N

HAL

open science

Parabolic Deligne-Lusztig varieties

Francois Digne, Jean Michel

» To cite this version:

‘ Frangois Digne, Jean Michel. Parabolic Deligne-Lusztig varieties. 2012. hal-00634644v2

HAL Id: hal-00634644
https://hal.science /hal-00634644v2

Preprint submitted on 6 Mar 2012 (v2), last revised 18 Jan 2014 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Auto':iiition
HAL Authorization


https://hal.science/hal-00634644v2
https://about.hal.science/hal-authorisation-v1/
https://about.hal.science/hal-authorisation-v1/
https://hal.archives-ouvertes.fr

PARABOLIC DELIGNE-LUSZTIG VARIETIES.

FRANCOIS DIGNE AND JEAN MICHEL

ABSTRACT. Motivated by the Broué conjecture on blocks with abelian defect
groups for finite reductive groups, we study “parabolic” Deligne-Lusztig va-
rieties and construct on those which occur in the Broué conjecture an action
of a braid monoid, whose action on their £-adic cohomology will conjecturally
factor trough a cyclotomic Hecke algebra. In order to construct this action,
we need to enlarge the set of varieties we consider to varieties attached to a
“ribbon category”; this category has a Garside family, which plays an impor-
tant role in our constructions, so we devote the first part of our paper to the
necessary background on categories with Garside families.

1. INTRODUCTION

In this paper, we study “parabolic” Deligne-Lusztig varieties, one of the main
motivations being the Broué conjecture on blocks with abelian defect groups for
finite reductive groups.

Let G be a connected reductive algebraic group over an algebraic closure F, of
the prime field IF,, of characteristic p. Let F' be an isogeny on G such that some
power F? is a Frobenius endomorphism attached to a split structure over the finite
field IF ;5; this defines a real number g such that ¢° is an integral power of p. When
G is quasi-simple, any isogeny F such that the group of fixed points G¥" is finite is
of the above form; such a group G is called a “finite reductive group” or a “finite
group of Lie type”.

Let L be an F-stable Levi subgroup of a (non necessarily F-stable) parabolic
subgroup P of G. Then, for ¢ a prime number different from p, Lusztig has con-
structed a “cohomological induction” RE which associates to any Q,L-module a
virtual Q,G*-module. We study the particular case RE* (Id), which is given by the
alternating sum of the ¢-adic cohomology groups of the variety

Xp = {gP € G/P | gP N F(gP) # 0}

on which G acts on the left. We will construct a monoid of endomorphisms M
of Xp related to the braid group, which conjecturally will induce in some cases a
cyclotomic Hecke algebra on the cohomology of Xp. To construct M we need to
enlarge the set of varieties we consider, to include varieties attached to morphisms
in a “ribbon category” — the “parabolic Deligne-Lusztig varieties” of this paper;
M corresponds to the endomorphisms in the “conjugacy category” of this ribbon
category of the object attached to Xp.

The relationship with Broué’s conjecture for the principal block comes as follows:
assume, for some prime number ¢ # p, that the ¢-Sylow S of G is abelian. Then
Broué’s conjecture predicts in this special case an equivalence of derived categories

This work was partially supported by the “Agence Nationale pour la Recherche” project
“Théories de Garside” (number ANR-08-BLAN-0269-03).
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2 F. DIGNE AND J. MICHEL

between the principal block of Z,G¥" and that of ZyNgr(S). Now L := Cg(9) is a
Levi subgroup of a (non F-stable unless ¢|¢g — 1) parabolic subgroup P; restricting
to unipotent characters and discarding an eventual torsion by changing coefficients
from Zy to Q,, this translates into conjectures about the cohomology of Xp, see
[IQ.1} these conjectures predict in particular that the image in the cohomology of
our monoid M is a cyclotomic Hecke algebra.

The main feature of the ribbon categories we consider is that they have Garside
families. This concept has appeared in recent work to understand the ordinary
and dual monoids attached to the braid groups; in the first part of this paper, we
recall its basic properties and go as far as computing the centralizers of “periodic
elements”, which is what we need in the applications.

In the second part, we first define the parabolic Deligne-Lusztig varieties which
are the aim of our study, and then go on to establish their properties. We extend
to this setting in particular all the material in [BM] and [BR2].

We thank Cédric Bonnafé and Raphaél Rouquier for discussions and an initial
input which started this work, and Olivier Dudas for some useful remarks.

After this paper was written, we received a preprint from Xuhua He and Sian
Nie (see [HN]) where, amidst other interesting results, they also prove Theorem [0.1]
and Corollary 0.3

I. Garside families

This part collects some prerequisites on categories with Garside families. It is
mostly self-contained apart from the next section where the proofs are omitted; we
refer for them to the book [DDGKM] to appear.

2. BASIC RESULTS ON (GARSIDE FAMILIES

Given a category C, we write f € C to say that f is a morphism of C, and
C(x,y) for the set of morphisms from z € ObjC to y € ObjC. We write fg for
the composition of f € C(z,y) and g € C(y, z), and C(z) for C(z,z). By S C C we
mean that S is a set of morphisms in C.

All the categories we consider will be left-cancellative, that is a relation hf =
hg implies f = ¢, and right-cancellative, so f = g is also implied by fh = gh;
equivalently every morphism is a monomorphism and an epimorphism. We say
that f left divides g, written f < g, if there exists h such that g = fh. Similarly
we say that f right divides g and write g > f if there exists h such that g = hf.

We denote by C* the set of invertible morphisms of C, and write f = g if there
exists h € C* such that fh = g (or equivalently there exists h € C* such that

f=gh).
Definition 2.1. A Garside family in C is a subset S C C such that;

e S together with C* generates C.

e C*XSCSCrUC™.

o For every product fg with f,g € S —C*, either fg € SC* in which case
we say that the 1-term sequence (fg) is the S-normal decomposition of fg,
or we have fg = fig1, where f1 € S, g1 € SC* — C* are such that any
relation h < kfig1 with h € S implies h < kf1; in this case we say that
the 2-term sequence (f1,g1) is an S-normal decomposition of fg.
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We extend S-normal decompositions to longer lengths by saying that (z1, ..., z,)
is an S-normal decomposition of x = x1 ...z, if for each i the sequence (x;, z;+1)
is an S-normal decomposition. In a category with a Garside family every non-
invertible element x admits an S-normal decomposition. We will just say “normal
decomposition” if S is clear from the context. Normal decompositions are unique
up to invertibles, precisely

Lemma 2.2. If (z1,...,2,) and (z},...,2],) are two normal decompositions of x
then n =n’ and for any i we have xy...2x; =* a2} ... 2},

Head functions. We have the following criterion to be Garside:

Proposition 2.3. Let S C C together with C* generate C, and let H be a function
c-c* L 8. Consider the following properties

(i) VgeC—C*,H(g) < g.

(ii) Vge C—=C*,Vhe S,h < g=h < H(g).

(iii) Vf eC,VgeC—-C*, H(fg) =" H(fH(g)).

(iv) SC*UC* is closed under right-divisor.
Then S is Garside if (i), (i), (i1i) hold for some H, or if (i) and (ii) hold for some
H, and (iv) holds. Conversely if S is Garside then (iv) holds and there exists H

satisfying (i) to (iii) above; such a function is called an S-head function.

An S-head function H computes the first term of a normal decomposition in the
sense that if (z1,...,2,) is a normal decomposition of  then H(z) => 2.

For f € C we define Igg(f) to be the minimum number & of morphisms s1, ..., s, €
S such that sy...s, == f, thus lgs(f) = 0if f € C*; if f ¢ C* then lgg(f) is
also the number of terms in a normal decomposition of f. We have the following
property:

Lemma 2.4. Let H be an S-head function, and for x € C —C* let 2’ be defined by
x = H(z)x'. Thenlgg(z') <lgg(x).

The following shows that S “determines” C up to invertibles; we say that a subset
Cy of C is closed under right quotient if an equality f = gh with f,¢g € C; implies
h e (.

Lemma 2.5. Let S be a Garside family in C. Let C1 be a subcategory of C closed
under right-quotient which contains S. Then C = C1C* and S is a Garside family
m Cl .

Categories with automorphism. Most categories we want to consider will have
no non-trivial invertible element, which simplifies Definition 2.1l The only source
of invertible elements will be the following construction.

An automorphism of a category C is a functor F': C — C which has an inverse.
Given an automorphism F' of finite order of the category C, we define

Definition 2.6. The semi-direct product category C x (F) is the category whose
objects are the objects of C and whose morphisms with source x are the pairs (g, F*),
which will be denoted by gF?, where g is a morphism of C with source x and i
is an integer. The target of this morphism is F~'(target(g)), where target(g) is
the target of g. The composition rule is given by gF* - hFY = gF*(h)F'™7 when
source(h) = F~(target(g)).
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The conventions on F' are such that the composition rule is natural. However,
they imply that the morphism F' of the semi-direct product category represents the
functor F~1: it is a morphism from the object F(A) to the object A and we have
the commutative diagram:

When C has Garside family S, we call Garside automorphism of (C,S), an
automorphism F which preserves SC*.

Lemma 2.7. If § is a Garside family in C, and F a Garside automorphism of
(C,S), then S is also a Garside family in C x (F).

If (f1,... fr) is an S-normal decomposition of f € C then (fi,..., frF") is an S-
normal decomposition of fF* € Cx (F). Note that if C has no non-trivial invertible
element, then the only invertibles in C x (F) are {F'};cz. In general, if a,b € C
then aF* < bF7 if and only if a < b.

We have the following property

Proposition 2.8. Assume that C has a Garside family S and has no non-trivial
invertible morphisms. Left F' be a Garside automorphism of C. Then the subcate-
gory of fized objects and morphisms Ct' has a Garside family which consists of the
fized points ST .

Gcds and lecms, Noetherianity. The existence of geds and lcms are related when
C is right-Noetherian, which means that there is no infinite sequence fy = fi... =
fn = ... where fiy1 is a proper right divisor of f;, that is we do not have f; =* fiy1.
It means equivalently since C is left cancellative that there is no infinite sequence
fosfi-.- =< fau=x... < f where f; is a proper left divisor of f; ;.

We say that C admits local right lcms if, whenever f and g have a common right
multiple, they have a right lem. We then have:

Proposition 2.9. If C is right Noetherian and admits local right lcms, then any
family of morphisms of C with the same source has a left gcd.

Here is a more general situation when a Garside family of a subcategory can be
determined. If C admits local right lems we say that a subset X C C is closed under
right lem if whenever two elements of X have a right lem in C this lem is in X.

Lemma 2.10. Let S be a Garside family in C assumed right- Noetherian and having
local right lems. Let S¢ C S be a subfamily such that S$1C* is as a subset of
SC* closed under right-lem and right-quotient; then Sy is a Garside family in the
subcategory C1 generated by S1C*. Moreover Cy is a subcategory closed under right-
quotient.

The following lemma about Noetherian categories will also be useful:

Lemma 2.11. Let C be a category and S be a set of morphisms which generates
C. Let X be a set of morphisms of C with same source satisfying

(i) X is closed under left divisor and X = XC*.

(ii) X is a bounded and right Noetherian poset.
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(i) If f € X, g,h € S and fg, fh € X then g and h have a common right-
multiple m such that fm e X.

Then X 1is the set of left-divisors of some morphism of C.

Garside maps. An important special case is when S is attached to a Garside map.

A Garside map is a map ObjC 2, C where A(z) € C(x,—) such that SC* UC* is
the set of left divisors of A. Since by Proposition [Z3|(iv) the set SC* UC* is stable
by right divisor, it is also the set of right divisors of A.

This allows to define a functor ®, first on objects by taking for ®(z) the target
of A(z), then on morphisms, first on morphisms s € S by, if s € C(x, —) defining
s’ by ss’ = A (we omit the source of A if it is clear from the context) and then
®(s) by s'®(s) = A. We then extend A by using normal decompositions; it can
be shown that this is well-defined and defines a functor such that for any f € C we
have fA = A®(f). It can also be shown that the right-cancellativity of C implies
that ® is an automorphism.

The automorphism ® is a typical example of a Garside automorphism that we
will call the canonical Garside automorphism.

If S is attached to a Garside map, we then have the following properties:

Proposition 2.12. (i) If f < g then lgg(f) <lgs(g).
(ii) Assume f,g,h € S and (f,g) is S-normal; then lgg(fgh) < 2 implies
gh € SC*.

We will write AP for the map which associates to an object x the morphism
A(x)A(®(x)) ... A(PP~(x)). For any f € C(x,—) there exists p such that f <
AP(z).

Example 2.13. An example of a category with a Garside family is a Garside
monoid, which is just the case where C has one object. In this case we will say
Garside element instead of Garside map. A classical example is given by the Artin
monoid (BT, S) associated to a Coxeter system (W, S). Then BT is left and right-
cancellative, Noetherian, admits local left-lems and right-lems and has a Garside
family, the canonical lift W of W in BT, which consists of the elements whose
length with respect to S is equal to the length with respect to S of their image in
W. The Garside family W is attached to a Garside element if and only if W is
finite. In this case the Garside element is the lift in W of the longest element of
w.

3. THE CONJUGACY CATEGORY
The context for this section is a left and right-cancellative category C.

Definition 3.1. Given a category C, we define the conjugacy category AdC of C
as the category whose objects are the endomorphisms of C and where, for w € C(A)
and w' € C(B) we set AdC(w,w’) = {z € C(4,B) | 2w’ = wz}. We say that
conjugates w to w' and call centralizer of w the set AdC(w). The composition of
morphisms in AdC is given by the composition in C, which is compatible with the
defining relation for AdC.

Note that the definition of AdC(w,w’) is what forces the objects of AdC to be
endomorphisms of C.
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Since C is left-cancellative, the data x and w determine w’ (resp. since C is right-
cancellative  and w’ determine w). This allows us to write w® for w’ (resp. *w’ for
w); this illustrates that our category AdC is a right conjugacy category; we could
call left conjugacy category the opposed category.

A proper name for an element of AdC(w,w’) should be a triple w = w’, since
z by itself does specify neither its source w nor its target w’, but we will use
just & when the context makes clear which source w is meant (or which target is
meant). The functor I which sends w € Obj(AdC) to source(w) and w = w’ to
x is faithful, though not injective on objects. The faithfulness of I allows us to
identify AdC(w,—) to the subset {z € C(source(w),—) | x < wzx} (resp. identify
AdC(—,w) to the subset {z € C(—,source(w)) | zw = x}).

It follows that the category Ad C inherits automatically from C properties such as
cancellativity or Noetherianity. The functor I maps (AdC)* surjectively to C*, so
in particular the subset Ad C(w, —) of C(source(w), —) is closed under multiplication
by C*. In the proofs and statements which follow we identify AdC to a subset of
C and (AdC)* to C*; for the statements obtained about AdC to make sense, the
reader has to check that the sources and target of morphisms viewed as morphisms
in AdC make sense.

Lemma 3.2. o The subset AdC of C is closed under right-quotient, that is
if we have an equality y = xz where y € AdC(w,w’), € AdC(w, —) and
z € C(—,source(w’)), then z € AdC(—,w").

o The subset AdC(w, —) of C(source(w), —) is closed under right-lem, in the
sense that if x,y € AdC(w,—) have a right-lcm in C(source(w), —) then
this right-lem is in AdC(w,—) and is a right-lem of x and y in AdC. In
particular if C admits local right-lems then so does AdC.

Similarly AdC(—,w) is a subset of C(—,source(w)) closed under left-lem and
left-quotient.

Proof. We show the stability by right-quotient. If y,z,z are as in the statement,
we have r < wr and yw’ = wy. By cancellation, let us define w” by zw” = wzx.
Then from zz = y < wy = wrz = zw”z we deduce by cancellation that z < w” z,
so z € AdC(w,w;1) where zw; = w”z. Now since y = zz the equality yw’ = wy
gives zzw' = wxrz = xw' 2 = xzw; which shows by cancellation that w; = w'.

We now show stability by right-lem. z,y € AdC(w,—) means that x < wx
and y < wy. Suppose now that z and y have a right-lem z in C. Then z < wz
and y < wz from which it follows that z < wz, that is z € AdC(w,—), and z is
necessarily the image of a right-lem of z and y in AdC.

The proof of the second part is just a mirror symmetry of the above proof. [

Proposition 3.3. Assume that S is a Garside family in C; then AACNS is a
Garside family in AdC and S-normal decompositions of an element of AdC are
AdC N S-normal decompositions.

Proof. We will use Proposition 23 by showing that (AdCNS)UC* generates AdC
and exhibiting a function H : AdC — C* — AdC N S which satisfies Proposition
Z34), (ii) and (iii).

Let H be a S-head function in C. We first show that the restriction of H to
AdC takes its values in AdC N'S. Indeed if 2 < wz then H(z) < H(wz) =*
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We now deduce by induction on lgg that (AdC N'S) UC* generates AdC. If
x € AdC is such that lgg(z) = 1 then x = se with s € S and € € C*. Since AdC is
closed under multiplication by C* we have s € AdCNS, whence z € (AdCNS)C*.
Assume now that z € AdC is such that lgg(z) = n and define 2’ by x = H(z)z'.
Since we know that H(z) € AdC, we deduce by Lemma that 2’ € AdC; by
Lemma 24 we have lgg(2’) < n, whence the result.

It is obvious that the restriction of H to AdC — C* still has properties (i), (i),
(iii) of Proposition 23] thus is a head function, which proves that AdC NS is a
Garside family. The assertion about normal decompositions follows. O

Simultaneous conjugacy. A straightforward generalization of conjugacy cate-
gories is “simultaneous conjugation categories”, where objects are families of mor-
phisms wy, ..., w, with same source and target, and morphisms verify = < w;z for
all . Most statements have a straightforward generalization to this case.

F-conjugacy. We want to consider “twisted conjugation” by an automorphism,
which will be useful for applications to Deligne-Lusztig varieties, but also for in-
ternal applications, with the automorphism being the one induced by a Garside
map.

Definition 3.4. Let F be an automorphism of the category C. We define the F-
conjugacy category of C, denoted by F-AdC, as the category whose objects are
the morphisms in some C(A, F(A)) and where, for w € C(A,F(A)) and v’ €
C(B,F(B)) we set F-AdC(w,w') = {z € C | zw’ = wF(zx)}. We say that x
F-conjugates w to w' and we call F-centralizer of a morphism w of C the set
F-AdC(w).

Note that F-conjugacy specializes to conjugacy when F' = Id and that the F-
centralizer of x is empty unless z € C(A4, F(A)) for some object A.

We explore now how these notions relate to conjugation in a semi-direct product
category.

e Consider the application which sends w € C(A4,F(A)) C Obj(F-AdC)
to wF € (C x (F))(A) C Obj(Ad(C x (F))). Since z(w'F) = (wF)x is
equivalent to zw’ = wF(z), this extends to a functor J from F-AdC to
Ad(C x (F')). This functor is clearly an isomorphism onto its image.

The image J(Obj(F-AdC)) is the subset of C x (F') which consists of endomor-
phisms which lie in CF; and J(F- AdC) identifies via I to the subset of C x (F')
whose elements are both in Ad(C x (F)) and in C.

As in Ad(C x (F)) there is no morphism between two objects which do not have
the same power of F, the full subcategory that we will denote Ad(CF') of Ad(Cx(F))
whose objects are in CF is a union of connected components of Ad(C x (F')); thus
many properties will transfer automatically from Ad(C x (F)) to Ad(CF).

In particular, if C has a Garside family S and F' is a Garside automorphism,
then S is still a Garside family for C x (F') by 27 and by Proposition B3] and the
above gives rise to a Garside family SN Ad(CF) of Ad(CF). The image of J is the
subcategory of Ad(CF) consisting (via I) of the morphisms in C, thus satisfies the
assumptions of Lemma it is closed under right quotient, because in a relation
fg=nhif f and h do not involve F' the same must be true for g, and contains the
Garside family S N Ad(CF) of Ad(CF).
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This will allow to generally translate statements about conjugacy categories to
statements about F-conjugacy categories. For example, J~}(S N Ad(CF)) is a
Garside family for F-AdC; this last family is just F-AdC NS when identifying
F-AdC to a subset of C.

If F has finite order, since (zF)* = Fz = (zF)F ' two morphisms in CF are
conjugate in C x (F) if and only if they are conjugate by a morphism of C.

4. THE CYCLIC CONJUGACY CATEGORY

A restricted form of conjugation called “cyclic conjugacy” will be important in
applications. In particular, it turns out (a particular case of Proposition [4.5]) that
two periodic braids are conjugate if and only if they are cyclically conjugate.

Definition 4.1. We define the cyclic conjugacy category cycC of C as the subcat-
egory of AdC generated by {x € AdC(w,w') | z 5 w}.

That is, cycC has the same objects as AdC but contains only the products of
elementary conjugations of the form w = 2y = yx = w’. Note that since C is left-
and right-cancellative, then U,{z € AdC(w,w’) | z < w} = Up{z € AdC(w,w’") |
w’ = x} so cyclic conjugacy “from the left” and “from the right” are the same. To
be more precise, the functor which is the identity on objects, and when w = zy and
w' = yx, sends x € cycC(w,w’) to y € cycC(w',w), is an isomorphism between
cycC and its opposed category.

Proposition 4.2. Assume C is right-Noetherian and admits local right-lems; if S
is a Garside family in C then the set S = Uy{x € AdC(w,—) |z < w and x € S}
is a Garside family in cycC.

Proof. We first observe that $1C* generates cycC. Indeed if © < w and we choose
a decomposition z = s1...8, as a product of morphisms in SC* it is clear that
each s; is in cycC, so is in S7.

The proposition then results from Lemma 210} which applies to cycC since S1C*
is closed under right-divisor and right-lcm; this is obvious for right-divisor and for
right-lem results from the facts that S, being a Garside family, is closed under
right-lem and that a right-lem of two divisors of w is a divisor of w. O

We also see by Lemma that cycC is closed under right-quotient in AdC.

We now prove that independently of the choice of a Garside family S in C the
category cycC has a natural Garside family defined by a Garside map; this Garside
family is usually larger than the Garside family S; of Proposition £2] since it
contains all left divisors of w even if w is not in S.

Proposition 4.3. Assume C is right Noetherian and admits local right-lcms; then
the set 8" = Uy{r € AdC(w,—) | © < w} is a Garside family in cycC attached
to the Garside map A such that A(w) = w € cycC(w); the corresponding Garside
automorphism ® is the identity functor.

Proof. The set 8’ generates cycC by definition of cycC. It is closed under right-
divisors since zy < w implies < w so that w® is defined and y < w?; since C is
right Noetherian and admits local right-lems, any two morphisms of C with same
source have a ged by Proposition We define a function H : cycC — S’ by
letting H(z) be an arbitrarily chosen left-ged of  and w if « € cycC(w, —). Since
cycC is closed under right-divisor, the restriction of H to non invertible elements
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satisfies properties Proposition (i), (ii) and (iv), so &’ is a Garside family for
cycC. The set of morphisms in &’ with source w has w as a lem. Moreover if
v is a right-divisor of A(w) = w in cycC, which defines v/ such that w = v'v,
then v" € cycC(w,vv’) thus the source of v is vv’ and v divides vv’, so v € §'; all
conditions of Proposition [Z3] are fulfilled, and A is a Garside map since S'(w, —)
is the set of left divisors of A(w). The equation zw®” = wx shows that @ is the
identity. O

Proposition 4.4. Assume C is right-Noetherian and admits local right-lcms; then
the subcategory cycC of AdC is closed under left-ged (that is, a ged in AAC of two
morphisms in cycC is in cycC).

