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PARABOLIC DELIGNE-LUSZTIG VARIETIES.

FRANCOIS DIGNE AND JEAN MICHEL

ABSTRACT. Motivated by the Broué conjecture on blocks with abelian defect
groups for finite reductive groups, we study “parabolic” Deligne-Lusztig va-
rieties and construct on those which occur in the Broué conjecture an action
of a braid monoid, whose action on their ¢-adic cohomology will conjecturally
factor trough a cyclotomic Hecke algebra. In order to construct this action,
we need to enlarge the set of varieties we consider to varieties attached to a
“ribbon category”; this category is a Garside category, which plays an impor-
tant role in our proof, so we devote the first part of our paper to the necessary
background on Garside categories.

1. INTRODUCTION

In this paper, we study “parabolic” Deligne-Lusztig varieties, one of the main
motivations being the Broué conjecture on blocks with abelian defect groups for
finite reductive groups.

Let G be a connected reductive algebraic group over an algebraic closure Fp of
the prime field IF), of characteristic p. Let F' be an isogeny on G such that some
power F9 is a Frobenius endomorphism attached to a split structure over the finite
field Fys; this defines a real number ¢ such that ¢° is an integral power of p. When
G is quasi-simple, any isogeny F such that the group of fixed points G is finite is
of the above form; such a group G is called a “finite reductive group” or a “finite
group of Lie type”.

Let L be an F-stable Levi subgroup of a (non necessarily F-stable) parabolic
subgroup P of G. Then, for ¢ a prime number different from p, Lusztig has con-
structed a “cohomological induction” RE which associates to any Q,L-module a
virtual Q,G*-module. We study the particular case RE (Id), which is given by the
alternating sum of the ¢-adic cohomology groups of the variety

Xp = {gP € G/P | gP N F(gP) # 0}

on which G acts on the left. We will construct a monoid of endomorphisms M
of Xp related to the braid group, which conjecturally will induce in some cases a
cyclotomic Hecke algebra on the cohomology of Xp. To construct M we need to
enlarge the set of varieties we consider, to include varieties attached to morphisms in
a “ribbon category” — the most general “parabolic Deligne-Lusztig varieties” that
we consider; M corresponds to the endomorphisms in the “conjugacy category” of
this ribbon category of the object attached to Xp.

The relationship with Broué’s conjecture for the principal block comes as follows:
assume, for some prime number ¢ # p, that the ¢-Sylow S of G is abelian. Then
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2 F. DIGNE AND J. MICHEL

Broué’s conjecture predicts in this special case an equivalence of derived categories
between the principal block of Z,G¥" and that of Z;Ngr(S). Now L := Cg(9) is a
Levi subgroup of a (non F-stable unless ¢|¢g — 1) parabolic subgroup P; restricting
to unipotent characters and discarding an eventual torsion by changing coefficients
from Zy to Q,, this translates into conjectures about the cohomology of Xp, see
10.1; these conjectures predict in particular that the image in the cohomology of
our monoid M is a cyclotomic Hecke algebra.

The main feature of the ribbon categories we consider is that they are Garside
categories. This concept has appeared in recent work to understand the ordinary
and dual monoids attached to the braid groups; in the first part, we recall its basic
properties and go as far as computing the centralizers of “periodic elements”, which
is what we need in the applications.

In the second part, we first define the parabolic Deligne-Lusztig varieties which
are the aim of our study, and then go on to establish their properties. We extend
to this setting in particular all the material in [BM] and [BR2].

We thank Cédric Bonnafé and Raphaél Rouquier for discussions and an initial
input which started this work, and Olivier Dudas for some useful remarks.

Part 1. Garside categories

This part collects some prerequisites on Garside categories. It is mostly self-
contained apart from the next section where the proofs are omitted; we refer for
them to the book [DDGKM] to appear.

2. BASIC RESULTS ON (GARSIDE CATEGORIES

Given a category C, we write f € C to say that f is a morphism of C, and
C(z,y) for the set of morphisms from = € ObjC to y € ObjC. We write fg for the
composition of f € C(z,y) and g € C(y, z), and C(z) for C(x,x). By S C C we mean
that S is a set of morphisms in C.

All the categories we consider will be left-cancellative, that is a relation hf = hg
implies f = g. We say that f left divides g, written f < g, if there exists h such
that g = fh.

We denote C* the set of invertible morphisms of C, and write f =* ¢ if there
exists h € C* such that fh = g (or equivalently there exists h € C* such that
f=gh).

Definition 2.1. A Garside family in C is a subset S C C such that;

e S together with C* generates C.

e C*SCSCruUC™.

e For every product fg with f,g € S—C*, either fg € SC* in which case we
say that (fg) is the S-normal decomposition of fg, or we have fg = fi1g1,
where fi € S, g1 € SC* —C* and f1, g1 have the property that any relation
h < kfig1 with h € S implies h < kf1; in this case we say that (f1,g1) is
an S-normal decomposition of fg.

A category is Garside if it has a Garside family S (we should talk of a Garside
system (C,S)).

In a Garside category every non-invertible element x admits a normal decom-
position (z1,...,2,) which means that = z7...x, and that each (x;,z;41) is
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an S-normal decomposition. Normal decompositions are unique up to invertibles,
precisely

Lemma 2.2. If (z1,...,2,) and (z},...,2],) are two normal decompositions of x
then n =n’ and for any i we have xy...x; == a2 ... 2},
For f € C we define Igg(f) to be the minimum number k of morphisms s1, ..., s, €

S such that sy ...s, => f, thus lgg(f) =0if f € C*; if f ¢ C* then lgg(f) is also
the number of terms in a normal decomposition of f.
We have the following criterion to be Garside:

Proposition 2.3. Let S C C together with C* generate C, and let H be a function

¢ LS. Consider the following properties
(i) VgeC, H(g) < 9.
(i) Vhe S,hxg=h < H(g).
(iii) Vf,g € C,H(fg) =" H(fH(g)).
(iv) SC*UC* is closed under right-divisor.
Then S is Garside if (i), (i), (iii) hold for some H, or if (i) and (ii) hold for some
H, and (iv) holds. Conversely if S is Garside then (iv) holds and there exists H
satisfying (i) to (iii) above; such a function is called a S-head function.
A S-head function H computes the first term of a normal decomposition in the
sense that if (z1,...,2,) is a normal decomposition of x then H(z) =* ;.
We have the following property:

Lemma 2.4. Let H be a S-head function, and for x € C — C* let 2’ be defined by
x = H(x)x'. Thenlgs(z') <lgg(z).

The following shows that S “determines” C up to invertibles; we say that a subset
Cy of C is closed under right quotient if an equality f = gh with f, ¢ € C; implies
g e Cl.

Lemma 2.5. Let S be a Garside family in C. Let C; be a subcategory of C closed
under right-quotient which contains S. Then C = C1C* and S is a Garside family
m Cl .

gcds and lems, Noetherianity. The existence of geds and lems are related when C is
right-Noetherian, which means that there is no infinite sequence fo = f1... = fn =
. where f; is a proper right divisor of f;;1, that is we do not have f; => fii1.
It means equivalently since C is left cancellative that there is no infinite sequence
foxfi-.- = fn = ... f where f; is a proper left divisor of f;;1.
We say that C admits local right lems if, whenever f and g have a common right
multiple, they have a right lem. We then have:

Proposition 2.6. If C is right Noetherian and admits local right lecms, then any
family of morphisms of C with the same source has a left gcd.

Here is a more general situation when a Garside family of a subcategory can be
determined:

Lemma 2.7. Let S be a Garside family in C assumed right-Noetherian and having
local right lems. Let S C S be a subfamily such that S1C* is as a subset of
SC* closed under right-lem and right-quotient; then S is a Garside family in the
subcategory C1 generated by S1C*. Moreover Cy is a subcategory closed under right-
quotient.
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The following lemma about Noetherian categories will also be useful:

Lemma 2.8. Let C be a category and S be a set of morphisms which generates C.
Let X be a set of morphisms of C with same source satisfying

(i) X is closed under left divisor and X = XC*.
(ii) X is a bounded and right Noetherian poset.
(i) If f € X, g,h € S and fg, fh € X then g and h have a common right-
multiple m such that fm € X.

Then X 1is the set of left-divisors of some morphism of C.

2.1. Garside maps. An important special case is when § is attached to a Garside

map. A Garside map is a map ObjC 2, C where A(z) € C(x, —) such that SC*UC*
is the set of left divisors of A. Since by Proposition 2.3(iv) the set SC* UC* is
stable by right divisor, it is also the set of right divisors of A.

This allows to define a functor @, first on objects by taking for ®(x) the target
of A(z), then on maps, first on morphisms s € S by, if s € C(x, —) defining s’ by
ss’ = A (we omit the source of A if it is clear from the context) and then ®(s) by
s'®(s) = A. We then extend A by using normal decompositions; it can be shown
that this is well-defined and defines a functor such that for any f € C we have
fA = AdD(f). We then have

Proposition 2.9. In the above context, the following are equivalent:
e O is an automorphism (that is, an invertible functor).

e C is right-cancellative.

We will assume from now on that these properties hold. We then have the
following properties:

Proposition 2.10. (i) If f < g then lgs(f) <lgs(g).
(ii) Assume f,g,h € S and (f,g) is S-normal; then lgs(fgh) < 2 implies
gh € SC*.

2.2. Garside automorphisms. An automorphism of a category C is a functor
F : C — C which has an inverse.

When C has Garside family S, we call Garside automorphism of (C,S), an
automorphism F' which preserves SC*. A typical example is the automorphism &
of the previous subsection that we will call the canonical Garside automorphism.

We have the following property

Proposition 2.11. Assume that C has a Garside family S and has no non-trivial
invertible morphisms. Left F be a Garside automorphism of C. Then the subcate-
gory of fized objects and morphisms C¥' has a Garside family which consists of the
fized points ST .

2.3. An example. An example of a Garside category is a Garside monoid, which
is just the case where C has one object. A classical example is given by the Artin
monoid (BT, S) associated to a Coxeter system (W, S). Then B is left-cancellative,
Noetherian, admits local right-lem’s and has a Garside family, the canonical lift W
of W in BT, which consists of the elements whose length with respect to S is equal
to the length of their image in W.
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3. CATEGORIES WITH AUTOMORPHISM
Given an automorphism F' of finite order of the category C, we define

Definition 3.1. The semi-direct product category C x (F') is the category whose
objects are the objects of C and whose morphisms with source x are the pairs (g, F*),
which will be denoted by gF®, where g is a morphism of C with source x and i
is an integer. The target of this morphism is F~'(target(g)), where target(g) is
the target of g. The composition rule is given by gF' - hFJ = gF'(h)FitJ when
source(h) = F~(target(g)).

The conventions on F' are such that the composition rule is natural. However,
they imply that the morphism F' of the semi-direct product category represents the
functor F~1: it is a morphism from the object F(A) to the object A and we have
the commutative diagram:

F(4) 2L p(B)

o,k
A——p

Lemma 3.2. If § is a Garside family in C, and F a Garside automorphism of
(C,S), then S is also a Garside family in C x (F).

Proof. A S-normal decomposition in C of an element of S? is still S-normal in
C x (F) and since F's = Fi(s)F' for all s € S, we have as required (C x (F))*S C
S(C x (F))*. O

If (f1,... fx) is a normal decomposition of f € C then (f1,..., feF'*) is a normal
decomposition of fF* € C x (F). Note that if C has no non-trivial invertible
element, then the only invertibles in C x (F) are {F'};cz. In general, if a,b € C
then aF* < bF7 if and only if a < b.

4. THE CONJUGACY CATEGORY

In this section we do not need C left-cancellative unless explicitly stated.

Definition 4.1. Given a category C, we define the conjugacy category AdC of C
as the category whose objects are the endomorphisms of C and where, for w € C(A)
and w' € C(B) we set AdC(w,w') = {z € C(A,B) | zw' = wx}. We say that
x conjugates w to w' and if w = w', we call centralizer of w the set AdC(w).
The composition of morphisms in AdC is given by the composition in C, which is
compatible with the above rules.

Note that the formula for AdC(,) is what forces the objects of AdC to be endo-
morphisms of C. We can rephrase the condition z € AdC(w, —) as z < wz.

If C is left-cancellative, then the data 2 and w determine w’ (resp. if C is right-
cancellative z and w’ determine w). In that case we will write w® for w’ (resp.
*w' for w). This way of writing the morphisms illustrates that our category AdC
is a right conjugacy category; we could call left conjugacy category the opposed
category.

A proper name for an element of AdC(w,w’) should be a triple (w,z,w’) (or
perhaps a pair (w, x) if C left-cancellative), since 2 by itself does specify neither its
source w nor its target w’, but we will use just z when C is left-cancellative and
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the context makes clear which source w is meant (or C is right-cancellative and
the context makes clear which target is meant). We should keep in mind that the
functor I which sends w € Obj(AdC) to source(w) and (w,z,w’) to z is faithful,
but definitely not injective on objects. Nevertheless, the fact that I is faithful
implies that AdC(w, —) identifies to a subset of I(AdC(w,—)) = C(source(w), —)
(resp. AdC(—,w) identifies to a subset of C(—,source(w))). It follows that the
category AdC inherits automatically from C properties such as cancellativity or
Noetherianity. The functor I maps (AdC)* surjectively to C*, so in particular the
subset AdC(w, —) of C(source(w), —) is closed under multiplication by C*,

Lemma 4.2. o Assume that C is left-cancellative. Then AdC(w,w') as a
subset of C(source(w),source(w’)) is closed under right-quotient, that is if
we have an equality y = xz where y € AdC(w,w’"), x € AdC(w,—) and
z € C(—,source(w’)), then z € AdC(—,w’); and AdC(w, —) identifies to
a subset of C(source(w),—) closed under right-lem, in the sense that if
x,y € AdC(w, —) have a right-lem in C(source(w),—) then this right-lem
is in AdC(w, —) and is a right-lem of x and y in AdC. In particular if C
admits local right-lems then so does AdC.

o Similarly if C is right-cancellative, AdC(—,w) identifies to a subset of
C(—,source(w)) closed under left-lem and left-quotient.

Proof. We assume C left-cancellative and show the stability by right-quotient. We
have z < wzr and yw’ = wy. By cancellation, let us define w” by zw” = wz. Then
from zz = y < wy = wrz = zw’z we deduce by cancellation that z < w”z, so
z € AdC(w,wy) where zw; = w”z. Now since y = xz the equality yw’ = wy gives
rzw' = wrz = vw” z = rzw; which shows by cancellation that w; = w’.

We now show stability by right-lem. 2,y € AdC(w,—) means that = < wx
and y < wy. Suppose now that x and y have a right-lem z in C. Then x 5 wz
and y < wz from which it follows that z < wz, that is z € AdC(w, —), and z is
necessarily a right-lem of = and y in AdC.

The proof of the second part is just a mirror symmetry of the above proof. [

Proposition 4.3. Assume that C is left-cancellative and that S is a Garside family
in C; then I=Y(S) is a Garside family in AdC.

Proof. We will use Proposition 2.3 by showing that I=1(S) U C* generates AdC
and exhibiting a function H : AdC — I~1(S) which satisfies Proposition 2.3(i), (ii)
and (ii).

Let H be a S-head function in C. We first show that if z € AdC(w, —) then
H(x) € I71(S), or equivalently H(x) € AdC(w, —). Indeed if x < wz then H(x) <
H(wz) =* HwH (z)) < wH(z).

We now deduce by induction on the lgg of a morphism that I=1(S)UC* generates
AdC. If ¢ € AdC is such that lgg(z) = 1 then © = se with s € S and € € C*.
Since AdC is closed under multiplication by C* and se € AdC, we have s € I~(S),
whence the result in this case. Assume now that for x € AdC we have lgg(x) =n
and define 2’ by © = H(z)a’. Since we know that H(z) € AdC, we deduce by
Lemma 4.2 that 2’ € AdC; by Lemma 2.4 we have lgg(2’) < n, whence the result.

We now claim that the restriction of H to AdC fits our purpose: it takes its
values in I71(8), and it satisfies Proposition 2.3 (i), (ii), (iii) since H does. O
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Simultaneous conjugacy. A straightforward generalization of conjugacy cate-
gories is “simultaneous conjugation categories”, where objects are families of mor-
phisms wy, ..., w, with same source and target, and morphisms verify = < w;z for
all . Most statements have a straightforward generalization to this case.

F-conjugacy. We want to consider “twisted conjugation” by an automorphism,
which will be useful for applications to Deligne-Lusztig varieties, but also for in-
ternal applications, with the automorphism being the one induced by a Garside
map.

Definition 4.4. Let F' be an automorphism of the category C. We define the F'-
conjugacy category of C, denoted by F-AdC, as the category whose objects are
the morphisms in some C(A,F(A)) and where, for w € C(A,F(A)) and w' €
C(B,F(B)) we set F-AdC(w,w') = {z € C | 2w’ = wF(x)}. We say that x
F-conjugates w to w' and we call F-centralizer of a morphism w of C the set
F-AdC(w).

Note that F-conjugacy specializes to conjugacy when F' = Id and that the F-
centralizer of x is empty unless z € C(A4, F(A)) for some object A.

We explore now how these notions relate to conjugation in a semi-direct product
category.

e Consider the application which sends w € C(A, F(A)) C Obj(F-AdC)
to wF € C x (F)(A) C Obj(Ad(C x (F))). Since z(w'F) = (wF)z is
equivalent to zw’ = wF(z), this extends to a functor J from F-AdC to
Ad(C x (F')). This functor is clearly an isomorphism onto its image.

The image J(Obj(F- Ad C)) identifies via I to the set of endomorphisms in Cx (F’)
which lie in CF. The image by J of F- Ad C(w, w’) is the set of morphisms in Ad(C x
(F))(wF,w'F) which, viewed via I as morphisms in Cx (F')(source(wF'), source(w'F)),
lie in C.

Let Ad(CF) be the full subcategory of Ad(C x (F')) whose objects are morphisms
in CF C Cx (F). As it is a union of connected components of Ad(C x (F)) (in
Ad(C x (F)), there is no morphism between two objects which do not have the
same power of F') all properties we are interested in will transfer automatically
from Ad(C x (F)) to Ad(CF).

In particular, if C has a Garside family S and F' is a Garside automorphism,
then S is still a Garside family for C x (F') by 3.2, and by the above gives rise to a
Garside family 171(S) of Ad(CF). Now the relationship between Ad(CF') and the
image of J is as in Lemma 2.5: the image of J is a subcategory closed under right
quotient (because in a relation fg = h if f and h do not involve F' the same must
be true for g) and contains the Garside family 1=1(S) of Ad(CF).

This will allow to generally translate statements about conjugacy categories to
statements about F-conjugacy categories. For example, Proposition 4.3 implies
that I71(S) is a Garside family in Ad(C x (F')) which implies in turn that it is a
Garside family in Ad(CF), thus J=1(I71(S)) is one for F-AdC; this last family
consists just of the x € F- AdC(w,w") for various w,w’ which are in S.

If F has finite order, since (zF)* = Fz = (2F)F " we see that two morphisms

in CF are conjugate in C x (F) if and only if they are conjugate by a morphism of
C.
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5. THE CYCLIC CONJUGACY CATEGORY

A restricted form of conjugation called “cyclic conjugacy” will be important in
applications. In particular, it turns out that two periodic braids are conjugate if
and only if they are cyclically conjugate.

Definition 5.1. We define the cyclic conjugacy category cycC of C as the subcat-
egory of AdC generated by {x € AdC(w,w’) | x < w}.

That is, cycC has the same objects as AdC but contains only the products of
elementary conjugations of the form w = zy — w’ = yx. Note that if C is left- and
right-cancellative, then U,{z € AdC(w,w’) | z K w} = Uy {z € AdC(w,w’) | w’' 3=
x} so cyclic conjugacy “from the left” and “from the right” are the same in this
case. To be more precise, the functor which is the identity on objects, and when
w = zy and w’ = yx, sends x € cycC(w,w’) to y € cyeC(w’,w), is an isomorphism
between cycC and its opposed category.

Proposition 5.2. let C be a left-cancellative and right-Noetherian category that
admits local right-lem’s; if S a Garside family in C then the set S = Uy,{z €
AdC(w,—) |z X w and x € S} is a Garside family in cycC.

