {1, . . . n} with an even number of sign changes, by mapping si to (i − 1, i) for
i 6= 2 and s2 to (1,−2)(−1, 2). For d even vd maps to (1,−1)(n+ 1 − d/2, n+ 2−
d/2, . . . , n − 1, n, d/2 − n − 1, . . . , 1 − n,−n). This element normalizes Jd: when
Jd 6= ∅, it exchanges the simple roots corresponding to s1 and s2 and acts trivially
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on the other simple roots indexed by Jd, so it is Jd-reduced. It follows that wd
normalizes Id and is Id-reduced.

Lemma 11.13. For 0 < i ≤ ⌊d2⌋ we have l(vid) = 2i
d l(w

−1
Jd
w0) and l(wid) =

2i
d l(w

−1
Id
w0).

Proof. As in Lemma 11.8 it is sufficient to prove the lemma for vd. To find the
length of vd we note that s2s1s3s4 . . . sn is {s3, . . . , sn}-reduced so that the lengths
of sn+1−d/2 . . . s3 and of s2s1s3 . . . sn add, whence l(vd) = 2n − 1 − d/2. Since

l(w0) = n2 − n and l(wJd
) = (n − d/2)2 − (n − d/2), we have l(w−1

Jd
w0) =

d/2(2n − 1 − d/2). which gives the result for i = 1. Written as permutations
w0 = (1,−1)n(2,−2) . . . (n,−n) and wJd

= (1,−1)n−d/2(2,−2) . . . (n−d/2, d/2−n);
a direct computation shows that v

d/2
d = (1,−1)d/2(n+1−d/2, d/2−n−1) . . . (n,−n),

hence v
d/2
d = w−1

Jd
w0. The lemma follows for smaller i. �

Since v
d/2
d = w−1

Jd
w0 and Jd is w0 stable we have vdd = 1, so the same property

follows for wd which shows that vd and wd are ζd-good elements.
We also note that the theorem describes all d such that the ζd-rank is not zero,

since the degrees of W (Dn) are all the even integers from 2 to 2n− 2 and n, and
in the twisted case the factor associated to the degree n is -1 and the other factors
are equal to 1.

Since wd is φ-stable the element wdφ is also ζd-good.
We now check Lemma 9.11(iv), that is that the ζd-rank ofWIdwd in the untwisted

case, resp. WIdwdφ in the twisted case is 0 on the subspace spanned by the roots
corresponding to Id. This property is clear if Id = ∅. Otherwise:

• In the untwisted case the type of the coset is Dn−kd/2 if k is even and 2Dn−kd/2

if k is odd, where k is as in the definition of wd. In both cases the set of values i
such that the ζi-rank is not 0 consists of the even i less than 2n − kd, the odd i
less than n − kd/2 and in the twisted case (k odd) i = 2n− kd. Since if d is even
we have 2n− kd ≤ d and if d is odd we have n− kd/2 ≤ d, the only case where d
could be in this set is k odd and d = 2n− kd, which means that k+1

2 d = n. But d
is assumed not to divide n, so this case does not happen.

• In the twisted case the type of the coset is Dn−kd/2 if k is odd and 2Dn−kd/2

if k is even. In both cases the set of values i such that the ζi-rank is not 0 consists
of the even i less than 2n− kd, the odd i less than n− kd/2 and in the twisted case
(k even) i = 2n−kd. Since if d is even we have 2n−kd ≤ d and if d is odd we have
n− kd/2 ≤ d, the only case where d could be in this set is k even and d = 2n− kd,
which means that (k + 1)d = 2n. But this is precisely the excluded case.

We now give CW (V1), where V1 is as in Lemma 9.14, in each case where I is not
empty. In the untwisted case, if d is odd the group CW (V1) is of type Dd⌊n−1

d ⌋; if

d is even the group CW (V1) is of type D d
2 ⌊

2n−2
d ⌋+1 if ⌊ 2n−2

d ⌋ is odd and D d
2 ⌊

2n−2
d ⌋

if ⌊ 2n−2
d ⌋ is even. In the twisted case, if d is odd the coset CW (V1)wφ is of type

2Dd⌊n−1
d ⌋+1 and if d is even the coset is of type 2D d

2 ⌊
2n−2

d ⌋+1 if ⌊ 2n−2
d ⌋ is even and

D d
2 ⌊

2n−2
d ⌋ if ⌊ 2n−2

d ⌋ is odd. In all cases except if d is even and ⌊ 2n−2
d ⌋ is even (resp.