Proof. Let (z1,...,zy,) and (y1,...,Ym) be S’-normal decompositions respectively
of z € cycC(w,—) and y € cycC(w, —) where S’ is as in Proposition [4.3]

We first prove that if ged(zq1,y1) = 1 then ged(x,y) =* 1 (here we consider
left-geds in AdC). We proceed by induction on inf{m,n}. We write A for A(w)
when there is no ambiguity on the source w. We have that ged(z,y) divides

ng(Il . In,1A7y1 . ymflA) =x ng(AIl e Tp—1, Ayl . ymfl)
=" Aged(z1 ... Tn-1,Y1 - - Ym-1) =" A =w,

where the first equality uses that ® is the identity and the one before last results
from the induction hypothesis. So we get that ged(z,y) divides w in AdC, so
ged(z,y) € 8'; thus ged(z, y) divides z1 and y1, so is trivial.

We now prove the proposition. If ged(z1,y1) = 1 then ged(x,y) = 1 thusis in
cycC and we are done. Otherwise let d; be a ged of z; and y; and let (1) y() be
defined by z = d1z(M, y = dyy™V). Similarly let dy be a ged of the first terms of a
normal decomposition of (1), y(1) and let (), y(® be the remainders, etc. .. Since
C is right-Noetherian the sequence di,djds, ... of increasing divisors of x must
stabilize at some stage k, which means that the corresponding remainders z(*) and
y®) have first terms of their normal decomposition coprime, so by the first part are
themselves coprime. Thus ged(z,y) =* d; ... dy € cycC. O

We now give a quite general context where cyclic conjugacy is the same as
conjugacy.

Proposition 4.5. Let C be a right Noetherian category with a Garside map A, and
let © be an endomorphism of C such that for n large enough we have A < x™. Then
for any y we have cycC(z,y) = AdC(x,y).

Proof. We first show that the property A < z" is stable by conjugacy (up to
changing n). Indeed, if w € AdC(x, —) then there exists k such that u < A*. Then
()t = (grk1))u — (y=1gn(k+1))q is divisible by A since AR g gn(k+1),

It follows that it is sufficient to prove that if f € AdC(z,y), f ¢ C*, then
ged(f,z) ¢ C*. Indeed write f = uf; where u = ged(f,z) then since u €
cycC(z,z") it is sufficient to prove that f; € AdC(z¥,y) is actually in cycC(z",y),
which we do by induction since C is Noetherian and z* still satisfies the same
condition.

Since as observed any u € AdC(x, —) divides some power of x (z"* if u < AF) it
is enough to show that if u € AdC(z, —), u ¢ C* and u < 2", then ged(u,z) ¢ C*.
We do this by induction on n. From v € AdC(z,—) we have u < zu, and from
u < 2" we deduce u < x ged(u, 2" 1), If ged(u, "~ 1) € C* then u < = and we are
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done: ged(z,u) = u. Otherwise let uy = ged(u, 2"~ 1). We have u1 < zuy, ui ¢ C*
and u; < 2! thus we are done by induction. O

The F-cyclic conjugacy. Let F be a finite order automorphism of the category C.
We define F- cycC as the subcategory of F- Ad C generated by {x € F- AdC(w,w") |
x < w}, or equivalently, since C is left- and right-cancellative, by {x € AdC(w,w") |
w' %= F(x)}. By the functor J, the morphisms in F-cycC(w,w’) identify to the
morphisms in cyc(C x (F))(wF,w'F) which lie in C. To simplify notation, we will
denote by cycC(wF,w'F) this last set of morphisms. If C is right-Noetherian and
admits local right-lems, then C x (F') also. If S is a Garside family in C and F
is a Garside automorphism, and we translate Proposition to the image of J
and then to F-cycC, we get that Uy,{z € F-AdC(w,—) | z S wand z € S} is a
Garside family in F-cycC.

Similarly Proposition 3] says that the set U,{x € F-AdC(w,—) |z < w} is a
Garside family in F-cycC attached to the Garside map A which sends the object
w to the morphism w € F-cycC(w, F(w)); the associated Garside automorphism
is the functor F.

Finally Proposition [£.4] says that under the assumptions of Proposition the
subcategory F-cycC of F-AdC is closed under left-ged.

5. AN EXAMPLE: RIBBON CATEGORIES

In the context of an Artin monoid (B*,S) (see Example [ZI3) we want to study
the conjugates and the normalizer of a parabolic submonoid (the submonoid gen-
erated by a subset of the atoms S). The “ribbon” category that we consider in this
section occurs in the work of Paris [Pa] and Godelle [G] on this topic. In Section
we will attach parabolic Deligne-Lusztig varieties to the morphisms of the rib-
bon category and endomorphisms of these varieties to morphisms in the conjugacy
category of this ribbon category.

Since most results work in the more general situation of a Garside monoid and
a parabolic submonoid we will place ourselves in this context.

Definition 5.1. Let M be a (cancellative) right-Noetherian monoid which admits
local right lem’s. We say that a submonoid M’ is parabolic if it is closed by left-
divisor and right-lem.

Lemma 5.2. The above assumption is satisfied when we take for M an Artin
monoid B and for M’ the “parabolic” submonoid Bf generated by I C S.

Proof. We first show that BfL is closed by left-divisors. Since both sides of each
defining relation for B' involve the same generators, two equivalent words involve
the same generators. Hence if zy = z with z € BIJr then z has an expression
involving only elements in I so is in BIJr . This implies also that if two elements have
a right-lem 0 in BIJr , then § is divisible by their right-lcm in B*, so has to be equal
to that right lem. It remains to show that two elements which have a common
multiple in BT have a common multiple (hence a right-lcm) in BfL . Taking heads
we see that it is sufficient to prove that two elements of Wy which have a common
right-multiple in W have a common multiple in Wy. This is true since any element
of W can be written uniquely as vw with v € Wy and w not divisible by any
element of I . O
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In the rest of this section we fix a cancellative right-Noetherian monoid M which
admits local right lems and a Garside family S in M.

Lemma 5.3. Let M’ be a parabolic submonoid of M. Then any uw € M has a
mazimal left-divisor ap (u) in M.

Proof. The set X = {x € M’ | x < u} is a subset of M’ which satisfies the
assumptions of Lemma [ZIT} it is closed under left-divisor, it is right-Noetherian
and if g and xh are in X with g,h € M’, then lem(g, h) exists, since g and h
left-divide x 71w, hence xlem(g, k) is in X since it divides u and lem(g, h) € M'.
Thus X is the set of divisors of some morphism apy (u). O

Lemma 5.4. Let M’ be a parabolic submonoid of M and S be a Garside family in
M ; assume that &' = SN M’ together with M'* generates M’, then 8’ is a Garside
family in M'.

Proof. Let H be an S-head function in M. Since M’ is closed under left-divisor,
for g € M' — {1} we have H(g) € §’. It is then straightforward that the restriction
of H to M' — {1} satisfies properties (i), (ii) and (iii) of 23] whence the result. O

The simultaneous conjugacy category. We now consider a submonoid of M
generated by a subset of the atoms. Let S be the set of atoms of M; for I C S we
denote by Mj the submonoid generated by I.

Assumption 5.5. We assume that for s € S any conjugate t in M of s is in S
(that is, if sf = ft with f and t in M thent € S).

The above assumption is automatic if M has homogeneous relations, or equiv-
alently has an additive length function with atoms of length 1. This is clearly the
case for Artin monoids.

Under this assumption a conjugate of a subset of S is a subset of S. In the
following we fix an orbit Z under conjugacy of subsets of S and we make the
following assumption:

Assumption 5.6. For any I € T the monoid My is parabolic.

Let Ad(M,Z) be the connected component of the simultaneous conjugacy cat-
egory of M whose objects are the elements of Z. A morphism in Ad(M,Z) with
source I € Z is a b € M such that for each s € I we have s® € M, which by
Assumption implies s® € S. We denote such a morphism in Ad(M,Z)(I,J) by

I2 J where J = {sP | b € I}, and in this situation we write J = IP.

By Proposition B3] the set {I LN | b € 8} is a Garside family in Ad(M, 7).
The ribbon category. In our context we will just write ag for a, and denote
by wi(b) the element defined by b = az(b)wi(b). We say that b € M is I-reduced
if it is left-divisible by no element of I, or equivalently if az(b) = 1.

Definition 5.7. We define the ribbon category M (Z) as the subcategory of Ad(M,T)
obtained by restricting the morphisms to the I 5. J such that b is I-reduced.

That the above class of morphisms is stable by composition is the object of (ii)

in the next proposition; and (i) is a motivation for restricting to the I-reduced
morphisms by showing that we “lose nothing” in doing so.
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Proposition 5.8. (i) (I LN J) € AA(M,T) if and only if (I ar(b) 1) €
Ad(M,T) and (1% 3) € M(T).

(i) If (X LN J) € Ad(M,T) then for any b’ € M we have az(b’) = az(bb’)P.
In particular if (I b, J) e M(Z) and (J LN K) € Ad(M,T) then (I LLIN
K) € M(Z) if and only if (3 25 K) € M(T).

(iii) Let I o3 and T 25 3 be two morphisms of Ad(M,T) and let T < TI¢
be their right lem which by Lemma [T2 exists and is obtained for c the
right-lcm in M of b and b’; then if b and b’ are I-reduced, then c is also.

Proof. Let us prove (i). We prove by induction on the length of b that if s € I
and s® € M then s*1(P) € I. This will prove (i) in one direction. The converse is
obvious.

By Assumption we have sb = bt for some t € S. If s < b we write b = sb’
so that sb’ = b’t. We have a1(b) = sar(b’) and we are done by induction. If s
does not divide b then the lem of s and ag(b) divide sb = bt and this lem can be
written sv = ag(b)u, with v and u in Mt since M is closed by right-lem. We get
then that v divides b, so divides ai(b); thus az(b)u = vau for some a € M. By
Assumption we have that au € S, thus a =1 and u € S, hence u € I which is
the result.

Let us prove (ii). For s € I'let s’ = sP € J. Assume first that s £ b. Then
bs’ = sb is a common multiple of s and b which has to be their lem since s’ is
an atom. So for s € I we have s < bb’ if and only if bs’ < bb’, that is, s < b’
whence the result. Now if s < b we write b = s¥b; with s £ b;; we have s’ = s™
and the above proof, with by instead of b, applies.

To prove (iii) we will actually show the stronger statement that if for b,c € M
we have b < ¢, IP C S then az(b) < ai(c) (which is obvious) and wi(b) < wi(c)
(then in the situation of (iii) we get that wr(c) is a common multiple of b and b/,
thus ¢ < wr(c), which is impossible unless az(c) = 1). By dividing b and ¢ by az(b)
we may as well assume that az(b) = 1 since I“*(P) € S by (i). We write ¢ = bb,
and J = IP. By (ii) we have ai(c)P = az(b;), whence ai(c)b = baj(b1) < bb; =
¢ = ar(c)wr(c). Left-canceling ag(c) we get b < wi(c) which is what we want since
b = wi(b). O

Note that by Proposition [.8(i) a morphism in M (Z) with source I is the same
as an element b € M such that ag(b) = 1 and for each s € I we have sP € M. We
will thus sometimes just denote by b such a morphism in M (Z) when the context
makes its source clear.

Next proposition shows that S N M (Z) generates M (Z).

Proposition 5.9. All the terms of the normal decomposition in Ad(M,ZT) of a
morphism of M(Z) are in M(Z).

Proof. Let (I LN J) € M(Z) and let b = wy ... wy be its normal decomposition
in Ad(M,Z) (it is also the normal decomposition in M by Proposition B3]). As
w; € Ad(M,I), the source of w; is I; = IWtWi-1 C S. Now, Wt-Wi-1qr (w;) € My
and

w1...wi,1ali (Wz) K Wi... W07, (Wz) <WwWi..w,_1w; <b

so divides ag(b), thus this element has to be 1, whence the result. O
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By Proposition 5.8 items|5.8(ii)|and |5.8(iii)| the subcategory M (Z) of Ad(M,Z) is
closed under right-quotient and right-lem. By Lemma[2.10 Proposition 5.8 together
with implies

Corollary 5.10. The set SOAM(Z) = {(I1 5 J) € Ad(M,Z) | w € S and ar(w) =
1} is a Garside family in M(Z).

We can describe the atoms of M(Z) when M is any Garside monoid which has
a Garside element and satisfies some additional assumptions. In that case (which
includes the particular case of spherical Artin groups) we will give also a convenient
criterion to decide whether b € M is in M(Z). Unless stated otherwise, we assume
until the end of this section that M has a Garside element A.

Lemma 5.11. Let My be a parabolic submonoid of M generated by a subset I of
atoms of M. Then Ar = ax(A) is a Garside element in M.

Proof. Let S be the set of divisors of A; then S N My generates My so that we can
apply Lemma [B.4] which gives that S N My is a Garside family in Mj. Now the
divisors of A which are in M; are by definition of ay the divisors of Ay, so that A
is a Garside element in M. O

We denote by @1 the associated Garside automorphism. Since M is parabolic,
I is the whole set of atoms of My, thus ®;(I) = 1.

Proposition 5.12. M(Z) has a Garside map defined by the collection of morphisms
ATA

I—— &) forIeX.

Proof. By definition of Ay, we have aI(Al_lA) =1, so that AI_IA is an element of

—1
SNM(Z). We have to show that any I 2 Jin SNM(Z) divides I ﬁ ®(I), which
is equivalent to Ayb dividing A. Since Ay and b divide A, their right lem § divides
A. We claim that § = Arb. Let us write § = bx. We have § < Atb = bAy, so that
X < Ajy. Thus § = bx = yb with y < A1. By definition of § we have A; < § = yb,
so that y~!A1 < b which implies y = Aj since az(b) = 1. Hence § = Arb and we
are done. [l

Proposition 5.13. Let I € 7 and let J 2 I be such that My is parabolic. Then

1255, 05 (1) defined by (T 22 @5(1)) = (1 25 1 222 ©5(1)) is a morphism in
M(Z).

Proof. As noted after Proposition [0.8 we have to show that ar(v(J,I)) = 1 and

that any t € I is conjugate by v(J,I) to an element of M. Since A;'Aj divides

AflA, and aI(AflA) = 1, by definition of Ay, we get the first property. The

second is clear since by definition v(J,I) conjugates t to ®5(®;*(t)). O
To describe the atoms we now need the following assumption:

Assumption 5.14. LetI € 7 and let J be the set of atoms of a parabolic submonoid
My of M, strictly containing My, and minimal for this property. Then for any atom
s € J =1, the right-lem of s and Ay is Ay.

Note that this assumption holds for Artin monoids since for them a J as above
is of the form T U {s} for some atom s. We have

Proposition 5.15. Under the Assumptions[5.3, [5.6, and[5.14)
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(i) Let 1 €Z and g € M such that ax(g) = 1 and such that there exists p > 0
such that (AY)9 € M. Then g € M(T).

(ii) The atoms of M(Z) are the v(J,I) not strictly divisible by another v(J’,1)
forTel.

Proof. (i) is a generalization of result of Luis Paris [Pal, 5.6]. Since M is Noetherian,
for (i) it suffices to prove that under the assumption g is either invertible or left
divisible by some non-invertible v € M (Z); indeed if g = vg’ where I % I’ € M (Z)
then by we have ap(g’) = 1 and since I = I’ we have (A?)9 € M, so
(i) is equivalent to the same property for ¢’ and by Noetherianity the sequence
g,9,4g",... thus constructed terminates with an invertible element. Let s be an
atom such that s < ¢; by assumption s ¢ My thus there exists a minimal parabolic
submonoid My containing s and M since the intersection of parabolic submonoids
is parabolic. We will prove that v(J,I) < g which will thus imply (i). We proceed
by decreasing induction on p. We show that if for i > 0 we have t < Alg for some
t € J — I (note this holds for i = p since s < g < A¥g) then v(J,I) < A 'g. The
right lem of t and Ar is Ay by Assumption 514 thus from t < A’g and Ar < Ajg
we deduce Ay < Aig. Since Ay = Apv(J,I) we get as claimed v(J,I) % Aiflg.
Since any atom t’ such that t' < v(J,I) is in J — I the induction can go on while
1—1>0.

We get (ii) from the proof of (i): any element g € M (Z) satisfies the assumption
of (i) for p = lgg(g) and I equal to the source of g; whence the result since in the
proof of (i) we have seen that g is a product of some v(J, K). O

Though in the current paper we need only finite Coxeter groups, we note that
the above description of the atoms also extends to the case of Artin monoids which
are associated to infinite Coxeter groups (and thus do not have a Garside element).
Proposition below can be extracted from the proof of Theorem 0.5 in [G].

In the case of an Artin monoid (B*,S) the Garside family of 510 in B*(Z) is
WNBT(IZ)={1 2 Jc AdB*(Z) | w € Wand ag(w) = 1}. ForI C S and
s € S we denote by I(s) the connected component of s in the Coxeter diagram
of TU {s}, that is the vertices of the connected component of s in the graph with
vertices IU{s} and an edge between s’ and s” whenever s’ and s” do not commute.

It may be that the subgroup W; generated by I is finite even though W is not
(we say then that I is spherical), in which case we denote by wi the image in W
of the longest element of W;. With these notations, we have

Proposition 5.16. The atoms of BT (Z) are the morphisms 1 M> v(sDT where T

is inZ ands € S—1I is such that I(s) is spherical, and where v(s,I) = W) Wi(s)—{s} -
6. PERIODIC ELEMENTS

Definition 6.1. Let C be a category with a Garside map A; then an endomorphism
f of C is said to be (d,p)-periodic if f¢ € APC* for some non-zero integers d, p.

In the above, we have written AP for AP (source(f)).

Note that if f is (d, p)-periodic it is also (nd, np)-periodic for any non-zero integer
n. We call d/p the period of f. If ® is of finite order, then a conjugate of a
periodic element is periodic of the same period (though the minimal pair (d, p) may
change). It can be shown that, up to cyclic conjugacy, the notion of being (d, p)-
periodic depends only on the fraction d/p; it results from Proposition that two
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periodic morphisms are conjugate if and only if they are cyclically conjugate; our
interest in periodic elements comes mainly from the fact that one can describe their
centralizers.

We deal in this paper with the case p = 2. We show by elementary computations
that a (d, 2)-periodic element of C is the same up to cyclic conjugacy as a (d/2,1)-
periodic element when d is even, and get a related characterization when d is odd.

We denote by S a Garside family attached to A (that is such that SC* UC* is
the set of divisors of A).

Lemma 6.2. Let f be an endomorphism in C such that f¢ € A2C*, and let e = L%J
Then there exists g € Obj(cycC) such that cycC(f,g) # 0 and g¢ € SC* and
d 20X
g* e A*C*.
Further, if g is as in the conclusion above, that is g¢ € A2C* and g¢ € SC*,
then if d is even we have g¢ € AC*, and if d is odd there exists h € SC* such that

g = h®(h)e and g°h = A, where e € C* is defined by g¢ = A%e.

Proof. We will prove by increasing induction on i that for ¢ < d/2 there exists
v € cycC such that ()" € SC* and (fV)¢ € A2C*. We start the induction with
i = 0 where the result holds trivially with v = 1.

We consider now the general step: assuming the result for ¢ such that ¢ +1 <
d/2, we will prove it for i + 1. We thus have a v for step 4, thus replacing if
needed f by f¥ we may assume that f° € SC* and f¢ € A2C*; we will conclude
by finding v € S such that v < f and (f¥)"*! € SC* and (f¥)? € A2C*. If
Ff*1 < A we have the desired result with v = 1. We may thus assume that
lgs(fi1) > 2. Since fit! < A? we have actually lgg(f*!) = 2 (see Proposition
2.12(i)); let (f'v,w) be a normal decomposition of fi*! where fiv € S and w €
SC*. As flow(fv) < flow(flow) = 20D g f4 =% A2 we still have 2 =
lgs((fio)w(fiv)) = lgg((fiv)w). By Proposition 2I2/(ii) we thus have w(fiv) €
SC*. Then SC* 3 w(fiv) = w((vw)")v = (f*)"! and v < f.

So v will do if we can show (f*)? € A2C*. Since f¢ = A%z with ¢ € C*, we
have that f commutes with A2%e, thus fi*! also, that is ®?(f*l)e = ef**! or
equivalently ®%(fiv)®?(w)e = eflvw. Now (®?(fiv), ®?(w)e) is an SC*-normal
decomposition and since (f*v,w) is a normal decomposition, by Lemma there
exists & € C* such that ®2(fiv)e’ = efiv. We have fIA2®?(v)e’ = A2®?(flv)e’ =
A%efiv = fiA2ev, the last equality sincef! commutes with A2z, Canceling f¢A?
we get ®2(v)e’ = ev. We have then v(f*)? = flv = A2zv = A20%(v)e’ = vA2%e/
whence the result by canceling v on the left.

We prove now the second part. From g¢ € SC* we get that there exists h € SC*
such that g¢h = A. If g¢ = A%e with e € C* we get g°hAe = A%e = g%, whence by
cancellation hAe = g°¢g* with a = 1 if d is odd and a = 0 if d is even. We deduce
9°9® = hAe = A®(h)e = g°h®(h)e, thus h®(h)e = g*.

If d is odd we get the statement of the lemma, and if d is even we get h®(h) € C*,
so h € C*,so g° e AC*. O

F-periodic elements. Let us apply Lemma [6.2 to the case of a semi-direct prod-
uct category C x (F) with F a Garside automorphism of finite order, where C has
no non-trivial invertible element and the Garside family S of C x (F)) is in C. Then
a morphism yF' € CF is (d, p) periodic if and only if target(y) = F(source(y)) and
(yF)? = APF9,

From the lemma we can deduce the following.
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Corollary 6.3. Assume ®* = 1d and that yF € CF satisfies (yF)? = A2F9. Then

(i) If d = 2e is even, there exists x such that cycC(yF,zF) # 0 and (xF)¢ =
AFe€. The centralizer of xF in C identifies to cycC(xF). Further, we may
compute these endomorphisms in the category of fived points (cycC)®F”
since the morphisms in cycC(zF) are ®F°-stable.

(i) Ifd = 2e+1 is odd, there exists x such that cycC(yF,zF) # () and (zF)? =
A2F? and (zF)°F~¢ < A. The element s defined by (xF)¢sF~¢ = A is
such that, in the category C x (A) with A = ®~1F~¢, we have xA% = (sA)?
and (sA)? = AA?. The centralizer of xF in C identifies to cycC(sA).
Further, we may compute these endomorphisms in the category of fixed
points (cycC)F* since cycC(sA) is stable by F.

Note that 2.8 describes Garside families for the fixed point categories mentioned
above.

Proof. Lemma [6.2]shows that y is cyclically F-conjugate to an x such that (zF)¢ €
SF¢ and (zF)? = A?F? and that if d is even then (zF)¢ = AF¢. If d is odd Lemma
6.2 gives the existence of h € SC* such that F = h®(h)F? and that (zF)°h = A.
Hence we have h = sF'~¢ with s € S, and o = sF~¢®(sF~¢)F4~1 = sA(s). This
can be rewritten zA? = (sA)2. Since the elements of AdC(xF) commute to F'¢ and
oF = zA?F? we have AdC(zF) = AdC(xA?); hence from (vF)¢s = AF® we get
AdC(xF) C AdC(sA). Using xA? = (sA)? we get the reverse inclusion, whence
AdC(zF) = AdC(sA).