Proof. We first observe that S;C* generates cycC. Indeed if 2 < w and we choose
a decomposition x = s1...s, as a product of morphisms in SC* it is clear that
each s; is in cycC, so is in .

We use Lemma 2.7.

The lemma applies to cycC, and gives the proposition, since SC* is closed
under right-divisor and right-lem; this is obvious for right-divisor and for right-lem
results from the facts that S as a Garside family is closed under right-lem and that
a right-lem of two divisors of w is a divisor of w. O

We also see by Lemma 2.7 that cycC is closed under right-quotient.

We now prove that if without assuming that C has a Garside family anyway cycC
has a Garside family associated to a Garside map; when C has a Garside family
this Garside family is larger than the Garside family S; of Proposition 5.2, since it
contains all left divisors of w even if w is not in S.

Proposition 5.3. If C is a left cancellative and right Noetherian category which
admits local right-lems then the set &' = Uyec{r € AdC(w,—) | z < w} is a
Garside family in cycC associated to the Garside map A such that Alw) = w €
cycC(w); the corresponding @ is the identity functor.

Proof. The set &’ generates cycC by definition of cycC. It is closed under right-
divisors since xy < w implies * < w so that w” is defined and y < w”; since C is
right Noetherian and admits local right-lcms, any two morphisms of C with same
source have a gcd by Proposition 2.6. We define a function H : cycC — S by
letting H (x) be an arbitrarily chosen left-ged of x and w if « € cycC(w, —). Since
cycC is closed under right-divisor, the function H satisfies properties Proposition
2.3 (i), (ii) and (iv), so 8’ is a Garside family for cycC. The set of morphisms in &’
with source w has an lem which is w. Moreover if v is a right-divisor of A(w) = w
in cycC, which implies that w = v'v, then v" € cycC(w,vv") thus the source of v is
vv’ and v divides vv’, so v € §’; all conditions of Proposition 2.3 are fulfilled, and
A is a Garside map since §'(w, —) is the set of left divisors of A(w). The equation
zw® = wx shows that ® is the identity. O
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Proposition 5.4. IfC is a right-Noetherian category which admits local right-lcms,
the subcategory cycC of AdC is closed under left-ged (that is, a ged in AAC of two
morphisms in cycC is in cycC).

Proof. Let (z1,...,2,) and (y1,...,Ym) be normal decompositions respectively of
x € cycC(w,—) and y € cycC(w,—) with respect to the Garside family S’ of
Proposition 5.3.

We first prove that if ged(zq1,y1) = 1 then ged(x,y) = 1 (here we consider
left-geds in AdC). We proceed by induction on inf{m,n}. We write A for A(w)
when there is no ambiguity on the source w. We have that ged(z,y) divides

ged(z1 - o Tpo1 A Y1 - Ym—1A) =" ged(Azy .o Tp1, AYL - Ym—1)
=" Aged(r1 ... Tpno1,Y1 - Ym—-1) =" A =w,

where the first equality uses that ® A is the identity and the one before last results
from the induction hypothesis. So we get that ged(z,y) divides w in AdC, so
ged(z,y) € 8'; thus ged(z, y) divides x1 and yy, so is trivial.

We now prove the proposition. If ged(z1,y1) == 1 then ged(x,y) =* 1 thus is in
cycC and we are done. Otherwise let d; be a ged of z; and y; and let (), () be
defined by z = dizV), y = dyyM. Similarly let dy be a ged of the first terms of a
normal decomposition of (1), 4 and let #(*), (2) be the remainders, etc. . . Since
C is right-Noetherian the sequence di,d;ds,... of increasing divisors of x must
stabilize at some stage k, which means that the corresponding remainders z*) and
y*®) have first terms of their normal decomposition coprime, so by the first part are
themselves coprime. Thus ged(z,y) = dy ...dy € cycC. O

We now give a quite general context where cyclic conjugacy is the same as
conjugacy.

Proposition 5.5. Let C be a right Noetherian category with a Garside map A, and
let x be an endomorphism of C such that for n large enough we have A < x™. Then
for any y we have cycC(z,y) = AdC(x,y).

Proof. We first show that the property A < z" is stable by conjugacy (up to
changing n). Indeed, if u € AdC(z, —) then there exists k such that « < A*. Then
(z)FtD) = (grk+D))u — (y=1gn(k+1))q is divisible by A since AR g gn(k+1),

It follows that it is sufficient to prove that if f € AdC(x,y), f ¢ C*, then
ged(f,z) ¢ C*. Indeed write f = wuf; where u = ged(f,z) then since u €
cycC(xz,z") it is sufficient to prove that f1 € AdC(a¥,y) is actually in cycC(z", y),
which we do by induction since C is Noetherian and z* still satisfies the same
condition.

Since as observed any u € AdC(z, —) divides some power of z (z™* if u < A¥) it
is enough to show that if u € AdC(z, —), u ¢ C* and u < 2, then ged(u,z) ¢ C*.
We do this by induction on n. From u € AdC(z,—) we have u < 2u, and from
u < 2" we deduce u < x ged(u, 2" 1). If ged(u, 2" ~1) € C* then u < 2 and we are
done: ged(z,u) = u. Otherwise let uy = ged(u, 2"~ 1). We have u1 < wuy, uj ¢ C*
and u; < 2"~ ! thus we are done by induction. O

The F-cyclic conjugacy. Let F be a finite order automorphism of the category C.
We define F- cycC as the subcategory of F- Ad C generated by {z € F-AdC(w,w’) |
x < w}, or equivalently, if C is left- and right-cancellative, by {2 € AdC(w,w’) |
w' = F(x)}. By the functor J, the morphisms in F-cycC(w,w’) identify to the
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morphisms in cyc(C x (F))(wF,w'F) which lie in C. To simplify notation, we will
denote by cycC(wF,w'F) this last set of morphisms. If C is right-Noetherian and
admits local right-lems, then C x (F') also. If S is a Garside family in C and F
is a Garside automorphism, and we translate Proposition 5.2 to the image of J
and then to F-cycC, we get that Uy,{z € F-AdC(w,—) | z S wand z € S} is a
Garside family in F-cycC.

Similarly Proposition 5.3 says that the set U, {x € F-AdC(w,—) | z < w} is a
Garside family in F-cycC associated to the Garside map A which sends the object
w to the morphism w € F-cycC(w, F(w)); the associated ® 4 is the functor F.

Finally Proposition 5.4 says that under the assumptions of Proposition 5.3 the
subcategory F-cycC of F-AdC is closed under left-gcd.

6. AN EXAMPLE: RIBBON CATEGORIES

The “ribbon” category that we consider in this section occurs in particular in
the study of the normalizer of a parabolic submonoid of an Artin monoid (the
submonoid generated by a part of the atoms), which has been done by Paris and
Godelle. The morphisms in this category will correspond to parabolic Deligne-
Lusztig varieties, and the conjugacy category to endomorphisms of these varieties.

We place ourselves in the context of Artin monoids as in the example of Sub-
section 2.3 and want to study the category whose objects are the conjugates of a
parabolic submonoid generated by I C S.

Most results work in the more general situation of a category and a subcategory
satisfying certain assumptions that we state now.

Definition 6.1. Let C be a left-cancellative right-Noetherian category which admits
local Tight lem’s. We say that a subcategory C' is parabolic if it is closed by left-
divisor and right-lem.

Lemma 6.2. The above assumption is satisfied when we take for C an Artin monoid
BT and for C' the “parabolic” submonoid Bf' generated by I C S.

Proof. We first show that By is closed by left-divisors. Since both sides of each
defining relation for B* involve the same generators, two equivalent words involve
the same generators. Hence if zy = 2z with z € BIJr then = has an expression
involving only elements in I so is in Bf". This implies also that if two elements have
a right-lem in By, this right-lem is a right-lem in B* since it is divisible by that
right-lem. It remains to show that two elements which have a common multiple in
BT have a common multiple (hence a right-lem) in B;y". Taking heads we see that it
is sufficient to prove that two elements of Wy which have a common right-multiple
in W have a common multiple in Wy. This is true since any element of W can be
written uniquely as vw with v € Wy and w not divisible by any element of I . [J

Lemma 6.3. Let C' be a parabolic subcategory of C. Then any u € C has a maximal
left-divisor acr(u) in C'.

Proof. Theset X = {x € C' | < u} is asubset of C’ which satisfies the assumptions
of Lemma 2.8: it is closed under left-divisor, it is right-Noetherian and if xg and
xh are in X with g,h € C’, then lem(g, h) exists, since g and h left-divide 2~ u,
hence zlem(g, k) is in X since it divides u and lem(g, h) € C’. Thus X is the set of

divisors of some morphism ac/(u). O
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The simultaneous conjugacy category. We now consider a parabolic subcate-
gory generated by a subset of the atoms. Let S be the set of atoms of C, let I C S
and let C1 be the subcategory generated by I.

Assumption 6.4. We assume that for s € S any conjugate t in C of s is in S
(that is, if sf = ft with f and t in C thent € S).

The above assumption is automatic if C has homogeneous relations, or equiva-
lently has an additive length function with atoms of length 1. This is clearly the
case for Artin monoids.

It follows that if Z is the set of conjugates of I, for any J € Z we have J C S.
We assume further that for any J € Z, the category Cy is parabolic.

Let AdC(Z) be the connected component of the simultaneous conjugacy category
whose objects are the elements of Z. A morphism in AdC(Z) is a b € C such that
for each s € T we have s € C, which implies sP € S. We denote such a morphism
in AdC(Z)(1,J) by T 2 J where J = {sP | b € I}, and in this situation we write
J=1b.

If § is a Garside family in C, by Proposition 4.3 the set {I LAY | |I,JeZ and b €
S}t is a Garside family in the category AdC(Z).

The ribbon category. In our context we will just write ag for ac, and denote by
wr(b) the morphism defined by b = ag(b)wi(b). We say that b € C is I-reduced if
it is divisible on the left by no element of I, or equivalently if ag(b) = 1.

Definition 6.5. We define the ribbon category C(Z) as the subcategory of AdC(Z)
generated by the morphisms 1 by J such that b is I-reduced.

Statements (i) and (ii) in the next proposition are a motivation for restricting
to the I-reduced morphisms: (i) shows that we “lose nothing” in doing so, and (ii)
shows that being reduced is compatible with the product in AdC(Z).

Proposition 6.6. i) T2 J e (AdC(T)) if and only if 1 2224 T € (AdC(T))

and 1%, 3 € (C(2)).

(i) If I bJe (AdC(Z)) then for any b’ € C we have az(b’) = agr(bb’)P. In
particular if T 2 J € (C(Z)) and J PoK e (AdC(Z)) then I LLIN "=
(C(T)) if and only if I 25 K € (C(T)).

(iii) By Lemma 4.2 two morphisms I Loy and1 2y of AdC(Z) have a
right-lem T =5 I¢ where c is the right-lem in C of b and b’; if b and b’ are
I-reduced, then c is also.

Proof. Let us prove (i). We prove by induction on the length of b that if s € I
and sP € C then s*1(®) ¢ I. This will prove (i) in one direction. The converse is
obvious.

By Assumption 6.4 we have sb = bt for some t € S. If s < b we write b = sb’
so that sb’ = b’t. We have ag(b) = sai(b’) and we are done by induction. If s
does not divide b then the lem of s and ar(b) divide sb = bt and this lem can be
written sv = ag(b)u, with v and u in Cr since Cy is closed by right-lem. We get
then that v divides b, so divides ag(b); thus ar(b)u = vau for some a € C. By
Assumption 6.4 we have that au € S, thus a = 1 and u € S, hence u € I which is
the result.
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Let us prove (ii). For s € I'let s’ = sP € J. Assume first that s £ b. Then
bs’ = sb is a common multiple of s and b which has to be their lem since s’ is
an atom. So for s € I we have s < bb’ if and only if bs’ < bb/, that is, sP < b’
whence the result. Now if s < b we write b = s*b; with s £ by; we have s’ = sP1
and the above proof, with by instead of b, applies.

To prove (iii) we will actually show the stronger statement that if for b, c € C we
have b < ¢, IP C S then az(b) < az(c) (which is obvious) and wi(b) < wi(c) (then
in the situation of (iii) we get that wr(c) is a common multiple of b and b’, thus
¢ < wi(c), which is impossible unless ar(c) = 1). By dividing b and ¢ by ai(b)
we may as well assume that ag(b) = 1 since 11b) = S by (i). We write ¢ = bb;
and J = IP. By (ii) we have az(c)P? = az(b;), whence az(c)b = baj(b;) < bb; =
¢ = ag(c)wi(c). Left-canceling a(c) we get b < wr(c) which is what we want since
b = wi(b). O

By Proposition 6.6 items (6.6(ii)) and (6.6(iii)) the subcategory C(Z) of AdC(Z)
is closed under right-quotient and right-lem. Next proposition shows that SNC(Z)
generates C(Z). By Lemma 2.7 this implies that S N C(Z) is a Garside family in
C(T).

Proposition 6.7. Let b be a morphism of C(Z); then all the terms of the normal
decomposition in AAC(Z) of b are in C(ZT).

Proof. Let b = wy ... wy, be the normal decomposition in AdC(Z) of b € C(Z)(1,J)
(it is also the normal decomposition in C since the Garside family of Ad C(Z) consists
of the morphisms I % J where w € S). As w; € AdC(Z), the source of w; is
I, =wi-%+J CS. Now, Wi-Wi-1qp (w;) € Cr and

w1...wi,1a1i (Wz) K Wi... W07, (Wz) <wWi..w,_1w; <b

so divides ag(b), thus this element has to be 1, whence the result. O
As explained above the proposition we then get

Corollary 6.8. The set S = {I %5 J € AdC(Z) | w € S and agx(w) = 1} is a
Garside family for C(T).

We now describe, in the case of Artin monoids, the atoms of C(Z), using the
work of [BH].

In that case we have S = {I %5 J € AdC(Z) | w € W and ag(w) = 1}. Note
that a morphism I % J € S is determined by the image (I,w,J) in W of the
triple.

If I is such that W7 is finite, we denote by wy the longest element of W;. With
these notations, we have

Proposition 6.9. The atoms of C(I) are the triples ("D I, v(s, I), 1) where s €
S — 1 is such that, if K is the connected component of s in the Coxeter diagram of
Wisyur, then Wi is finite, and where v(s,I) = wxwg _{s}-

Proof. We first show that S identifies to a subset of the groupoid G defined before
[BH, Proposition 2.3]: precisely S has the same objects and morphisms as G, but a
product of two morphisms (I, w, J) and (J,w’, K) is defined in S (and equal to the
value (I, ww', K) it takes in G) if and only if I(ww') = I(w) + {(w'). Since this last
condition is the condition for the lift to W of ww’ to be ww’, where w and w’ are
the respective lifts of w and w’, it is enough to show that if w € W is I-reduced and
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I C S then IV C S where w is the lift in W of w. Take s € I, then s =t € S
that is sw = wt. Since w is I-reduced we have I(sw) = 1 + [(w) thus the lift of sw
is sw. Since sw = wt we also have l(wt) = I(w) + 1 thus the lift of wt is wt, and
we have in C the equality sw = wt, that is sV € S.

G is generated by the morphisms (VI v(s,I),I) of the statement by [BH,
Proposition 2.3], and by the property on the length given in that proposition this
is true also for S.

Finally, for proving that the elements (*(0)I,v(s,I),I) are atoms we show that
if (YD w(t, 1),1) is a right-divisor of (VI v(s,I),I) then s = t. Let L be the
connected component of {¢t}UI containing ¢. If we denote by R(W) the set of reflec-
tions of a Coxeter group W, we know by [BH, lemma 3.2 that (*®DI, (¢, I),1) is
a right-divisor of (*(1,v(s,I),1) if and only if R(W.) — R(Wr_3) C R(Wk) —
R(Wg _¢s}). Since t is in the left-hand side, it has to be in K, hence L = K. The
condition becomes then R(Wx_¢5) C R(Wk_g4), so that K — {s} € K — {t}
which means that s =t as required. O

The spherical case. We show now that C(Z) is a Garside category when W is
finite. We recall that in that case C = B has a Garside element wg. We denote
by ® the involution on S given by conjugation by wg. This extends naturally
to involutions on Z, on C, and finally on C(Z) that we denote in the same way.
We define a natural transformation Az from the identity to ® as the collection of

morphisms J MEEMEN ®(J). The properties which must be satisfied by Az to be a
Garside map are easily checked.

Proposition 6.10. When W is finite the category C(Z) is a Garside category with
Garside map Az as defined above.

7. PERIODIC ELEMENTS

Definition 7.1. Let C be a Garside category with Garside natural transformation
A; then an endomorphism x of the enveloping groupoid G is said to be (d, p)-periodic
if x4 € APC* for some non-zero integers d, p.

Note that if x is (d, p)-periodic it is also (nd, np)-periodic for any non-zero integer
n. We call d/p the period of x. Note that if ® is of finite order, then a conjugate of
a periodic element is periodic of the same period (though the minimal pair (d, p)
may change). It can be shown that, up to cyclic conjugacy, the notion of being
(d, p)-periodic depends only on the fraction d/p; it results from Proposition 5.5
that two periodic morphisms of same period are conjugate if and only if they are
cyclically conjugate; our main interest is to be able to describe the centralizers of
periodic morphisms.

We deal here with the case p = 2. We show by elementary computations that a
(d, 2)-periodic element of C is the same up to cyclic conjugacy as a (d/2, 1)-periodic
element when d is even, and get a related characterization when d is odd.

We denote by S the Garside family of C and by ® the canonical Garside auto-

morphism ® corresponding to the natural transformation A.

Lemma 7.2. Let f be an endomorphism in C such that f € A2C*, and lete = LgJ
Then there exists g € Obj(cycC) such that cycC(f,g) # 0 and g¢ € SC* and
gt e A%C*.



14 F. DIGNE AND J. MICHEL

Further, if g is as in the conclusion above, that is g* € A2C* and g° € SC*,
then if d is even we have g¢ € AC*, and if d is odd there exists h € SC* such that
g = h®(h)e and g°h = A, where e € C* is defined by g¢ = A%e.

Proof. We will prove by increasing induction on 4 that for i < d/2 there exists
v € cycC such that (fV) € SC* and (f¥)¢ € A2C*. We start the induction with
1 = 0 where the result holds trivially with v = 1.

We consider now the general step: assuming the result for ¢ such that i + 1 <
d/2, we will prove it for i + 1. We thus have a v for step i, thus replacing if
needed f by fY we may assume that f' € SC* and f? € A2C*; we will conclude
by finding v € S such that v < f and (f¥)"*! € SC* and (f¥)¢ € A%C*. If
f*1 < A we have the desired result with v = 1. We may thus assume that
lgs(fi1) > 2. Since fi*! < A? we have actually lgg(f*t!) = 2 (see Proposition
2.10(i)); let (fiv,w) be a normal decomposition of fi*1 where fiv € S and w €
SC*. As flow(fiv) < flow(flow) = f20HD g fd =% A2 we still have 2 =
lgs((fiv)w(fiv)) = lgg((fiv)w). By Proposition 2.10(ii) we thus have w(fiv) €
SC*. Then SC* 3 w(f'v) = w((vw)")v = ()" and v X f.

So v will do if we can show (f)? € A2C*. Since f¢ = A%c with ¢ € C*, we
have that f commutes with AZe, thus f*! also, that is ®2(f*l)e = ef*! or
equivalently ®%(f'v)®?(w)e = eflvw. Now (®%(f'v), ®*(w)e) is an SC*-normal
decomposition and since (f*v,w) is a normal decomposition, by Lemma 2.2 there
exists & € C* such that ®2(fiv)e’ = efiv. We have fIA2®?(v)e’ = A2®?(flv)e’ =
A2cfiv = fiA%ev, the last equality sincef? commutes with A2e. Canceling A2
we get ®2(v)e’ = ev. We have then v(f?)? = flv = A2ev = A20%(v)e’ = vA2%e’
whence the result by canceling v on the left.

We prove now the second part. From g¢ € SC* we get that there exists h € SC*
such that g°h = A. If g% = A%c with e € C* we get g°hAe = A%c = g%, whence by
cancellation hAe = g°g® with a = 1 if d is odd and a = 0 if d is even. We deduce
9°9® = hAe = A®(h)e = g°h®(h)e, thus h®(h)e = g*.