odd) in the untwisted case (resp. twisted case) we then deduce the group W (wφ)
(resp.W (w)) as in the remarks at the beginning of Subsection 11.2 and after Lemma
9.14, since in these cases the centralizer of the regular element wφ (resp. w) in the
parabolic subgroup W ′ = CW (V1) has the (known) reflection degrees of W (wφ)
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(resp. W (w)). In the excluded cases the group CW ′ (wφ) or CW ′(w) is isomorphic
to G(d, 2, ⌊ 2n−2

d ⌋) which does not have the reflection degrees ofW (wφ), resp.W (w).
This means that the morphism of the remark after Lemma 9.14 is not surjective.
We can prove in this case that W (wφ) or W (w) is G(d, 1, ⌊ 2n−2

d ⌋) since it is an
irreducible complex reflection group by [Br, 5.6.6] and it is the only one which
has the right reflection degrees apart from the exceptions in low rank given by
G5, G10, G15, G18, G26; we can exclude these since they do not have G(d, 2, ⌊ 2n−2

d ⌋)
as a reflection subgroup. �

Types I2(n) and 2I2(n). All eigenvalues ζ such that the ζ-rank is non-zero are
regular, so this case can be found in [BM].

Exceptional types. Below are tables for exceptional finite Coxeter groups giving
information on ζd-good maximal elements for each d. They were obtained with the
GAP package Chevie (see [Chevie]): first, the conjugacy class of good ζd-maximal
elements as described in Lemma 9.13 was determined; then we determined I for an
element of that class, which gave l(wI). The next step was to determine the elements
of the right length 2(l(w0)− l(wI))/d in that conjugacy class; this required care in
large groups like E8. The best algorithm is to start from an element of minimal
length in the class (known by [GP]) and conjugate by Coxeter generators until all
elements of the right length are reached.

In the following tables, we give for each possible d and each possible I for that d a
representative good wφ, and give the number of possible wφ. We then describe the
coset WIwφ by giving, if I 6= ∅, in the column I the permutation induced by wφ of
the nodes of the Coxeter diagram indexed by I. Then we describe the isomorphism
type of the complex reflection group NW (WIwφ)/WI = NW (V )/CW (V ), where
V is the ζd-eigenspace of wφ. Finally, in the cases where I 6= ∅, we give the
isomorphism type of W ′ = CW (V1), where V1 is the 1-eigenspace of wφ on the
subspace spanned by the root lines of I. We note that there are 4 cases where
NW ′(V )/CW ′ (V ) � NW (V )/CW (V ): for d = 5 in 2E6, for d = 4 or 5 in E7 and for
d = 9 in E8.

H3: ©
1

5©
2

©
3
The reflection degrees are 2, 6, 10.

d representative w #good w CW (w)
10 w10 = 123 4 Z10

6 w6 = 32121 6 Z6

5 w2
10 4 Z10

3 w2
6 6 Z6

2 w0 1 H3

1 · 1 H3
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H4: ©
1

5©
2

©
3

©
4
The reflection degrees are 2, 12, 20, 30.

d representative w #good w CW (w)
30 w30 = 1234 8 Z30

20 w20 = 432121 12 Z20

15 w2
30 8 Z30

12 w12 = 2121432123 22 Z12

10 w3
30 or w2

20 24 G16

6 w5
30 or w2

12 40 G20

5 w6
30 or w4

20 24 G16

4 w5
20 or w3

12 60 G22

3 w10
30 or w4

12 40 G20

2 w0 1 H4

1 · 1 H4

3D4: ©
1

©2

©
3

©
4
φ does the permutation (1, 2, 4). The reflection degrees are 2, 4, 4, 6

with corresponding factors 1, ζ3, ζ
2
3 , 1.

d representative wφ #good wφ CW (wφ)
12 w12φ = 13φ 6 Z4

6 w6φ = 1243φ 8 G4

3 w2
6φ 8 G4

2 w0φ 1 G2

1 φ 1 G2

F4: ©
1

©
2

©
3

©
4
The reflection degrees are 2, 6, 8, 12.

d representative w #good w CW (w)
12 w12 = 1234 8 Z12

8 w8 = 214323 14 Z8

6 w2
12 16 G5

4 w3
12 or w2

8 12 G8

3 w4
12 16 G5

2 w0 1 F4

1 · 1 F4

2F4: φ does the permutation (1, 4)(2, 3). The factors, in increasing order of the
degrees, are 1,−1, 1,−1.

d representative wφ #good wφ CW (wφ)
24 w24φ = 12φ 6 Z12

12 w12φ = 3231φ 10 Z6

8 (w24φ)
3 12 G8

4 (w12φ)
3 24 G12

2 w0φ 1 I2(8)
1 φ 1 I2(8)
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E6: ©
1

©
3

©2

©
4

©
5

©
6
The reflection degrees are 2, 5, 6, 8, 9, 12.

d representative w #good w I NW (WIw)/WI CW (V1)
12 w12 = 123654 8 Z12

9 w9 = 12342654 24 Z9

8 w8 = 123436543 14 Z8

6 w2
12 16 G5

5 24231454234565 8 (3) Z5 A5

12435423456543 8 (4)
12314235423654 8 (5)