We get the corollary if we know that the centralizer of 2 F, for d even (resp. sA,
for d odd) is the same as cycC(xF) (resp. cycC(sA)). But this is an immediate
consequence of Proposition ([l

Conjugacy of periodic elements.

Theorem 6.4. Let BT be the Artin monoid (see[2.13) attached to a finite Cozeter
group (W,S). Then two periodic elements of BT of same period are cyclically
conjugate.

Proof. This results from the work of David Bessis on the dual braid monoid. Two
periodic elements of same period in the classical Artin monoid are also periodic and
have equal periods in the dual monoid. By [B1], 11.21], such elements are conjugate
in the dual monoid, so are conjugate in the Artin group, hence are conjugate in the
classical monoid. By Proposition they are cyclically conjugate in the classical
monoid. (|

We conjecture that the same results extend to the case of F-conjugacy, where F’
is an automorphism of (W, S), which thus induces a Garside automorphism of BT
via its action of W.

We conjecture further that for any conjugacy class Z of subsets of S, all periodic
elements in C(Z) of a given period are conjugate (thus cyclically conjugate); and
that this extends also to the case of F-conjugacy.

Two examples. In two cases we show a picture of the category associated to the
centralizer of a periodic element.

We first look at C = BT (W(Dy4)) and w € C such that w? = A; following
Corollary [6.3(i) we describe the component of w in the category cycC®. As in
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Theorem [TT.12 we choose w given by the word in the generators 123423 where the
labeling of the Coxeter diagram is

Lo

1 3 1

By Corollary[6.3(i) the monoid of endomorphisms cycC(w) generates Cg(w); by
[B1, 12.5(ii)], Cp(w) is the braid group of Cyw (w) ~ G(4,2,2). This braid group
has presentation (x,y,z | xyz = yzx = zxy). The automorphism x — y — z
corresponds to the triality in D4. One of the generators x corresponds to the
morphism 24 in the diagram below. The other generators are the conjugates of the
similar morphisms 41 and 21 in the other squares.

123243 — > 232431 > > 231431 —2> 314312

. /,".
131234(4— 143123

We now look at the case of a w in the braid monoid C = B (W (A45)) such that
w3 = A2, and following Corollary [6.3|(ii) we describe the component of s® ! in the
category cycC x (®~1) where s is such that w = s®(s). By Corollary 6.3(ii) the
monoid of endomorphisms cycC(s®~1) generates Cp(w) and again by the results
of Bessis Cg(w) is the braid group of Cy (w) ~ G(3,1,2) (see Theorem [[T.0). We
choose w such that s is given by the word 21325 in the generators. The generator
of Cp(w) lifting the generator of order 3 of G(3,1,2) is given by the word 531. The
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other one is the conjugate of any of the length 2 cycles 23 in the diagram.

21325
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7. REPRESENTATIONS INTO BICATEGORIES

We give here a theorem on categories with Garside families which generalizes
a result of Deligne [D| 1.11] about representations of spherical braid monoids into
a category; just as this theorem of Deligne was used to attach a Deligne-Lusztig
variety to an element of the braid group, our theorem will be used to attach a
Deligne-Lusztig variety to a morphism of a ribbon category. Note that our theorem
covers in particular the case of non-spherical Artin monoids.

We follow the terminology of [McLl XII.6] for bicategories. By “representation
of category C into bicategory X” we mean a morphism of bicategories between C
viewed as a trivial bicategory into the given bicategory X. This amounts to give
a map T from Obj(C) to the O-cells of X, and for f € C of source x and target
y, an element T'(f) € V(T(z),T(y)) where V(T(x),T(y)) is the category whose
objects (resp. morphisms) are the 1-cells of X with domain T'(z) and codomain
T(y) (resp. the 2-cells between them), together with for each composable pair (f, g)
an isomorphism T'(f)T(g) = T(fg) such that the resulting square

(7.1) T(HTUNT") —=T)T(f")

T(HTS ") ——=T(ff'f")
commutes.
We define a representation of the Garside family S as the same, except that the
above square is restricted to the case where f, ff’ and ff'f” are in S, (which

implies f/, ", f'f" € S since § is closed under right divisors). We then have

Theorem 7.2. Let C be a right Noetherian category which admits local right lcms
and has a Garside family S. Then any representation of S into a bicategory extends
uniquely to a representation of C into the same bicategory.

Proof. The proof goes exactly as in [D], in that what must been proven is a simple
connectedness property for the set of decompositions as a product of elements of S
of an arbitrary morphism in C— this generalizes [D] 1.7] and is used in the same way.
In his context, Deligne shows more, the contractibility of the set of decompositions;
on the other hand our proof, which follows a suggestion by Serge Bouc to use a
version of [Boud, lemma 6], is simpler and holds in our more general context.

Fix g € C with g ¢ C*. We denote by E(g) the set of decompositions of g into
a product of elements of S — C*.

Then E(g) is a poset, the order being defined by

(915 +9i-1,9is Git1s - -+ 9n) > (915, Gim1,0,b, Gig1, - -, gn)
ifab=yg; € S.

We recall the definition of homotopy in a poset E (a translation of the corre-
sponding notion in a simplicial complex isomorphic as a poset to F). A path from
1 to xi in E is a sequence zj ...z, where each x; is comparable to x;4;. The
composition of paths is defined by concatenation. Homotopy, denoted by ~;, is the
finest equivalence relation on paths compatible with concatenation and generated
by the two following elementary relations: xyz ~ zz if * <y < z and both zyz ~ z
and yzy ~ y when x < y. Homotopy classes form a groupoid, as the composition of
a path with source x and of the inverse path is homotopic to the constant path at
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x. For € E we denote by II; (F, z) the fundamental group of E with base point
x, which is the group of homotopy classes of loops starting from .

A poset E is said to be simply connected if it is connected (there is a path linking
any two elements of E) and if the fundamental group with some (or any) base point
is trivial.

Note that a poset with a smallest or largest element x is simply connected since
any path (x,y, z,t,...,2) is homotopic to (z,y,x,z,z,t,z,...,x) which is homo-
topic to the trivial loop.

Proposition 7.3. The set E(g) is simply connected.

Proof. First we prove a version of a lemma from [Bouc| on order preserving maps
between posets. For a poset E we put E>, = {2’ € E | 2/ > z}, which is a
simply connected subposet of E since it has a smallest element. If f : X — Y
is an order preserving map it is compatible with homotopy (it corresponds to a
continuous map between simplicial complexes), so it induces a homomorphism f* :
I (X, z) = I (Y, f(x)).

Lemma 7.4 (Bouc). Let f: X =Y an order preserving map between two posets.
We assume that Y is connected and that for any y € Y the poset f~1(Y>,) is
connected and non empty. Then f* is surjective. If moreover f=1(Ys,) is simply
connected for all y then f* is an isomorphism.

Proof. Let us first show that X is connected. Let z,2’ € X; we choose a path
Yo...Yyn iIn Y from yo = f(z) to y, = f(z'). For i = 0,...,n, we choose z; €
F71(Ysy,) with 2o = 2 and x, = 2/. Then if y; > y;41 we have f~1(Vs,,) C
S H(Y>y,,,) so that there exists a path in f~1(Y>,,,,) from z; to @;41; otherwise
Yi < Yi+1, which implies f~1(Y>,,) DO f!(Y>y,,,) and there exists a path in
f71(Ysy,) from z; to z;41. Concatenating these paths gives a path connecting x
and z’.

We fix now 29 € X. Let yo = f(xg). We prove that f*: II1 (X, z) — II;1 (Y, yo)
is surjective. Let yoyi...yn with y, = yo be a loop in Y. We lift arbitrarily
this loop into a loop xg—---—=x, in X as above, (where z;—x;+1 stands for a
path from z; to z;41 which is either in f~'(Y>,,) or in f~!(Y>,, ,). Then the
path f(zo—z1—---—x,) is homotopic to yo...ys; this can be seen by induc-
tion: let us assume that f(xo—=x;---—=a;) is homotopic to yo...y;f(x;); then
the same property holds for 7 4+ 1: indeed y;yi11 ~ yif(xi)yir1 as they are two
paths in a simply connected set which is either Ys,, or Ys,, ; similarly we have
f@)yiv1f(zig1) ~ f(zi—zi41). Putting things together gives

Yo - - YiYir1 f(@iv1) ~ Yoy1 - vif (@) yivr f(Tig1)

~ flwo—"—x)Yir1f(Tit1)
~ f(@wo—+ =@ —Tit1).
We now prove injectivity of f* when all f~1(Y>,) are simply connected.
We first prove that if ©o—---—=x, and xj—---—=x], are two loops lifting the
same loop %o ...Yn, then they are homotopic. Indeed, we get by induction on ¢
that xo—---—ax;—a and z{,—---—=x} are homotopic paths, using the fact that

xi—1, T, T,_, and x} are all in the same simply connected sub-poset, namely either
fﬁl(YZyi—l) or fﬁl(YZyi)'

It remains to prove that we can lift homotopies, which amounts to show that
if we lift as above two loops which differ by an elementary homotopy, the liftings
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are homotopic. If yy'y ~ y is an elementary homotopy with y < ¢’ (resp. y > v'),
then f=1(Ys,) C f7H(Y>,) (vesp. f71(Y>y) C f71(Y>, ) and the lifting of yy'y
constructed as above is in f~1(Y>,) (resp. f~(Y>,/)) so is homotopic to the trivial
path. If y < 3/ < 9", a lifting of yy'y” constructed as above is in f~(Y>,) so is
homotopic to any path in f~1(Y>,) with the same endpoints. O

We now prove Proposition [Z.3] by contradiction. If it fails we choose g € C
minimal for proper right divisibility such that E(g) is not simply connected.

Let L be the set of elements of S —C* which are left divisors of g. For any I C L,
since the category admits local right lems and is right Noetherian, the elements of I
have an lem. We fix such an lem Aj. Let Er(g) = {(91,..-,9n) € E(9) | A1 < g1}
We claim that F;(g) is simply connected for I # (). This is clear if g € A;C*, in
which case Er(g) = {(g9)}. Let us assume this is not the case. In the following, if
A < a, we denote by a the element such that a = Aja’. The set E(gI) is defined
since g € A;C*. We apply Lemma [T to the map f : Er(g) — E(g’) defined by

(o ) (92:---v9n) g1 =4
T (g7, 92,...gn) otherwise -

This map preserves the order and any set f_l(YZ(g1 _____ gn)) has a least element,
namely (Ar,g1,...,9n), S0 is simply connected. As by minimality of g the set
E(g") is simply connected Lemma [T.4] implies that E;(g) is simply connected.

Let Y be the set of non-empty subsets of L. We now apply Lemma [4] to the
map f : E(g) — Y defined by (g1,...,9n) = {s € L | s < g1}, where Y is
ordered by inclusion. This map is order preserving since (g1,...,9n) < (g1,---,95)
implies g1 < g}. We have f~1(Y>;) = E(g), so this set is simply connected. Since
Y, having a greatest element, is simply connected, [[4] gives that E(g) is simply
connected, whence the proposition. ([

O

II. Deligne-Lusztig varieties and eigenspaces

In this part, we study the Deligne-Lusztig varieties which give rise to a Lusztig
induction functor RE(Id); in Section B we generalize these varieties to varieties
attached to elements of a ribbon category.

In Section [ we consider the particular ribbons associated to varieties which play
a role in the Broué conjectures, because they are associated to maximal eigenspaces
of elements of the Weyl group.

Finally in Section [I0] we spell out the geometric form of the Broué conjectures,
involving the factorization of the endomorphisms of our varieties in the conjugacy
category of the ribbon category through the action of a cyclotomic Hecke algebra
on their cohomology.

8. PARABOLIC DELIGNE-LUSZTIG VARIETIES

Let G be a connected reductive algebraic group over F,, and let F be an isogeny
on G such that some power F? is a Frobenius for a split [Fs-structure (this defines
a positive real number ¢ such that ¢° is an integral power of p).
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Let L be an F-stable Levi subgroup of a (non-necessarily F-stable) parabolic
subgroup P of G and let P = LV be the corresponding Levi decomposition of P.
Let

Xy ={gVEG/V|gVNF(gV)#0} ={gVeG/V|g'FgeViV}
~{geG|g fge v}/ (VvnTV).

On this variety G¥" acts by left multiplication and L acts by right multiplication.
We choose a prime number ¢ # p. Then the virtual GF-module-L¥ given by
M =Y, (-1)'H{(Xv,Q,) defines the Lusztig induction RE which by definition
maps an L¥-module A to M ®@eLF A
The map gV ~ gP makes Xy an L -torsor over

Xp={gyPeG/P|gPNF(gP)#0} ={gPc G/P|g 'Fgec P'P}
~{geG|g ' Fge "P}/(PN"P),

a GF-variety such that RZ(Id) = Y ,(—1)"H!(Xp,Q,). The variety Xp is the
prototype of the varieties we want to study.

Let T C B be a pair of an F-stable maximal torus and an F-stable Borel
subgroup of G. To this choice is associated a basis II of the root system ® of G
with respect to T, and a Coxeter system (W, S) for the Weyl group W = Ng(T)/T.
Let Xg = X(T)®R; on the vector space Xg, the isogeny F acts as q¢ where ¢ is of
order § and stabilizes the positive cone RTII; we will still denote by ¢ the induced
automorphism of (W, S).

To a subset I C II corresponds a subgroup W; C W, a parabolic subgroup
P; = HweWI BwB, and the Levi subgroup L; of P; which contains T.

Given any P = LV as above where L is F-stable, there exists I C II such that
(L, P) is G-conjugate to (L, Py); if we choose the conjugating element such that
it conjugates a maximally split torus of L to T and a rational Borel subgroup
of L containing this torus to B N Lj, then this element conjugates (L,P, F) to
(L7, Pr,wF) where v € Ng(T) is such that “?I = I, where w is the image of w
in W.

It will be convenient to consider I as a subset of S instead of a subset of II; the
condition on w must then be stated as “I* = ®I and w is I-reduced”. Via the
above conjugation, the variety Xp is isomorphic to the variety

X(I,w¢) = {gP; € G/Pr| g g c PrwlPy}.

We will denote by X (I, w¢) this variety when there is a possible ambiguity on the
group. If we denote by U; the unipotent radical of P;, we have dim X (I, w¢) =
dim U; — dim(U; N “FU;) = I(w). The f-adic cohomology of the variety X(I,w¢)
gives rise to the Lusztig induction from LYF to G¥ of the trivial representation; to
avoid ambiguity on the isogenies involved, we will sometimes denote this Lusztig
induction by RI(;;II:,UF(Id)

Definition 8.1. We say that a pair (P, Q) of parabolic subgroups is in relative po-
sition (I, w, J), where I,J C S andw € W, if (P, Q) is G-conjugate to (Pr,"Py).

We denote this as P 227 Q.

Since any pair (P, Q) of parabolic subgroups share a common maximal torus,
it has a relative position (I, w, J) where I, J is uniquely determined as well as the
double coset WrwW;.
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Let Pr be the variety of parabolic subgroups conjugate to Py; this variety is
isomorphic to G/P;. Via the map gP; — 9P; we have an isomorphism

®
X(I,we) ~ {P e P, | P 22 Fpy,
it is a variety over P; X Pg; by the first and second projection.

The parabolic braid category BT (Z). In order to have a rich enough monoid of
endomorphisms (see Definition B23)), we need to generalize the pairs (I, w¢) which
label our varieties to the larger set of morphisms of a “ribbon category” that we
proceed to define.

Let BT (resp. B) denote the Artin-Tits monoid (resp. Artin-Tits group) of W,
and let S be its generating set, which is in canonical bijection with S. To I C S
corresponds I C S and the submonoid BIJr generated by I. By Lemma [5.3 every
element of b € B* has a unique longest divisor az(b) in By. As in Definition (.7
we define:

Definition 8.2. Let T be the set of conjugates of some subset of S. Then BT (T)
is the category whose objects are the elements of Z and the morphisms from I to J
are the b € Bt such that 1P = J and az(b) = 1.

If b € Bt determines an element of BT (Z)(I,J) for some objects I, J of Z, we
will denote by I b, 7 this morphism to lift ambiguity on its source and target.

We have shown in Proposition 5.8 that the above definition makes sense, that is
if we have a composition T 2 J < K in B*(Z), then az(bc) = 1. When Z = {0},
B™(Z) reduces to the Artin-Tits monoid B*.

The canonical lift W =5 W of W in BT is denoted by w — w; it is a Garside
family in B*. For w € W we denote by w its image in W. By Corollary [5.10] and
Proposition BT (T) has a Garside family consisting of the morphisms I ~ J
where w € W and a Garside map Az given on the object I by the morphism

wilw
I —— =% I%0 where we denote by wi the lift to W of the longest element of Wi,
and write wq for wg. This includes the following:

Lemma 8.3. (i) S={1 5 J|w e W} generates BT(T); specifically, if
I Je Bt (Z) and (w1,...,wy) is the W-normal decomposition of b,
there exist subsets I; with Iy = I, Iy41 = J such that for all i we have
L =1 thus 1 T oL S Jisa decomposition of 1 R> J
in BT(Z) as a product of elements of S.

(ii) The relations (I 2% J 2% K) = (I % K) when w = wiws € W form a
presentation of BT(T).

We set a(b) to be the left ged of b and wy; its restriction to B¥ — {1} is an
S-head function. Lemma B3] implies:

Lemma 8.4. ForI 5T € BY(Z) and v € By we have a(vw) = a(v)a(w).

Proof. We have a(vw) = a(va(w)) = a(a(w)ve™) = a(a(w)a(ve™)), the first
and last equalities from Proposition 23] (iii). Since by Lemma B3(i) I*™) C S, by
Lemma 511 we have a(v®™)) = a(v)*™) | so that a(vw) = a(a(w)a(v)*™))

afa(v)a(w)). Since a(w) is I-reduced we have a(v)a(w) € W, hence a(a(v)a(w)
a(v)a(w).

D\/
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We now look at the compatibility of morphisms in B¥(Z) with a “parabolic”
situation. In our case, the only invertible in B¥ is 1 and we extend the normal
decomposition to all of B* by deciding that the normal decomposition of 1 is the
empty sequence.

Proposition 8.5. FixI € Z, and for J C 1, let J be the set of B;r—conjugates of J.
Let 1 5 1) € BYH(Z) and let (J = ') € Bf (J). Let (uy,...,ux) be the normal
decomposition of vw and let (W1, wWa, ..., Wy) be the normal decomposition of w,
with perhaps some 1’s added at the end so they have same length; if for each i we
define v; by u; = v;w; then (vi, Wivy, W1W2vs . .) is the normal decomposition of
v with perhaps some added 1’s at the end.

Proof. We proceed by induction on k. By Lemma B4 we have u; = a(v)a(w) =
viwi, so that up...up = w(v)*™w(w). The induction hypothesis applied to
w(v)*™)  which represents both a map in B*(7) and an element of BIt(w), and to
w(w) € Bt (Z) gives the result. O

The varieties O attached to BT (Z). In this subsection, we shall define a repre-
sentation of B¥(Z) into the bicategory X of varieties over P; x P, where I, J vary
over Z. The bicategory X has 0-cells which are the elements of Z, has 1-cells with
domain I and codomain J which are the P; x Pj-varieties and has 2-cells which
are isomorphisms of Py x Pj-varieties. We denote by V(I,J) the category whose
objects (resp. morphisms) are the 1-cells with domain I and codomain J (resp. the
2-cells between them); in other words, V(I,J) is the category of Py x P j-varieties
endowed with the isomorphisms of P; x Pj-varieties. The horizontal composition
bifunctor V(I,J) x V(J,K) — V(I,K) is given by the fibered product over P;.
The vertical composition is given by the composition of isomorphisms.

The representation of BT (Z) in X we construct will be denoted by T, following
the notations of Section [l We will also write O(I, b) for T'(I LN J), to lighten the
notation. We first define 7' on the Garside family S.

Definition 8.6. For I > J) € S, if I, w, J are the images in W of I, w, J
respectively, we define O(I,w) to be the variety {(P,P') € Py x Py | P Lwd, P’}
The following lemma constructs the isomorphism T(f)T(g) — T(fg) when
[9.fg9€S:
Lemma 8.7. Let (1 25 1y 22 J) = (I 5 J) where w = wiwy € W be a defining
relation of B (Z). Then (p/,p") : O(I,w1) xp,, O(Iz,wz) = O(I,w1w2) is an
isomorphism, where p' and p” are respectively the first and last projections..
Proof. First notice that for two parabolic subgroups (P’,P”) € P; x P; we have
P’ 9 prif and only if the pair (P/,P”) is conjugate to a pair containing
termwise the pair (B, “B). This shows that if P =2, Py and Py 22427, pr
then P/ L2127, pr , 80 (p',p") goes to the claimed variety.

Conversely, we have to show that given P’ LT i there is a unique P such
that P/ 002 P, w2 ] pr. The image of (B, “B) by the conjugation which
sends (Pr,“P;) to (P’,P”) is a pair of Borel subgroups (B’ ¢ P/, B” C P”) in
position w. Since [(w;) + I(wz) = I(w), there is a unique Borel subgroup B; such
that B’ =% B; =2 B”. The unique parabolic subgroup of type Iy containing B
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has the desired relative positions, so Py exists. And any other parabolic subgroup
P} which has the desired relative positions contains a Borel subgroup B such that
B’ %5 B) 22 B” (take for B/ the image of “'B by the conjugation which maps
(P;,"*Pyr,) to (P, P})), which implies that Bf = B; and thus P{ = P;. Thus our
map is bijective on points. To show it is an isomorphism, it is sufficient to check
that its target is a normal variety, which is given by

Lemma 8.8. For (I %5 J) € S the variety O(I,w) is smooth.

Proof. Consider the locally trivial fibrations with smooth fibers given by G x G %
Pr x Py : (91,92) — (9P, 2P;) and G x G 5 G : (g1,92) — gy ‘go. It is
easy to check that O(I,w) = p(¢~1(“P,)) thus by for example [DMR] 2.2.3] it is
smooth. O

O

From the above lemma we see also that the square [[.]] commutes for elements
of S, since the isomorphism “forgetting the middle parabolic” has clearly the cor-
responding property. We have thus defined a representation 7" of S in X.

The extension of T to the whole of BT(Z) associates to a composition T ~%
L — - — I, 25 J with w; € W the variety

Liywi Iita

O(I,Wl) XP12 X’Plk O(Ik,Wk) = {(Pl, .. 'qu—i-l) | P; Pi+1},

where [1 = I and Iy = J. It is a Py x Pj-variety via the first and last projections
mapping respectively (P1,...,Pri1) to P; and Pg4q, and Lemma B7] shows that

up to isomorphism it does not depend on the chosen decomposition of T ~—-=*%, J.
Theorem [7.2]shows that there is actually a unique isomorphism between the various

models attached to different decompositions, so T' defines a variety for any element
of BT(Z).