If d is odd we get the statement of the lemma, and if d is even we get h®(h) € C*,
so h € C* so g¢ € AC*. O

F-periodic elements. Let us apply Lemma 7.2 to the case of a semi-direct prod-
uct category C x (F) with F' a Garside automorphism of finite order, where C has
no non-trivial invertible element and the Garside family S of C x (F)) is in C. Then
a map yF € CF is (d,p) periodic if and only if target(y) = F/(source(y)) and
(yF)? = APF4,

From the lemma we can deduce the following.

Corollary 7.3. Assume ®* = Id and that yF € CF satisfies (yF)? = A2Fe. Then

(i) If d = 2e is even, there exists x such that cycC(yF,zF) # () and (xF)¢ =
AF¢€. The centralizer of xF in C identifies to cycC(xF'). Further, we may
compute these endomorphisms in the category of fized points (cyc C)‘PFe
since the morphisms in cycC(zF) are ®F°-stable.

(ii) Ifd = 2e+1 is odd, there exists x such that cycC(yF,xF) # 0 and (zF)¢ =
A2F? and (zF)*F~¢ < A. The element s defined by (xF)*F~¢s = A is
such that, in the category C x (A) with A = ®~1F~¢, we have xA? = (sA)?
and (sA)4 = AA?. The centralizer of zF in C identifies to cycC(sA).
Further, we may compute these endomorphisms in the category of fized
points (cch)Fd since cycC(sA) is stable by F<.
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Proof. The lemma shows that y is cyclically F-conjugate to an x such that (xF)°¢ €
SF¢ and (zF)? = A2F.

If d is even then (zF)¢ = AF€.

If d is odd from (xF)¢h = A we get h = sF~¢ with s € §, and zF =
sF7e®(sF~¢)F? = sA(s)F. As xF is Fstable, and FA?2 = F, this can be
rewritten zA = (sA)2. Since the elements of the centralizer of F commute to F'¢
the centralizer is the same as that of A, and from (zF)¢s = AF® centralizes sA.
From zA = (sA)? we get that the centralizer of sA is the same as that of xF.

We get the corollary if we know that the centralizer of 2 F', for d even (resp. sA,
for d odd) is the same as cycC(xzF) (resp. cycC(sA)). But this is an immediate
consequence of Proposition 5.5. ]

Conjugacy of periodic elements. We recall the result of David Bessis on pe-
riodic elements. Two periodic elements of same period x and y in the classical
Artin monoid are also periodic and have equal periods in the dual monoid. By the
results of Bessis ([B1, 11.21]), such elements are conjugate in the dual monoid, so
are conjugate in the Artin group, hence are conjugate in the classical monoid. By
Proposition 5.5 they are cyclically conjugate in the classical monoid. We conjecture
that the same results extend to the case of F-conjugacy.

We conjecture that similarly, all periodic elements in C(Z) of a given period
are conjugate (thus cyclically conjugate); and that this extends also to the case of
F-conjugacy.
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7.1. Two examples. In two examples we show a picture of the category associated
to the centralizer of a braid (a root of 7w as will be considered in Section 9).

We first look at the case of a w in the braid monoid C = B* (W (Dy)) such that
w? = A, and describe the category cycC(w)®.

123243 —— 232431 > 231431 —— 314312

4 2 4 2 1 4 1
© 132432 > 32431 123143 —2> 131432
: e P |
: 3
3 3 3 3

131234 i 143123
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We now look at the case of a w in the braid monoid C = BT (W (A4s)) such that
w3 = A, and describe the category cycC(s® 1) where s is such that w = s®(s).

21325

14354
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Part 2. Deligne-Lusztig varieties and eigenspaces

In this part, we first study the Deligne-Lusztig varieties which give rise to a
Lusztig induction functor RE(Id); we then generalize these varieties to varieties
attached to morphisms in a braid category.

In the next section we consider the morphisms in this braid category which
correspond to varieties which play a role in the Broué conjectures.

We finish with a section which spells out the particular form that the conjectures
take on our varieties.

8. PARABOLIC DELIGNE-LUSZTIG VARIETIES

Let G be a connected reductive algebraic group over Fp, and let F' be an isogeny
on G such that some power F? is a Frobenius for a split [Fs-structure (this defines
a positive real number ¢ such that ¢° is an integral power of p).

Let L be an F-stable Levi subgroup of a (non-necessarily F-stable) parabolic
subgroup P of G and let P = LV be the corresponding Levi decomposition of P.
Let

Xv={9gVeG/V[gVNF(gV)#0} ={gVeG/V|g 'TgeVIV}
~{geG|lgFgeV}/(VNTV)

Xy is a GF-variety-LF.

We choose a prime number ¢ # p. Then the virtual GF-module-L¥ given by M =
> (-1 H{(Xv, Q) defines the cohomological induction RE which by definition
maps A € Irr(LY) to M &g, ¢ .

The map gV — gP makes Xv an L¥-torsor over

Xp = {gP € G/P|[gPNF(gP) # 0} = {4P € G/P|g "y P'P}
~{geGlg HgetPy/(PNTP),

a GF-variety such that RE(Id) = > ,(—~1)'H(Xp,Q,). The variety Xp is the
prototype of the varieties we want to study.

Let T C B be a pair of an F-stable maximal torus and an F-stable Borel
subgroup of G. To this choice is associated a basis II of the root system ® of G
with respect to T, and a Coxeter system (W, S) for the Weyl group W = Wg(T).
Let Xg = X(T)®R; on the vector space X, the isogeny F acts as q¢ where ¢ is of
order § and stabilizes the positive cone RTII; we will still denote by ¢ the induced
automorphism of (W, S).

To a subset I C II corresponds a subgroup W; C W, a parabolic subgroup
P; = HweWI BwB, and the Levi subgroup Ly of Py which contains T.

Given any P = LV as above where L is F-stable, there exists I C II such that
(L, P) is G-conjugate to (L;,Py); if we choose the conjugating element such that
it conjugates a maximally split torus of L to T and a rational Borel subgroup
of L containing this torus to B N Ly, then this element conjugates (L, P, F) to
(L7, Pr,wF) where 1 € Ng(T) is such that “?I = I, where w is the image of w
in W.

It will be convenient to consider I as a subset of S instead of a subset of II; the
condition on w must then be stated as “I* = ?I and w is I-reduced”. Via the
above conjugation, the variety Xp is isomorphic to the variety

X(I,wp) = {gPr € G/Pr | g g e PrwlP;}.
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We will denote by Xq (I, w¢) this variety when there is a possible ambiguity on the
group. If we denote by U; the unipotent radical of P, we have dim X (I, w¢) =
dim Uy — dim(U; N *FU;) = I(w). The f-adic cohomology of the variety X (I, we)
gives rise to the Lusztig induction from L% to G of the trivial representation; to
avoid ambiguity on the isogenies involved, we will sometimes denote this Lusztig
. . G,F

induction by Ry p(Id).

Definition 8.1. For two parabolic subgroups P, Q we say that the pair (P, Q) is
in relative position (I,w,J), where I,J C S and w € W, if (P, Q) is G-conjugate
to (Pr,“Py). We denote this as P Lwd, Q.

Since any pair (P, Q) of parabolic subgroups share a common maximal torus,
it has a relative position (I, w,.J) where I, .J is uniquely determined as well as the
double coset WiwW .

Let P; be the variety of parabolic subgroups conjugate to P; (isomorphic to
G/Py). Via the map gP; — 9P we have an isomorphism

ILaw,T g
X(I,wp) ~{P P | P—— "P}

it is a variety over P; X Pes; by the first and second projection.

The parabolic braid category BT (Z). Let BT (resp. B) denote the Artin-Tits
monoid (resp. Artin-Tits group) of W, and let S be its generating set, which is
in canonical bijection with S. To I C S corresponds I C S and the submonoid
BIJr generated by I. By Lemma 6.3 every element of b € BT has a unique longest
divisor ag(b) in BI+. As in Definition 6.5 we define:

Definition 8.2. Let T be the set of conjugates of some 1 in S. Then BT (I) is the
category whose objects are the elements of T and the morphisms from J to K are

the b € B such that J* = K and az(b) = 1.

If b € BY determines an element of Hompg+ (7)(I, J) for some objects I, J of Z,

we will denote by I b, J this morphism to lift ambiguity on its source and target.
It is shown in Proposition 6.6 that the above definition makes sense, that is if we
have a composition T 2 J % K in B+ (Z), then ag(bc) = 1. When I =0, BT(Z)
reduces to the Artin-Tits monoid B*.
The canonical lift W = W of W in B is denoted by w + w. Conversely for
w € W we denote w its image in W. It is shown after Proposition 6.6 that BT (Z)
has a Garside family S consisting of the morphisms I ~ J where w € W and a

—1
Garside map Az given on the object I by the morphism I T ™, 1o where we
denote by wiy the lift to W of the longest element of Wy, and write wq for ws.
This includes the following:

Lemma 8.3. (i) S generates BT(T); specifically, if 1 < J € BY(T) and
(W1,...,Wg) is the normal form of w, there exist subsets I; with I; =1,
Iiy1 = J such that for all i we have 1;41 = I;” ; thus 1 AL I — - —
I, ~ J is a decomposition of I = J in BT (Z) as a product of elements
of S.
(ii) The relations (I 25 J X2 K) = (I % K) when w = wiws € W form a
presentation of BY(Z).
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We set a = ag; it is an S-head funtion. The above implies:
Lemma 8.4. For I 5T € B*(I) and v € By we have a(vw) = a(v)a(w).

Proof. We have a(vw) = a(va(w)) = ala(w)ve™) = a(a(w)a(ve™)), the
first and last equalities from the general properties of «. Since by Lemma 8.3(i)
1" < 8, we have a(v*™)) = a(v)*™), so that a(vw) = a(a(w)a(v)*™) =
ala(v)a(w)). Since a(w) is I-reduced we have a(v)a(w) € W, hence a(a(v)a(w))
a(v)a(w). O

We now look at the compatibility of morphisms in BT (Z) with “parabolic” sub-
categories. We denote by By (J) the “parabolic” subcategory of B*(Z) where S
and Z are replaced respectively by I and J, where J is the set of By-conjugates of
JcIcCS. We have

Proposition 8.5. If I 5 I’ is a morphism in BY(T) and I3 % J' is a morphism
in Bf (J) and if the normal form of vw is (u1,...,uy) then for each i we have
u; = v;w; where (w1, wa, ..., wg) and (v, Wive, WtW2vs ) are the normal forms
of w and v respectively with perhaps some added 1’s at the end.

Proof. We proceed by induction on k. By Lemma 8.4, we have u; = a(v)a(w) =
viwi, so that up...up = w(v)*™w(w). Let I = I*M) and 7’ be the set of
conjugates of J*W) in I’; the induction hypothesis applied to w(v)*™) € Bf (J)
and w(w) € BT (Z) gives the result. O

The varieties O attached to BT (Z). In this subsection, we shall define a repre-
sentation of B*(Z) into the bicategory X of varieties over P; x P, where I,.J vary
over Z. The bicategory X has 0-cells which are the elements of Z, has 1-cells with
domain I and codomain J which are the P; x Pj-varieties and has 2-cells which
are isomorphisms of Py x P -varieties. We denote by V(I,J) the category whose
objects (resp. morphisms) are the 1-cells with domain I and codomain J (resp. the
2-cells between them); in other words, V(I,J) is the category of P; x P -varieties
endowed with the isomorphisms of P; x Pj-varieties. The horizontal composition
bifunctor V(I,J) x V(J,K) — V(I,K) is given by the fibered product over P;.
The vertical composition is given by the composition of isomorphisms.

Here by “representation into a bicategory” we mean a morphism of bicategories
between C viewed as a trivial bicategory into the given bicategory. This amounts
to give a map T from Obj(C) to the 0-cells, and for f € C of source I and target .J,
an element T'(f) € V(T'(I), T(J)) together with for each composable pair (f,g) an
isomorphism T'(f)T(g) = T(fg) such that the resulting square

(8.6) T(HTUNT") —=T)T(f")

THTSf ") ——=T(f ')
comiutes.

We first give a representation in X of the Garside family & which is the same
excepted that the above square is restricted to the case where f, ff/ and ff'f"
are in S, (which implies f’, f”, f'f” € S since in our case S is closed under right
divisors). We will then extend our representation to the whole category BT (Z) by
a general theorem on Garside categories.
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Definition 8.7. ForI % J € S we define
O1,w) = {(P,P") e Py x P, | P 225 P}
where I, w, J denote the images in W of I, w, J respectively.

For T % J € S weset T(I 2 J) = O(I,w). The following lemma constructs
the isomorphism T'(f)T(g) = T(fg) when f,g, fg € S:

Lemma 8.8. Let (I 25 I, 22 J) = (I %5 J) where w = wiwy € W be a defining
relation of BY(Z). Then (p',p") : O(I,w1) xp, O(Iz,w3) = O(I,wiwy) is an
isomorphism, where p' and p” are respectively the first and last projections..

Proof. First notice that for two parabolic subgroups (P’,P”) € P; x P; we have
P’ L% P if and only if the pair (P’,P”) is conjugate to a pair containing
termwise the pair (B, “B). This shows that if P/ 22212, Py and P, L2927, pr

I,wl’IJJQ,.]

then P/ ———= P, so (p/,p"”) goes to the claimed variety.

. Lw,J . .
Conversely, we have to show that given P’ 2% P there is a unique Py such

that P/ 40P P, 202 ] pr The image of (B, *“B) by the conjugation which
sends (Py,“P ) to (P’,P”) is a pair of Borel subgroups (B’ ¢ P/, B” C P”) in
position w. Since [(wy) + I[(wz) = l(w), there is a unique Borel subgroup B; such

that B’ 2% B; 22 B”. The unique parabolic subgroup of type I containing B
has the desired relative positions, so P exists. And any other parabolic subgroup
P’ which has the desired relative positions contains a Borel subgroup B such that
B’ X% B, X2 B” (take for B the image of “*B by the conjugation which maps
(Pr,"1Py,) to (P, P))), which implies that B} = B; and thus P} = P;. Thus our
map is bijective on points. To show it is an isomorphism, it is sufficient to check
that its target is a normal variety, which is given by

Lemma 8.9. For I 5 J € S the variety O(I,w) is smooth.

Proof. Consider the locally trivial fibrations with smooth fibers given by G x G 2
Pr x Py : (91,92) — (9P, 2P;) and G x G 5 G : (g1,92) — gy ‘go. It is
easy to check that O(I,w) = p(¢~!(“P,)) thus by for example [DMR, 2.2.3] it is
smooth. 0

O

From the above lemma we see also that the square 8.6 commutes for elements
of S, since the isomorphism “forgetting the middle parabolic” has clearly the cor-
responding property. We have thus defined a representation 7" of S in X.

We will extend T to the whole of BT (Z) by associating to a composition I >,
L —» - — I, 2% J where w; € W the variety

Liywi Iita

O(I,Wl) XP12 . XPIk O(Ik,wk) = {(Pl, .. .,Pk+1) | Pi Pi+1};

where I} = I and Iy, = J. It is a Py X P -variety via the first and last projections
mapping respectively (P1q,...,Pri1) to P; and Pp4q, and Lemma 8.8 shows that
up to isomorphism it does not depend on the chosen decomposition of T —-=**, J.
We have to show that actually there is a unique isomorphism between the various
models attached to different decompositions.
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This will result from a general theorem on Garside categories which generalizes
a result of Deligne [D, 1.11].

Theorem 8.10. Let C be a right Noetherian Garside category with Garside family
S and which admits local right lem’s. Then any representation of S into a bicategory
extends uniquely to a representation of C into the same bicategory.

Proof. The proof goes exactly as in [D], in that what must been proven is a simple
connectedness property for the set of decompositions as a product of elements of S
of an arbitrary morphism in C— this generalizes [D, 1.7] and is used in the same way.
In his context, Deligne shows more, the contractibility of the set of decompositions;
on the other hand our proof, which follows a suggestion by Serge Bouc to use a
version of [Bouc, lemma 6], is simpler and holds in our more general context.

Fix g € C with g ¢ C*. We denote by F(g) the set of decompositions of g into
a product of elements of S — C*.

Then E(g) is a poset, the order being defined by

(917 ey 9i—159i,Git1y - - - ;gn) > (91, e ,gi,l,a,b,gzqu, e ;gn)
ifab=yg; € S.

We recall the definition of homotopy in a poset E (a translation of the corre-
sponding notion in a simplicial complex isomorphic as a poset to F). A path from
1 to xp in E is a sequence zj ...z, where each x; is comparable to x;4;. The
composition of paths is defined by concatenation. Homotopy, denoted by ~;, is the
finest equivalence relation on paths compatible with concatenation and generated
by the two following elementary relations: zyz ~ zz if © < y < z and both zyx ~ x
and yzxy ~ y when x < y. Homotopy classes form a groupoid, as the composition of
a path with source x and of the inverse path is homotopic to the constant path at
x. For x € E we denote by II; (F, x) the fundamental group of E with base point
x, which is the group of homotopy classes of loops starting from zx.

A poset E is said to be simply connected if it is connected (there is a path linking
any two elements of E) and if the fundamental group with some (or any) base point
is trivial.

Note that a poset with a smallest or largest element x is simply connected since
any path (x,y,z2,t,...,2) is homotopic to (z,y,z, z,x,t,2,...,2) which is homo-
topic to the trivial loop.

Proposition 8.11. The set E(g) is simply connected.

Proof. First we prove a version of a lemma from [Bouc] on order preserving maps
between posets. For a poset E we put E>, = {2/ € E | 2/ > z}, which is a
simply connected subposet of E since it has a smallest element. If f : X — Y
is an order preserving map it is compatible with homotopy (it corresponds to a
continuous map between simplicial complexes), so it induces a homomorphism f* :
I (X, z) — I (Y, f(x)).

Lemma 8.12. (Bouc) Let f : X — Y an order preserving map between two posets.
We assume that Y is connected and that for any y € Y the poset f=1(Ys,) is
connected and non empty. Then f* is surjective. If moreover f~1(Ys,) is simply
connected for all y then f* is an isomorphism.

Proof. Let us first show that X is connected. Let z,2’ € X; we choose a path
Yo...yn iIn Y from yo = f(z) to y, = f(2'). For i = 0,...,n, we choose z; €
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HYsy,) with g = 2 and z, = 2’. Then if y; > y;+1 we have f71(Y>,,) C
Y(Ysy,,,) so that there exists a path in f~!(Y>y,,,) from z; to @;41; otherwise
i < Yi+1, which implies f~1(Y>,,) D f71(Y>y,,,) and there exists a path in
J71(Ysy,) from x; to z;41. Concatenating these paths gives a path connecting x

We fix now zp € X. Let yo = f(xg). We prove that f*: 111 (X, z) — 11 (Y, yo)
is surjective. Let yoy1 ...y, With y, = yo be a loop in Y. We lift arbitrarily
this loop into a loop xg—---—=x, in X as above, (where z;—x;+1 stands for a
path from z; to x;41 which is either in f~!(Y>,,) or in f~*(Y>,, ,). Then the
path f(xo—x1—---—x,) is homotopic to yo...y,; this can be seen by induc-
tion: let us assume that f(xo—=x;---—=a;) is homotopic to yo...y;f(x;); then
the same property holds for ¢ + 1: indeed y;y;41 ~ vif(xi)yi+1 as they are two
paths in a simply connected set which is either Y>,, or Ys,, ; similarly we have
f@)yis1f(ziv1) ~ f(zi—x;41). Putting things together gives

Yo - - YilYirr f(@iv1) ~ yoyr - - Yi f (@) yivr f(@ig1)

~ f(@o—+ =) Y1 f (i)
~ f(@o—+ =T —Tit1).
We now prove injectivity of f* when all f~1(Y>,) are simply connected.
We first prove that if ©o—---—=, and xj—---—=x], are two loops lifting the
same loop %o ...Yn, then they are homotopic. Indeed, we get by induction on ¢
that ©o—---—x;—2} and z(—---—a} are homotopic paths, using the fact that

xi—1, T, ©,_, and x} are all in the same simply connected sub-poset, namely either
fﬁl(Yzyi—l) or fﬁl(YZyi)'

It remains to prove that we can lift homotopies, which amounts to show that if
if we lift as above two loops which differ by an elementary homotopy, the liftings
are homotopic. If yy'y ~ y is an elementary homotopy with y < 3’ (resp. y > v/),
then f=1(Ys,) C f71(Y>,) (vesp. f71(Y>y) C f71(Ys>,)) and the lifting of yy'y
constructed as above is in f~1(Ys,) (resp. f~(Y>,/)) so is homotopic to the trivial
path. If y <y’ < y”, a lifting of yy'y” constructed as above is in f~(Y>,) so is
homotopic to any path in f~!(Y>,) with the same endpoints. O

We now prove Proposition 8.11 by contradiction. If it fails we choose g € C
minimal for proper right divisibility such that E(g) is not simply connected.