4 w2
8 or w3

12 12 G8

3 w4
12 or w3

9 80 G25

2 w0 1 F4

1 · 1 E6

2E6: φ does the permutation (1, 6)(3, 5). The factors, in increasing order of the
degrees, are 1,−1, 1, 1,−1, 1.

d representative wφ #goodwφ I NW (WIwφ)/WI CW (V1)wφ
18 w18φ = 1234φ 24 Z9

12 w12φ = 123654φ 8 Z12

10 2431543φ 8 (3) Z5
2A5

5423145φ 8 (4)
3143542φ 8 (5)

8 w8φ = 123436543φ 14 Z8

6 (w18φ)
3 80 G25

4 (w12φ)
3 12 G8

3 w4
12φ 16 G5

2 w0φ 1 E6

1 φ 1 F4
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E7: ©
1

©
3

©2

©
4

©
5

©
6

©
7
The reflection degrees are 2, 6, 8, 10, 12, 14, 18.

d representative w #good w I NW (WIw)/WI CW (V1)
18 w18 = 1234567 64 Z18

14 w14 = 123425467 160 Z14

12 w12 = 1342546576 8 (2, 5, 7) Z12 E6

10 w10a = 134254234567 8 (2, 4) Z10 D6

w10b = 243154234567 8 (3, 4)
w10c = 124354265437 8 (4, 5)

9 w2
18 64 Z18

8 134234542346576 14 (2)(5, 7) Z8 D5

7 w2
14 160 Z14

6 w3
18 or w2

12 800 G26

5 w2
10a 8 (2)(4) Z10 A5

w2
10b 8 (3)(4)

w2
10c 8 (4)(5)

4 w2
8 or w3

12 12 (2)(5)(7) G8 D4

3 w6
18 or w4

12 800 G26

2 w0 1 E7

1 · 1 E7
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E8: ©
1

©
3

©2

©
4

©
5

©
6

©
7

©
8
The reflection degrees are 2, 8, 12, 14, 18, 20, 24, 30.

d representative w #good w I NW (WIw)/WI CW (V1)
30 w30 = 12345678 128 Z30

24 w24 = 1234254678 320 Z24

20 w20 = 123425465478 624 Z20

18 w18a = 1342542345678 16 (2, 4) Z18 E7

w18b = 2431542345678 16 (3, 4)
w18c = 1243542654378 16 (4, 5)

15 w2
30 128 Z30

14 w14a = 13423454234565768 128 (2) Z14 E7

w14b = 24231454234565768 88 (3)
w14c = 12435423456543768 108 (4)
w14d = 12342543654276548 68 (5)

12 w2
24 2696 G10

10 w3
30 or w2

20 3370 G16

9 w2
18a 16 (2)(4) Z18 E6

w2
18b 16 (3)(4)

w2
18c 16 (4)(5)

8 w3
24 7748 G9

7 w2
14a 128 (2) Z14 E7

w2
14b 88 (3)

w2
14c 108 (4)

w2
14d 68 (5)

6 w5
30 or w4

24 4480 G32

5 w6
30 or w4

20 3370 G16

4 w6
24 or w5

20 15120 G31

3 w10
30 or w8

24 4480 G32

2 w0 1 E8

1 · 1 E8
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E-mail address: jmichel@math.jussieu.fr


	1. Introduction
	I. Garside families
	2. Basic results on Garside families
	Head functions
	Categories with automorphism
	Gcds and lcms, Noetherianity
	Garside maps

	3. The conjugacy category
	Simultaneous conjugacy
	F-conjugacy

	4. The cyclic conjugacy category
	The F-cyclic conjugacy

	5. An example: ribbon categories
	The simultaneous conjugacy category
	The ribbon category

	6. Periodic elements
	F-periodic elements
	Conjugacy of periodic elements
	Two examples

	7. Representations into bicategories

	II. Deligne-Lusztig varieties and eigenspaces
	8. Parabolic Deligne-Lusztig varieties
	The parabolic braid category B+(I)
	The varieties O attached to B+(I).
	The Deligne-Lusztig varieties attached to B+(I).
	The varieties (I,w)
	Endomorphisms of parabolic Deligne-Lusztig varieties — the conjugacy category D+(I)
	Affineness
	Shintani descent identity
	Cohomology

	9. Eigenspaces and roots of bold0mu mumu /bold0mu mumu I
	10. Conjectures
	11. Appendix 1: good d-maximal elements in reductive groups
	11.1. Restrictions of scalars
	11.2. Case of irreducible Coxeter cosets
	Types An and 2An s1width10pt height3pt depth-2pts2@let@token arcsn
	Type Bn s1 towidth10pt height2pt depth-1pt width10pt height4pt depth-3pt s2width10pt height3pt depth-2pts3@let@token arcsn
	Types Dn and 2Dn s1width10pt height3pt depth-2pttowidth1pt height17.3pt depth-7.3pt to19.4pts2 s3width10pt height3pt depth-2pts4@let@token arcsn
	Types I2(n) and 2I2(n)
	Exceptional types

	References