Definition 8.9. ForI 2 J ¢ BT (T) we denote by O(1,b) the variety defined by
Theorem 7.9 For any decomposition (I LN M = (I 25 I —» - 25 1) in
elements of S it has the model {(P1,...,Pry1) | P; fowe lig P}

The Deligne-Lusztig varieties attached to BT (Z). The automorphism ¢ lifts
naturally to an automorphism of BT which stabilizes S, which we will still denote
by ¢, by abuse of notation. If (I % ?I) € S, then X(I,w¢) is the intersection

of O(I,w) with the graph of F', that is, points whose image under (p’,p”) has the
form (P, “P). More generally,

Definition 8.10. Let I 2 ¢T be any morphism of BT(Z); we define the variety
X(I,bo) as the intersection of O(1,b) with the graph of F. For any decomposition

(I b, 1) = (I 25 Iy — - 25 1) in elements of S the variety O(I,b) has the
model {(Pl, ey Pk-i—l) | Pi Tiwidirs Pi+1 and Pk-i—l = F(Pl)}.

The above model may be interpreted as an “ordinary” parabolic Deligne-Lusztig
variety in a group which is a descent of scalars:

Proposition 8.11. Let I = I, BAETN PRI PRI gy P decomposition
into elements of S of 1 LIRS B*(ZI), let Fy be the isogeny of GF defined by
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Fi(g1,---,98) = (92,---, 9k, F(g1)) and let ¢1 be the corresponding automorphism
of Wk, Then Xg(I,bg) ~ Xgr (I X...x I, (w1, ..., wi)p1). By this isomorphism
the action of F° corresponds to that of Ff° and the action of GF corresponds to
that of (G*)T.

Proof. An element Py x ... x Py € Xgr (1 X ... X I, (w1, ..., wg)é1) by definition
satisfies

11X,,,Ik,(wl,...,wk),b><,,,Ik><¢11

P x...xPg P, x...x Py x P,
thus is equivalently given by a sequence (P, ..., Pgy1) such that P; Lowidiv, P

with Pry1 = FP, and Iiy1 = ¢];, which is the same as an element
(Pl, . ,Pk+1) S O(Il,wl) XPry O(IQ,WQ) . Xplk71 O(Ik,Wk)

such that Py, ; = “P;. But this is a model of Xg (I, bg) as explained above.
One checks easily that this sequence of identifications is compatible with the
actions of F'* and G as described by the proposition. ([l

Proposition 8.12. The variety X(I,be) is irreducible if and only if IUc(b) meets
all the orbits of ¢ on S, where c(b) is the set of elements of S which appear in a
decomposition of b.

Proof. This is, using Proposition [B11] an immediate translation in our setting of
the result [BRL Theorem 2] of Bonnafé-Rouquier. O

The varieties X(I, wg). The conjugation which transforms Xp into X(I,we)
maps Xy to the GF-variety-L%F given by

X(I,wF)={gU; € G/U; | g7 'Fg e UrFU;},

where  is a representative of w (any representative can be obtained by choosing an
appropriate conjugation). The map gU; — gP; makes X(I,wF) a L%F _torsor over
X(I,we). We will sometimes write X(I,.F) to separate the Frobenius endomor-
phism from the representative of the Weyl group element. This will be especially
useful when the ambient group is a Levi subgroup with Frobenius endomorphism
of the form & F.

In this section, we define a variety X(I, w¢) which generalizes X (I,wF) by
replacing w by elements of the braid group. Since w represents a choice of a lift of
w to Na(T), we have to make uniformly such choices for all elements of the braid
group, which we do by using a “Tits homomorphism”.

First, we need, when w € W, to define a variety (5([, w) “above” O(I,w) such
that X(I,wF) is the intersection of O(I,w) with the graph of F, and then we
extend this construction to B (Z).

Definition 8.13. Let (I 5 J) €S, and let @ € Ng(T) be a representative of w.
We define O(I,) = {(gUs,g'Uy) € G/Us x G/U, | g~ '¢' € UpisUy}.

We can prove an analogue of Lemma [B.7]

Wi1w2

Lemma 8.14. Let (I 25 T, 22 J) = (I 222 J) where wiwa € W be a defining
relation of BY(ZI), and let 1in, w2 be representatives of the images of w1 and wo in
W. Then (p/,p") : O(I, ) Xa/u;, O(Iy, 1) = O(I,1inirg) is an isomorphism
where p’ and p" are the first and last projections.
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Proof. We first note that if I ~» J € B*(Z) and 4 is a representative in Ng(T) of
the image of w in W, then U;wU is isomorphic by the product morphism to the
direct product of varieties (U; N *U7 ) x Uy, where U7 is the unipotent radical
of the parabolic subgroup opposed to P ; containing T. We now use the lemma:

Lemma 8.15. Under the assumptions of Lemma the product gives an iso-
morphism (Uy N wlUI_Z)u')l x (Up, N 9207 e = (Up N 919207 g bs.

Proof. As a product of root subgroups, we have Uy N “U; = H—aewN(w) U,,

where N(w) = {a € &t | Ya € &~ }. The lemma is then a consequence of the
equality N(wy)"2 [ N(wz) = N(wyws) when I(w1) + l(wz) = l(wiws). O

The lemma proves in particular that if gl_lgg € UpinUyp, and 92_193 e UpnwUy
then g 'gs € UpinUpw, Uy = (Up N U )i (Up, N %205 iUy = (U N
wlw2U;)w1w2UJ = Ujwiw2 Uy, so the image of the morphism (p’, p”) in Lemma
BIdlis indeed in the variety O(I,w1is).

Conversely, we have to show that given (¢1 Uy, g3U;) € @(I, Wy s), there exists
a unique g2U, such that (91U, g2Uy,) € O(1,41) and (92U1,, g3U,) € O(I2,102).
The varieties involved being invariant by left translation by G, it is enough to solve
the problem when g; = 1. Then we have g3 € Urwyw2 Uy, and the conditions for
92Uy, is that ¢goUy, € Urw,Uyg,. Any such coset has then a unique representative
in (UyN wlUl_z)u'xl and we will look for such a representative go. But we must have
gz_lgg e UpuwU; = (ULN w2U;)w2U,] and since by the lemma the product gives
an isomorphism between (U; N u"1UI_2)U'J1 x (Ug, N %207 )i Uy and Uiy ie Uy,
the element g3 can be decomposed in one and only one way in a product g2(g5 ! g3)
satisfying the conditions. To conclude as in[87 we show that the variety O(I, w1 1)
is smooth. An argument similar to the proof of B8] replacing P; and P; by G/U;
and G /U, respectively gives the result. (Il

We will now use a Tits homomorphism, which is a homomorphism B SN Ng(T)
which factors the projection B — W (their existence is proved in [T]). Theorem[7.2]
implies that, setting T(I ~ J) = O(I, t(w)) for (I = J) € S and replacing Lemma
B by Lemma 814, we can define a representation of BT (Z) in the bicategory X
of varieties above G/U; x G/Uj for I,J € T.

Definition 8.16. The above representation defines for any 1 5 Je BT () a
variety O(I,b) which for any decomposition (I LN H=1L-.. .-,
J) into elements of S has the model O(I,t(w1)) XG/u,, --- Xa/u;, Ok, t(Wr)).

Proposition 8.17. There exists a Tits homomorphism t which is F-equivariant,
that is such that t(¢(b)) = F(t(b)).

Proof. To any simple reflection s € S is associated a quasi-simple subgroup Gg
of rank 1 of G, generated by the root subgroups U,, and U_,_; the 1-parameter
subgroup of T given by T N G; is a maximal torus of G4. By [T} Theorem 4.4] if
for any s € S we choose a representative $ of s in Gy, then these representatives
satisfy the braid relations, which implies that s — $ induces a well defined Tits
homomorphism. We claim that if s is fixed by some power ¢? of ¢ then there exists
5 € Gy fixed by F'?; we then get an F-equivariant Tits homomorphism by choosing
arbitrarily § for one s in each orbit of ¢. If s is fixed by ¢? then G, is stable
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by F?; the group Gy is isomorphic to either SLy or PSLy and F? is a Frobenius
endomorphism of this group. In either case the simple reflection s of G4 has an
F?-stable representative in Ng, (T N G,). O

Notation 8.18. We assume now that we have chosen, once and for all, an F'-
equivariant Tits homomorphism t which is used to define the varieties O(I,b). For
w € W we will write w for t(w) where w € W is the canonical lift of w.

Definition 8.19. For any morphism (I LN 1) € BH(T) we define X(I,b¢) = {z €
O(Lb) | p"(x) = F(p'(2))}-

When w € W we have X(I, wp) = X(I,wF) (the variety defined at the begin-
ning of this section).

Lemma 8.20. For any (I 2% ¢T) € B+(Z), there is a natural projection X(I, wo) =
X(I,wo¢) which makes X(I, we) a Li(w)F—torsor over X(I,wo), where the action
of Li(w)F is compatible with the first projection X(I,w@ — G/Uj.

Proof. Let I oI 2 T hea decomposition into elements of S of
I % 91, so that X (I, we) identifies to the set of sequences (g1 U7, g2Uy,, ..., ¢,.U7s,)
such that gj*lng € Uy t(w;)Uy,,, for j < rand g, ' g1 € Up t(w,;)Us;. We
define 7w by g;U;, — 9%Py,. It is easy to check that the morphism 7 thus de-
fined commutes with an “elementary morphism” in the bicategories of varieties

X or X consisting of passing from the decomposition (wq,..., W;, Wit1,..., W;)
to (Wi,...,W;W;y1,...,w,) when (I, i, I;i2) € S. Thus by [Z] the mor-

phism 7 is Well—deﬁngd independently of the decomposition chosen of w. We
claim that 7 makes X(I, w¢) a L*™)F_torsor over X(I, w¢). Indeed, the fiber
7 (9P, 92Py,, ..., 97 Py.)) consists of the (11 Uy, . .., ¢,1, Uy, ) € X(I, wo) with
l; € Ly,, that is such that
for j < r we have gj_lgj+1 € (Upt(w;)Ug,, )N lj(UIjt(Wj)UIjH)ljJrll
and g, ' Fg1 € (Ur t(w,)Usp) N1-(Up t(w,)Usp) Fi

Now

(UL, t(wj) Uy, )Nl (Urt(w;) U, i = (U t(w;) U, )NU t(w) Uy G915

and the intersection is non-empty if and only if UI wi) NU,, L AR ZJJrll = (), which,

since Ptlgwj) and Py, , are two parabolic subgroups with the same Levi subgroup,

occurs only if lﬁ(wj) = lj41. Similarly we get lfa(w’“) = P11, so in the end the fiber is

given by the I; such that {; = *WF(,. O
We give an analogue of Proposition Bl for X (I, be).

Proposition 8.21. Let I =1, Ty s Iy 25 9T be a decomposition into
elements of S of 1 b, 91 € BH(ZI), let Fy be the isogeny of GF as in Proposition
811 )

Then Xa(I,bg) ~ Xagw (I X ... X I, (W1, ...,w,)F1). By this isomorphism the
action of FO corresponds to that of FF°, the action of G corresponds to that of
(GF)F1 | and the action ofLi(b)F corresponds to that of (L, x - - - x Ly, )@t @e) Pt
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Proof. An element x;Uy, x ... x 2, Uy, € XGk(Il X ..o X Iy, (w1,...,w)F1) by
definition satisfies (z;Ur,,2;41U7,,,) € O(I;,;) for i = 1,...,k, where we have
put Iy1 = Il and 2441 Uy, 41 = F(21Uy,). This is the same as an element in the
intersection of O(I, wy) XG/up, OI,ws). .. XG/u, O(1;, wy) with the graph
of F. Since, by definition, we have

O(Lb) ~ Oy, w1) xg/u,, O(T2,w2) ... Xa/u;, O(Tx, wi),
via this last isomorphism we get an element of O(I, b) which is in Xg(I, bo).
One checks easily that this sequence of identifications is compatible with the
actions of F%, of G¥" and of Li(b)F as described by the proposition. O

We give an isomorphism which reflects the transitivity of Lusztig’s induction.

Proposition 8.22. Let I % ¢TI € Bt (Z), and let w be the image of w in W; the
automorphism we¢ lifts to an automorphism that we will still denote by w¢ of BIJF.

ForJ C 1, let J be the set of By -conjugates of J and let J < “?J € B (J). Then
(i) We have an isomorphism X (I, w¢) X ptw)F Xy, (J, vwe) = X(J,vwe) of
I

GF -UCLT?;@ti@S-L)f](VW)F. This isomorphism is compatible with the action of

F" for any n such that I, J, v and w are ¢™-stable.
.. . t(vw)F
(ii) Through the quotient by Ly

of GF'-varieties

X (I, we) X e X, (3, vwg) = X(I,vwo).

(see Lemma[820) we get an isomorphism

Proof. We first look at the case w,v € W (which implies vw € W), in which case
the isomorphism we seek is
X(1,iF) xygr Xi, (J,0.0F) = X(J, 00 F)

where v is the image of v in W. This is the content of Lusztig’s proof of the
transitivity of his induction (see [Lu, lemma 3]), that we recall and detail in our
context. We claim that (gUy,IVy) — gU[IV; = ¢glU; where V; = LN U;;
induces the isomorphism we want. We have

U,ouwfUy; = U Vyout Vv, F U = U V0PV u ;.
Since V0¥V is in Ly, so normalizes U; we get finally
U, ;0wfU; = Vo'V, Uy,
Hence if (gU;,1V ;) € X(I,wF) x Xy, (0¢), we have
(g E(gl) € 171U P UL = 17U Y P U,
=171 FUwiUr ¢ VotV U U = Uowt'uy.

Hence we have defined a morphism X (I,wF) x X, (0.1i¢) — X(J, 0w F) of GF-
varieties—L@JwF. We show now that it is surjective. The product L;.(UrwfUy) is
direct: a computation shows that this results from the unicity in the decomposition
P; N YFU; = L7.(U; N %FU;). Hence an element =¥z € Ujow!'U; defines
unique elements I € V9"V ; and v € U Uy such that 7' Fx = lu. If, using
Lang’s theorem, we write [ = I’~'“F[" with I’ € Ly, the element g = 2I'~! satisfies
gleg — l/xlexFl/fl — u';Fl/uFllfl c wFl/U]’LbFU]Fl/71 — U]leU]. Hence
(gU;, 'V ;) is a preimage of U in X(I,wF) x Xy, (J, 0ig)).
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Let us look now at the fibers of the above morphism. If ¢'UI'V; = gU[IV,
then ¢’"1g € P; so up to U; we may assume g’ = g\ with \ € Ly; we have then
M'U; =1Uy, so that [7'N’ € Uy N Ly = V; moreover if gA\U € X(I,wF) with
A € Lz, then A~"U;w U P\ = UpwFU; which implies \ € L?F. Conversely, the
action of A € LY given by (gUy,IV ) = (9AUr, A1V ;) preserves the subvariety
X(I,wF) x Xy, (dwe), of G/U; x L;/V ;. Hence the fibers are the orbits under
this action of LYF.

Now the morphism j : (¢U;,IVy) — ¢lU; is an isomorphism G/U; xi,,
L;/V; ~ G/U; since gU; — (gU;, V) is its inverse. By what we have seen
above the restriction of j to the closed subvariety X(I,wF) Xyur Xy, (J, 00¢)
maps this variety surjectively on the closed subvariety X (.J, 9w F) of G /U, hence
we get the isomorphism we want.

We now consider the case of generalized varieties. Let k be the number of terms of
the normal decomposition of vw and let I 2, Is—---—1, 1y 41 be the
normal decomposition of 1 Y, 91, perhaps extended by some identity morphisms.
We have X(I, wg) ~ X (I3 x Iy x -+ x I, (¢(w1),...,t(wg))F1), where F is as in
Proposition Bl Let us write (viwi, ..., vgwy) for the normal decomposition of
vw, with same notation as in Proposition[835l Let J; = J and J; 41 = J;jwj C iy
for j = 1,...,k —1. We apply the first part of the proof to the group G* with
isogeny Fy with I, J, w, and v replaced respectively by Iy X - -+ X I, J1 X -+ X Jg,
(wy...,wy) and (v1,...,v;). Using the isomorphisms from Proposition R2T}

Xar(J1 X -+ T, (b1t .., i) 1) ~ X (T, vwe)
and

XLy ry (JUX X Ty (01, o) (B(w), - t(wg)) Fr) = X, (3, vwg),
we get (i). Now (ii) is immediate from (i) taking the quotient on both sides by

t(vw)F
L; . O
Endomorphisms of parabolic Deligne-Lusztig varieties — the conjugacy
category DT (Z).

Definition 8.23. Given any morphism I 2 J € Bt (T) which is a left divisor of
I % T we define morphisms of varieties:
(i) Dy : X(I,wo¢) — X(J,v-iwev) as the restriction of the morphism
(a,b) = (b, Fa) : O(L,w) = O(I,v) xp, OT, v 'w) =
O0J,v'w) XPy, O(°L, %v) = O(J, v 'w?v).
(ii) Dy : X(I,wo) — X(J,v-Iwev) as the restriction of the morphism
(a,b) — (b, Fa) : O, w) = O(I,v) XG/u, OJ, v iw) =
OJ, v lw) Xa/u,, O(’L *v) = O(J, v iw?v).
_ Note that the existence of well-defined decompositions as above of O(I, w) and of
O(I, w) are consequences of Theorem[T.2l We have written v='wev for v iwove.
Note that when v, w and v_!w®v are in W the endomorphism D, maps

gP; € X(I,wo) to ¢'Py € X(J, v~ wew) such that g~ 'g’ € ProP; and ¢~ Fg €
Pjo 'wfP; and similarly for D,.
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Note also that D, and D, are equivalences of étale sites; indeed, the proof of
[DMR], 3.1.6] applies without change in our case.
The definition of Dy, and D, shows the following property:

Lemma 8.24. The following diagram is commutative:

X (L, we) N X(J, v twov)

| l

X(L wo) —2= X(J, v wev)

e
where the vertical arrows are the respective quotients by Li(w)F and ij(v WO

see Lemma[8.20); for | € LI we have Dyol=1™oD,.
I

Definition 8.25. We denote by DT (Z) the category ¢-cyc BT (I); that is the ob-
jects of DY (I) are the morphisms in B (I) of the form T <> ®1 and the morphisms

are generated by the “simple” morphisms that we will denote by adv, for v < w;

such a morphism, more formally denoted by I adv, J, where J = 1V, goes from

w v iw?y . . .
15 9T toJ =—25 3. The relations are given by the equalities ad v ...ad vy =
adv] ...ad v}, whenever adv; are simple and vy ...vy = Vi ... v}, in BT.

If v=vy...vy € BT with the ad v; simple morphisms of DT (Z), we will still
denote by I 24V, 7 the composed morphism of DV (Z).

As a further consequence of Theorem [[.2] the map which sends a simple mor-
phism adv to D, extends to a natural morphism of monoids D*(Z)(I < ¢I) —
Endgr(X(I,w¢)), whose image consists of equivalences of étale sites. We still
denote by D, the image of v by this morphism.

By Proposition the category DT (Z) has a Garside family consisting of the
simple morphisms. Those of source I ~ I correspond to the set of v < w such
that IV C S. For J C I we will denote by J the set of By -conjugates of J and by
Dy (J) the analogous category where B* is replaced by By and Z by J.

Proposition 8.26. With same assumptions and notation as in Proposition [8.22,
let I 5 J* € B (J) be a left divisor of I ~ W¢J. The following diagram is
commutative:

X(L,wo) xppr Xp, (J,v - we) X(J,vwo)

Id xﬁxl lf)x

X (I, we) Xpur Xp, (I, x (v - we)x) —= X(J*, x "' vwex)

Proof. Decomposing x into a product of simples in ’D;‘ (J) the definitions show that
it is sufficient to prove the result for x € W. We use then Proposition82T]to reduce
the proof to the case where vw and v~ !w®v are in W (in which case w and v~ *%w
are in W too). We can make this reduction if we know that the isomorphism of
Proposition [8.21] is compatible with the action of Dy for x € W (we will then use
this fact in G and in Ly). Take (I,y, ?I) € B*(Z) and x € W such that T = I*

is a left divisor of I % ?I. Let y = y1 ...y be a decomposition of y as a product
of elements of W such that x = y;. The endomorphism Dy maps the sequence
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(91U1,...,gxUy) such that g; 'giy1 € U9 U1 and g;, ' Fg1 € UggF'U; to the
sequence (g2Ua, ..., gx Uy, Fa FUl). On the other hand, via the isomorphism of
Proposition B21] using the decomposition (y1,y2,...,¥%,1) of y, the sequence
(g1U1, ..., gxUy) corresponds to ((g1, ..., gr, F91) (U1, ..., U, FU;) € Xc;k+1(11 X

x Iy x FIy, (41, ..., 9k, 1)F1). This element is mapped by Dy, 1,...,1) to the
element (gg,gg, ce oy Gk Fgl)(UQ, UQ, . ,Uk, FUl) which is in XGk+1 (IQ X IQ X Ig X

X Iy x FI (1,99, ..., 9k, Fy1)Fy). Since this last element corresponds by the
isomorphism of Proposition B.21lto (g2Us, ..., gx Uk, F'g1 7' U;), we have proved the
compatibility we want.

Assume now vw and v 'w®v in W. We start with (gU;,IV ) € X(I,wF) x
Xy, (J,vwe). This element is mapped by the top isomorphism of the diagram to
glU ;. As we have seen above Lemma [B.24]it is mapped by Id x Dy to (gUr, 'V j=)
where [Tl € V2V and I'"1%F] € V ez w®FV ;. This element is mapped
to gl'U . by the bottom isomorphism of the diagram. We have to check that
gl'Uj: = Dy(glUy). But (gl)~tgl’ =17 is in V2V . C UyzU e and

(g) gy =1 g "1 € U UL T = U I U
C U[V(]zxflvwFVJFUl = UJzaflvwFUJ,
so that (gI'U j=) = Dx(glU}). O
Using Proposition B22((ii) and Lemma B27 we get

Corollary 8.27. The following diagram is commutative:

~

X(L,we) xppr Xi, (J,v - we) X(J,vwo)

Id XDxl le

X (I, wo) xpar Xp, (J%, x v we)x) ——= X(J*, x Lvwex)

We now give a general case where we can describe D+ (Z)(I 2 ¢I).

Theorem 8.28. Assume that some power of w¢ is divisible on the left by Wflwo.

Then DT (I)(I 5 1) consists of the morphisms I 24P 1 where b runs over the
submonoid B, = {b € Cp+(w¢) | IP =1 and az(b) = 1}.

Proof. This is an immediate translation of Proposition 5] since the Garside map

wi tw
of BY(Z) is I —L 7% 10 the submonoid B is the centralizer of the morphism
I T of BT(T). O

Note that if k is the smallest power such that ¢TI = I and *"w = w, then
wk) = wPw ... %" 'wis in Bf. Since I 2dW, 4T is the Garside map of DH(T)
described in Proposition [£.3] it follows that under the assumptions of Theorem
every element of B, divides a power of w(¥)  In particular, in the case I =0,
the group Cp(w¢) is generated as a monoid, with the notations of [DM2, 2.1], by
Endp+ (w) and (w®))~1. Thus TheoremB28in this particular case gives a positive

answer to conjecture [DM2] 2.1].