Let L be the set of elements of S —C* which are left divisors of g. For any I C L,
since the category admits local right lem and is right Noetherian, the elements of T
have an lem Aj. Let Er(g) = {(g1,..-,9n) € E(g9) | A1 < g1}. We claim that E;(g)
is simply connected for I # ). In the following, if A; < a, we denote by a’ the
element such that @ = Ara’. We apply Lemma 8.12 to the map f : E;(g) — E(g7)
defined by

(91 g )'_> (g2a---agn) ifgl:AI
en (g7, 92,...9n) otherwise

This map preserves the order and any set ffl(YZ(gl,__wgn)) has a least element,
namely (A7, ¢1,...,9n), S0 is simply connected. As by minimality of g the set
E(g") is simply connected Lemma 8.12 implies that E(g) is simply connected.
Let Y be the set of non-empty subsets of L. We now apply Lemma 8.12 to
the map f : E(g) — Y defined by (g1,...,9n) — {8 € L | s < g1}, where YV is
ordered by inclusion. This map is order preserving since (g1,...,9n) < (91,---,95)
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implies g1 < g]. We have f~1(Y>;) = E(g), so this set is simply connected. Since
Y, having a greatest element, is simply connected, 8.12 gives that E(g) is simply
connected, whence the proposition. O

O

Definition 8.13. Since BT(I) satisfies the assumptions of Theorem 8.10, this
theorem enables us to attach to any I b Jept (Z) a (well-defined) variety O(1,b)
which for any decomposition T2 J = O(I,w1) Xp,, ... xp, O(Iy, wy) in elements
of S is isomorphic to

Liywi Iita

{(P1,...,Prp1) €Pry x ... x Pry, | Py

where we have set I = I and Iy = J.

Piii},

The Deligne-Lusztig varieties attached to BT (Z). The automorphism ¢ lifts
naturally to an automorphism of BT which stabilizes S, which we will still denote
by ¢, by abuse of notation. If T 2% ¢I is a simple morphism, then X(I,w¢) is the
intersection of O(I,w) with the graph of F', (that is, points whose image under
(p’,p") has the form (P, “P)). More generally,

Definition 8.14. Let T 2 4T be any morphism of BT (I); we define the variety
X(I,bo) as the intersection of O(1,b) with the graph of F.

To any decomposition I} —= Iy — -+ —% T of I 5, I in elements of S
corresponds a model of X(I,b¢) as sequences of parabolics (P1,...,Pgy1) such

that Pi41 = F(P1). Such a model can be interpreted as an “ordinary” parabolic
Deligne-Lusztig variety in a group which is a descent of scalars:

Proposition 8.15. Let I = I, BAETE PRI ) Tk 9T be a decomposition
into elements of S of 1 LN = BH(I), let Fy be the isogeny of G* defined by
Fi(g1,---y98) = (92,...,9%, F(g1)) and let ¢1 be the corresponding automorphism
of Wk.

Then Xa(I,bgd) ~ Xagw (I X ... X I, (w1, ..., wg)d1). By this isomorphism the
action of F° corresponds to that of FF® and the action of G corresponds to that
of (GF)F1,

Proof. An element Py x ... x Py € Xgr(I1 X ... x Ii, (w1,...,wg)d1) by definition
satisfies

11><,,,Ik,(w1 ..... 'Luk),IQX...IkX¢11

Py x...xPy P2><...><Pk><FP1

Liywi Iita

thus is equivalently given by a sequence (P, ..., Pgy1) such that P;
with Ppy1 = P, and Iy = d’h, which is the same as an element

(Pl, . ,Pk+1) € O(Il,Wl) XPr, O(IQ,WQ) cee Xpp O(Ik,Wk)

PiJrl

such that Py, = FP;. But, by construction, we have
O(I,b) ~ O(Il,Wl) X’])I2 O(IQ,WQ) AN Xp1k71 (’)(Ik,wk),
and thus via this isomorphism we get an element of O(I, b) which is in X (I, be).

One checks easily that this sequence of identifications is compatible with the
actions of I and G as described by the proposition. O
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Proposition 8.16. The variety X(I,be) is irreducible if and only if IUc(b) meets
all the orbits of ¢ on S, where c(b) is the set of elements of S which appear in a
decomposition of b.

Proof. This is, using Proposition 8.15, an immediate translation in our setting of
the result [BR, Theorem 2| of Bonnafé-Rouquier. O

The varieties X(I, we). The conjugation which transforms Xp into X(I,we)
maps Xv to the GF-variety-L%F given by

X(I,wF)={gU; € G/U; | g7 'Fg e U F'U},

where w is a representative of w (any representative can be obtained by choosing an
appropriate conjugation). The map gU; — gP; makes X(I,wF) a L%F _torsor over
X (I, we¢). We will sometimes write X (I, 1.F) to separate the Frobenius endomor-
phism from the representative of the Weyl group element. This will be especially
useful when the ambient group is a Levi subgroup with Frobenius endomorphism
of the form & F'.

In this section, we define a variety X(I, w¢) which generalizes X (I,wF) by
replacing w by elements of the braid group. Since w represents a choice of a lift of
w to Ng(T), we have to make uniformly such choices for all elements of the braid
group, which we do by using a “Tits homomorphism”.

First, we need, when w € W, to define a variety O(I, ) “above” O(I, w) such
that X(I,wF) is the intersection of O(I,w) with the graph of F, and then we
extend this construction to BT (7).

Deﬁniti0n~8.17. Let 1 % J € S, and let v € Ng(T) be a representative of w.
We define O(1,w) = {(gUr,g'U;) € G/Ur x G/U; | g~ t¢' € UriU,}.

We can prove an analogue of Lemma 8.8.

Wi1Wso

Lemma 8.18. Let (I T, 22 J) = J) where wiwy € W be a defining
relation of BY(ZI), and let 1in, 1w be representatives of the images of w1 and wo in
W. Then (p',p") : @(I,u}l) Xa/u;, (7)(]2,1[)2) = @(I,wlu'}g) is an isomorphism
where p' and p” are the first and last projections.

Proof. We first note that if I ~» J € BT(Z) and w is a representative in Ng(T) of
the image of w in W, then U;wU is isomorphic by the product morphism to the
direct product of varieties (U; N “ U7 )w x U, where U] is the unipotent radical
of the parabolic subgroup opposed to P ; containing T. We now use the lemma:

Lemma 8.19. Under the assumptions of Lemma 8.18, the product gives an iso-
morphism (Up N *1UL Yy x (Ug, N 20U g = (U N 99207 )iy by

Proof. As a product of root subgroups, we have Uy N “U; = H—ae“’N(w) U,,
where N(w) = {a € &t | Ya € &~ }. The lemma is then a consequence of the
equality N(wy)™2 [ N(ws) = N(wyws) when [(w1) + [(ws) = [(wyws). O

The lemma proves in particular that if gflgg € Upuin Uy, and gglgg e UpnwUy
then gl_lgg € U[’Li)lUIQ’LUQUJ = (U[ N wlUI_Q)’Lbl(UIZ n wZU;)wQUJ = (U[ n
W12 Yy Uy = Upiinie Uy, so the image of the morphism (p/, p”) in Lemma
8.18 is indeed in the variety (7)([, wW1g).
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Conversely, we have to show that given (g1 Uy, g3U;) € O(I, 1 1), there exists
a unique g>Uy, such that (91Uz, 92Uy,) € O(I, 1) and (92U, g3Uy,) € O(I2, w2).
The varieties involved being invariant by left translation by G, it is enough to solve
the problem when g; = 1. Then we have g3 € Urwyw2U, and the conditions for
92Uy, is that ¢oUy, € UrwUyg,. Any such coset has then a unique representative
in (U;N wlUI;)u')l and we will look for such a representative go. But we must have
95 93 € Upio Uy = (Up, N"2U7 )iy U, and since by the lemma the product gives
an isomorphism between (U; N wlUI;)’Lbl x (Up, N wZU;)ngJ and Ui, Uy,
the element g5 can be decomposed in one and only one way in a product g2(gs 1g3)
satisfying the conditions. O

We will now use a Tits homomorphism, which is a homomorphism B AN Ng(T)
which factors the projection B — W (their existence is proved in [T]). Theorem 8.10
implies that, setting T(I ~» J) = O(I,t(w)) for I %5 J € S and replacing Lemma
8.8 by Lemma 8.18, we can define a representation of B¥(Z) in the bicategory X
of varieties above G/U; x G/Uj for I,J € T.

Definition 8.20. The above representation defines, for any I b Je BT(1), a

variety @(I,b) which, for any decomposition into elements of S given by (I b,
N=01, ... - I 25 J) is isomorphic to O(I,t(wy)) XG/uy, - XG/Uy,

O(Ik, t(Wk)).

Proposition 8.21. There exists a Tits homomorphism t which is F-equivariant,
that is such that t(¢(b)) = F(t(b)).

Proof. To any simple reflection s € S is associated a quasi-simple subgroup Gg
of rank 1 of G, generated by the root subgroups U,, and U_,,; the 1-parameter
subgroup of T given by T N G, is a maximal torus of Gs. By [T, Theorem 4.4] if
for any s € S we choose a representative $ of s in Gy, then these representatives
satisfy the braid relations, which implies that s +— § induces a well defined Tits
homomorphism. We claim that if s is fixed by some power ¢? of ¢ then there exists
5 € Gy fixed by F¢; we then get an F-equivariant Tits homomorphism by choosing
arbitrarily § for one s in each orbit of ¢. If s is fixed by ¢? then G, is stable
by F?; the group G is isomorphic to either SLy or PSLy and F? is a Frobenius
endomorphism of this group. In either case the simple reflection s of G4 has an
F?-stable representative in Ng, (T N G,). O

Notation 8.22. We assume now that we have chosen, once and fm: all, an F-
equivariant Tits homomorphism t which is used to define the varieties O(I,b). For
w € W we will write w for t(w) where w € W is the canonical lift of w.

Definition 8.23. For any morphism (I LN T) € BY(Z) we define X(I,bp) = {z €

O(Lb) | p"(x) = F(p'(2))}.
When w € W we have X (I, wp) = X(I,wF) (the variety defined at the begin-
ning of this section).

Lemma 8.24. For any (I 2% ¢T) € B*(Z), there is a natural projection X(I, w¢) =
X(I,w¢) which makes X(I, we) a Li(w)F—torsor over X (I, wo).
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Proof. Let T 25 Iy — -+ — I, 25 T be a decomposition into elements of S of
I T, so that X (I, w¢) identifies to the set of sequences (g1 U7, g2Ur, ..., ¢, Ur,)
such that gj_lng € Uy t(w;)Uy,,, for j < rand g7 ' g1 € Up t(w,)Usr. We
define 7 by g;Uy; — 9%Pj,. It is easy to check that the morphism 7 thus de-
fined commutes with an “elementary morphism” in the bicategories of varieties

X or X consisting of passing from the decomposition (W1,..., Wi, Wit1,..., W,)
to (W1,...,W;W;y1,...,W,) when I, Wi, I,.o € §. Thus by 8.6 the mor-

phism 7 is well-defined independently of the decomposition chosen of w. We
claim that m makes X(I,w¢) a L*™)F_torsor over X(I, w¢). Indeed, the fiber
7 (9P, 92Py,, ..., 9P} )) consists of the (g1, Uy, ..., g1, Uy, ) € X(I, wg) with
l; € Ly,, that is such that
for j < r we have g;lgjﬂ € (Upt(w;)Up,, )N li(UIjt(Wj)UIjH)l;rll
and g, ' g1 € (U, t(w,)Usp) N1(Up, t(w, ) Usp) FI7

Now
(U, t(w;)Up,, )NL(U t(wy)Ur,, O = (Ugt(w;)Up,, )NU g (w) U, 11,
and the intersection is non-empty if and only if U?gwj 'nU I Hlf(wj )li_-|—11 # (), which,

since P?ij ) and P I

i+1
occurs only if lf(wi) = l;41. Similarly we get li(wT) = ¥y, so in the end the fiber is

given by the [; such that {; = *WF(,. O

are two parabolic subgroups with the same Levi subgroup,

We end this subsection with the analogue of Proposition 8.15 for X(I, bo).

Proposition 8.25. Let I =1, BAETNY PRI Tk 9T be a decomposition into
elements of S of 1 b1 e B (I), let Iy be the isogeny of G* as in Proposition
8.15.

Then Xg (I, bg) ~ Xgi(Iy X ... x I, (b, . .., wx)F1). By this isomorphism the
action of FO corresponds to that of FF°, the action of GI' corresponds to that of
(GFYF1 | and the action ofLi(b)F corresponds to that of (L, x - - x Ly, )0tk P,

Proof. An element x;Uyp, x ... x 2, Uy, € ng(h X oo X I, (w1, ..., wg)F1) by
definition satisfies (z;Ur,,2;41U7,,,) € O(I;,;) for i = 1,...,k, where we have
put I41 = I and 2411 Uy, 41 = F(21Uy,). This is the same as an element in the
intersection of O(I, wy) Xa/uy, OIy, ws). .. XG/u,, O(1;,, wy) with the graph
of F. Since, by definition, we have

O(I,b) ~ O(Il,wl) XG/U12 O(IQ,WQ) AN XG/UI)%I O(Ik,Wk),

via this last isomorphism we get an element of O(I, b) which is in Xg(I, bo).
One checks easily that this sequence of identifications is compatible with the

actions of %, of G and of Li(b)F as described by the proposition. O

Cohomology. We start with an isomorphism which reflects the transitivity of
Lusztig’s induction.

Proposition 8.26. Let I %5 I € BY(Z). Then if w is the image of w in W, the
automorphism wao lifts to an automorphism that we will still denote weo of BI+. For
JCI, let T 5 w93 € Bf (J). Then
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(i) We have an isomorphism X (I, w¢) X ) F Xy, (I, vwe) = X(J, vwo) of
I

GF—varieties-L’}(vw)F. This isomorphism is compatible with the action of
F™ for any n such that I, J, v and w are ¢"-stable.
.. . t(vw)F
(ii) Through the quotient by L
of GF -varieties

X(IL,wo) xwwr X, (T, vwe) = X(T, vwe).

(see Lemma 8.24) we get an isomorphism

Proof. We first look at the case w,v € W (which implies vw € W), in which case
the isomorphism we seek is

X(I,WF) xgor Xp, (J, 0.00F) <> X(J, 00 F)

where v is the image of v in W. This is the content of Lusztig’s proof of the
transitivity of his induction (see [Lu, lemma 3]), that we recall and detail in our
context. We claim that (gU;,IVy) — gU[IV; = ¢glU; where V; = Ly NU;;
induces the isomorphism we want. We have

U,owfU; = U V0wt Vv, U = U V0PV u UL
Since V0¥V ; is in Ly, so normalizes U we get finally
U, owtU; = V0P v, Ut Uu;.
Hence if (gU7,1V ) € X(I,wF) x Xy, (1¢), we have

(gl) " F(gl) € 17U U FL = 1770, P i U,
= 70 P U € VotV URi PO = Uyow™U .

Hence we have defined a morphism X (I,wF) x Xy, (0.1¢) — X(J, 0w F) of GF-
varieties—L@JwF. We show now that it is surjective. The product L;.(Urw?Uy) is
direct: a computation shows that this results from the unicity in the decomposition
P; n%Fy; = L;.(U; N wFUI). Hence an element =z € U 0w U, defines
unique elements [ € V%PV and u € UpwfU; such that 2=z = u. If, using
Lang’s theorem, we write [ = I’"'"F[’ with I’ € Ly, the element g = 21'~! satisfies
gleg — l/$71F$F1/71 — u')Fl/uFllfl c wFl/U]U'}FU]Fl/71 — U]’leU]. Hence
(gUr,I'V ;) is a preimage of zU; in X(I,wF) x Xy, (J, 0ie).

Let us look now at the fibers of the above morphism. If ¢’U;I'V; = ¢gU;IV,
then ¢'"'g € Py so up to U; we may assume ¢’ = g\ with A € L;; we have then
AN'U; =1Uy, so that 7'\’ € U; N L; = V; moreover if g\U; € X(I, wF) with
A € Ly, then AU U PN = U U, which implies A € LYY, Conversely, the
action of A € LY given by (gUy,IV ;) = (gAU, A1V ;) preserves the subvariety
X(I,wF) x Xy, (bwe), of G/U;r x L;/V ;. Hence the fibers are the orbits under
this action of LYF.

Now the morphism j : (gU;,IV,) — ¢lU; is an isomorphism G/U; Xy,
L;/V; ~ G/U; since gU; — (gU;, V) is its inverse. By what we have seen
above the restriction of j to the closed subvariety X(I,wF) Xpur Xy, (J, tirgh)

maps this variety surjectively on the closed subvariety X (.J, 9 F) of G/U, hence
we get the isomorphism we want.

We now consider the case of generalized varieties. Let k& be the number of terms
of the normal form of vw and let T ~% Iy % I3 — --- — I, =% °I be the
normal form of I 5 ¢I, perhaps extended by some identity morphisms. We have
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X(I,we) ~ X(I; x Iy - - - x I, (t(w1), . .., t(wy))Fy), where F} is as in Proposition
8.15. Let us write (viwy, ..., vpwy) for the normal form of vw, with same notation
as in Proposition 8.5. Let J, = J and Jj1 = J;7 C [y forj=1,...,k—1. We
apply the first part of the proof to the group G* with isogeny F; with I, J, w, and
v replaced respectively by Iy X -+« X I, Jy X - X Jg, (wy ..., wg) and (v, ..., vx).
Using the isomorphisms from Proposition 8.25;

Xgr(J1 X - T, (01101, . ., i) d1) ~ X(T, vwe)
and
XLy ry (JUX X T (01, o) (B(w), o t(wg)) ) = X, (3, vwg),

we get (1). Now (ii) is immediate from (i) taking the quotient on both sides by

t(vw)F
L; ) O
If 7 is the projection of Lemma 8.24, the sheaf mQ, decomposes into a direct

sum of sheaves indexed by the irreducible characters of L;(W)F. We will denote by

St the subsheaf indexed by the Steinberg character of Li(w)F.

In the particular case where I = ) we write X(w¢) for X(I,w¢). Quite a few
theorems are known about the ¢-adic cohomology of these varieties (see [DMR]).
The following corollary of Proposition 8.26 relates the cohomology of a general
variety to this particular case; its part (ii) is a refinement of Corollary 8.42.

Corollary 8.27. Let I % ¢I ¢ BH(T).
(i) For all v € Bf and all i we have the following inclusions of G x (F°)-
modules:
HY(X(T,wg),Q,) € HIFY (X (vwe),Qp)(=1(v))
and
Hi(X(L we), St) ¢ HHM (X (vwe), Q)
(i) For all i we have the following equality of GT x (F?)-modules:
HE(X(MIW(b)a@Z) = Z Hg (X(Ia W¢)7@€) ® @énkk (k)
J+2k=i

where nr i = |{v € Wi | l(v) = k}|, where wy is the longest element of
Wi and the variety X(w;w¢) is the union | J, ey, X(vW@) as defined in
[DMR, 2.3.2].

Proof. For getting (i), we apply the Kiinneth formula to the isomorphism of Propo-
sition 8.26 when J = (). If we decompose the equality given by the Kiinneth formula
according to the characters of Li(w)F

@Xehr(Lt(W)F)@jHé_j (X(Ia W¢)a @é))(@L;(W)FHg (XLI (V’LU(b), @5)7 = HZ (X(VW¢)a @Z)

I

, we get

We now use that H:(X(I, wo), Q,) = H:(X(I, we), Q,)1a, and H (X(I, w¢), St) =
HY(X(I,w¢),Qy)st where Id and St denote the identity and Steinberg characters
of L;(W)F, and the facts that

e the only j such that HJ(Xr,, (vwe), Q)1a is non-trivial is j = 2/(v) and in

that case the cohomology group has dimension 1 and ¢(wF') acts by ¢
(see [DMR, 3.3.14]).
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e the only j such that HJ(Xp,(vwe),Q,)s: is non-trivial is j = [(v) and
that isotypic component is of multiplicity one, with trivial action of t(wF')
(see [DMR, 3.3.15]).

Hence we have
@ H (X(L,we), Q) ® H (X, (vwd), Qe = HI (X (T, we), Q) (1(v)),
and similarly
@ H T (X(L,we), Qp)st ® HI (X, (vwg), Qp)se = HI' V) (X(L, we), Q).

We now prove (ii). Let B; be the variety of Borel subgroups of Ly, identified
to L;/B;. We first prove that we have an isomorphism X(I, w¢) Xpwe Br =
X(w;we). The variety X(w;w¢) is the union |J, oy, X(vwe). The variety By is
the union of the varieties Xy,, (vw¢) when v runs over Wy. The isomorphisms given
by Proposition 8.26 when J = () and v running over Wt can be glued together since
they are defined by a formula independent of v. We thus get a bijective morphism

X(I,wo) Xpwe Br — X(w;w¢) which is an isomorphism since X (w;w¢) is normal
(see [DMR, 2.3.5]). We now get (ii) from the fact that H*(Br,Q,) is 0 if k is odd
and if k = 2k’ is a trivial Li(W)F—module of dimension ny j/, where F' acts by the
scalar qk/; this results for example from the cellular decomposition into affine spaces

given by the Bruhat decomposition and the fact that the action of Li(W)F extends
to the connected group Lj. O
Corollary 8.28. (i) The GF-module HI(X(I,w¢),Q,) is unipotent. The

eigenvalues of F° on an irreducible G -submodule p of H:(X(I,w¢),Q,)
are in q‘SN)\pwp, where X\, is a oot of unity and w, is an element of {1, q6/2}
which are both independent of i and w.

(ii) We have HY(X(I,we),Q,) = 0 unless [(w) < i < 2l(w).

(iii) The eigenvalues of F° on HL(X(I,w¢),Q,) are of absolute value less than
o2

(iv) The Steinberg representation does not occur in any cohomology group of
X(I,wg) unless I = 0 in which case it occurs with multiplicity 1 in

z™ (X(w¢),Qy), associated to the eigenvalue 1 of F°.
(v) The trivial representation occurs with multiplicity 1 in 72w (X(I,wo),Q,),
associated to the eigenvalue ¢®™) of F, and does not occur in any other

cohomology group of X(I, w).

Proof. (i) is a straightforward consequence of Corollary 8.27(i) since the result is
known for HJ(X(vwg),Q,) (see [DMR, 3.3.4] and [DMR, 3.3.10 (i)]).

(i) and (iii) are similarly a straightforward consequence of Corollary 8.27(i)
applied with v =1 and of [DMR, 3.3.22] and [DMR, 3.3.10(i)].

For (iv), we first note that by Corollary 8.27(i) applied with v = 1 and [DMR,
3.3.15] the Steinberg representation has multiplicity at most 1 in ) (X(I,wo),Qy),
associated to the eigenvalue 1 of F°, and does not occur in any other cohomology
group of X (I, w¢). To see when it does occur, it is enough then to use Proposition
8.40 and the Lefschetz formula. The only Uy such that the Steinberg representation
has a non-zero scalar product with Shpm ,p Uy is the Steinberg representation, and
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for the corresponding y we have

(1)) if T =19
0 otherwise -

)~(qm (XlTw¢) = {

(v) is similarly a consequence of Corollary 8.27(i), [DMR, 3.3.14], 8.40, the Lef-
schetz formula, and that if x,~ corresponds to the trivial representation we have
Xgm (X1Two) = g 0

Endomorphisms of parabolic Deligne-Lusztig varieties — the conjugacy
category DT (Z).

Definition 8.29. Given any morphism I 2 J € Bt (Z) which is a left divisor of
I T we define morphisms of varieties:

(i) Dy : X(I,w¢) — X(J,v-iwev) as the restriction of the morphism

(a,0) = (b, Fa) : OL,w) = O(I,v) xp, O, v 'w) —
O0J,v'w) XP,, O(’1,%v) = O(J, v 'wov).

(i) Dy : X(I,wo) — X(J,v_Iwev) as the restriction of the morphism

(a,b) ~ (b, Fa) : O, w) = O(L,v) xgu, OJ,v'w) =
OJ, v tw) Xa/u,, O(’L *v) = O(J, v iw?v).

Note that the existence of well-defined decompositions as above of O(I, w) and of
@(I, w) are consequences of Theorem 8.10. We have written v !we¢v for v iw?ve.

Note that when v, w and v~ 'w?v are in W the endomorphism D, maps
gP; € X(I,wo) to ¢'Py € X(J, v~ wew) such that g~ 'g’ € P;oP; and ¢~ 1Fg €
P v 'wfP; and similarly for D,.

Note also that Dy and D, are equivalences of étale sites; indeed, the proof of
[DMR, 3.1.6] applies without change in our case.

The definition of Dy and D, shows the following property:

Lemma 8.30. The following diagram is commutative:

X (I, wo) Do X(J, v lwov)

| |

X(Lwo) —2= X(J, v~ wev)
. . . t(w)F t(v iwv)F
where the vertical arrows are the respective quotients by L and Ly as
explained in Lemma 8.24.

Definition 8.31. We denote by DT (Z) the category ¢-cyc BT(I); that is the ob-
jects of DY (T) are the morphisms in B (I) of the form T - ®I and the morphisms

are generated by the “simple” morphisms that we will denote adv, for v.< w;

such a morphism, more formally denoted by I adv, J, where J = 1V, goes from

w v ilw?y . . L,
I35 9Tt03 T 3. The relations are given by the equalities ad vy ...ad vy, =
ad v} ...ad v}, whenever adv; are simple and vy ...vy =V} ...v}, in B*.
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We will denote T 23 J a general morphism of D (I) (where v = vy ... v, with
the adv; simple).

As a further consequence of Theorem 8.10, the map which sends a simple mor-
phism adv to Dy gives a natural morphism of monoids Endp+z)(I 9T -
Endgr (X(I,w¢)), whose image consists of equivalences of étale sites.

By Proposition 5.2 the category DT (Z) has a Garside family consisting of the
simple morphisms. Those of source I = I correspond to the set of v < w such
that Iv € S. For J C I C S we will denote by D; (J) the analogous category
where S is replaced by I and I by J.

Proposition 8.32. With same assumptions and notation as in Proposition 8.26,
let J 5 J* e B (J) be a left divisor of J Yy WoJ. The following diagram is
commutative:

X (I, wo) Xpur Xy, (J,v - we) X(J, vwo)

Id xﬁxl lf)x

X(I, wo) XpLpr X, (J%,x7 (v wp)x) ——= X (I*, x~lvwex)

Proof. Decomposing x into a product of simples in D} (J) the definitions show that
it is sufficient to prove the result for x € W. We use then Proposition 8.25 to reduce
the proof to the case where vw and v~ !w®v are in W (in which case w and v~ *%w
are in W too). We can make this reduction if we know that the isomorphism of
Proposition 8.25 is compatible with the action of Dy for x € W (we will then use
this fact in G and in Ly). Take (I,y, ?I) € B¥(Z) and x € W such that T = TI*

is a left divisor of I ¥ ?I. Let Y =Yy1...Yx be a decomposition of y as a product
of elements of W such that x = y;. The endomorphism Dy maps the sequence
(01U, ..., gxUyg) such that g{lgi+1 € U;y;U; 41 and g,gngl € U,y FU; to the
sequence (g2Us, ..., gx Uk, g1 7'Up). On the other hand, via the isomorphism of
Proposition 8.25, using the decomposition (y1,y2,...,¥%,1) of y, the sequence
(91U, ..., gxUg) corresponds to ((g1, - - ., g, Fg1) (U1, ..., U, FUL) € Xgrri (11 %

x Iy x FIy, (31, ..., 9k, 1) F1).  This element is mapped by Dy, 1,....1) to the
element (92,92, - ., gk, Fgl)(UQ, U,,..., Uy, FUl) which is in XGk+1 (Io x I x I3 x

x Iy x FI (1,9, .. 9k, Fy1)Fy). Since this last element corresponds by the
isomorphism of Proposition 8.25 to (g2Ua, ..., gx Uk, £'g1 7' U1), we have proved the
compatibility we want.

Assume now vw and v 'w®v in W. We start with (gU;,IV ) € X(I,wF) x
Xy, (J,vwe). This element is mapped by the top isomorphism of the diagram to
glU ;. As we have seen above Lemma 8.30 it is mapped by Id x Dx to (¢Ur,1'V j=)
where |71’ € V2V and I'"1%F] € Vyox~l0®FV ;. This element is mapped
to gl'U = by the bottom isomorphism of the diagram. We have to check that
gl'U jo = Dy(glUy). But (gi)~tgl’ = 17" is in V2V 3. € U zU ) and

(gl/)le(gl) _ l/*lglegFl c l/ilU]U'}FU]Fl _ Ulllfl'li)Flu'}FUI
CU/Vyezr lowfV,;FU; = Ume_lvwFUJ,
so that (gl'U j=) = Dx(glU ). O

Using Proposition 8.26(ii) and Lemma 8.30 we get
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Corollary 8.33. The following diagram is commutative:

X(I,w¢) xpur X, (J, v - wp) ————— X(J, vwe)

Id XDxl ‘/Dx

X (I, wo) xpor X, (J%, x (v we)x) —— X(J*, x lvwex)

In the following example we can describe explicitly Endp+ 7)1 Y, 41,

Definition 8.34. We define m = wi (it is a generator of the center of the pure
braid group) and similarly for I C S we define w1 = wi.

An ezample. Let w = w/mp = wy 'wo - wowy '. Then any v € Homp+(7)(I,1)?
gives endomorphisms Dy, and Dy, of X (I, (7 /71)$) and X(I, (7 /71)¢) respectively.
This comes from Lemma 8.3 since if the i-th term of the normal form of I % ¢TI is
I, ™5 I, then w; divides 7 /7y, and conjugates it to 7w/, .

Let w € Homp+(z)(I, “I) be such that (w¢)? = (w/mwr)¢?. The map gU; —
(gUr, P(gU7), *(gUr), ..., 7" " (gUr)) identifies X(I,we) with the subvariety of
X(I, (w/m1)¢?) defined by the equation Dyx = Fz. This implies that the inter-
section of the centralizer of w¢ with Hom g+ (1) (I, I) acts on X(I, we).

Similarly the map P — (P, P, °P,... F''P) identifies X (I, w¢)) with the
subvariety of X(I, (7 /m1)¢?) defined by the equation Dy2 = Fa and the intersec-
tion of the centralizer of w¢ with Homp+ (1) (I, 1) acts on X(I, we). O

We now give a more general case where we can describe Endp+ (7 (I X 91).

Theorem 8.35. Assume that some power of w¢ is divisible on the left by Wflwo.

Then Endp+ g1 s 1 consists of the morphisms 1 24D 1 where b runs over
the submonoid BY of O+ (W) consisting of the elements such that PI = T and
aI(b) =1.

Proof. This is an immediate translation of Proposition 5.5, since the Garside map

. wy two . . . .
of BY(Z) is I ——— I"°; the submonoid By, is the centralizer of the morphism
I 4T of BT(I). O

Note that if k is the smallest power such that ¢TI = I and *"w = w, then
wk) = wow .. . " 'wis in BS. Since I 2dW, 6] is the Garside map of DF(I)
described in Proposition 5.3, it follows that under the assumptions of Theorem
8.35 every element of B divides a power of w(¥)  In particular, in the case I = (),
the group Cp(w¢) is generated as a monoid, with the notations of [DM2, 2.1], by
Endp+ (w) and (w®))~1. Thus Theorem 8.35 in this particular case gives a positive
answer to conjecture [DM2, 2.1].

Affineness. Until the end of the text, we will consider varieties which satisfy the
assumption of Theorem 8.35. They have many nice properties. We show in this
subsection that they are affine, by adapting the proof of Bonnafé and Rouquier
[BR2] to our case; we use the existence of the varieties @(I,b) and X(I,bqﬁ) to
replace doing a quotient by L; by doing a quotient by L.
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Proposition 8.36. Assume the morphism 1 b e BT(Z) is left-divisible by Az.
Then the variety O(I,b) is affine.

Proof. By assumption there exists a decomposition into elements of S of I b Jof

the form T 2% 1, Y4, 1, Y2, I; —» - — I, 2% J. We show that the map ¢
defined by:
G x [[(Un, nvuy i —

Iit1
1=1

@(I,wl_lwo) XG/UII @(11,1.)1) Ce XG/UIT @(Ir,’l.)r)
(gahla"'vh?“) =
(gUIagw;1w0U11 ) gwflwohlUIQa v agw;1w0h1 cee hTUJ)

is an isomorphism; since the first variety is a product of affine varieties this will
prove our claim.

Since U]i ’UzU[

i+1
with the first projection we get a morphism n; : Ur,0; U7

is isomorphic to (Ur, N *"Uy, )o; x Uy, by composition

i1 (U]i n UiUle )'[}i
for ¢ = 1, e, Ty where Ir—i-l =J. For z = (gU],glUjl,ggUIZ, . ,grUIT,ngUJ)
in O(I,4; i) xgyu,, O1,1)... Xgu,, O, 0,) we put ¢(z) = gn(g~g1),
Pi(x) = (@), () = mi((b(@)(x) ... i1 (x)) " g:). We claim that the maps
¥ (resp. 1;) are well defined, that is do not depend on the representative g (resp.
gi) chosen; the morphism = — (¥ (x),¥1(x),...,¥.(x)) is then clearly inverse to ¢.
Since n;(hu) = n;(h) for all h € Uy, 0;Uy,,, and all u € Uy, ,, we get that all v;
are well-defined. Since moreover n(uh) = un(h) for all h € Uiy 'ipUy, and all
u € Uy, we get that 1 also is well-defined, whence our claim. O

Proposition 8.37. Assume that we are under the assumptions of Theorem 8.35,
that is (I <5 ?T) € BH(Z) has some power divisible by Az, or equivalently some
power of wo is divisible on the left by wl_lwo. Assume further that the Tits homo-
morphism t has been chosen F-equivariant. Then X(I,ng) is affine.

Proof. Let us, similarly to after Theorem 8.35, define k as the smallest power such

k)

that ¢'T = I, ¢"w = w and wflwo < w® where w*) = wow ... A

We will embed X(I, wo) as a closed subvariety in @(I, w(®), which will prove it
is affine.
Let T 2% 1, 22 Ig~—> R 2y 9T be a decomposition of I 2y 9T into
elements of S, so that O(I, w®)) identifies to the set of sequences
(gl,lUI; gl,QUIQ; e 7gl,TUITa
921Us1,922U01,, ..., 92, Usp,,
gk,1U¢k—1I, gk,2U¢k—1I2, ces ,gk,TU¢k—IIT,
gr+11U71)
such that. for j < r we have g;’jlgi,jﬂ € Upimp, Fiilu')jU,Pifle+l and gifrlgiJrM €
Um0, Uy

for t(d’iwj).

73 note that we have used the F-equivariance of ¢ to write F iu}j
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Similarly X(I,Wqﬁ) identifies to the set of sequences (¢1Uy,¢2Up,,...,9,U7.)
such that g;lgjﬂ € Uyw;Uy,,, for j <r and 9. g1 € Up 1, Ugp. Tt is thus
clear that the map

(glUIa gQUfza s 7gTUIr) = (91U17 gQUI2a s ag’l“UIra
Fo1Usr, " 92U, ..., T, Usp,

ey

Fk Fk

1 -1 jald
91U¢k—1l,..., gTU¢k—1 glU])

1,0
identifies X(I, wo) to the closed subvariety of O(I, w*)) defined by gi+1,jU¢in =
F(gqubifle) for all 7, j. O
Corollary 8.38. Assume that we are under the assumptions of Theorem 8.35, that
is (I 25 ¢T) € BH(Z) has some power divisible by Az, or equivalently some power
of wo is divisible on the left by Wflwo. Then X(I,wo) is affine.

Proof. Indeed, by Proposition 8.37 and Lemma 8.24, it is the quotient of an affine
variety by a finite group, so is affine. O

Shintani descent identity. In this subsection we give a formula for the Leftschetz
number of a variety X(I, wF') which we deduce from a “Shintani descent identity”.

Let m be a multiple of §, and let H,m (W) := Endgrm (Q,[(G/B)F"]). Let e =
B |71 Yo yegem by the GF-module Q,[(G/B)f"] identifies with Q,[G'"]en
and Hyn (W) with egQy[GT"|ep acting by right multiplication. It has a basis
consisting of the operators T,, = |Bf" n *Bf"| > geBrmyprm § = epwep for
w € W, since W is a set of representatives of BF"\G/B" (see [Bou] IV, §2
exercice 22). If we identify G /B to the variety B of the Borel subgroups of G, the
operator T, becomes

T, : B — Z B.
{B//eBFm |B//i>B/}

Similarly the algebra Hym (W, W;) := Endgr= (Q,[(G/Pr)F"]) has a Q,-basis
consisting of the operators X,, = |[P¥" nvPI™| dePf’"wme g = ep,wep, where
ep, = [PF" |1 > peprm P and w runs over a set of representatives of the double
cosets PY"\GF" /PF" ~ W \W/W;. Identifying G /Py to the variety Py of the
parabolic subgroups G-conjugate to P; we have

X, : P > P’
I,w,I
{P'ePI™|P'——P}
The multiplication by the idempotent X1 = ep, = >y, B N B |7IT,
makes Q,[(G/P;)F"] into a direct factor of Q,[(G/B)F"] and the equality X,, =
X1T,, X1 is compatible with this inclusion. Note that this inclusion maps a parabolic
P conjugate to Py in G to the sum of all F™-stable Borel subgroups of P.

We may define a Q-representation of End g+ (z)(I) on Q,[(G/P;)""] by sending

I T to the operator Xy, € H (W, W;) defined by
Xw(P) = > p'(x).

{zeO@Mw)™ [p (z)=P}
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In the particular case where I = () we get an operator denoted by Ty, defined for any
win Bt. ForI 55 1¢ Endp+7)(I) the operator Xy, identifies to X1 Tw X1 = X1 Ty
since IV =L

Similarly, if T <5 I is a morphism of BT (Z), we may associate to it an endo-
morphism Xy, of Q,[(G/P;)""] by the formula

Xwo(P) = > p'(x).
{zeO@w) ™ [p"(x)=F (P)}

When ¢(I) = I we have Xy = Xwé. In general we have Xywy = X1Tw¢ on
Q[(G/P)F"] seen as a subspace of Q,[(G/B)¥"]: on the latter representation one
can separate the action of F’; the operator F' sends the submodule Q,[(G/P;)"]
to @4[(G/P¢(I))Fm] which is sent back to Q,[(G/P;)""] by X1Tw. The endomor-
phism Xy ¢ commutes with GF™ like F, hence normalizes Hym (W, Wr); its action
identifies to the conjugation action of Tyw¢ on Hem (W, Wr) inside Hym (W) % (¢) .

Recall that Shpm,p denotes the “norm” map which maps the F-class of g’ =
h.Fh=1 e GF" to the class of g = h~'.F"h € GF.

Proposition 8.39 (Shintani descent identity). Let T -5 ¢TI be a morphism of
BT (Z), and let m be a multiple of §. Then

(9= XL we)*™ |) = Shpm/r(g’ = Trace(g' Xws | Qul(G/P1)T")).