Definition 8.29. We define m = wi (it is a generator of the center of the pure

braid group) and similarly for I C S we define wy = wi.
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As an example of Theorem B.28 we get DT (Z)(I m/m, *1) = BH(T)(1)?.

Affineness. Until the end of the text, we will consider varieties which satisfy the
assumption of Theorem They have many nice properties. We show in this
subsection that they are affine, by adapting the proof of Bonnafé and Rouquier
[BR2] to our case; we use the existence of the varieties O(I,b) and X (I, bg) to
replace doing a quotient by L; by doing a quotient by Lf .

Proposition 8.30. Assume the morphism 1 LN Bt (Z) is left-divisible by Az.
Then the variety O(1,b) is affine.

Proof. By assumption there exists a decomposition into elements of S of I b Jof

wilw v v v
the form I —/——5 T; Y5 I, 25 I3 — - — I, 25 J. We show that the map ¢
defined by:

i=r

G x [[(Unnvu; o —

Tigy
=1
O(I iy ") Xgyu,, O, 01) ... xgu,, O, i)
(gs 1y hy) —
(gUr,g; iUy, gy Minhi Up,, . ..., gy “ioha ... h,Uyy)

is an isomorphism; since the first variety is a product of affine varieties this will

prove our claim.
Since U]il')iU[
with the first projection we get a morphism »; : U0, Uf

is isomorphic to (Uy, N "Up )i x Ug,,, by composition

i = (U N viUI:H)vi
fori=1,...,r, where I,11 = J. For x = (gU;,1Uy,, 92Uy, ..., 6.Us., g,41U)
in O(I,w; i) xasu;, O,0) ... Xayu,, O, 0:) we put ¥(z) = gn(g~'g1),
U1(z) = Y(@)o, Yi(z) = ni(((x)y1(2) ... Yi-1(x)) "' gi). We claim that the maps
¥ (resp. 1;) are well defined, that is do not depend on the representative g (resp.
gi) chosen; the morphism x +— (¢¥(z), 41 (), ..., ¥ (x)) is then clearly inverse to .
Since n;(hu) = n;(h) for all h € Uy, 9;Uyp,,, and all v € Uy, ,, we get that all 1;
are well-defined. Since moreover n(uh) = un(h) for all b € Ui iUy, and all
u € Uy, we get that 1 also is well-defined, whence our claim. (I

i+1

Proposition 8.31. Assume that we are under the assumptions of Theorem [8.28,
that is (I 25 °I) € BY(Z) has some power divisible by Az, or equivalently some
power of w¢ is divisible on the left by WI_1WQ. Assume further that the Tits homo-
morphism t has been chosen F-equivariant. Then X(I,w@ s affine.

Proof. Let us define k as the smallest integer such that 9T = I, 'w = w and
WI_1W0 < w) where wib) .= wow . .. " w.

We will embed X (I, we) as a closed subvariety in O(I, w*)), which will prove it
to be affine.
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Let T 5% 1, =2 Ig~—> e L T be a decomposition of I 2y 9T into
elements of S, so that O(I, w¥)) identifies to the set of sequences

(91,1U1,912U,,...,91, Uy, ,
92,1U¢1,922U0p,,...,92,.Usj ,

.
gk11U¢k—ll, gk12U¢k—112, e ,gk1TU¢k711T,
gr+1,1U71)

: -1 Fizt . -1
such that for j < r we have g; 7g; j+1 € U¢'L—1Ij ij¢i—1Ij+1 and g; . gi+1,1 €

Ugioay Fiilu')TUd,il; note that we have used the F-equivariance of ¢ to write Fiu')j
for t(¢’iwj).

Similarly X (I, w¢) identifies to the set of sequences (¢1Uy, 92Uy, ..., 9-Ur,)
such that g;lgjﬂ € Uyw;Uy,,, for j <r and 9.1 € Ur 1, Uyy. Tt is thus
clear that the map

(glUla gQUfza cee 7gTUIr) = (glva 92U125 cee agTUlra

F F F
glU¢Ia 92U¢Ig7"'7 gTU¢IT7
.

kal kal Fk
glUd)k*llu"'u gTUd)k*l[Ta glUI)

identifies X(I, w¢) to the closed subvariety of O(I, w*)) defined by 9i+1,;Usig, =

F(gi,jUwfle) for all 4, 5. O

Corollary 8.32. Under the assumptions of Theorem [828, that is (I 2> ?I) €
B™(Z) has some power divisible by Az, or equivalently some power of w is divisible
on the left by wl_lwo, the variety X(I, w¢) is affine.

Proof. Indeed, by Proposition B:31] and Lemma [B20] it is the quotient of an affine
variety by a finite group, so is affine. O

Shintani descent identity. In this subsection we give a formula for the Leftschetz
number of a variety X(I, wF') which we deduce from a “Shintani descent identity”.
Let m be a multiple of § and let eg = [BF"|~!| 3", _grm b; the GF™-module
Q/[(G/B)F™] identifies with Q,[G'"]eg. Its endomorphism algebra Hm (W) :=
Endgrm (Q,[(G/B)F"]) identifies with egQ,[G¥ " |ep acting by right multiplica-
tion. Tt has a basis consisting of the operators T, = |[BF "N“BF"| Y geBFmwBE™ § =

epwep for w € W, since W is a set of representatives of BF"\G/B¥" (see [Bou]
IV, §2 exercice 22). If we identify G/B to the variety B of Borel subgroups of G,
the operator T, becomes

Ty :B > B
{B"”eBF™|B" B’}
Similarly the algebra Hym (W, W;) := Endgrm (Q,[(G/Pr)F"]) has a Q,-basis
consisting of the operators X,, = [P¥" nvPf™| depfmijpm g = ep,wep, where

m .
ep, = [PF"|71 Zpeplpm p and w runs over a set of representatives of the double
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cosets PY"\GF" /PI™ ~ W \W/W;. Identifying G/P; to the variety Pr of the
parabolic subgroups G-conjugate to P; we have

I
Xy : P > P/,
(preprmpr 0l py

The multiplication by the idempotent X1 = ep, = > -, B n BT,
makes Q,[(G/P;)""] into a direct factor of Q,[(G/B)F"| and the equality X,, =
X, T, X1 is compatible with this inclusion. Note that this inclusion maps a parabolic
P conjugate to P; in G to the sum of all F-stable Borel subgroups of P.

We may define a Q,-representation of B (Z)(I) on Q,[(G/P;)""] by sending
I % 1 to the operator Xy € H(W, Wy) defined by

Xu(P) = > P().
{z€O@w)F™ |p” (z)=P}
The operator Xy, identifies to X1Tw X1 = X17yw, the last equality since IV = L
When w € W, with image w in W, the operators Xy and X,, coincide. In the
particular case where I = () we get an operator denoted by Ty, defined for any w
in BT.
Similarly, to (I - ¢I) € B*(Z), we associate an endomorphism Xy of Q,[(G/P1)F™]
by the formula
Xwo(P) = > P'(2).
{z€O@Lw)F™ |p" (z)=F (P)}
When ¢(I) = I we have Xy = Xwé. In general we have Xywy = X1Tw¢ on
Q[(G/P)F"] seen as a subspace of Q,[(G/B)*"]: on the latter representation one
can separate the action of F; the operator F' sends the submodule Q,[(G/P;)F™]
to @4[(G/P¢(I))Fm] which is sent back to Q,[(G/P;)F"] by X;Ty. The endomor-
phism Xy ¢ commutes with GF™ like F, hence normalizes Hqm (W, Wr); its action
identifies to the conjugation action of Tyw¢ on Hem (W, Wr) inside Hem (W) % (¢) .
Recall that the Shintani descent Shpm p is the “norm” map which maps the
F-class of ¢ = h.Fh=' € GF™ to the class of g = h~1.F"h € GF.

Proposition 8.33 (Shintani descent identity). Let I X 9T be a morphism of
B*(Z), and let m be a multiple of 6. Then

(9 [X(ELwe)?"" ) = Shm (g’ = Trace(g' Xuwo | Tl(G/P1)").

Proof. Let g = h™2.F"h and ¢’ = h.Fh™, so that the class of g is Shpm/p of the
F-class of ¢'; we have X(I,wp)9"" = {z € O(I,w) | "z = "z and p"("z) =
9'Fp/(hg)}. Taking Mz as a variable in the last formula we get |X (I, wg)9F™" | =
{z e O, w)F" | p’(x) = 9Fp/(x)}|. Putting P = p/(z) this last number be-
comes ZPGPIFm {z € O, w)F" | p/(z) = P and p"(z) = YFP}|. On the other
hand the trace of ¢'Xye is the sum over P € PF™ of the coefficient of P in
D (weo@w)F™ | (n)=rp)} 9 P (). This coefficient is equal to [{z € O, w)F™ |
gp'(@) = Pand p’(z) = TP} = [{z € OLw)™ | p/(z) = P and p/(z) =
9'FPY|, this last equality by changing ¢’z into . O

By, for example, [DMI] II, 3.1] the algebras Hqm (W) and Hem (W) x () split
over Q,[q™/?]; corresponding to the specialization ¢"/? + 1 : Hym (W) — QW
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there is a bijection x + xgm : Irt(W) — Irr(Hqm (W)). Choosing an extension
X to W x (@) of each character in Irr(W)?, we get a corresponding extension
Xgm € Trr(Hgm (W) x (¢)) which takes its values in Q,[¢"/?]. If U, € Irr(GF™) is
the corresponding character of GF™, we get a corresponding extension Uy of U,
to GI" x (F) (see [DMI] IIT théoreme 1.3 |). With these notations, the Shintani
descent identity becomes

Proposition 8.34.
(9= XELwe) ™ )= > Kgn(X1Twd) Shpm/r Us
X Elrr(W)®

and the only characters x in that sum which give a non-zero contribution are those
which are a component of Ind%l 1d.

Proof. We have Trace(g' Xwe | Qo[(G/P1)F"]) = Trace(¢' X1 Two | Q,[(G/B)F™))
since X is the projector onto @Q,[(G/Pr)¥"]. Hence (9 — |X(I,w¢)9F™|) =
erhr(W)¢ Xqm (X1Tw¢) Shpm ) p Ug. Since X acts by 0 on the representation of

character y if x is not a component of Ind%I Id, we get the second assertion. [l

Finally, if A, is the root of unity attached to p € (G, 1) as in [DMR], 3.3.4],
the above formula translates, using [DMIT], I1I, 2.3(ii)] as

Corollary 8.35.
X@TLwe)™ = Y Np(g) Y X (XaTwd)(p, Ry)ar,
pEE(GT 1) XEIrr(W)*
where Ry = [W[™'Y cw X(wé)RE, (Id). The only characters x in the above sum
which give a non-zero contribution are those which are a component of Ind%l 1d.

Using the Lefschetz formula and taking the “limit for m — 07 (see for example
IDMR], 3.3.8]) we get the equality of virtual characters

Corollary 8.36.
D (1) HUX(T, we),Q,) = > X(z1w¢) Ry,

i {XEIrr(W)ﬂ(Res%I x,Id)w, #0}
where w is the image of w in W and x1 = [Wr|7' Y . v.

Cohomology. If 7 is the projection of Lemma [R20, the sheaf mQ, decomposes
into a direct sum of sheaves indexed by the irreducible characters of Li(w)F. We
will denote by St the subsheaf indexed by the Steinberg character of Li(w)F.

In the particular case where I = () we write X(w¢) for X(I, w¢). Quite a few
theorems are known about the f-adic cohomology of these varieties (see [DMRI).
The following corollary of Proposition relates the cohomology of a general

variety to this particular case; its part (ii) is a refinement of Corollary [8.30

Corollary 8.37. Let I % ¢TI € BH(Z).
(i) For all v € Bf and all i we have the following inclusions of G x (F?)-
modules:

HZ(X(L Wd))a @2) - HZ+2l(V) (X(de))a @6)(_l(v))
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and
H{(X(L,wg), St) € H') (X (vwo), Qy)
(i) For all i we have the following equality of GT' x (F?)-modules:
Hé(X(wIW(b)v@f) = Z HZ(X(:[quS)v@é)@@énl,k(k)
j+2k=i

where nry, = [{v € Wi | l(v) = k}|, where wy is the longest element of
Wi and the variety X(w;wa) is the union |, ew, X(VW@) as defined in
[DMR] 2.3.2].

Proof. For getting (i), we apply the Kiinneth formula to the isomorphism of Propo-

sition[8.22 when J = ). If we decompose the equality given by the Kiinneth formula
. t(w)F
according to the characters of L; , we get

GBXeIrr(L;(W)F)@jHi_j (X(Iv wo), @E)X(g)L;(W)FHg (X, (vwe), @2)7 = Hé (X(vwe), ©2)

We now use that H:(X(I, wo), Q,) = H{(X(I, we), Q,)1a, and H (X (I, wo), St) =
HY{(X(I,we),Q,)s; where Id and St denote the identity and Steinberg characters
of Li(w)F, and the facts that

e the only j such that H7 (Xp, (vwe), Q)14 is non-trivial is j = 2/(v) and in
that case the cohomology group has dimension 1 and t(wF) acts by ¢'(*)
(see [DMR] 3.3.14]).

e the only j such that HJ(Xp,(vwe),Qy)s: is non-trivial is j = I(v) and
that isotypic component is of multiplicity one, with trivial action of ¢(wF)
(see [DMR] 3.3.15]).

Hence we have

ngHéij (X(Iv W¢)7 @Z)Id @ H<J; (XLI (Vw¢)7 @é)ld = Héizl(V) (X(L W¢)7 @Z)(l(v))a
and similarly
®jH2_j (X(Iv W¢)7 @Z)St ® H(J: (XLI (Vw¢)7 @Z)St = H(Z;_l(V) (X(L W¢)7 @6)

We now prove (ii). Let By be the variety of Borel subgroups of Ly, identified
to L;y/B;. We first prove that we have an isomorphism X (I, w¢) Xpwe Br =
X(wywe). The variety X(w;w¢) is the union J,cw, X(vw¢). The variety By is
the union of the varieties Xr,, (vwg) when v runs over Wj. The isomorphisms given
by Proposition 822 when J = () and v running over Wt can be glued together since
they are defined by a formula independent of v. We thus get a bijective morphism
X(I,we) X Lo Br — X(w;w¢) which is an isomorphism since X(w,w¢) is normal
(see [DMR], 2.3.5]). We now get (ii) from the fact that H*(Br,Q,) is 0 if k is odd
and if k = 2k’ is a trivial Li(w)F

scalar qk/; this results for example from the cellular decomposition into affine spaces

-module of dimension ny s, where F' acts by the

given by the Bruhat decomposition and the fact that the action of Li(w)F extends
to the connected group Lj. ([

Corollary 8.38. (i) The GF-module HI(X(I,w¢),Q,) is unipotent. The
eigenvalues of F° on an irreducible G -submodule p of H:(X(I,w¢),Q,)
are in q‘;N)\pwp, where A, is as in[838 and w, is the element of {1,q6/2}
attached to p as in [DMR] 3.3.4]; they are both independent of i and w.

(ii) We have HY(X (I, we),Q,) = 0 unless [(w) < i < 2l(w).
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(iii) The eigenvalues of F° on H!(X(I,w¢),Q,) are of absolute value less than

6i/2
q°'=.

(iv) The Steinberg representation does not occur in any cohomology group of
X(I,w¢) unless I = O in which case it occurs with multiplicity 1 in

H™ (X (w),Qy), associated to the eigenvalue 1 of F°.

(v) The trivial representation occurs with multiplicity 1 in HZ™) (X(I,wo),Qy),
associated to the eigenvalue ¢°'™) of F?, and does not occur in any other
cohomology group of X(I, wg).

Proof. (i) is a straightforward consequence of Corollary B37|(i) since the result is
known for HI(X(vw¢),Q,) (see [DMR] 3.3.4] and [DMR] 3.3.10 (i)]).

(ii) and (iii) are similarly a straightforward consequence of Corollary B3T[(i)
applied with v =1 and of [DMR], 3.3.22] and [DMR], 3.3.10(i)].

For (iv), we first note that by Corollary B37|(i) applied with v = 1 and [DMR],
3.3.15] the Steinberg representation has multiplicity at most 1 in "™ (X(I,wo),Q,),
associated to the eigenvalue 1 of F°, and does not occur in any other cohomology
group of X(I,w¢). To see when it does occur, it is enough then to use Proposition
B34 and the Lefschetz formula. The only Uy such that the Steinberg representation
has a non-zero scalar product with Shpm Uy is the Steinberg representation, and
for the corresponding ¥ we have

(1)) ifT=0

0 otherwise -

qu (XlTw(b) = {

(v) is similarly a consequence of Corollary B37(i), [DMR], 3.3.14],[834] the Lef-
schetz formula, and that if x,m corresponds to the trivial representation we have
Xgm (X1 Two) = g™ ™). O

9. EIGENSPACES AND ROOTS OF 7 /7

Let ¢ # p be a prime such that the /-Sylow S of G is abelian.

Then “generic block theory” (see [BMM]) associates to £ a root of unity ¢ and
some w¢ € We¢ such that its (-eigenspace in V in X := Xp ® C is non-zero
and maximal among (-eigenspaces of elements of W ¢; for any such ¢, there exists a
unique minimal subtorus S of T such that V' C X (S)®C. If the coset W ¢ is rational
X (S)®C is the kernel of ®(wg), where ® is the d-th cyclotomic polynomial, if d is
the order of (. Otherwise, in the “very twisted” cases 2Bs, ?Fy (resp. 2Gg) we have
to take for ® the irreducible cyclotomic polynomial over Q(v/2) (resp. Q(v/3)) of
which ¢ is a root. The torus S is then called a ®-Sylow; we have |ST'| = @ (g)4m V.

The relationship with ¢ is that S is a subgroup of S¥', and thus that |G*|/|ST|
is prime to ¢; we have Ngr(S) = Ngr(S) = Ngr(L) where L := Cg(S) is a
Levi subgroup of G whose Weyl group is Cy (V). Conversely, any maximal (-
eigenspace for any ( determines some primes ¢ with abelian Sylow, those which
divide ®(¢)¥™"" and no other cyclotomic factor of |G|

The classes Cy (V)we, where V = Ker(w¢ — ¢) is maximal, form a single orbit
under W-conjugacy [see eg. [Brl 5.6(1)]]; the maximality implies that all elements
of Cw (V)we¢ have same (-eigenspace.

We will see in Theorem [0.1(i) that up to conjugacy we may assume that Cyy (V)
is a standard parabolic group Wr; then the Broué conjectures predict that for an



PARABOLIC DELIGNE-LUSZTIG VARIETIES. 39

appropriate choice of coset Cy (V)w¢ in its Ny (Wr)-conjugacy class the cohomol-
ogy complex of the variety X(I, w¢) should be a tilting complex realizing a derived
equivalence between the unipotent parts of the f-principal blocks of G and of
Ngr(S). We want to describe explicitly what should be a “good” choice of w (see
Definition @T2)).

Since it is no more effort to have a result in the context of any finite real reflection
group than for a context which includes the Ree and Suzuki groups, we give a more
general statement.

In what follows we look at real reflection cosets W¢ of finite order, that is W is
a finite reflection group acting on the real vector space Xg and ¢ is an element of
NarLxy) (W), such that W is of finite order ¢, that is § is the smallest integer such
that (W¢)° = W (equivalently ¢ is of finite order). Since W is transitive on the
chambers of the real hyperplane arrangement it determines, one can always choose
¢ in its coset so that it preserves a chamber of this arrangement. Such elements ¢
are the 1-regular elements of the coset (they have a fixed point outside the reflecting
hyperplanes), thus are of order 4.

Theorem 9.1. Let W¢ C GL(XR) be a finite order real reflection coset, such that
¢ preserves a chamber of the hyperplane arrangement on Xg determined by W, thus
induces an automorphism of the Cozeter system (W, S) determined by this chamber.
We call again ¢ the induced automorphism of the braid group B of W, and denote
by S, W the lifts of S,W to B (see around Definition [82).
Let (g = €*™/% and let V be a subspace of X := Xg ® C on which some element
of W¢ acts by (q. Then we may choose V' in its W-orbit such that:
(i) Cw (V) =Wy for someI CS.
(ii) If Wrwe is the Wi-coset of elements which act by (q on 'V, where w is I-
reduced, then when d # 1 we have l(w) = (2/d)l(wow; ") and I((wp)i¢™") =
il(w) if 20 < d.
Further, when d # 1 the lift w € W of a w as in (ii) satisfies VI = 1 and
(wop)? = ¢m /7y, where I C S is the lift of I.
Finally note that if d = 1 then w = 1 in (i) and we may lift it to w := /71
and we still have W1 =1 and (w¢)? = /w19

Note that in particular, for the w in (ii) we have (w¢)? = ¢.

Proof. Since W{(¢) is finite, we may find a scalar product on Xg (extending to an
Hermitian product on X) invariant by W and ¢. The subspace X of Xg on which
W acts non-trivially (the subspace spanned by the root lines of W) identifies to
the reflection representation of the Coxeter system (W, S) (see for example [Bou,
chap. 5, §3]). We will use the root system ® on Xj consisting of the vectors of
length 1 for this scalar product along the root lines of W, which is thus preserved by
W (). The strategy for the proof of (i) will be, rather than change V', to choose an
order on @ such that the corresponding basis makes Cy (V') a standard parabolic
subgroup of W.

Let v be a regular vector in V, that is v € V such that Cw (v) = Cw (V).
Multiplying v if needed by a complex number of absolute value 1, we may assume
that for any o € ® we have R(v,a) = 0 if and only if (v, @) = 0. Then there exists
an order on ® such that @ C {a € ® | R((v,a)) > 0}. Let II be the corresponding
basis and let I = {a € II|R((v,a)) = 0}. Then for o € ® we have a € @; if and
only if (v,a) =0, thus Cyw (V) = Cw(v) = Wy. This proves (i).
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We prove now (ii). The element w¢ sends v to (v, thus preserves ®;, and since
we chose w to be I-reduced we have “¢I = I.

Note that (wg)? = ¢¢. Indeed (w¢)? fixes v, thus preserves the sign of any root
not in ®;; as “PI = I, it also preserves the sign of roots in ®;. It is thus equal to
tge only element ¢% of W¢? which preserves the signs of all roots. We get also that
*I=1.

Since (v, @W?)"a) = (W) "y o) = ;™ (v, a), we get that all orbits of weg on & —
®; have cardinality a multiple of d; it is thus possible by partitioning suitably those
orbits, to get a partition of ® — ®; in subsets O of the form {«a, “%q, ..., (w¢)d71a};
and the numbers {(v, 8) | 8 € O} for a given O form the vertices of a regular d-gon
centered at 0 € C; the action of w¢ is the rotation by —27/d of this d-gon. Looking
at the real parts of the vertices of this d-gon, we see that for m < d/2, exactly m
positive roots in O are sent to negative roots by (w¢)™. Since this holds for all O,
we get that for m < d/2 we have I(¢~™(wp)™) = ™22l thus if w is the lift of
w to W we have (wg)! € W¢' if 20 < d.

If d = 1 since wp = ¢ we have w = 1 so we may lift it to /@1 as stated.
Otherwise we finish with the following

Lemma 9.2. Assume that “*W; = Wy, that w is I-reduced, that (wp)? = ¢¢ and
that 1((wg)'¢~") = (2i/d)l(wow; ") if 20 < d. Then if w is the lift of w to W we
have VY9I =1 and if d # 1 we have (w¢)? = ¢om /1.

Proof. Since w is I-reduced and w¢ normalizes W we get that w¢ stabilizes I,
which lifts to the braid group as W¢I = 1.

Assume first d even and let d = 2d’ and 2 = ¢~ (w¢)? . Then I(x) = (1/2)l(w /1) =
l(wg) — l(wy) and since x is reduced-I it is equal to the only reduced-I element
of that length which is wowfl. Since the lengths add we can lift the equality
(w¢)d/ = ¢d/wowl_l to the braid monoid as (w¢)d/ = qﬁd/wowl_l. By a similar rea-
soning using that (w@)? ¢=¢ is the unique I-reduced element of its length, we get
also (wo)? = wl_lw0¢d/. Thus (w¢)? = w;lwo¢d/¢dlwowl_1 = ¢’ /71, where
the last equality uses that ¢¢ = (w¢)? preserves I, whence the lemma in this case.

Assume now that d = 2d’ + 1; then (w@)? ¢~ is I-reduced and ¢~ (wep)? is
reduced-I. Using that any reduced-I element of W is a right divisor of wow;1
(resp. any I-reduced element of W is a left divisor of w;lwo), we get that there
exists t,u € W such that gbdlwl_lwo = t(wqﬁ)d, and wowl_lgbd/ = (wgb)dlu. Thus
ol /71 = wowy Lptw, twg = (wo)? ugt(we)? | the first equality since ' = 1.
The image in W¢? of the left-hand side is ¢¢, and (w¢)? = ¢?. We deduce that the
image in W¢ of ugt is we. If d # 1 then d’ # 0 and we have I(u) = I(t) = I(w)/2;
thus ugt = wo and (we)? = ¢n /1. O

O

Note that Theorem only handles the case of eigenspaces for the eigenvalue
¢4, and not for another primitive d-th root of unity ¢%. However, note that if the
coset W¢ preserves a Q-structure on Xg (which is the case for cosets associated
to finite reductive groups, except for the “very twisted” cases ?Ba, 2G and 2F}),
then if ¢ 5 is an eigenvalue of w¢, the Galois conjugate (4 is also an eigenvalue, for a
Galois conjugate eigenspace. In general, since we assume W ¢ real, we may assume
2k < d since if Cg is an eigenvalue of w¢ the complex conjugate (jik is also an
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eigenvalue, for the complex conjugate eigenspace. In this last case we may say the
following (here we assume d # 1):

Corollary 9.3. In the situation of Theorem [T, let ¢ = ¥ with k prime to d and
2k < d, and let V be a subspace of X on which some element of W¢ acts by (.
Then we may choose V in its W-orbit such that:

(i) Cw (V) =Wy for some I C S.

(ii) If Wiwe is the Wi-coset of elements which act by ¢ on V, and w is the
unique I-reduced element of that coset, then l(w) = (2k/d)(l(wow; ")) and
I((we)ip~?) = il(w) if 2ik < d.

Further, if w is the lift of w as in (ii) to W and I C S is the lift of I, then W¢I =1
and (wo)?! = ¢ (m/mp)".

Proof. The proof of (i) in Theorem does not use that the eigenvalue is (4, so
still applies. The beginning of the proof of (ii) also applies and proves that in the
W-orbit we may choose w such that Cy (V) = Wi, (wp)? = ¢ and “I = I.

Let d', k" be positive integers such that kk' = 1+ dd’, and let wip; = (we)*
where ¢; = (bkl. Then wy¢, acts on V' by (4, so we may apply Theorem to
it. We have (w161)" = (w$)™ = (wg)'* = (we)(wg)™ = (wp)¢?, thus
Wiwp = (Wiwié1)F ¢ thus (Wrwe)i¢™ = (Wrwidr)¥ ¢, whence (i).

Finally, by Theorem (@] the lift wy of w; to B satisfies Y111 = I and (w1¢1)? =
¢l /7y, thus if we define w by (wi¢1)F = wet4? | then w is the lift of w and
satisfies the last part of the corollary, using oI =1. (|

We give now a converse.

Theorem 9.4. Let (W, S), ¢, Xg, X, S, B, BT be as in Theorem[91] For d € N,
let w € Bt be such that (wp)? = ¢m /w1 for some ¢?-stable 1 C S. Then
(i) WI=1
Denote by w and I the images in W of w and I, let (g = e*™/4, let V C X be the
Cq-eigenspace of we, and let XV be the fized point space of Wy; then
(ii) Wi = Cw (X1 NV), in particular Cyw (V) C Wy.
Further, the following two assertions are equivalent:
(iil) w is mazimal, that is, there do not exist a ¢?-stable I C I and v € By
such that (vwo)? = ¢lm /3.
(iv) No element of the coset Wiwe has a non-zero (q-eigenvector on the sub-
space spanned by the root lines of Wi.

Proof. Notice that, since (w¢)? = (mw1) !mwg? implies ar(w) = 1, condition (i)
is equivalent to require that I = ¢I is a morphism in the category B*(Z) (this
morphism is then by assumption a d-th root of A%).

To prove (i) notice that by assumption w¢ commutes to ¢ /7y, thus, since 7
is central and ¢-stable, it commutes to 7wr¢~¢. Thus, if § is the order of ¢, since
wy is ¢d-stable, wg commutes to 79, hence (7)¥ = 79,. By Proposition E.I5(i)
we deduce (i).

In our setting Lemma thus reduces to the following generalization of [BM,
lemme 6.9]

Lemma 9.5. Let w € Bt and I C S be a ¢%-stable subset such that (wg)? =
¢ /w1, Then there exists v € (B+)¢d such that (w¢)¥ € BT¢, IV C S and
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(wo)V)L2) € Wols). Further, adv defines a morphism in DH(I)*" (that is, the
conjugation is by “p%-stable cyclic permutations”).

Thus if we define w’ and J by (w¢)¥ = w'¢ and IV = J, we have (W¢)? =
¢ /my and WI = J.

As (ii) and the equivalence of (iii) and (iv) are invariant by a conjugacy in B
which sends w¢ to B¢ and I to another subset of S, we may replace (w¢,I) by
a conjugate as in Lemma [0.5] thus assume that w and I satisfy the assumptions of
the next lemma.

To state the next lemma we extend the length function from W to W x (¢) by
setting I(w¢') = I(w).

Lemma 9.6. Let w € W,I C S be such that (wg)? = ¢, Y9I = I and such that
I((we)') = Zi(wy  wo) for any i < d/2. We have
(i) If ® be a ¢-stable root system for W (as in the proof of Theorem [3.1]),
then ® — ®p is the disjoint union of sets of the form {a, “%a,. .., (w¢)d71a}
with «, “a, .. . (we)l?/2 =2 of same sign and (w¢)Ld/2Ja, ey (we)* ™' of
the opposite sign.
(ii) The order of we¢ is lem(d, d).
(iii) If d > 1, then Wi = Cw (XTI Nker(we — Cq))-

Proof. The statement is empty for d = 1 so in the following proof we assume d > 1.

For x € W x (¢) let N(z) = {a € & | *a € &~ }; it is well known that for
x € W we have l(z) = |N(x)|. This still holds for x = w¢? € W x (¢) since
N(wg¢') = ¢ "N(w). It follows that for x,y € W x (¢) we have l(zy) = I(z) +1(y) if
and only if N(zy) = N(y)[[¥ N(z). In particular I((w¢)?) = il(we) for i < d/2
implies (“®) "N (w¢) C &+ for i < d/2 — 1.

Let us partition each w¢-orbit in ® — ®; into “pseudo-orbits” of the form
{a, “®a, ..., 9" "4} where k is minimal such that “®"q = ¢"a (then k di-
vides d); a pseudo-orbit is an orbit if ¢ = 1. The action of w¢ defines a cyclic
order on each pseudo-orbit. The previous paragraph shows that when there is a
sign change in a pseudo-orbit, at least the next |d/2] roots for the cyclic order have
the same sign. On the other hand, as ¢* preserves ®*, each pseudo-orbit contains
an even number of sign changes. Thus if there is at least one sign change we have
k > 2|d/2]. Since k divides d, we must have k = d for pseudo-orbits which have a
sign change, and then they have exactly two sign changes. As the total number of
sign changes is 2l(w) = 2|® — ®;|/d, there are |® — ®;|/d pseudo-orbits with sign
changes; their total cardinality is |® — ®@;|, thus there are no other pseudo-orbits
and up to a cyclic permutation we may assume that each pseudo-orbit consists of
|d/2] roots of the same sign followed by d — |d/2] of the opposite sign. We have
proved (i).

Let d' = lem(d, ). The proof of (i) shows that the order of w¢ is a multiple of
d. Since the order of (wg)? = ¢¢ is d’/d, we get (ii).

We now prove (iii). Let V = ker(w¢ — (4). Since W(¢) is finite, we may find a
scalar product on X invariant by W and ¢. We have then X" = fI)IL. The map

p = % Zf;}l Cd_i(u@)i is the (unique up to scalar) w¢-invariant projector on V,

thus is the orthogonal projector on V.
We claim that p(a) €< ®; > for any a € & — ®;. As p((wg)'a) = (ip(a)
it is enough to assume that « is the first element of a pseudo-orbit; replacing if
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needed o by —« we may even assume o € ®*. Looking at imaginary parts, we
have §(¢3) > 0 for 0 < i < [d/2], and S(¢}) < 0 for [d/2] < i < d. Let X be a
linear form such that X is 0 on ®; and is real strictly positive on Ot — &;; we have
M@9'q) > 0 for 0 < i < |d/2], and \((“®'a) < 0 for |d/2] < i < d; it follows
that S(A(C, 9 a)) = (G ') > 0 for all elements of the pseudo-orbit. If
d" = d we have thus S(A(p(a))) > 0, in particular p(a) ¢< ®; >. If d’ > d, since
¢% is also a positive root and the first term of the next pseudo-orbit the same
computation applies to the other pseudo-orbits and we conclude the same way.
Now Cy (XWT NV) is generated by the reflections whose root is orthogonal to
XWrnV, that is whose root is in < ®; > +V+. If a is such a root we have p(a) €<
®; >, whence a € ®; by the above claim. This proves that Cy (X" N V) c Wr.
Since the reverse inclusion is true, we get (iii). O

We return to the proof of Theorem Assertion (iii) of Lemma gives the
first assertion of the theorem. We now show —(iii)= —(iv). If w is not maximal,
there exists a ¢?-stable J C I and v € By such that (vwe)? = ¢%m /7y, which
implies YW?J = J. If we denote by 1 the automorphism of By induced by the
automorphism w¢ of I, we have v¥J = J and (vy)? = ¢%mp/m;. Let X; be the
subspace of X spanned by ®;. It follows from the first part of the theorem applied
with X, ¢, w and w respectively replaced with X7, ¥, v and v that v¢b = vwe
has a non-zero (4-eigenspace in X7, since if V' is the (4-eigenspace of vwe we get
Cw, (V') € W; C Wi; this contradicts (iv).

We show finally that —(iv)= —(iii). If some element of Wy has a non-zero
Ca-eigenvector on X, by Theorem applied to Wiy acting on X; we get the
existence of J C I and v € By satisfying V¥J = J and (vi)? = ¢%my/my. Using
that (wg)? = ¢9m /7y, it follows that (vwe)? = (we)imy/my = ¢ /7y - w1/73 =
¢%m /w3 so w is not maximal. O

The maximality condition (iii) or (iv) of Theorem is equivalent to the con-
junction of two others, thanks to the following lemma which holds for any complex
reflection coset and any (.

Lemma 9.7. Let W be finite a (pseudo)-reflection group on the complex vector
space X and let ¢ be an automorphism of X of finite order which normalizes W .
Let V' be the (-eigenspace of an element wep € W¢. Assume that W' is a parabolic
subgroup of W which is we-stable and such that Cyw (V) C W', and let X' denote
the subspace of X spanned by the root lines of W'. Then the condition

(i) VnX' =0.
is equivalent to

(ii) Cw (V) =W".
While the stronger condition

(iv) No element of the coset W'w¢ has a non-zero -eigenvector on X'.
is equivalent to the conjunction of (ii) and

(iii) the space V' is mazimal among the (-eigenspaces of elements of W .
Proof. Since W (@) is finite we may endow X with a W{¢)-invariant scalar product,
which we shall do.

We show (i) < (ii). Assume (i); since w¢ has no non-zero (-eigenvector in X'
and X' is w¢-stable, we have V' L X', so that W' C Cy (V'), whence (ii) since the
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reverse inclusion is true by assumption. Conversely, (ii) implies that V' € X'+ thus
VnX' =0.

We show (iv) = (iii). There exists an element of W¢ whose (-eigenspace V] is
maximal with V' C V3. Then Cyw (V1) C Cw (V) € W’ and the Cw (V1)-coset of
elements of W¢ which act by ¢ on V; is a subset of the coset Cy (V)we of elements
which act by ¢ on V. Thus this coset is of the form Cy (V1 )vwe for some v € W'.
By (i) = (ii) applied with w¢ replaced by vw¢ we get Cy (V1) = W’. Since v € W’
this implies that vw¢ and w¢ have same action on V; so that w¢ acts by ¢ on Vi,
thus V3 C V.

Conversely, assume that (ii) and (iii) are true. If there exists v € W’ such that
vwe has a non-zero (-eigenvector in X', then since v acts trivially on V' by (ii), the
element vwe¢ acts by ¢ on V and on a non-zero vector of X’ so has a (-eigenspace
strictly larger that V, contradicting (iii). O

Let us give now examples which illustrate the need for the conditions in Theorem
and Lemma

We first give an example where w¢ is a root of 7/ but is not maximal in the
sense of Theorem [0.4(iii) and ker(w¢ — ¢) is not maximal: let us take W = W (A3),
¢p=1,d=2,¢=—-1,1={s2} (where the conventions for the generators of W are
as in the appendix, see Subsection [1.2)), w = wflwo. We have w? = /7 but
ker(w 4 1) is not maximal: its dimension is 1 and a 2-dimensional —1-eigenspace is
obtained for w = wy.

In the above example we still have Cyy (V') = W} but even this need not happen;
at the same time we illustrate that the maximality of V' = ker(w¢—() does not imply
the maximality of w if Cyw (V) C Wy; we take W = W(A43), ¢ =1,d=2,( = -1,
but this time I = {s1,s3}, w = w; 'wg. We have w? = 7 /w1 and ker(w + 1) is
maximal (w is conjugate to wg, thus —I1-regular) but w is not maximal. In this
case Cy (V) ={1}.

The smallest example with a maximal w¢ and non-trivial I is for W = W (Ay),
¢=1,d=3, w=-s515283848352 and I = {s3}. Then w® = 7 /7ry; this corresponds
to the smallest example with a non-regular eigenvalue: (3 is not regular in Ay.

Finally we give an example which illustrates the necessity of the condition
#HI) = I in We take W = W(D,) and for ¢ the triality automorphism
S1 > 84 > S9. Let v = wos] 'sy 's2. Then, for I = {s;} we have (w¢)? = 7 /w16,
but I¥? = {s4}. The other statements of [.4] also fail: if V is the —1-eigenspace of
wa¢ the group Cy (V) is the parabolic subgroup generated by s1, s and s4.

Lemma 9.8. Let W¢ be a complex reflection coset and let V' be the (-eigenspace
of wp € Wep; then

(i) Nw (V) = Nw (Cw (V)we).

(ii) If W is real, and Cw (V) = Wy where (W, S) is a Cozeter system and
I C S, and w is I-reduced, then the subgroup {v € Cw (w¢) N Nw (Wr) |
v is IT-reduced} is a section of Ny (V)/Cw (V) in W.

Proof. Let W7 denote the parabolic subgroup Cy (V). All elements of Wiwg¢ have
the same (-eigenspace V, so Ny (Wiw¢) normalizes V; conversely, an element
of Nw (V) normalizes W7 and conjugates w¢ to an element w'¢ with same (-
eigenspace, thus w and w’ differ by an element of W7, whence (i).
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For the second item, Ny (Wrw¢)/Wr admits as a section the set of I-reduced
elements, and such an element will conjugate w¢ to the element of the coset Wrwae
which is I-reduced, so will centralize we. (Il

Recall that given a category C with a Garside map A and a Garside automor-
phism ¢, we can consider the semi-direct product of C by ¢ (see Definition 2.6]).
Then a morphism w¢ € C¢ is (p,q)-periodic if target(w) = ¢(source(w)) and
(Wo)P = A%¢P. An element satisfying the assumption of Theorem is thus a

™/

(d,2)-periodic element of B*(Z)¢, since AZ starting from the object Iis T —— 1.
Lemma [0.5] shows that such an element is cyclically conjugate to an element which
satisfies in addition (w¢)? € W¢?' , where d’ = |4]. We will call good a periodic
element which satisfies the above condition.

The following proposition, which rephrases Corollary in our setting, shows
that it makes sense to write a period of the form (d,2) as a fraction d/2, since it
shows that when 2|d, a good (d, 2)-periodic element such that (wg)? = AZ satisfies
(wg)¥? = Az. We will thus call such elements d/2-periodic. In [DDGKM] the
analogous statement is shown for a general p/q.

Proposition 9.9. Assume the morphism 1 2 1 is good d/2-periodic (which
means that w € BT satisfies V¢ = 1, (w¢)? = ¢lm/m1 and that in addition
(wo)? € Wot', where d' = |4]). Then if d is even we have (wo)d = wilwoo?,
and if d is odd there exists u € W2 with I C S such that wo =ug - wo” u and
(W(b)d/u = W;1W0¢d/.

Let us define the (-rank of a (complex) reflection coset W¢ C GL(X) as the
maximal dimension of a (-eigenspace of an element of W ¢, and the (-rank of an
element of W¢ as the dimension of its (-eigenspace.

Let us say that a periodic element of BT (Z)¢ is maximal if it is maximal in
the sense of Theorem [0.4iii). Another way to state the maximality of a periodic
element is to require that |I| be no more than the rank of the centralizer of a
maximal (g4-eigenspace: indeed if I 2 ¢TI is not maximal there exists J and v as
in Theorem [.4(iii) and, since Theorem [@.4](iii) implies Lemma [@.7((iii), the element
vwe has maximal (4-rank, and the centralizer of its (;-eigenspace has rank |J| < [I|.

A particular case of Theorems and is

Corollary 9.10. Let V' be the (4-eigenspace of an element of W¢ of maximal (4-
rank. Then there is a W-conjugate V of V' and I C S such that Cyw (V) = W; and
the weo defined in Theorem [T1l(ii) induces a d/2-periodic T <> ®T which is maximal.
Conversely, for a d/2-periodic mazimal T 25 1 the image w¢ in W¢ has mazimal
Cq-rank.

Lemma 9.11. Let W¢ C GL(XR) be a finite order real reflection coset such that
¢ preserves the chamber of the corresponding hyperplane arrangement determining
the Coxeter system (W, S).
Let w e W and I C S and let w € W and I C S be their lifts; let T be the
conjugacy orbit of I, then w induces a morphism 1 25 91 € BY(T) if and only if:
(i) “?I =1 and w is I-reduced.

For d > 1, the above morphism I <5 T is good d/2-periodic if and only if the
following two additional conditions are satisfied.
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(i) I(we)ip~") = %l(wl_lwo) for0<i< L%J

(iii) (we)? = ¢*.
If, moreover,

(iv) Wrwe has (q-rank 0 on the subspace spanned by the root lines of Wi,
then w¢ is maximal in the sense of Theorem [J4)(iii).

Proof. By definition w induces a morphism I 2 I if and only if it satisfies (i).
By definition again if this morphism is good d/2-periodic then (ii) and (iii) are
satisfied. Conversely, Lemma shows that the morphism induced by the lift of a
w satisfying (i), (ii), (iii) is good d/2-periodic.

Property (iv) means that no element vw¢ with v € W; has an eigenvalue ¢4 on
the subspace spanned by the root lines of W; which is exactly the characterization
of Theorem [9.4((iv) of a maximal element. O

Note that d and I in the above assumptions (i), (ii), (iii) are uniquely determined
by w since d is the smallest power of w¢ which is a power of ¢ and I is given uniquely

by (w¢)? = /w19

Definition 9.12. We say that wp € W¢ is (4-good (relative to W¢ and I) if it
satisfies (i), (i), (iii) in Lemmal[9T1l
We say wo is (4-good maximal if it satisfies in addition (iv) in Lemma[9 11l

In particular, (4-good elements lift to good d/2-periodic elements, and (4-good
maximal elements lift to good maximal d/2-periodic elements.

The (4-good maximal elements belong to a single conjugacy class of W. The
following lemma applied with ¢ = (4 gives a characterization of this class.

Lemma 9.13. Let W¢ be a finite order real reflection coset such that ¢ preserves a
chamber of the corresponding hyperplane arrangement. The elements of W ¢ which
have a (-eigenspace V' of mazximal dimension and among those, have the largest
dimension of fized points, are conjugate.

Proof. Let w and V be as in the lemma. Since, by [S| Theorem 3.4(iii) and Theorem
6.2(iii)], the maximal (-eigenspaces are conjugate, we may fix V. Since Cy (V) is a
parabolic subgroup of the Coxeter group W normalized by we, the coset Cyy (V)we
is a real reflection coset; in this coset there are 1-regular elements, which are those
which preserve a chamber of the corresponding real hyperplane arrangement; the
1-regular elements have maximal 1-rank, that is have the largest dimension of fixed

points, and they form a single Cy (V')-orbit under conjugacy, whence the lemma.
O

Lemma 9.14. Let wo be a (4-good mazimal element, let I be as in Lemma [I11]
and let V1 be the fized point subspace of w¢ in the space spanned by the root lines
of Wi; then wo is regqular in the coset Cy (V1)weo.

Proof. Let W’ = Cw (V1); we first note that since w¢ normalizes V; it normalizes
also W', so W/w¢ is indeed a reflection coset. We have thus only to prove that
Cw (V) is trivial, where V is the (4-eigenspace of w¢. This last group is generated
by the reflections with respect to roots both orthogonal to V' and to V;, which are
the roots of W; = Cw (V') orthogonal to V;. Since w¢ preserves a chamber of Wi,
the sum v of the positive roots of W; with respect to the order defined by this
chamber is in V; and is in the chamber: this is well known for a true root system;
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here we have taken all the roots to be of length 1 but the usual proof (see [Bou,
Chapitre VI §1, Proposition 29]) is still valid. Since no root is orthogonal to a vector
v inside a chamber, W; has no root orthogonal to Vi, hence Cy (V) = {1}. O

Note that the map Cw(w¢p) = Ny (V) = Nw (V)/Cw (V) in the above proof
is injective, but not always surjective: if W of type E7, if ¢ = Id and ¢ = i, a fourth
root of unity, then Ny (V')/Cyw (V) is the complex reflection group Gg, while W’ is of
type Dy and Ny (V)/Cw- (V) is the complex reflection group G(4,2,2). However,
we will see in appendix 1 that there are only 4 such cases for irreducible groups W;
to see in the other cases that Cy (we) ~ Ny (V)/Cw (V) it is sufficient to check
that they have same reflection degrees, which is a simple arithmetic check on the
reflection degrees of W and W”.