Proof. Let g = h™1.F"h and ¢’ = h.Fh~1, so that the class of g is Shpm /g of the
F-class of ¢’; we have X(I,wo)9"" = {x € O(I,w) | "'z = rz and p"("z) =
9'Fp/(hg)}. Taking "z as a variable in the last formula we get that [X (I, we)9"" | =
{z e O, w)E" | p’(x) = 9Fp/(x)}|. Putting P = p/(x) this last number be-
comes Zpepf’" Hz € O, w)E™ | p/(x) = P and p”(z) = 9FP}|. On the other
hand the trace of ¢'Xye is the sum over P € PF™ of the coefficient of P in
D (reo@w)F™ | (n)=r (@)} 9P/ (). This coefficient is equal to [{z € O, w)f™ |
gV (@) = Pandp’(z) = TP} = {z € OL,w)™" | p(z) = P and p"(z) =
9lFP}|, this last equality by changing ¢’x into . O

Corresponding to the specialization ¢™/2 + 1 : Hym (W) — Q,W, there is a
bijection x + xgm : Irr(W) — Irr(Hem (W)). If we choose an extension X to
W x (¢) of each character in Irr(W)?, we get a corresponding extension Y,m €
Irr(Hym (W) % (#)), and if U, € Irr(GF™) is the corresponding character of G,

we get a corresponding extension Uy of U, to G x (F) (see [DM1, IIT théoreme
1.3 ]). With these notations, the Shintani descent identity becomes

Proposition 8.40.
(g — |X(I,W¢)9FWL|) — Z )qu(XlTw(b) Sth/F U)Z
XEIrr(W)®

and the only characters x in that sum which give a non-zero contribution are those
which are a component of Ind%l 1d.

Proof. We have Trace(g' Xvwe | Qi[(G/P1)F"]) = Trace(¢' X1 Two | Q,[(G/B)F™))
since X is the projector onto Q,[(G/P;)¥"]. Hence (g — |X(I,we¢)9F"|) =
ZXEIH(W)¢ Xqm (X1Tw@) Shpm /p Ug. Since X acts by 0 on the representation of

character y if x is not a component of Ind%l Id, we get the second assertion. [l
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Finally, if A, is the root of unity attached to p € E(G',1) as in [DMR, 3.3.4],
the above formula translates, using [DMR, 3.3.7] as

Corollary 8.41.

IX(TLwe) = Y Ap(g) > Xom (X1 Tw®)(p, Rg)ar
PEE(GT 1) {xEDr(W)?[(Resll, x.Id)w, #0}

where Ry = [W|™' Y oy X(we)RE. (Id), and, using the Lefschetz formula and
taking the “limit for m — 07 (see for example [DMR, 3.3.8]) we get the equality of
virtual characters

Corollary 8.42.
D (1) HUX(T, we), Q) = > X(z1we) Ry,

i {x€lrr(W)?|(Resyy, x.Id)w, #0}

where w is the image of w in W and xy = W71 30y v.

9. EIGENSPACES AND ROOTS OF 7 /71

Let ¢ # p be a prime such that the /-Sylow S of G is abelian.

Then “generic block theory” (see [BMM]) associates to ¢ a root of unity ¢ and
some wo € W¢ such that its (-eigenspace in V in X := Xg ® C is non-zero and
maximal among (-eigenspaces of elements of W¢; for any such (, there exists a
unique minimal subtorus S of T such that V' C X(S) ® C. If the coset W¢ is
rational X (S) ® C is the kernel of ®4(w¢), where d is the order of (. Otherwise,
in the “very twisted” cases 2Ba,2Fy (resp. 2Gz) we have to replace @4 by the
irreducible cyclotomic polynomial ® over Q(v/2) (resp. Q(v/3)) of which ¢ is a root.
The torus S is then called a ®-Sylow; we have |[S¥| = ®(q)d™ V.

The relationship with ¢ is that S is a subgroup of S¥', and thus that |GT'|/|ST|
is prime to ¢; we have Ngr(S) = Ngr(S) = Ngr(L) where L := Cg(S) is a
Levi subgroup of G whose Weyl group is Cy (V). Conversely, any maximal (-
eigenspace for any ( determines some primes ¢ with abelian Sylow, those which
divide ®(¢)4™ "V and no other cyclotomic factor of |G|

The classes Cy (V)we, where V = Ker(w¢ — () is maximal, form a single orbit
under W-conjugacy [see eg. [Br, 5.6(1)]]; the maximality implies that all elements
of Cw (V)we have same (-eigenspace.

We will see in Theorem 9.1(i) that up to conjugacy we may assume that Cyy (V)
is a standard parabolic group Wr; then the Broué conjectures predict that for an
appropriate choice of coset Cyy (V)we in its Ny (Wy)-conjugacy class the cohomol-
ogy complex of the variety X(I, w¢) should be a tilting complex realizing a derived
equivalence between the unipotent parts of the f-principal blocks of G and of
Ngr(S). We want to describe explicitly what should be a “good” choice of w.

Since it is no more effort to have a result in the context of any finite real reflection
group than for a context which includes the Ree and Suzuki groups, we give a more
general statement.

In what follows we look at real reflection cosets W¢ of finite order, that is W
is a finite reflection group acting on the real vector space Xg and ¢ is an element
of Nar,(x,) (W), such that We is of finite order §, that is ¢ is the smallest integer
such that (W¢)° = W (equivalently ¢ is of finite order). Since W is transitive
on the chambers of the real hyperplane arrangement it determines, one can always
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choose ¢ so that it preserves a chamber of this arrangement. Such elements ¢ are
the 1-regular elements of the coset, thus are of order 4.

Theorem 9.1. Let W¢ C GL(XR) be a finite order real reflection coset, such that
¢ preserves a chamber of the hyperplane arrangement on Xg determined by W, thus
induces an automorphism of the Coxeter system (W, S) determined by this chamber.
We call again ¢ the induced automorphism of the braid group B of W, and denote
by S, W the lifts of S,W to B (see around Definition 8.2).

Let Cq = 2™/ and let V be a subspace of X := Xp @ C on which some element
of Wo acts by (4. Then we may choose V' in its W -orbit such that:

(i) Cw (V) =Wt for some I CS.

(ii) If Wiwe is the Wy-coset of elements which act by (4 on V, where w
is I-reduced, then when d # 1 we have l(w) = (2/d)(l(wow;')) and
I((we)ip~) = il(w) if 2i < d.

Further, when d # 1 the lift w € W of a w as in (ii) satisfies VI = 1 and
(wo)? = ¢lm /7y, where I C S is the lift of I.

Finally note that if d = 1 then w = 1 in (i) and we may lift it to w := /71
and we still have W1 =1 and (w¢)? = /w19

Note that in particular, for the w in (ii) we have (w¢)? = ¢%.

Proof. Since W(¢) is finite, we may find a scalar product on Xg (extending to an
Hermitian product of X) invariant by W and ¢. The subspace X of Xg on which
W acts non-trivially (the subspace spanned by the root lines of W) identifies to
the reflection representation of the Coxeter system (W, S) (see for example [Bou,
chap. 5, §3]). We will use the root system ® on Xj consisting of the vectors of
length 1 for this scalar product along the root lines of W, which is thus preserved by
W (). The strategy for the proof of (i) will be, rather than change V', to choose an
order on @ such that the corresponding basis makes Cy (V') a standard parabolic
subgroup of W.

Let v € V be a generic vector, that is such that Cy (v) = Cw (V). Multiplying
v if needed by a complex number of absolute value 1, we may assume that for any
a € ® we have R(v,a) = 0 if and only if (v,a) = 0. Then there exists an order
on ® such that ®* C {a € ® | R((v,)) > 0}. Let II be the corresponding basis
and let I = {a € IT|R((v, ) = 0}. Then for o € & we have o € @y if and only if
(v,a) =0, thus Cyw (V) = Cw (v) = Wy. This proves (i).

We prove now (ii). The element w¢ sends v to (4v, thus preserves ®;, and since
we chose w to be I-reduced we have “¢I = I.

Note that (wg)? = ¢¢. Indeed (w¢)? fixes v, thus preserves the sign of any root
not in ®; as “?I = I, it also preserves the sign of roots in ®;. It is thus equal to
tl;e only element ¢? of W¢? which preserves the signs of all roots. We get also that
I =1.

Since (v, (W) " a) = (W) "y a) = ;" (v, a), we get that all orbits of w¢ on & —
®; have cardinality a multiple of d; it is thus possible by partitioning suitably those
orbits, to get a partition of ® — ®; in subsets O of the form {a, “%a, ..., (w¢)d71a};
and the numbers {(v, 8) | 8 € O} for a given O form the vertices of a regular d-gon
centered at 0 € C; the action of w¢ is the rotation by —27/d of this d-gon. Looking
at the real parts of the vertices of this d-gon, we see that for m < d/2, exactly m
positive roots in O are sent to negative roots by (w¢)™. Since this holds for all O,
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we get that for m < d/2 we have I(¢~™(w¢p)™) = @; thus if w is the lift of
w to W we have (wo)' € We' if 2i < d.

If d = 1 since wep = ¢ we have w = 1 so we may lift it to 7/@1 as stated.
Otherwise we finish with the following

Lemma 9.2. Assume that “*W; = Wy, that w is [-reduced, that (wp)? = ¢¢ and
that 1((wg)'¢~") = (2i/d)l(wow; ") if 20 < d. Then if w is the lift of w to W we
have Y9I =1 and if d # 1 we have (w¢)? = ¢im /1.

Proof. Since w is I-reduced and w¢ normalizes Wi we get that w¢ stabilizes I,
which lifts to the braid group as W¢I = 1.

Assume first d even and let d = 2d’ and = ¢~ (wg)? . Then I(z) = (1/2)l(m/71) =
l(wg) — l(wy) and since z is reduced-I it is equal to the only reduced-I element
of that length which is wowfl. Since the lengths add we can lift the equality
(wp)? = qﬁd/wow;l to the braid monoid as (w¢)? = qbd/wowl_l. By a similar rea-
soning using that (w$)? ¢~¢ is the unique I-reduced element of its length, we get
also (wo)? = W;1W0¢d/. Thus (w¢)? = W?lwoqbd/qﬁdlwowjl = ¢m /71, where
the last equality uses that ¢¢ = (w¢)? preserves I, whence the lemma in this case.

Assume now that d = 2d’ + 1; then (wd))d/(b’d/ is I-reduced and ¢~ (wd))d/
is reduced-I. Using that any reduced-I simple of BT is a right divisor of WOW;1
(resp. any I-reduced simple is a left divisor of W;1W0), we get that there exists
simples t,u such that gbdlwl_lwo = t(wgb)dl and wowl_l(bd, = (ng)dlu. Thus
Pl = wow L pdw twg = (wop)¥ ugt(we)? | the first equality since ‘I =1.
The image in W¢? of the left-hand side is ¢¢, and (w¢)? = ¢?. We deduce that the
image in W¢ of ugt is we. If d # 1 then d’ # 0 and we have [(u) = [(t) = I(w)/2;
thus ugt = wo and (we)? = ¢n/my. O

O

Note that Theorem 9.1 only handles the case of eigenspaces for the eigenvalue
(4, and not for another primitive d-th root of unity (5. However, note that if the
coset W ¢ preserves a Q-structure on Xg (which is the case for cosets associated to
finite reductive groups, excepted for the “very twisted” cases 2Bg, G2 and 2Fy),
then if ¢ is an eigenvalue of w¢, the Galois conjugate (4 is also an eigenvalue, for a
Galois conjugate eigenspace. In general, since we assume W ¢ real, we may assume
2k < d since if C§ is an eigenvalue of w¢ the complex conjugate Cj_k is also an
eigenvalue, for the complex conjugate eigenspace. In this last case we may say the
following (here we assume d # 1):

Corollary 9.3. In the situation of Theorem 9.1, let ( = ij with k prime to d and
to the order 6 of ¢ with 2k < d and let V' be a subspace of X on which some element
of Wo acts by . Then we may choose V' in its W-orbit such that:

(i) Cw (V) =W for some I CS.
(ii) If Wiwe is the Wi-coset of elements which act by ¢ on V, and w is the
unique I-reduced element of that coset, then l(w) = (2k/d)(l(wow; ")) and

I((wo)ip~?) =il(w) if 2ik < d.
Further, if w is the lift of w as in (ii) to W and I C S is the lift of I, then W¢I =1
and (wé)! = ¢ (1)
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Proof. The proof of (i) in Theorem 9.1 does not use that the eigenvalue is (4, so
still applies.

Let k' be the multiplicative inverse of k (mod lem(d,d)), and let wy ¢y = (we)*,
where ¢ = qﬁk/. Then wi¢; has V' as a (4-eigenspace, so we may apply Theorem
9.1 to it. The same argument as at the beginning of the proof of Theorem 9.1(ii)
shows that (w¢)? = ¢¢ and ¢‘] = I. Thus the order of we is lem(d, 0) and thus
wé = (w1é1)F; we have also Wiweo = (Wrw; ¢1)*, whence (ii).

Finally, by Theorem 9.1 the lift wy of w; to B satisfies V111 = I and (wy¢1)? =

47 /7, thus if we define w by (w1¢1)* = we, then w is the lift of w and satisfies
the last part of the corollary, using ' =T. O

The condition above that k is prime to § seems a limitation but we do not know
of an example where w¢ has an eigenvalue ( C’f with k£ prime to d but not prime to
0 and does not have another Galois-conjugate eigenvalue Cgl with k&’ prime to .

We give now a converse.

Theorem 9.4. Let (W,S), ¢, Xg, X, S, B, Bt be as in Theorem 9.1 For d € N,
let w € BT and I C S be such that:

(i) "I =1

(i) (wo)? = ¢'m/mr.
Denote by w and I the images in W of w and I, let (g = >/ let V C X be
the (4-eigenspace of we, and let X1 be the fized point space of Wi; then Wi =
Cw (XWrnV), in particular Cy (V) C Wy.

Further, the following two assertions are equivalent:

(ili) w 4s maximal with respect to (i) and (ii) above, that is, there do not exist
J C I and v € Bf such that VW*J =J and (vwo)? = ¢im/m;.

(iv) No element of the coset Wiwe¢ has a non-zero (4-eigenvector on the sub-
space spanned by the root lines of Wi.

Proof. We first notice that conditions (i) and (ii) are equivalent to require that in
the category B¥(Z) the morphism I ~5 ¢I¢ is a d-th root of AZ. In our setting
Lemma 7.2 thus reduces to the following generalization of [BM, lemme 6.9]

Lemma 9.5. Let w € Bt and I C S be such that W1 =1 and (w¢)? = ¢im/my.
Then there exists v € (BY)*" such that (we)¥ € BT¢, IV C S and ((wo)¥)l2) €
Wolsl. Further, adv defines a morphism in D (I)‘z’d (that is, the conjugation is
by “¢%-stable cyclic permutations”).

Thus if we define w' and J by (w¢)¥ = w/¢ and IV = J, we have (w/¢)? =
¢l /7wy and WEJ = J.

As the result to prove in Theorem 9.4 is invariant by a conjugacy in B which
sends w¢ to BT¢ and T to another subset of S, we may replace (w¢,I) by a
conjugate as in Lemma 9.5, thus assume that w and I satisfy the assumptions of
the next lemma.

To state the next lemma we extend the length function from W to W x (¢) by
setting [(w¢?) = I(w).

Lemma 9.6. Let w € W,I C S be such that (we)? = ¢?, *°I = I and such that
l(we)') = Zi(w;  wo) for any i < d/2. We have
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(i) If ® be a ¢-stable root system for W (as in the proof of Theorem 9.1),
then ® —®1 is the disjoint union of sets of the form {a, “%a, . . ., (w¢)d71a}
with a, %oy, . .., (L2172 of same sign and (w‘b)tdma, ey (we)' ", of
the opposite sign.

(ii) The order of we¢ is lem(d, d).

(iii) If d > 1, then Wi = Cyw (X1 Nker(we — Cq))-

Proof. The statement is empty for d = 1 so in the following proof we assume d > 1.

For z € W x (¢) let N(z) = {a € ®T | *a € &7 }; it is well known that for
x € W we have [(z) = |N(x)|. This still holds for x = w¢? € W x (¢) since
N(w¢') = ¢ "N(w). It follows that for z,y € W x (¢) we have I(zy) = I(z) +1(y) if
and only if N(zy) = N(y)[[¥ N(x). In particular [((w¢)?) = il(we) for i < d/2
implies (“®)"'N(w¢) C &+ for i < d/2 — 1.

Let us partition each wg¢-orbit in ® — ®; into “pseudo-orbits” of the form
{a, ¥, ..., (w¢)k71a}, where k is minimal such that (@®"q = 9" (then k di-
vides d); a pseudo-orbit is an orbit if ¢ = 1. The action of w¢ defines a cyclic
order on each pseudo-orbit. The previous paragraph shows that when there is a
sign change in a pseudo-orbit, at least the next |d/2] roots for the cyclic order have
the same sign. On the other hand, as ¢* preserves ®*, each pseudo-orbit contains
an even number of sign changes. Thus if there is at least one sign change we have
k > 2|d/2]. Since k divides d, we must have k = d for pseudo-orbits which have a
sign change, and then they have exactly two sign changes. As the total number of
sign changes is 2l(w) = 2|® — ®|/d, there are |® — ®;|/d pseudo-orbits with sign
changes; their total cardinality is |[® — ®;|, thus there are no other pseudo-orbits
and up to a cyclic permutation we may assume that each pseudo-orbit consists of
|d/2] roots of the same sign followed by d — |d/2] of the opposite sign. We have
proved (i).

Let d’ = lem(d, d). The proof of (i) shows that the order of w¢ is a multiple of
d. Since the order of (w¢)? = ¢¢ is d’/d, we get (ii).

We now prove (iii). Let V = ker(w¢ — (4). Since W(¢) is finite, we may find a
scalar product on X invariant by W and ¢. We have then X"’ = ®. The map
p = % f;)l Q;i(wgb)i is the (unique up to scalar) w¢-invariant projector on V|
thus is the orthogonal projector on V.

We claim that p(a) €< ®; > for any a € & — ®;. As p((wg)ia) = (ip(a)
it is enough to assume that « is the first element of a pseudo-orbit; replacing if
needed o by —a we may even assume o € ®*. Looking at imaginary parts, we
have S(¢}) > 0 for 0 < i < [d/2], and S(¢}) < 0 for [d/2] < i < d. Let X be a
linear form such that A is 0 on ®; and is real strictly positive on &+ — d;; we have
M(@9)'q) > 0 for 0 < i < |d/2], and \((*®)'a) < 0 for |d/2] < i < d; it follows
that S(A\(C,(“?) ")) > 0 for all elements of the pseudo-orbit. If d’ = d we have thus
I(A(p(a))) > 0, in particular p(a) ¢< ®; >. If d’ > d, since ¢Za is also a positive
root and the first term of the next pseudo-orbit the same computation applies to
the other pseudo-orbits and we conclude the same way.

Now Cw (X" N V) is generated by the reflections whose root is orthogonal to
XYWV, that is whose root is in < ®; > +V*. If a is such a root we have p(a) €<
®; >, whence a € ®; by the above claim. This proves that Cy (XWI NnV)c wr.
Since the reverse inclusion is true, we get (iii). O
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We return to the proof of Theorem 9.4. Assertion (iii) of Lemma 9.6 gives the
first assertion of the theorem. We now show —(iii)= —(iv). If w is not maximal,
there exists J C I and v € By such that YW¢J = J and (vw¢)? = ¢m/my. If we
denote 1) the automorphism of By induced by the automorphism w¢ of I, we have
v¥J = J and (vip)? = /3. Let X; be the subspace of X spanned by ®;. It
follows from the first part of the theorem applied with X, ¢, w and w respectively
replaced with X7, ¥, v and v that vy = vw¢ has a non-zero (4-eigenspace in X7y,
since if V' is the (4-eigenspace of vwe we get Cyy, (V') C Wy C Wry; this contradicts
(iv).

We show finally that —(iv)= —(iii). If some element of Wi has a non-zero
Cq-eigenvector on X7, by Theorem 9.1 applied to Wiy acting on X; we get the
existence of J C T and v € By satisfying V¥J = J and (vi)? = ¢9m1/m;. Using
that (wg)? = ¢9m /1, it follows that (vwe)? = (we)imy/my = ¢ /7y - w1/73 =
¢%m /w3 so w is not maximal. O

The assumption (iv) above can be replaced by two others, thanks to the following
lemma which holds for any complex reflection coset and any (.