10. CONJECTURES

The following conjectures extend those of [DM2] §2]. They are a geometric form
of Broué conjectures.

Conjectures 10.1. Let I % 1 € B*(Z) be a maximal d/2-periodic morphism.
Then

(i) The group By generated by the monoid By, of Theorem[828 is isomorphic
to the braid group of the complex reflection group W, := Ny (Wiwe)/Wr.
(ii) The natural morphism DT (Z)(I % ?T) — Endgr (X(I,w¢)) (see below
Definition [828) gives rise to a morphism By, — Endgr H} (X(I,w¢))
which factors through a special representation of a (q-cyclotomic Hecke
algebra Hy, for Wy,.
(iii) The odd and even HL(X(I,w¢)) are disjoint, and the above morphism
extends to a surjective morphism Q,[Bw| — Endgr (H* (X(I, w¢))).

Lemma 10.2. Let I % ¢TI € B*(Z) be a mazimal d/2-periodic morphism and
assume Congectures [0} then for any i # j the GI-modules H!(X(I,w®)) and
HI(X(I,w¢)) are disjoint.

Proof. Since the image of the morphism of Conjecture [[0{ii) consists of equiva-
lences of étale sites, it follows that the action of Hy on H}(X(I,w¢)) preserves
individual cohomology groups. The surjectivity of the morphism of (iii) implies that
for p € Trr(GF), the p-isotypic part of HY(X(I,w¢)) affords an irreducible Hy-
module; this would not be possible if this p-isotypic part was spread over several
distinct cohomology groups. (I

We will now explore the information given by the Shintani descent identity on
the above conjectures

Lemma 10.3. Let I % ¢1 € BT(I) be a d/2-periodic morphism. With the nota-
L) —l(rp)—ax —Ax

tions of Proposition [8.34, we have Xgm (X1Tw®) = ¢ d x(e;wF) for
x € Irr(W)?, where a, (resp. Ay ) is the valuation (resp. the degree) of the generic
degree of x and ey = [Wi|™' 3 cw, v.

Proof. We have (X1Tw®)? = X1Tn /T ¢ = ¢ '™ X T ¢? since X; commutes
with Tw¢ and since for any v € W we have X;T, = ql(”)Tv. Since T acts on the
representation of character x,m as the scalar g™ M —ax=4%) (see [BM], Corollary
4.20]), it follows that all the eigenvalues of X;Tw¢ on this representation are equal
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ml(-rr)fl(-rrI)fafoX

to q ] times a root of unity. To compute the sum of these roots
of unity, we may use the specialization ¢™/? + 1, through which Yqm (X;Tw¢)
specializes to x(ejwe). O

Proposition 10.4. Let I = ¢I ¢ B*(Z) be a d/2-periodic morphism. For any m
multiple of 0, we have

m U(m)—l(m)—ap—Ap G.F
1 X(I, W¢)9F | = Z )‘Zl/éqm ¢ (p, Ry wr Id)grp(9),
pEE(GF 1)
where a, and A, are respectively the valuation and the degree of the generic degree
of p.

Proof. We start with Corollary B35, whose statement reads, using the value of
Xqm (X1Tw¢) given by Lemma [I0.3t

XTI we)™ = Y Ap(g)

peE(GT,1)
l(m)—=l(mp)—ay —Ax ~
oo a X(erwe)(p, Ry)ar-
XEIrr(W)¢

Using that for any p such that (p, Rg)gr # 0 we have a, = a,, and A, = A, (see
[BM] around (2.4)) the right-hand side can be rewritten

l(m)—l(rp)—ap—Ap -
S a p(9)p, Y. Xlerwd)Ry)gr.
pEE(GF 1) x€lrr(W)¢
The proposition is now just a matter of observing that

Z X(erwe) Ry = [Wi|™ Z Z X(vwe) Ry =

XElrr(W)* vEWT x€lrr(W)¢
Wit > RS, (1d) = REYT L (14).
veWr
Where the last equality is obtained by transitivity of RICf and the equality IdL}m =

W™ Y ew, R;{J;F(Id) a torus T of L; of type v for the isogeny wF being
conjugate to T,y in G. O

Corollary 10.5. Let I 5 1 € B*(Z) be a mazimal d/2-periodic morphism and
assume Congjectures[IO1); then for any p € Irr(GE') such that (p, RSII;F(Id)>GF #0
the isogeny F° has a single eigenvalue on the p-isotypic part of H*(X (I, we)), equal

l(m/mp)—ap—Ap
§g——+~L 1 P P
to A\pq a

Proof. This follows immediately, in view of Lemma [[0.2] from the comparison be-
tween Proposition [0.4] and the Lefschetz formula:

IX(Lwg)?"" | =Y (~1) Trace(gF™ | H{(X(Lwg),Qy)).
O
In view of Corollary B38(i) it follows that if (p, Rf (Id))gr # 0 then if w, = 1
then W’”)%_A” e N, and if w, = \/¢° then WT")%_A” e N+1/2.
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Assuming Conjectures [[0.1], we choose once and for all a specialization ¢/
¢'/%, where a € N is large enough such that H, ® Q,[¢*/?] is split. This gives a
bijection ¢ — ¢, : Irr(W,,) — Irr(Hw), and the conjectures give a further bijection
¢ — py between Irr(W,,) and the set {p € Irr(G*) | (p, RE (Id))gr # 0}, which is
such that (p,, RE (Id))gr = ¢(1).

Corollary 10.6. Under the assumptions of Corollary [I0.3, if w, is the central
character of ¢, then
o l(r/rl)fapkppr‘p
App = w@((wéf’)é)( ’ a
Proof. We first note that it makes sense to apply w, to (we)?, since (w@)? is a cen-
tral element of W,,. Actually (w¢)® is a central element of By, and maps by the mor-
phism of ConjectureI0.I(iii) to F?, thus the eigenvalue of F° on the p@—isotypic part

I(w/m)—a —A
of H}(X(I, wg)) is equal to wy, (We)®); thus w,, (We)?) = A, #
The statement follows by applying the specialization ¢/ (1/ ® to this equal-
ity. (I

11. APPENDIX 1: GOOD (4-MAXIMAL ELEMENTS IN REDUCTIVE GROUPS

We will describe, in a reductive group G, for each d, a (4- good maximal element
w¢ relative to W¢ and some I C S. Thus the variety X(I,w¢) will be the one
whose cohomology should be a tilting complex for the Broué conjectures for an ¢
dividing ®(q) (P as in the introduction of Section [I).

Since such an element depends only on the Weyl group, we may assume that
G is semi-simple and simply connected. Now, a semi-simple and simply connected
group is a direct product of restrictions of scalars of simply connected quasi-simple
groups. A (4-good (resp. maximal) element in a direct product is the product of a
C4-good (resp. maximal) element in each component. So we reduce immediately to
the case of restriction of scalars.

11.1. Restrictions of scalars. A restriction of scalars is a group of the form
G", with an isogeny Fy such that Fy(zg,...,2Zn-1) = (21,...,2Zn-1, F(z)). Thus

(GMI ~ GF.
If F induces ¢ on the Weyl group W of G then (G", F}) corresponds to the
reflection coset W" - o, where o(x1,...,2n) = (T2, ..., ZTn, d(x1)).

In the first two propositions of this section, we will study such a “restriction
of scalars” for arbitrary complex reflection cosets. Thus we start with a reflection
coset W, with W C GL(V) a complex reflection group where V.= C", and ¢ €
Nerv)(W). We denote by é the order of W¢ (the minimal i such that (We)" = W).
We want to study the eigenvalues of elements in the coset W™ -0 C GL(V"™), where
o(x1, ..., &) = (X2,...,Tn, ¢(x1)); we say that this coset is a restriction of scalars
of the coset W .

Recall (see for example [Br]) that, if Sy is the coinvariant algebra of W (the
quotient of the symmetric algebra of V* by the ideal generated by the W-invariants
of positive degree), for any W-module X the graded vector space (S @ X*)" ad-
mits a homogeneous basis formed of eigenvectors of ¢. The degrees of the elements
of this basis are called the X-exponents of W and the corresponding eigenvalues
of ¢ the X-factors of W¢. For X = V, the V-exponents n; satisfy n; = d; — 1
where the d;’s are the reflection degrees of W, and the V-factors ¢; are equal to the
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factors of W¢. For X = V*, the n; — 1 where n; are the V*-exponents are called
the codegrees di of W and the corresponding V*-factors €] are called the cofactors
of W¢. By Springer [S| 6.4], the (-rank of W¢ is equal to |{i | (¢ = &;}|. By
analogy with the ¢-rank, we define the ¢-corank of W¢ as |{i | (% = e!}|. By for
example [Br, 5.19.2] an eigenvalue is regular if it has same rank and corank.

Proposition 11.1. Let W" - o be a restriction of scalars of the complex reflection
coset W¢. Then the (-rank (resp. corank) of W™ - o is equal to the ("™-rank (resp.
corank) of W .

In particular, ¢ is regular for W™ - o if and only if (™ is reqular for W - ¢.

Proof. The pairs of a reflection degree and the corresponding factor of ¢ for the
coset W™ - o are the pairs (d;, (% {/z;), where i € {1,...,r}, j € {1,...,n} and
where {/g; represents an n-th root of ¢; (that we choose arbitrarily for each 7).

Similarly, the pairs of a reflection codegree and the corresponding cofactor are
(d;.¢4 /7)) |

In particular the (-rank of W™ - o is [{(i,4) | (% = ¢/ 1/zi}| and the (-corank is
(G, 4) | €% = ¢i /eT). |

Given a € N, there is at most one j such that the equality (¢ = (J {/¢; holds,
and there is one j if and only if ("* = ;. Thus we have

{(i,5) 1 €% = ¢ /el = i | ¢ = &3}

and similarly for the corank, whence the two assertions of the statement. O

We assume now that ¢ = (q; note that (} is a d/k-th root of unity, where
k = ged(n,d), but it is not a distinguished root of unity. We have however the
following:

Proposition 11.2. Let W™ - ¢ be a restriction of scalars of the complex reflection
coset W¢ and for d € N let k = ged(n, d); then there exists m such that m(n/k) =1
(mod d/k) and ged(m, d) = 1, and for such an m the (4-rank (resp. corank) of W"-o
is equal to the Cqs-rank (resp. corank) of W - ¢™.

Proof. We first show that m exists. Choose an m such that m(n/k) =1 (mod d/k).
Since m is prime to d/k it is prime to ged(d/k,d). By adding to m a multiple of
d/k we can add modulo ¢ any multiple of ged(d/k, ), thus we can reach a number
prime to §, using the general fact that for any divisor ¢’ of ¢, the natural projection
7/67 % 7)§'T is such that 0((Z/6Z)%) > (Z/5'Z)*.

By Proposition [Tl the (4-rank (resp. corank) of W™ - ¢ is equal to the (} =
C;//:-rank (resp. corank) of W - ¢. Now &I (resp. ;™) are the factors (resp. cofac-
tors) of W -¢™ and since m is prime to § and €/ = 1, we have |{i | (% =¢;}| = |{i |
(¢™)% = e}, (similarly for df,e}); thus the C;//:—rank (resp. corank) of W - ¢ is

equal in turn to the C;}:/k-rank (resp. corank) of W - ¢™. Now, since m(n/k) =1
(mod d/k), we have g;’}'k"/ * = Capne O

We now assume, until the end of the subsection, that W¢ is a real reflection
coset of order ¢, that ¢ preserves a chamber corresponding to the Coxeter system
(W, S), and that ¢ = (4 is a distinguished root of unity. We will use the criteria of
Lemma [9.TT] to check that an element is (4-good (resp. maximal).
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Proposition 11.3. Under the assumptions of Proposition[I1.2, let v¢™ be a (4/5-
good element relative to W¢™ and I. Then
o If either k = 1 or d/k is even, define w = (wo,...,wp—1) € W" by
wik = ¢ (v), and w; =1 if 7 # 0 (mod k)
o Ifd/k is odd and k # 1, by Proposition there exists vi,va € W such
that ve™ = v vy and (v(bm)(%’l)/%l = wl_lwoqﬁm(%’l)ﬂ; define w =
(’LU(), e ,wnfl) e W™ by

¢ (v2) if j =ik
wy = § O (w) if j =ik + 5]
1 if § £0,15] (mod k)
In each case wo is a (4-good element relative to W"o and I where I = (Iy, ..., I—1) C

S™ with I; = Wivit1-wn1@] qnd we have Ny (Wiwo) /Wi =~ Ny (Wivg™)/Wr.
If moreover vd™ is mazimal then wo is also mazximal.

Proof. To lighten the notation, we set n’ = n/k and d’ = d/k.

We recall that v¢™ being (g-good means *¢" I = I and v is I-reduced, (v¢™)% =
@™, and I((vp™)!¢p~"™) = 2i/d’ - 1(wy  wo) for 0 < i < |L]. We have to show the
same conditions for wo, that is

(i) o (Ip,...,In—1) = (Ip,...,In—1) and w is (Iy,..., [,—1)-reduced.
(ii) (wo)d = o
(iii) I((wo)io™t) = %l(wl_lwo) for 0 <i<|4].
We first note:

Lemma 11.4. ¢% stabilizes v and I (thus ¢=V %) also).

Proof. As (v¢m)d/ = ¢™? we find that ¢ stabilizes v¢™ and I, thus v and I.
Since m is invertible modulo 4, we get that (bd, stabilizes v and 1. O

We first check that I C S™. 1In the case d’ even, each I; is of the form
P ()T (). I ()6 ] (where ik is the smallest multiple of k greater than j).
If d' is odd I; is either as above or of the form I (02)9 ™ ()6 (). g™ TV ()b
In the first case, since 1 — mn’ =0 (mod d’') and ¢ stabilizes I, by Lemma T4
we can write
I = ¢ @) I @ g e T 9 g,

In the second case, if we put J = I"* = ¥2¢" ] a subset of S by Proposition [, we
get I; = ¢V p — 0TI 5

We now check (i). The verification of *(Iy, ..., I,—1) = (lo, ..., In—1) reduces

to wowi-wn—1®] — T which itself reduces to ”‘i’m(”)""b("/fl)m(”)‘bl = I, which is
true by the case ¢« = 0 of the above computation. Similarly, checking that wo is
(Do, ..., I,—1)-reduced reduces to the check that for each j the element w; is I;-
reduced, where I; = WjWj1-Wn—1@[ — [Wo--Wi-1  or equivalently that wy .. SWji—1

is I-reduced. Thus in the d’ even case we have to check that v$™(v)...¢"" (v) is
I-reduced for 0 < ¢ < n’. This results from the fact that v is I-reduced and that v¢™
normalizes I. In the d’ odd case we have also to check that vé™ (v) ... =D (v) "™ (v;)
is I-reduced, which follows from the fact that v is I-reduced, that v¢™ normalizes

I and that v; is also I-reduced, which we know by Proposition [0.9
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For checking (ii) and (iii) we compute (wo)®. For any (wo,...,wn—1) € W"
we have o(wg, ..., wp—1) = (w1, ..., Wp—1,d(wo))o, thus we find that if we define
for all j the element w; = ¢]:30
0 < jp < n, we have

(wjo) = gbL%J(wjo) where jo = 7 (mod n) and

(wa)i = (’wo e Wi, W .. Wiy e s, Win—1 - ..wi+n_2)ai.

Each product wywy 41 ... wy+i—1 appearing in the above expression is, up to apply-
ing a power of ¢, of the form (v¢™)7¢ =™ or in the d’ odd case additionally of one of
the forms (vo¢™v1 )7 ¢~ (v1™v2) V1~ or va(v1d™v2) ¢~ for some j which
depends on u and ¢. If 7 is a multiple of k the last two forms do not appear and
j =i/k. In particular if i = d we get either (v¢™)¥/* ="k or (vy¢™uv, )4k G=md/k,
Since (vqﬁm)d, = ¢@™ we have also (vggbmvl)d, = vl_l(vgbm)dlvl = ¢™d' since v,
hence vy, is ¢™4 -stable, whence (ii).

To check (iii) it is enough check it for ¢ = 1, which is clear since I(w) = n'l(v) =
Zin ] (wi Mwe) and I(v) = 1(v1) +1(¢™(v2)) (by Proposition @) and to check that in
a product wyWy41 - . . Wy4i—1 the lengths add for all i < L%J: the lengths will then
add in (wo)' for i < [2] which gives (iii). In the d’ even case this is a result of the
lengths adding for (v¢™)?¢~™7. In the d’ odd case, we know by Proposition
that the lengths add in a product of at most d’ terms of the form v A T
or of the form v5?" v;%mvy.... We claim that to get more than d’ non-trivial
terms in the product wywy41 ... Wyti—1 we need i > L%J The maximal number
of non-trivial terms is obtained when the first or the last term is non trivial. To
get d’ 4+ 1 non-trivial terms we need i > %k + | %], since &’ + 1 is even. But
%k + 5= L%dlj +k > £, whence our claim.

Computing now Ny~ (Wiwo), we find that (go,. .., gn—1) normalizes (Wwo) if
and only if:

goWi, = Wi, "¢

gn72WIn,2 - Wlnfzwn72gn71
gn*lWIu—l = anflwnild)go
which, using the value I; = s-Wn-1#] = [Wo--j-1 hecomes

goWr = Wi"g,

wo... Wn— wo... Wn—
0 n 39n72WI :WI 0 n Zgn71

w0~~~wn729n_1WI =W; w0~~~wn71¢go

We now notice that an equality aW; = Wrb is equivalent to: a normalizes Wi,
and aW; = bW;. Thus our equations are equivalent to: go normalizes W7;, the
cosets Wrgo, ..., Wrwo-tn-2g, ; are equal (thus determined by go) and Wrgg =
Wlwf’"'w"*“ﬁgo. The last equality means that gy normalizes Wrwg ... w,—1¢0; we
find Nyyn (Wiwo) /Wi =~ Ny (Wiwg . . . wn_16) /Wi = Ny (Wi (vp™)™ o1=m") /W
Since 1 — mn’ = 0 (mod d’), by Lemma [IT.4 ¢~ commutes with v¢™, thus
((vgm)™ gl=mn'ym — (ygmyn'mgm=mn'm et ug write n'm = ad’ + 1; using that
(’Ud)m)dl — ¢md’ we get (v(bm)n’m(bmfmn’m — (,Ud)m)adurlgbfamd’ = v¢™, thus the
above coset has same normalizer as Wrvgp™.
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Assume now that v¢™ is maximal, that is Wjv¢™ has (y-rank equal to 0. We
prove the same for wo, that is (Wy, x ... x Wy, J)wo has (4-rank 0. Identifying I;
to I via w; ... wp—1¢, the coset (Wy, X ... x Wy, Jwo identifies to W}'c’ where

0'/(1,'0, ceey xn—l) = (l‘l, ey n—1, (’wo c. ’wn_1¢)($0))
= (xlv <oy Tn—1, ((’Ugbm)nl(blimn,)(IO))a

since in each case we have wg ... wn_16 = ((v¢™)" ¢1=""")(x¢)). Now by Propo-
sition the (4-rank of this last coset is equal to the (y-rank of the coset
W ((vg™)™ ¢'=™" )™ But we have checked above that ((vg™)™ ng' =™ )™ = v¢™,
thus the sought (4 -rank is the same as the (g -rank of Wiv¢™ which is 0 by as-
sumption. ([l

11.2. Case of irreducible Coxeter cosets. We now look at the case of quasi-
simple simply connected reductive groups G, or equivalently at the case of irre-
ducible Coxeter cosets W¢. We will look at any real Coxeter coset W¢ since it is
not much more effort than to look just at the rational ones.

We use the classification. We are going to give, for each irreducible type and
each possible d, a representative w¢ of the (4-good maximal elements, describing the
corresponding [; since conjecturally for a given d all such elements are conjugate in
the braid group, this describes all the (4-good maximal elements. We also describe
the relative complex reflection group W(we) := Ny (V)/Cw (V'), where V is the (4-
eigenspace of we¢. In the cases where the injection Cy/(we) — Ny (V)/Cw (V) =
W (we¢) of the remark after Lemma [0.I4 is surjective, where W’ = Cw (V7)) and
V1 is the fixed point subspace of w¢ in the space spanned by the root lines of Wy,
we use it to deduce W(wg) from W’ = Cy (V1) since the centralizers of regular
elements are known (see [BM| Annexe 1]).

Types A, and 24, O—---O. 24, is defined by the diagram automorphism ¢
S1 S2 Sn
which exchanges s; and s,41—;.

For any integer 1 < d < n + 1, we define

d+1 . d
Ud = 8182 Sy 4] SnSn—1- -5 41 and Jg = {s; | LTJ +1<i<n— \_ij}

If d is odd we have vg = Ufi%fiv where v/, = 5155 .. Sp_|d]-

Now, for 1 < d < n+ 1, let kd be the largest multiple of d less than or equal to
n+1, so that "T'H <kd<n+1landk= L"T“J We then define wy = U,’jd, Iy = Jra
and if d is odd we define w); by

o= {0 ot
Vil if k is even,
Theorem 11.5. For W = W(A4,), (4-good mazimal elements exist for 1 < d <
n+ 1; a representative is wq, with I = Iq and W(wq) = G(d, 1, |2 ]).

For W¢, (q-good mazximal elements exist for the following d with representatives
as follows:

e d =0 (mod 4), 1
W(wa¢) = G(d, 1, [*4=]).
e d=2 (mod 4), 1 <d<2(n+1); a representative is w(’i/2¢ with I = 14/

) = Gd/2,1, |21 ).

< d <n+1; a representative is wqp with I = Iy and
n_JrlJ
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e dodd 1<d< "'H. If d # 1 a representative is wiy¢ with I = Iq and
W (w3 6) = G(2d, 1, L5553 ]).-

Proof. We identify the Weyl group of type A, as usual with &,,41 by s; — (¢,i+1);
the automorphism ¢ maps to the exchange of i and n+ 2 —14. An easy computation
shows that the element vy maps to the d-cycle (1,2,..., L%J n+ln,....n+2—

|4]) and that for d odd v/, maps to the cycle (1,2,...,n — 42).

Lemma 11.6. If d is even vg and wq are ¢-stable. If d is odd we have wqg = wl’i.‘z’w('i.

Proof. That d is even implies |42 | = [ 4], thus in the above cycle ¢ exchanges
the two sequences 1,2;.. ., L%J andn+1,n,...,n+2— LgJ, thus vy is ¢-stable.

The same follows for wq, with k = [24! |, since kd is even if d is even.

For d odd we have

Wy, = (wh)? = (vkdqﬁ) if k is odd,

Wa = (wad) { %2.“"( k/2) if k is even.
If k is odd we have (v},0)%% = (v,,%v},)F = vF, = wa. If k is even then vgq is
¢-stable thus Uk/2.¢(vllz(/12) = vk, = wy. O

Lemma 11.7. For1<d<n+1,

e the element vq is Jg-reduced and stabilizes Jg.
e the element wy 1s Ig-reduced and stabilizes 1.
o for d odd, the element v}, is Jq-reduced and vi¢ stabilizes Jg.
e for d odd, the element w), is Ig-reduced and w)¢ stabilizes 1.

Proof. The property for wq (resp. w}) follows from that for vy (resp. v}) and the
definitions since being Iz-reduced and stabilizing Iy are properties stable by taking
a power.