Lemma 9.7. Let W be finite a (pseudo)-reflection group on the complex vector
space X and let ¢ be an automorphism of X of finite order which normalizes W .
Let V' be the (-eigenspace of an element wep € W¢. Assume that W' is a parabolic
subgroup of W which is we-stable and such that Cyw (V) C W', and let X' denote
the subspace of X spanned by the root lines of W'. Then the condition

i) VnX'=0.
is equivalent to
(ii) Cw (V) =W".
While the stronger condition
(iv) No element of the coset Wwe has a non-zero (-eigenvector on X'.
is equivalent to the conjunction of (ii) and

(iii) the space V is mazimal among the (-eigenspaces of elements of W .

Proof. Since W (@) is finite we may endow X with a W{¢)-invariant scalar product,
which we shall do.

We show (i) < (ii). Assume (i); since w¢ has no non-zero (-eigenvector in X'
and X’ is w¢-stable, we have V' L X', so that W' C Cyw (V'), whence (ii) since the
reverse inclusion is true by assumption. Conversely, (ii) implies that V' C X'+ thus
VNnX =0.

We show (iv) = (iii). There exists an element of W¢ whose (-eigenspace V; is
maximal with V' C V3. Then Cw (V1) C Cw (V) C W’ and the Cw (V1)-coset of
elements of W¢ which act by ¢ on V] is a subset of the coset Cyy (V)we¢ of elements
which act by ¢ on V. Thus this coset is of the form Cy (V1)vwe¢ for some v € W'.
By (i) = (ii) applied with w¢ replaced by vw¢ we get Cy (V1) = W’. Since v € W’
this implies that vw¢ and we have same action on V; so that w¢ acts by ¢ on Vi,
thus V; C V.

Conversely, assume that (ii) and (iii) are true. If there exists v € W’ such that
vwe has a non-zero (-eigenvector in X', then since v acts trivially on V' by (ii), the
element vw@ acts by ¢ on V' and on a non-zero vector of X’ so has a (-eigenspace
strictly larger that V, contradicting (iii). O
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Let us give now examples which illustrate the need for the conditions in Theorem
9.4 and Lemma 9.7.

We first show that if w¢ satisfies Theorem 9.4 (i) and (ii) but is not maximal
in the sense of Theorem 9.4(iii) then ker(w¢ — ¢) need not be maximal: Let us
take W = W(As), ¢ = 1,d =2, ( = —1, I = {s2} (where the conventions for
the generators of W are as in the appendix, see 11.2), w = wflwo. We have
w? = 7 /71 but ker(w+ 1) is not maximal: it is of dimension 1 and a 2-dimensional
—1-eigenspace is obtained for w = wy.

In the above example we still have Cyy (V') = W} but even this need not happen;
at the same time we illustrate that the maximality of V' = ker(w¢—¢) does not imply
the maximality of w if Cy (V) C Wy; we take W =W (A43), o =1,d =2, ( = —1,
but this time I = {s;,s3}, w = w; 'wo. We have w? = 7/ and ker(w + 1) is
maximal (w is conjugate to wp, thus —1-regular) but w is not maximal. In this
case Cy (V) = {1}.

The smallest example with a maximal w¢ and non-trivial I is for W = W (Ay),
¢ =1,d=3, w=818283848352 and I = {s3}. Then w3 = 7 /mry; this corresponds
to the smallest example with a non-regular eigenvalue: (3 is not regular in Ajy.

Lemma 9.8. Let W¢ be a complex reflection coset and let V' be the (-eigenspace
of wp € Wo; then
(i) Nw (V) = Nw(Cw (V)we).
(ii) If W is real, and Cw (V) = Wy where (W, S) is a Cozeter system and
I C S, and w is I-reduced, then the subgroup {v € Cw (wep) N Ny (Wr) |
v is IT-reduced} is a section of Ny (V)/Cw (V) in W.

Proof. Let Wi denote the parabolic subgroup Cy (V). All elements of Wiw¢ have
the same (-eigenspace V, so Ny (Wiw¢) normalizes V; conversely, an element
of Nw (V) normalizes W7 and conjugates w¢ to an element w'¢ with same (-
eigenspace, thus w and w’ differ by an element of W7, whence (i).

For the second item, Ny (Wrw¢)/W admits as a section the set of I-reduced
elements, and such an element will conjugate w¢ to the element of the coset Wiwae
which is I-reduced, so will centralize we. O

If we have a Garside category C' with Garside natural transformation A, on
which we are given an automorphism ¢, we can consider the semi-direct product of
C' by ¢ (see Definition 3.1). We will then call (p, ¢)-periodic a morphism w¢ € C'¢
such that target(w) = ¢(source(w)) and (w@)? = Al¢P. An element satisfying
(i) and (ii) of Theorem 9.4 is thus a (d,2)-periodic element of B¥(Z)¢, since AZ

starting from the object I is I % I. Lemma 9.5 shows that such an element is

cyclically conjugate to an element which satisfies in addition (W(b)d, € ngdl, where
d' = [4]. We will call good a periodic element which satisfies the above condition.

The following proposition, which rephrases Corollary 7.3 in our setting, shows
that it makes sense to write a period of the form (d,2) as a fraction d/2, since it
shows that when 2|d, a good (d, 2)-periodic element such that (wg)? = AZ satisfies
(wg)¥? = Az. We will thus call such elements d/2-periodic. In [DDGKM] the
analogous statement is shown for a general p/q.

Proposition 9.9. Assume the morphism I 2 T is good d/2-periodic (which
means that w € BY satisfies W1 = 1, (w¢)? = ¢mw /71 and that in addition
(wo)? € Wo?', where d' = |4]). Then if d is even we have (wo)? = wy 'woo?
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and if d is odd there ezists u € W' with " C S such that wWo = ug - WU‘bd/u and
(W(b)d,u = Wflwogbd,.

Let us define the (-rank of a (complex) reflection coset W¢ C GL(X) as the
maximal dimension of a (-eigenspace of an element of W ¢, and the (-rank of an
element of W¢ as the dimension of its (-eigenspace.

Let us say that a periodic element of BY(Z)¢ is maximal if it is maximal in
the sense of Theorem 9.4(iii). Another way to state the maximality of a periodic
element is to require that |I| be not more than the rank of the centralizer of a
maximal (g4-eigenspace: indeed if T 2 ¢TI is not maximal there exists J and v as
in Theorem 9.4(iii) and, since Theorem 9.4(iii) implies Lemma 9.7(iii), the element
vwe has maximal (4-rank, and the centralizer of its (;-eigenspace has rank |J| < [I|.

A particular case of Theorems 9.1 and 9.4 is

Corollary 9.10. Let V' be the (4-eigenspace of an element of W¢ of maximal
Ca-rank. Then there is a W-conjugate V' of V' such that Cw (V) = Wy and the

we¢ defined in Theorem 9.1(ii) induces a d/2-periodic T > ®1 which is mazimal.

Conversely, for a d/2-periodic maximal 1 s T the image wo in W has mazimal
Cq-rank.

Lemma 9.11. Let W¢ C GL(XRr) be a finite order real reflection coset such that
¢ preserves the chamber of the corresponding hyperplane arrangement determining
the Coxeter system (W, S).
Forw e W¢ let w € W be the lift of w; for I C S, the existence of a morphism
1Y 1€ BY(Z) is equivalent to:
(i) “?I =1 and w is I-reduced.

Then, for d > 1, the morphism T <5 T is good d/2-periodic if and only if the
following two conditions are satisfied.

(i) ((wep)ip~?) = %l(w;lwo) for 0 <i< ng
(ii) (we)? = ¢
If, moreover,
(iv) Wiwe has (g-rank 0 on the subspace spanned by the root lines of Wi,

then wa¢ is mazximal in the sense of Theorem 9.4 (iv).

Proof. By definition, if T %% ¢T is good d/2-periodic then (i), (ii), (iii) are satisfied.
Conversely, Lemma 9.2 shows that the lift of a w satisfying (i), (ii), (iii) is good
d/2-periodic.

Property (iv) means that no element vw¢ with v € W; has an eigenvalue (4
on the subspace spanned by the root lines of W; which is exactly the equivalent
Definition 9.4(iv) of a maximal element. O

Note that d and I in the above assumptions (i), (ii), (iii) are uniquely determined
by w since d is the smallest power of w¢ which is a power of ¢ and I is given uniquely

by (wo)? = m/m1.

Definition 9.12. We say that wp € W¢ is (4-good (relative to W and 1) if it
satisfies (i), (i), (iii) in Lemma 9.11.
We say wo is (4-good maximal if it satisfies in addition (iv) in Lemma 9.11.
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In particular, (4-good elements lift to good d/2-periodic elements, and (4-good
maximal elements lift to good maximal d/2-periodic elements.

The (4-good maximal elements belong to a single conjugacy class of W. The
following lemma applied with ¢ = (4 gives a characterization of this class.

Lemma 9.13. Let W¢ be a finite order real reflection coset such that ¢ preserves a
chamber of the corresponding hyperplane arrangement. The elements of W ¢ which
have a (-eigenspace V' of mazximal dimension and among those, have the largest
dimension of fized points, are conjugate.

Proof. Let w and V be as in the lemma. Since, by [S, Theorem 3.4(iii) and Theorem
6.2(iii)], the maximal (-eigenspaces are conjugate, we may fix V. Since Cy (V) is a
parabolic subgroup of the Coxeter group W normalized by we, the coset Cy (V)we
is a real reflection coset; in this coset there are 1-regular elements, which are those
which preserve a chamber of the corresponding real hyperplane arrangement; the
1-regular elements have maximal 1-rank, that is have the largest dimension of fixed

points, and they form a single Cyy (V)-orbit under conjugacy, whence the lemma.
]

Lemma 9.14. Let w¢ be a (4-good mazximal element, let I be as in Lemma 9.11
and let V1 be the fized point subspace of w¢ in the space spanned by the root lines
of Wr; then we is regular in the coset Cyy (V1)we.

Proof. Let W/ = Cyw (V1); we first note that since w¢ normalizes V; it normalizes
also W', so W/w¢ is indeed a reflection coset. We have thus only to prove that
Cyw (V) is trivial, where V is the (4-eigenspace of w¢. This last group is generated
by the reflections with respect to roots both orthogonal to V and to V;, which are
the roots of W; = Cw (V') orthogonal to V;. Since w¢ preserves a chamber of Wi,
the sum v of the positive roots of W; with respect to the order defined by this
chamber is in V5 and is in the chamber: this is well known for a true root system:;
here we have taken all the roots to be of length 1 but the usual proof (see [Bou,
Chapitre VI §1, Proposition 29]) is still valid. Since no root is orthogonal to a vector
v inside a chamber, Wr has no root orthogonal to Vi, hence Cyy/ (V) = {1}. O

Note that the map Cy(w¢p) = Ny (V) — Nw (V)/Cw (V) in the above proof
is injective, but not always surjective: if W of type E7, if ¢ = Id and ¢ = i, a fourth
root of unity, then Ny (V')/Cy (V) is the complex reflection group G, while W’ is of
type Dy and Ny (V)/Cyw- (V) is the complex reflection group G(4,2,2). However,
we will see in appendix 1 that there are only 4 such cases for irreducible groups W;
to see in the other cases that Cy (wg) ~ Ny (V)/Cw (V) it is sufficient to check
that they have same reflection degrees, which is a simple arithmetic check on the
reflection degrees of W and W”.

10. CONJECTURES

The following conjectures extends those of [DM2, 2.1].
Conjecture 10.1. Let T % ¢TI € BH(Z) be a mazximal d/2-periodic morphism.
Then

(i) The group By generated by the monoid B, of Theorem 8.35 is isomorphic
to the braid group of the complex reflection group W, := Ny (Wiwe)/W7.
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(ii) The natural morphism Endp+ ) I < T — Endgr (X(I,wo)) (see below
Definition 8.31) gives rise to a morphism By, — Endgr H} (X(I,w¢))
which factors through a special representation of a (gq-cyclotomic Hecke
algebra Hy, for W,.

(iii) The odd and even HL.(X(I,w¢)) are disjoint, and the above morphism
extends to a surjective morphism Q,[Bw| — Endgr (HX (X(I, w¢))).

Lemma 10.2. Let I %5 91 € B*(Z) be a mazimal d/2-periodic morphism and
assume conjectures 10.1; then for any i # j the G¥-modules H:(X(I,w¢)) and
HI(X(I,w¢)) are disjoint.

Proof. Since the image of the morphism of Conjecture 10.1(ii) consists of equiva-
lences of étale sites, it follows that the action of Hy on H}(X(I,w¢)) preserves
individual cohomology groups. The surjectivity of the morphism of (iii) implies that
for p € Irr(GF), the p-isotypic part of H}(X(I,w¢)) affords an irreducible Hy-
module; this would not be possible if this p-isotypic part was spread over several
distinct cohomology groups. 0

We will now explore the information given by the Shintani descent identity on
the above conjectures

Lemma 10.3. Let T % 9T € BT(T) be a d/2-periodic morphism. With the nota-
) —l(wp)—ay—A

tions of Proposition 8.40, we have Xqm (X1Tw¢) = qml( B *X(erwF) for

x € Iir(W)?, where a, (resp. Ay) is the valuation (resp. the degree) of generic

degree of x and ey = |[Wr|~' 32 e, v

Proof. We have (X1Tw®)? = X1Tx /Ty ¢ = ¢ '™ X T since X; commutes
with Tw¢ and since for any v € Wi we have X T, = ql(”)Tu. Since Tr acts on

the representation of character x,~ as the scalar gmUm)—ax—4x) it follows that
I(m)—l(mp)—ay —A
all the eigenvalues of X7y ¢ on this representation are equal to ¢™ T

times a root of unity. To compute the sum of these roots of unity, we may use the
specialization ¢"™/2? — 1, whence Xqm (X1Two) specializes to x(ejwe). O

Proposition 10.4. Let I % ¢I € B+ (I) be a d/2-periodic morphism. For any m
multiple of 0, we have

X(Lwo) ™" | = Y i
peE(GF 1)

l(m)=l(rwy)—ap—Ap
d

(p, RE:, p 1d) g p(g)-

Proof. We start with Corollary 8.41, whose statement reads, using the value of
Xqm (X1Tw¢) given by Lemma 10.3:

IX(Lwe) ™ | = > Ap(g)
pEE(GF,1)

Um)—l(mp)—ax—Ax
> @ X(erwe){p, Rg)ar.
XEIrr(W)¢

Using that for any p such that (p, Ry)gr # 0 we have a, = ax and A, = A, the
right-hand side can be rewritten

U(m)—l(mp)—ap—A ~
S o) e Y. X(erwe)Rg)ar.

pEE(GT,1) XEIrr(W)®



PARABOLIC DELIGNE-LUSZTIG VARIETIES. 47

The proposition is now just a matter of observing that

Y. Xlewd)Ry=Wi7H Y Y X(vwo)Ry =
xEIrr(W)¢ veEWr xelrr(W)¢

Wil~t > RE, (1d) = RE, (1d).
veWr

Where the last equality is obtained by transitivity of RS and the equality IdL}bF =

Wil Y ew, RFIlii’ij(Id), a torus T of L; of type v for the isogeny wF being
conjugate to T, in G. O

Corollary 10.5. Let I %% 1 € BT(T) be a maximal d/2-periodic morphism and

assume congectures 10.1; then for any p € Irr(GY) such that {p, RE’I (Id))gr # 0

the isogeny F° has a single eigenvalue on the p-isotypic part of H* (X (I, w¢)), equal
slr/mD —ap -4,

to A\pq a

Proof. This follows immediately, in view of Lemma 10.2, from the comparison be-
tween Proposition 10.4 and the Lefschetz formula:

IX(Lwe)™ | = (~1)! Trace(¢F™ | HA(X(Lwg),Qy)).

%

O

In view of Corollary 8.28(i) it follows that if (p, Rf (Id))gr # 0 then if w, = 1

then {F/M =4 ¢ N and if w, = \/¢° then /M= ¢ Ny 41 /2,
Assuming conjectures 10.1, we choose once and for all a specialization ¢'/®
¢'/% where a € N is large enough such that H, ® Q,[¢/?] is split. This gives a
bijection ¢ — ¢, : Irr(W,,) — Irr(Hw), and the conjectures give a further bijection
@ = py between Irr(W,,) and the set {p € Irr(G*) | (p, RE (Id))gr # 0}, which is

such that (pW,RS’I (Id))gr = ¢(1).

Corollary 10.6. Under the assumptions of Corollary 10.5, if w, is the central
character of ¢, then
U /7D —apy = Apy
App = w ((we)’)¢™° d
Proof. We first note that it makes sense to apply ¢ to (u}gﬁ)57 since (w¢)5 e Wy.
Actually (w¢)® is a central element of By, and maps by the morphism of Conjecture
10.1(iii) to £, thus the eigenvalue of F° on the p,-isotypic part of H}(X(I, w¢))

U /7)) —apy —Apy,

is equal to wy, (We)°); thus wy, (We)?) = A, ¢° a . The statement
follows by applying the specialization ¢'/* — ¢/ to this equality. O

11. APPENDIX 1: GOOD (y-MAXIMAL ELEMENTS IN REDUCTIVE GROUPS

We will describe, in a reductive group G, for each d, a (4- good maximal element
wa¢ relative to W and some I C S. Thus the variety X(I, w¢) will be the one
whose cohomology should be a tilting complex for the Broué conjectures for an ¢
dividing ®4(q).

Since such an element depends only on the Weyl group, we may assume that
G is semi-simple and simply connected. Now, a semi-simple and simply connected
group is a direct product of restrictions of scalars of simply connected quasi-simple
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groups. A (4-good (resp. maximal) element in a direct product is the product of a
C4-good (resp. maximal) element in each component. So we reduce immediately to
the case of restriction of scalars.

11.1. Restrictions of scalars. A restriction of scalars is a group of the form
G", with an isogeny Fj such that Fiy(xo,...,2n-1) = (X1,...,Zn-1, F(x0)). Thus

(GMI ~ GF.
If F induces ¢ on the Weyl group W of G then (G",F}) corresponds to the
reflection coset W™ - o, where o(21,...,2,) = (2, ..., Tpn, @(x1)).

In the first two propositions of this section, we will study such a “restriction
of scalars” for arbitrary complex reflection cosets. Thus we start with a reflection
coset Wo, with W C GL(V) a complex reflection group where V' = C", and ¢ €
Nervy(W). We denote by & the order of W¢ (the minimal i such that (W¢)" = W).
We want to study the eigenvalues of elements in the coset W™ -0 C GL(V"), where
o(x1,...,xn) = (x2,...,x,,d(x1)); we call this coset the restriction of scalars of
the coset W .

Recall that, if Sy is the coinvariant algebra of W (the quotient of the symmetric
algebra of V* by the ideal generated by the W-invariants of positive degree), for
any W-module X the graded vector space (S @ X*)" admits a homogeneous
basis formed of eigenvectors of ¢. The degrees of the elements of this basis are
called the X-exponents of W and the corresponding eigenvalues of ¢ the X-factors
of W¢. For X =V, the V-exponents n; satisfy n; = d; — 1 where the d;’s are the
reflection degrees of W, and the V-factors ¢; are equal to the factors of W¢. For
X = V™, the n; — 1 where n; are the V*-exponents are called the codegrees d; of W
and the corresponding V*-factors € are called the cofactors of W¢. By Springer
[S, 6.4], the (-rank of W¢ is equal to |{i | (* = ¢;}|. By analogy with the (-rank,
we define the (-corank of W¢ as |{i | (% = e}|. By for example [Br, 5.19.2] an
eigenvalue is regular if it has same rank and corank.

Proposition 11.1. Let W" - ¢ be a restriction of scalars of the complex reflection
coset W¢. Then the (-rank (resp. corank) of W™ - o is equal to the ("™-rank (resp.
corank) of W .

In particular, ¢ is regular for W™ - o if and only if (™ is reqular for W - ¢.

Proof. The pairs of a reflection degree and the corresponding factor of ¢ for the
coset W™ - o are the pairs (d;, ¢ {/2;), where i € {1,...,r},j € {1,...,n} and
where {/g; represents an n-th root of ; (that we choose arbitrarily for each i).