It is clear on the expression of vy as a cycle that it fixes i and i + 1 if s; € Jy
thus it fixes the simple roots corresponding to J;, whence the lemma for vg.
For d odd, 1 < d < n+1, an easy computation shows that v/, = (1,2, ... ,n—d%),

and that v/;¢ preserves the simple roots corresponding to Jy. ([

Lemma 11.8. For1<d<n+1 and for 0 <i< 2], we have
o [(vh) = 2Zl(w] wo) and l(wh) = 2Zl(wld wo)
o (for d odd) I((vg9)'6™") = Fl(wy wo) and I((w)e)'¢~") = Gl(wy, wo).

Proof. 1t is straightforward to see that the result for wq (resp. w);) results from the
result for vg (resp. v} or vg) and the definitions.

Note that the group W, is of type A,,_q, thus l(w}dlwo) = "("2+1) — ("_d)(’;_d"’l) =

(2n— d+1)d

We ﬁrst prove the result for vy and v, when ¢ = 1. For odd d we have by

definition I(v}}) = n — 451 = 22=4HL which is the formula we want for v/;. To find

the length of vy one can use that s,8,_1... S| di1 is {s1,82,...,8n—1}-reduced,
2
thus adds to s1s5. .. Sp—|4] which gives [(vg) = 2n — d 4 1, the result for vg.

We now show by direct computation that when d is even vj/ 2= w;dl wo. Rais-

ing the cycle (1,2,..., 2,n +1n,....,n+ 2 — g) to the d/2-th power we get

(Ln+1)(2,n)...(n+2-9) Wthh gives the result since wy, = (4 + 1,n +
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1- %) . ([2],[2]). The lemma follows for vg with d even since its truth for
i=1and:= % implies its truth for all ¢ between these values.

We show now similarly that for odd d we have (v/,¢)% = w;dl wo¢?. Since ¢ acts
on W by the inner automorphism given by wp, this is the same as (v/wg)? = w,,.
We find that (1,2,... ,n—%)wo =(1,n+1,2,n,3,n—1.. .,n—d—§5, %)(%B,n—
423y (|22, |22 ]) as a product of disjoint cycles, which gives the result since
(1,n+1,2,n,3,n—1,...,n—953 &yisad-cycleand (L2, n—953) .. (|22, |2 ]) =
w,y,. This proves the lemma for w/, by interpolating the other values of ¢ as above.

It remains the case of vy for odd d. We then have vy = (v;¢)? where the lengths

add, and we deduce the result for v4 from the result for . O

Lemma 11.9. The following elements are (q4-good

For1 <d<n+1, the elements vg and wy.
For d=0 (mod 4),d <n+1 the elements vg¢ and wqd.
For d=2 (mod 4),d < 2(n+1) the elements vy ,¢ and wg 5.

e Ford odd, d < "TH the elements v3;¢ and w3;p.

Proof. In view of the previous lemmas, the only thing left to check is that in each
case, the chosen element x in W (resp. W¢) satisfies ¢ = 1 (resp. (z¢)¢ = ¢).
Once again, it is easy to check that the property for wy (resp. w}) results from that
for vg (resp. v} or vg) and the definitions.

It is clear that ’Ug = 1 since then it is a d-cycle, from which it follows that when

d =2 (mod 4) we have (v(’imqﬁ)d = vgg = 1. The other cases are obvious. O

To prove the theorem, it remains to check that:

e The possible d for which the (4-rank of W (resp. W¢) is non-zero are as
described in the theorem. In the untwisted case they are the divisors of one of
the degrees, which are 2,...,n + 1. In the twisted case the pairs of degrees and
factors are (2,1),...,(i,(=1)%),...,(n + 1,(=1)""1) and we get the given list by
the formula for the (4-rank recalled above Proposition IT1.11

e The coset Wrw¢ has (4-rank 0 on the subspace spanned by the root lines of
Wr. For this we first have to describe the type of the coset, which is a consequence
of the analysis we did to show that w¢ stabilizes I. We may assume I non-empty.

Let us look first at the untwisted case. We found that wy acts trivially on Iy,
so the coset is of untwisted type A, _rq where k = L"T'HJ Since 14+ n — kd < d by
construction, this coset has (z-rank 0.

In the twisted case, if d =0 (mod 4), the coset is Wi, wq¢, which since wq acts
trivially on I and ¢ acts by the non-trivial diagram automorphism, is of type
2Ap_ra where k = [2F]. Since n — kd = n — |2 |d < d — 1, this coset has
Ca-rank 0.

If d is odd, the coset is W12dw%d¢, which since woq acts trivially on Is; and ¢
acts by the non-trivial diagram automorphism, is of type 2A4,,_sxq where k = L"Q—*;llj
Since n — 2kd = n — [ %1 ]2d < 2d, this coset has (4-rank 0.

Finally, if d = 2 modulo 4, the coset is Wld/2w/d/2¢' Let k = L%"%‘F)J; then

Wi,,, is of type A, pas2. If k is even then w&/z = w:C/iQ and the coset is of type

2An_kd/2. Since n — kd/2 < d/2 — 1, this coset has (4-rank 0. Finally if &k is odd
w;/ngS = (w;dﬂqﬁ)k. Since kd/2 is odd, we found that w?ﬂd/zqﬁ acts trivially on I/,
so the coset is of type A,_yq/2, and has also has (4-rank 0.
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e Determine the group W (we¢) (resp. W(w)) in each case, We first give V; and
the coset Cw (V1)we or Cw (Vi)w. In the untwisted case wy acts trivially on the
roots of Wy,, hence V7 is spanned by these roots and Cy (V1) is generated by the
reflection with respect to the roots orthogonal to those, which gives that Cy (V1) is
of type Agjnea)_y if d Jn and A, otherwise. In the twisted case if d = 0 (mod 4)
since wq acts trivially on the roots of Wiy, the space Vi is spanned by the sums
of the orbits of the roots under ¢ which is the non-trivial automorphism of that
root system. Hence the type of the coset Cw (V1)wa¢ is QAdLnTJrlJ_l if n is odd

and 2AdL"T“J if n is even. If d is odd a similar computation gives that the type
of the coset Cy (V1)w3,¢ is QAzdL%J—l if n is odd and 2A2dL”T+le if n is even. If
d =2 (mod 4) w/ /2¢ acts also by the non-trivial automorphism on Wy, , and we

get that the coset Cy (Vi)w',,,¢ is of type 24, 2t+1), if n and 2ntD) | have the
d/2 | 2ntD) | d
2 d

same parity and 24, (21, otherwise.
2 d

Knowing the type of the coset in each case, we deduce the group W(w¢) (resp.
W (w)) as in the remark at the beginning of Subsection [T.2] O

Type B, C=C—---(. For d even, 2 < d < 2n we define

s1 S22 S3  sp
Vg = Spy1—dj2---525182...5p and Jg = {s; | 1 <i <n —d/2}.

Note that vg, is the Coxeter element s182...5,. Now for 1 < d < 2n, that we
require even if d > n, we define wy as follows: let kd be the largest even multiple
of d less than or equal to 2n so that k = [22] if d is even and k = 2| 2] is d is odd.

We define wg = v’,jd and Iy = Jiq.

Theorem 11.10. For W = W (B,,), (4-good mazimal elements exist for odd d less
than or equal to n and even d less than or equal to 2n. A representative is wgq, with
I = Iy; we have W(wq) = G(d,1,|22]) if d is even and W (wq) = G(2d,1, [2]) if
d is odd.

Proof. We identify as usual the Weyl group of type B, to the group of signed
permutations on {1,...n} by s; — (¢ — 1,4) for ¢ > 2 and s; — (1,—1). The
element vy maps to the d-cycle (or signed d/2-cycle) given by (n+1—d/2,n+2—
d/2,...,n—1,n,d/2—n—1,d/2—n—2,...,—n). This element normalizes J; and
acts trivially on the corresponding roots, so is Jy-reduced. The same is thus true
for wg and Iy, since these properties carry to powers.

Lemma 11.11. For 0 < i < |4] we have l(v}) = %l(w}dlwo) and l(w}) =
%l(wl_dlwo).

Proof. As in Lemma [I1.§ it is sufficient to prove the lemma for vy, which we do
now. To find the length of vy we note that sysa...s, is {s2, s3, ..., sp }-reduced so
that the lengths of 5,11 _g/2...52 and of s155...s, add, whence [(vq) = 2n — d/2.
Since I(wo) = n? and l(wy,) = (n — d/2)* we have l(w},'wo) = nd — d?/4, which
gives the result for ¢ = 1. Written as permutations wy is the product of all sign

changes and wy, is the product of all sign changes on the set {1,...,n —d/2}; a

direct computation shows that vg/ % is the product of all sign changes on {n+ 1 —
1

d/2,...,n}, hence vg/2 = w, wo. The lemma follows for the other values of d. [
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Since v§/2 = wy, wo we have vg = 1, so the same property is true for wy, thus
the above lemma shows that vg and wy are (4-good elements.

Note also that Theorem [IT.10 describes all d such that W has non-zero (4-rank
since the degrees of W(B,,) are all the even integers from 2 to 2n. We prove now
the maximality property [@.I1(iv) for wq. If k is as in the definition of wy, the group
Wi, is a Weyl group of type B,,_jq/2 and wq acts trivially on 1. Since n—kd/2 < d
the (g-rank of Wy, wq is zero on the subspace spanned by the roots corresponding
to 1.

It remains to get the type of W(wy). Since wy acts trivially on I; the space V3
of Lemma [0.14] is spanned by the root lines of W;, and Cy (V1) is spanned by the
roots orthogonal to those, so is of type Bjq/2. We then deduce the group W (wq) as
in the remark at the beginning of Subsection [[T.2] as the centralizer of a (4-regular
element in a group of type Byq/z. ([

1

s2
Types D,, and 2D, Q—i—@ --(O. 2D,, is defined by the diagram automorphism
S1 S3 Sa Sn

¢ which exchanges s; and s and fixes s; for ¢ > 2.
For d even, 2 < d < 2(n — 1) we define

pifd=2(n-1)

Ud = Snt1-d/z--- 83528183 Sn and Jg = {{s | 1 <i<mn-—d/2} otherwise
1 — — - .

Note that vy(,—1) is a Coxeter element. Then for 1 < d < 2(n — 1), that we require
even if d > n, we let kd be the largest even multiple of d less than 2n, so that
k = |2222] if d is even and k = 2[271] if d is odd, and define wy = v, and
1y = Jiq.

Note that vg, and thus wg, are ¢-stable.

Theorem 11.12. o For W =W(D,,) there exist (4-good maximal elements
for odd d less than or equal to n and even d less than or equal to 2(n —1).
When d does not divide n a representative is wq, with I = Ig; in this
case, if d is odd W(wq) = G(2d,1,[2F]) and if d is even W(wq) =

G(d, 1, | 22]).

If d|n a representative is wz/d where w, = $18283...58,8283...8,_1. In
this case I =0 and W(wz/d) =G(2d,2,n/d).

o For W¢ there exist (4-good maximal elements for odd d less than n, for
even d less than 2(n—1) and for d = 2n. Except in the case when d divides
2n and 2n/d is odd a representative is wqo, with I = Iy and W(wqd) =
G(2d,1, |21 ]) if d is odd and W (wa¢) = G(d, 1, |2%2]) if d is even. In

2n/d

the excluded case a representative is (wap @) where wa, = $18354 ... 8.

In this case I = () and W ((wa,¢)*™/ %) = G(d,2,2n/d).

Proof. The cases D,, with d|n or 2D,, with d|2n and 2n/d odd involve regular
elements, so are dealt with in [BM]. We thus consider only the other cases.

We identify the Weyl group of type D, to the group of signed permutations
on {1,...n} with an even number of sign changes, by mapping s; to (i — 1,4) for
i # 2 and sy to (1,—2)(—1,2). For d even vg maps to (1,-1)(n+1—-d/2,n+2 —
d/2,....,n —1,n,d/2—n—1,...,1 —n,—n). This element normalizes J;: when
Jg # 0, it exchanges the simple roots corresponding to s; and s3 and acts trivially



58 F. DIGNE AND J. MICHEL

on the other simple roots indexed by Jy, so it is Jgz-reduced. It follows that wy
normalizes I; and is Iz-reduced.

Lemma 11.13. For 0 < i < |4] we have l(v}) = %l(w;dlwo) and l(wh) =
%l(wﬁlwo).

Proof. As in Lemma [I1.§] it is sufficient to prove the lemma for v4. To find the
length of vy we note that $3518384 ... 8, is {83, ..., sy }-reduced so that the lengths
of 85,41-4/2...53 and of sps183...5, add, whence [(vq) = 2n — 1 — d/2. Since
l(wo) = n? —n and l(wy,) = (n — d/2)* — (n — d/2), we have l(w;dlwo) =
d/2(2n — 1 — d/2). which gives the result for ¢ = 1. Written as permutations
wo = (1, -1)"(2,=2)...(n,—n) and wy, = (1, -1)""¥2(2,-2)...(n—d/2,d/2—n);
a direct computation shows that 03/2 = (1,-1)%?(n+1-d/2,d/2—n—1)...(n, —n),

hence ’Ug/ 2 w;dl wp. The lemma follows for smaller 4. O
Since vj/ 2= w;dlwo and Jy is wg stable we have vg = 1, so the same property

follows for wy which shows that vy and wy are (4-good elements.

We also note that the theorem describes all d such that the (4-rank is not zero,
since the degrees of W (D,,) are all the even integers from 2 to 2n — 2 and n, and
in the twisted case the factor associated to the degree n is -1 and the other factors
are equal to 1.

Since wy is ¢-stable the element wqy¢ is also (4-good.

We now check Lemma[@.TT(iv), that is that the (4-rank of W, wy in the untwisted
case, resp. Wr,wq¢ in the twisted case is 0 on the subspace spanned by the roots
corresponding to I;. This property is clear if I; = (). Otherwise:

e In the untwisted case the type of the coset is D,,_jq/2 if k is even and 2Dn,kd/2
if k is odd, where k is as in the definition of wg. In both cases the set of values 4
such that the (;-rank is not 0 consists of the even i less than 2n — kd, the odd i
less than n — kd/2 and in the twisted case (k odd) ¢ = 2n — kd. Since if d is even
we have 2n — kd < d and if d is odd we have n — kd/2 < d, the only case where d
could be in this set is k odd and d = 2n — kd, which means that k—'z"ld =n. But d
is assumed not to divide n, so this case does not happen.

e In the twisted case the type of the coset is D,,_pq/2 if k is odd and 2Dn,kd/2
if k£ is even. In both cases the set of values 7 such that the (;-rank is not 0 consists
of the even i less than 2n — kd, the odd i less than n — kd/2 and in the twisted case
(k even) i = 2n — kd. Since if d is even we have 2n — kd < d and if d is odd we have
n — kd/2 < d, the only case where d could be in this set is k even and d = 2n — kd,
which means that (k4 1)d = 2n. But this is precisely the excluded case.

We now give Cy (V1), where V4 is as in Lemma[0.14] in each case where I is not
empty. In the untwisted case, if d is odd the group Cw (V1) is of type DdLanlJ; if
d is even the group Cw (V1) is of type Dgjznayy if [22-2| is odd and Dajzn_z,
if [222] is even. In the twisted case, if d is odd the coset Cy (V1)w¢ is of type
2DdL%J+1 and if d is even the coset is of type 2D%L%J+l if [222] is even and

Dyj2nz ) if |22-2] is odd. In all cases except if d is even and | 222 | is even (resp.

odd) in the untwisted case (resp. twisted case) we then deduce the group W (we)
(resp. W(w)) as in the remarks at the beginning of SubsectionIT.2and after Lemma
014 since in these cases the centralizer of the regular element w¢ (resp. w) in the
parabolic subgroup W’ = Cy (V1) has the (known) reflection degrees of W(w¢)
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(resp. W(w)). In the excluded cases the group Cy(w¢) or Cy(w) is isomorphic
to G(d, 2, | 2272 |) which does not have the reflection degrees of W (w¢), resp. W (w).
This means that the morphism of the remark after Lemma is not surjective.
We can prove in this case that W (w¢) or W(w) is G(d, 1, 2%-2]) since it is an
irreducible complex reflection group by [Br, 5.6.6] and it is the only one which
has the right reflection degrees apart from the exceptions in low rank given by
G5, Gro, G155, Gis, Gag; we can exclude these since they do not have G(d, 2, LQ"d_Q )
as a reflection subgroup. (I

Types I2(n) and 2I3(n). All eigenvalues ¢ such that the (-rank is non-zero are
regular, so this case can be found in [BM].

Exceptional types. Below are tables for exceptional finite Coxeter groups giving
information on (4-good maximal elements for each d. They were obtained with the
GAP package Chevie (see [Chevie]): first, the conjugacy class of good (y-maximal
elements as described in Lemma [0.13 was determined; then we determined I for an
element of that class, which gave I(wy). The next step was to determine the elements
of the right length 2(I(wo) — I(wr))/d in that conjugacy class; this required care in
large groups like Eg. The best algorithm is to start from an element of minimal
length in the class (known by [GP]) and conjugate by Coxeter generators until all
elements of the right length are reached.

In the following tables, we give for each possible d and each possible I for that d a
representative good we¢, and give the number of possible w¢. We then describe the
coset Wiwe by giving, if I # (), in the column I the permutation induced by w¢ of
the nodes of the Coxeter diagram indexed by I. Then we describe the isomorphism
type of the complex reflection group Nw (Wrwe)/Wr = Nw(V)/Cw(V), where
V is the (4-eigenspace of w¢. Finally, in the cases where I # (), we give the
isomorphism type of W' = Cy (V;), where V; is the 1-eigenspace of w¢ on the
subspace spanned by the root lines of I. We note that there are 4 cases where
Ny (V)/Cw: (V) < Nw(V)/Cw (V): for d =5 in 2Eg, for d = 4 or 5 in E7 and for
d=9in Eg.

Hs: QiQ—Q The reflection degrees are 2,6, 10.

1 2 3

d | representative w #good w Cyy (w)
10 w10 = 123 4 ZlO
6 wg = 32121 6 Zg
5 ’LU%O 4 ZlO
3 U)g 6 ZG
2 wo 1 H3
1 1 Hs
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Hy: QiQ—Q—Q The reflection degrees are 2,12, 20, 30.
1 2 3 4

d | representative w #good w Cyw(w)
30 wsp = 1234 8 Z30
20 wa0 = 432121 12 ZQQ
15 w%o 8 Zgo
12 | wip = 2121432123 22 AT,
10 wiy or w, 24 Gis
6 w3y or wi, 40 Gao
5 w§y or wip 24 Gie
4 w3y or Wi, 60 Gaa
3 w3 or wi, 40 Gao
2 wo 1 H4
1 1 H,
2
3Dy: O—i—@ ¢ does the permutation (1,2,4). The reflection degrees are 2, 4,4, 6

1 3 4
with corresponding factors 1, (s, (3, 1.

d | representative w¢ F#good wp Cyy (we)
12 wlqu = 13¢ 6 Z4
6 wﬁqS = 1243(]5 8 G4
3 wgqﬁ 8 G4
2 waf) 1 GQ
1 & 1 G

Fy: O—O=0O—0 The reflection degrees are 2,6, 8, 12.
1 2 3 4

d | representative w #good w Cw (w)
12 w12 = 1234 8 Z12
8 wg = 214323 14 A
6 wiy 16 Gs
4 Wiy O W§ 12 Gs
3 wilQ 16 G5
2 wo 1 F4
1 1 Fy

2Fy: ¢ does the permutation (1,4)(2,3). The factors, in increasing order of the
degrees, are 1,—1,1, —1.

d | representative wg F#good wp Cyy (we)
24 w24q5 = 12¢ 6 Zlg
12 w20 = 3231¢ 10 A

8 (w24¢)3 12 Gg

4 (wlggb)?’ 24 G12

2 waf) 1 IQ (8)

1 ¢ 1 15(8)
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2
Eg: O—Q—i—@—@ The reflection degrees are 2,5,6,8,9,12.

1 3 4 5 6

d | representative w F#goodw I Ny (Wrw)/W; Cw (V1)

12 | wip = 123654 8 Z12

9 wg = 12342654 24 Zy

8 | wg = 123436543 14 Zy

6 w?, 16 Gs

5 | 24231454234565 8 (3) Zs As
12435423456543 8 (4)
12314235423654 8 (5)

4 wi or wi, 12 Gs

3 wis or w3 80 Gas

2 wo 1 F4

1 : 1 Es

2Eg: ¢ does the permutation (1,6)(3,5). The factors, in increasing order of the
degrees, are 1,—1,1,1,—1, 1.

d | representative w¢p #Hgoodwep I Ny (Wrwe)/ Wi Cw (Vi)wed

18 w18¢ = 1234¢ 24 Zg

12 w12¢ = 123654¢ 8 Zlg

10 2431543¢) 8 (3) Zs 245
5423145¢ 8 (4)
31435426 8 (5)

8 | wse = 1234365436 14 Zs

6 (w1s9)? 30 Gas

4 (w12¢)3 12 Gg

3 w‘fQ(b 16 G5

2 wogb 1 E6

1 ¢ 1 F
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2
E7: O—Q—E—Q—Q—Q The reflection degrees are 2,6,8,10,12, 14, 18.

1

3 4 5 6 7

d representative w #good w I Nw (Wrw)/Wr  Cw (V1)
18 w18 = 1234567 64 Zlg
14 wig = 123425467 160 Zha
12 | wig = 1342546576 8 (2,5,7) AP Es
10 | wioe = 134254234567 8 (2,4) Z1o Ds
wigp = 243154234567 8 (3,4)
wige = 124354265437 8 (4,5)
9 wfg 64 Zlg
8 | 134234542346576 14 (2)(5,7) Zs Ds
7 wﬂ 160 214
6 wig or w, 800 Gae
5 w%oa 8 (2)(4) ZlO A5
wiy, 8 @)
why, s @)
4 w? or w3, 12 (2)(5)(7) Gs Dy
3 wly or wi, 800 Gae
2 wo 1 E7
1 1 Er
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2
Eys: Q—Q—i—Q—Q—Q—Q The reflection degrees are 2, 8,12, 14, 18, 20, 24, 30.

1

3 4 5 6 7 8

d representative w #good w I Ny (Wiw) /Wi Cw (V1)
30 wgo = 12345678 128 Z30
24 woyq = 1234254678 320 Zay
20 woo = 123425465478 624 Za0
18 | wige = 1342542345678 16 (2,4) Zhs E;
wigy = 2431542345678 16 (3,4)
wige = 1243542654378 16 (4,5)
15 wgo 128 Z30
14 | wige = 13423454234565768 128 (2) Z14 Er
wyqp = 24231454234565768 88 (3)
Wi4e = 12435423456543768 108 4)
wi4q = 12342543654276548 68 (5)
12 w2, 2696 G1o
10 w3y or w, 3370 Gie
9 wfga 16 (2)(4) Zlg E6
wiy, 16 (3)()
whe, 16 (4)05)
8 wl, 7748 Gy
7 w%4a 128 (2) Zl4 E7
Wiy, 88 (3)
Wige 108 (4)
Wiy 68 ()
6 w3, or way 4480 Gso
5 w$y or wiy 3370 Gie
4 wg4 or wgo 15120 G31
3 wi or w§, 4480 G2
2 wo 1 Eg
1 . 1 Fg
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