Similarly, the pairs of a reflection codegree and the corresponding cofactor are
(d2, G /5 |

In particular the (-rank of W™ - o is [{(i, ) | (% = ¢ t/z;}| and the (-corank is
() 1 ¢ = G y/2T) . |

Given a € N, there is at most one j such that the equality (¢ = ¢} {/; holds,
and there is one j if and only if ("* = ¢;. Thus we have

{(i,) | ¢% = G vl = [{i | ¢ =i}
and similarly for the corank, whence the two assertions of the statement. O
We assume now that ¢ = (4; note that ¢} is a d/k-th root of unity, where

k = ged(n,d), but it is not a distinguished root of unity. We have however the
following:
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Proposition 11.2. Let W" - ¢ be a restriction of scalars of the complex reflection
coset W¢ and for d € N let k = ged(n, d); then there exists m such that m(n/k) =1
(mod d/k) and ged(m,d) = 1, and for such an m the (4-rank (resp. corank) of W"-o
is equal to the (q/p-rank (resp. corank) of W - ¢™.

Proof. We first show that m exists. Choose an m such that m(n/k) =1 (mod d/k).
Since m is prime to d/k it is prime to ged(d/k,d). By adding to m a multiple of
d/k we can add modulo ¢ any multiple of ged(d/k, d), thus we can reach a number
prime to ¢, using the general fact that for any divisor ¢’ of §, the natural projection
7./67 % 7,)8'Z is such that 0((Z/6Z)%) > (Z,/5'Z)*.

By Proposition 11.1, the (4-rank (resp. corank) of W" - ¢ is equal to the (J} =

§g//:—rank (resp. corank) of W - ¢. Now &l (resp. £™) are the factors (resp. cofac-

tors) of W - ¢™ and since m is prime to § and € = 1, we have |{i | (% =&;}| = |{i |
(¢m)di = gm}|, (similarly for df,e}); thus the §g//:—rank (resp. corank) of W - ¢ is
equal in turn to the C;}:/k—rank (resp. corank) of W - ¢™. Now, since m(n/k) =1
(mod d/k), we have Qg}'kn/k = Ca/k- O

We now assume, until the end of the subsection, that W¢ is a real reflection
coset, of order ¢, that ¢ preserves a chamber corresponding to the Coxeter system
(W, S), and that ¢ = (4 is a distinguished root of unity. We will use the criteria of
Lemma 9.11 to check that an element is (4-good (resp. maximal).

Proposition 11.3. Under the assumptions of Proposition 11.2, let v¢™ be a Cq/5-
good element relative to W¢™ and I. Then
o If either k = 1 or d/k is even, define w = (wg,...,wp—1) € W™ by
wik = ¢ (v), and w; =1 if 7 # 0 (mod k)
o Ifd/k is odd and k # 1, by Corollary 7.3 there exists vi,va € W such
that v¢™ = v1d™ve and (v(bm)(%_l)/%l = w;lwoqu(%_l)m; define w =
(wo, ... wp—1) € W™ by

¢ (v2) if j =ik
wj = oI () if j =ik + 5]
1 if j#0,|5] (mod k)
In each case wo is a (4-good element relative to W"o and I where I = (Ip,...,In—1) C

S™ with I; = wivit1wn=1¢] qnd we have Ny (Wiwo) /Wi ~ Ny (Wivg™)/Wr.
If moreover vd™ is maximal then wo is also mazximal.

Proof. To lighten the notation, we set n’ = n/k and d’ = d/k.

We recall that v¢™ being (g-good means **" I = I and v is I-reduced, (v¢™)% =
o™ and I((vg™)i ™) = 2i/d’ - I(wy 'wp) for 0 < i < |%]. We have to show the
same conditions for wo, that is

(1) wa([o, ceey Infl) = (I(), ceey Infl) and w is (Io, . ,In,l)—reduced.
(ii) (wo)? = o
(iii) I((wo)io™%) = %l(w?lwo) for 0 < < LgJ
We first note:

Lemma 11.4. ¢% stabilizes v and I (thus ¢&<4%) 4lso).
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Proof. As (U¢m)d/ = qud/, we find that (bmd/ stabilizes v¢™ and I, thus v and I.
Since m is invertible modulo 4, we get that (bd, stabilizes v and 1. O

We first check that I C S™. In the case d’ even, each I; is of the form
o1 ()T () I () (where ik is the smallest multiple of k greater than j).
If &’ is odd I; is either as above or of the form ¢~ "™ (v2)¢"" ()¢ TV (v)...o™ ~V™ (v)é T

In the first case, since 1 — mn’ =0 (mod d’') and ¢ stabilizes I, by Lemma 11.4,
we can write

I = # @I @) I @™ ¢ e T Z 6 g,

In the second case, if we put J = I"* = v20" T a subset of S by Corollary 7.3, we
get [; = ¢ w)et " — ¢TI g

We now check (i). The verification of *(Io, ..., I,—1) = (o, .., I,—1) reduces

to wowr-wn—1¢] — [ which itself reduces to v ()6 D o I, which is
true by the case i = 0 of the above computation. Similarly, checking that wo is
(Io, ..., I,—1)-reduced reduces to the check that for each j the element w; is I;-
reduced, where [; = WiWj 1 Wn 1@ — [Wo--Wj-1 or equivalently that wp .. LW
is I-reduced. Thus in the d’ even case we have to check that v¢™(v)...¢" (v) is
I-reduced for 0 < i < n'. This results from the fact that v is I-reduced and that v¢™
normalizes I. In the d’ odd case we have also to check that v¢™ (v) ... pU=D™ (v)p"™ (vy)
is I-reduced, which follows from the fact that v is I-reduced, that v¢™ normalizes
I and that vy is also I-reduced, which we know by Corollary 7.3.

For checking (ii) and (iii) we compute (wo)’. For any (wo,...,w,_1) € W™
we have o(wg, ..., wy—1) = (w1,...,Wu—1,(wo))o, thus we find that if we define

for all j the element w; = o (wj,) = gbL%J(wjo) where jo = j (mod n) and
0 < jo < n, we have

(wo )" = (Wo . .. Wi 1, W1+ Wi+ e oy W] o Wippp_2)0.

Each product wywy 41 ... wy,+;—1 appearing in the above expression is, up to apply-
ing a power of ¢, of the form (v¢™)7¢ =™ or in the d’ odd case additionally of one of
the forms (v9¢™v1 )7 ¢~™ | (v1™v2) V1~ ™ or va(v1d™v2) ¢~ for some j which
depends on w and ¢. If ¢ is a multiple of k the last two forms do not appear and
j =i/k. In particular if i = d we get either (vg™)¥/* ="k or (vyp™uv, )4/ kp=md/k,
Since (wbm)d, = ¢@™ we have also (vggbmvl)d, = vl_l(vgbm)dlvl = ¢™@ since v,
hence vy, is ¢™% -stable, whence (ii).

To check (iii) it is enough check it for ¢ = 1, which is clear since I(w) = n'l(v) =
Zin](wi Mwe) and I(v) = I(v1) + 1(¢™ (v2)) (by Corollary 7.3) and to check that in
a product wyWy41 - . . Wy4i—1 the lengths add for all i < Lg]: the lengths will then
add in (wo)? for ¢ < [2] which gives (iii). In the d’ even case this is a result of
the lengths adding for (v¢™)7¢p~™. In the d’ odd case, we know by Corollary 7.3
that the lengths add in a product of at most d’ terms of the form vy " vy? vy ...
or of the form v2?" v;%mvy.... We claim that to get more than d’ non-trivial
terms in the product wywy41 ... wyti—1 we need ¢ > L%J The maximal number
of non-trivial terms is obtained when the first or the last term is non trivial. To
get d’ + 1 non-trivial terms we need i > %k + | %], since d’ + 1 is even. But

dlsrlk + %] = L%dlj +k > ¢, whence our claim.
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Computing now Ny (Wiwo), we find that (go,. .., gn—1) normalizes (W wo) if
and only if:
9oWr, = Wi, "1

gn72W1n,2 == W1n72 wn72gn71
GnaWi, , = Wi, “"gq
which, using the value I; = s-+Wn-1¢] = [Wo--i=1 hecomes

goWr = Wi"g;

WO . Wy _ WO .. Wy —
Otm=sg, oW =MW" =2g, 4

w0~~~wn72'gn_1WI =W; wO---wnflqﬁgO

We now notice that an equality aW; = Wrb is equivalent to: a normalizes Wi,
and aW; = bW;. Thus our equations are equivalent to: gg normalizes W;, the
cosets Wigo, ..., Wywo-¥n-2g, 4 are equal (thus determined by go) and W;gy =
Wiwown-19g,  The last equality means that go normalizes Wiwyg . ..w,_1¢; we
find Ny (Wywo) /Wi ~ Ny (Wiwg . .. wn_10) /Wi = Ny (Wi (vg™)™ $1=™"") W
Since 1 —mn’ = 0 (mod d'), by Lemma 11.4 ¢'~™"" commutes with v¢™, thus
((vg™)™ gr=mn'ym — (pgm)n'mgm=mn'm et us write n'm = ad’ + 1; using that
(’Ud)m)d/ _ d)md/ we get (v¢m)n/m¢m—mn/m _ (U¢m>ad'+1¢—amd/ = v¢™, thus the
above coset has same normalizer as Wrvgp™.

Assume now that v¢™ is maximal, that is Wiv¢™ has (4 -rank equal to 0. We
prove the same for wo, that is (Wy, x ... x Wy, | )wo has (g-rank 0. Identifying I;
to I via w; ... wp—1¢, the coset (Wp, x ... x Wy, )wo identifies to W} ¢’ where

o' (xoy -y tn_1) = (T1,- -, Tn_1, (Wo .. . wp_10)(x0))
= (@1, Tn-1, ((’U(ﬁm)n/(blimn,)(zO))a

since in each case we have wg ... w,_1¢0 = (V™)™ $*=""")(x0)). Now by Propo-
sition 11.2 the (4-rank of this last coset is equal to the (y-rank of the coset
W ((vg™)™ ¢'=™" )™ But we have checked above that ((v¢™)™ ng' =™ )™ = v¢™,
thus the sought (4 -rank is the same as the (y-rank of Wiv¢™ which is 0 by as-
sumption. O

11.2. Case of irreducible Coxeter cosets. We now look at the case of quasi-
simple simply connected reductive groups G, or equivalently at the case of irre-
ducible Coxeter cosets W¢. We will look at any real Coxeter coset W since it is
not much more effort than to look just at the rational ones.

We use the classification. We are going to give, for each irreducible type and
each possible d, a representative w¢ of the (4-good maximal elements, describing the
corresponding I; since conjecturally for a given d all such elements are conjugate in
the braid group, this describes all the (4-good maximal elements. We also describe
the relative complex reflection group W(we) := Ny (V)/Cw (V'), where V is the (4-
eigenspace of we. In the cases where the injection Cy/ (we) — Ny (V) /Cw (V) =
W (we¢) of the remark after Lemma 9.14, is surjective, where W’ = Cy/(V7) and
V1 is the fixed point subspace of w¢ in the space spanned by the root lines of W7y,
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we use it to deduce W(wg) from W’ = Cy (V1) since the centralizers of regular
elements are known (see [BM, Annexe 1]).

Types A, and 24,,. O—---(. 24, is defined by the diagram automorphism

S1 S2 Sn

¢ which exchanges s; and s,,41—;.
For any integer 1 < d < n + 1, we define

d+1 d
Ud = 81825, _|dSnSn—1-..8 sz and Jg = {si | L%J +1<i<n-— \_§J}

If d is odd we have vg = vfid’vl’i, where v/, = s152. .. Sp_|d]-

Now, for 1 < d < n+ 1, let kd be the largest multiple of d less than or equal to
n+1, so that ”T'H <kd<n+land k= L"THJ We then define wg = v,’jd, I = Jrg
and if d is odd we define w/;, by

viod)F if kis odd,
o= {0
Vil if k£ is even,
Theorem 11.5. For W = W (A,), (4-good mazimal elements exist for 1 < d <
n+ 1; a representative is wq, with I = Iq and W(wg) = G(d, 1, |2 ).

For Weo, (4-good maximal elements exist for the following d with representatives
as follows:

e d=0 (mod4), 1 <d<n+1; arepresentative is wap with I = I; and
W(wad) = G(d, 1, [ *F+]).

e d=2 (mod 4), 1 <d<2(n+1); a representative is w&/Q(b with I = 1/5
and W (w} ,¢) = G(d/2,1, [ 2052 ]).

e dodd 1<d< "TH If d # 1 a representative is w3 ¢ with I = Iy and
W (w3 0) = G(2d, 1, [ 5 ]).

Proof. We identify the Weyl group of type A,, as usual with &,,+1 by s; — (i,i+1);
the automorphism ¢ maps to the exchange of ¢ and n+2 —i. An easy computation
shows that the element vg maps to the d-cycle (1,2,..., L%J n+1ln,....n+2—

|4]) and that for d odd v/, maps to the cycle (1,2,...,n — 943).

Lemma 11.6. Ifd is even vq and wq are ¢-stable. If d is odd we have wq = w)).?w)).

Proof. That d is even implies |42 | = [£], thus in the above cycle ¢ exchanges
the two sequences 1,2, ..., L%J andn+1,n,...,n+2— L%J, thus vy is ¢-stable.
The same follows for wq, with k = |25 ], since kd is even if d is even.
For d odd we have
/ 2k 3 3
o) if k is odd
’LU/.¢’LU/ — ’LU/ 2 _ (de ’
a-"0a = (wqd) U,]:C/IZ.d’(vZf) if k is even.

If k is odd we have (v} ,0)%% = (v,,%v},)F = vF, = wa. If k is even then vgq is

¢-stable thus U:C/IQ.¢(U]]:C/IQ) =k, = wy. O

Lemma 11.7. For1<d<n+1,

e the element vg is Jg-reduced and stabilizes J,.
e the element wy is Iz-reduced and stabilizes 1.
e for d odd, the element v)) is Jg-reduced and v)¢ stabilizes Jq.
e for d odd, the element w!, is Ig-reduced and w)¢ stabilizes 1.
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Proof. The property for wq (resp. w/) follows from that for vy (resp. v}) and the
definitions since being Iy-reduced and stabilizing Iy are properties stable by taking
a power.

It is clear on the expression of vg as a cycle that it fixes i and i + 1 if s; € Jy
thus it fixes the simple roots corresponding to J;, whence the lemma for vg.

For d odd, 1 < d < n+1, an easy computation shows that v/, = (1,2,...,n—%32),
and that v/;¢ preserves the simple roots corresponding to Jy. (I

Lemma 11.8. For1<d<n+1 and for 0 <i < L%J, we have

o I(v) = %l(w;dlwo) and l(w}) = %l(w;dlwo)

o (for d odd) I((vj$)'¢p~") = Ll(w] 'wo) and L((w)p)'¢~") = Sl(wy 'wo).
Proof. Tt is straightforward to see that the result for wg (resp. w/)) results from the

result for vg (resp. v} or vg) and the definitions.
n(nt1l) (n=d)(n—d+1) __
2 2 =

Note that the group W, is of type A,,_q, thus l(wjdlwo) =
(2n—d+1)d
—

We first prove the result for vy and v/, when ¢ = 1. For odd d we have by

definition [(v}}) = n — 9451 = 22=4EL which is the formula we want for v/;. To find

the length of vy one can use that s,s,_1... S| dt1 | is {s1, $2,...,8n—1}-reduced,
2
thus adds to sysy. .. Sp_| 4> which gives I(vg) = 2n — d + 1, the result for v,.
We now show by direct computation that when d is even vj/ 2= w}dl wo. Rais-

ing the cycle (1,2,...,%,71 +1n,....,n+ 2 — %) to the d/2-th power we get
(L,n+1)(2,n)...(4,n + 2 — £) which gives the result since wj, = (4 + 1,n +
1—4)...([2],|=H]). The lemma follows for vq with d even since its truth for
i=1andi= g implies its truth for all i between these values.

We show now similarly that for odd d we have (v/,¢)% = w;dl wo¢?. Since ¢ acts

on W by the inner automorphism given by wy, this is the same as (v/wg)? = w,,.
We find that (1,2,.. .,n—d—gg)wo =(1,n+1,2,n,3,n—1.. .,n—d—j’, %)(di3 n—

4=3) (|22, [2E2]) as a product of disjoint cycles, which gives the result since

(I,n+1,2,n,3,n—1,.. .,n—%, %) is a d-cycle and (#,n—%) . (L"T*?’J, L"THJ) =
wy,. This proves the lemma for w/; by interpolating the other values of i as above.
It remains the case of vy for odd d. We then have vy = (v;¢)? where the lengths

add, and we deduce the result for v4 from the result for . O

Lemma 11.9. The following elements are (4-good

e Forl<d<n-+1, the elements vq and w,.
e For d=0 (mod 4),d < n+ 1 the elements vgp and wqe.
o For d=2 (mod 4),d < 2(n + 1) the elements vy ,,¢ and w) ¢

e Ford odd, d < "TH the elements v3;¢ and w3,p.

Proof. In view of the previous lemmas, the only thing left to check is that in each
case, the chosen element x in W (resp. W¢) satisfies ¢ = 1 (resp. (z¢)¢ = ¢).
Once again, it is easy to check that the property for wq (resp. w/) results from that
for vq (resp. v}, or vg) and the definitions.

It is clear that vg = 1 since then it is a d-cycle, from which it follows that when

d =2 (mod 4) we have (U:i/2¢)d = Ugg = 1. The other cases are obvious. O

To prove the theorem, it remains to check that:
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e The possible d for which the (g-rank of W (resp. W¢) is non-zero are as
described in the theorem. In the untwisted case they are the divisors of one of
the degrees, which are 2,...,n + 1. In the twisted case the pairs of degrees and
factors are (2,1),...,(i,(=1)%),...,(n + 1,(=1)""!) and we get the given list by
the formula for the (4-rank recalled above Proposition 11.1.

e The coset Wrw¢ has (4-rank 0 on the subspace spanned by the root lines of
Wr. For this we first have to describe the type of the coset, which is a consequence
of the analysis we did to show that w¢ stabilizes I. We may assume I non-empty.

Let us look first at the untwisted case. We found that wy acts trivially on Iy,
so the coset is of untwisted type A, _rq where k = L”T'HJ Since 1 4+n — kd < d by
construction, this coset has (z-rank 0.

In the twisted case, if d =0 (mod 4), the coset is W;,wa¢, which since wy acts
trivially on I; and ¢ acts by the non-trivial diagram automorphism, is of type
?Ap_ka where k = 21| Since n — kd = n — |2 ]d < d — 1, this coset has
(g-rank 0.

If d is odd, the coset is W12dwgdq§, which since woq acts trivially on Iy and ¢
acts by the non-trivial diagram automorphism, is of type 2A,,_srq where k = L"Q—*;llj
Since n — 2kd = n — [ %51 |2d < 2d, this coset has (4-rank 0.

Finally, if d = 2 modulo 4, the coset is W[d/2w/d/2¢. Let k = LQ("%;F”J; then

I/V[d/2 is of type An_kd/g. If k is even then w&/z = wZC/iQ and the coset is of type
2An_kd/2. Since n — kd/2 < d/2 — 1, this coset has (4-rank 0. Finally if &k is odd
w;/Qqﬁ = (w}vd/qu)k. Since kd/2 is odd, we found that w}vd/qu acts trivially on I;/5
so the coset is of type A,_xq/2, and has also has (4-rank 0.

e Determine the group W (we¢) (resp. W(w)) in each case, We first give V; and
the coset Cw (V1)we or Cyw (Vi)w. In the untwisted case wy acts trivially on the
roots of Wr,, hence V7 is spanned by these roots and Cyy (V1) is generated by the
reflection with respect to the roots orthogonal to those, which gives that Cy (V1) is
of type AdL”’T“J—l if d fn and A,, otherwise. In the twisted case if d =0 (mod 4)
since wq acts trivially on the roots of Wiy, the space Vi is spanned by the sums
of the orbits of the roots under ¢ which is the non-trivial automorphism of that
root system. Hence the type of the coset Cy (V1)wqd is QAdL”T“J—l if n is odd

and 2AdL"T“J if n is even. If d is odd a similar computation gives that the type
of the coset Cy (Vi)w3,¢ is 2A2dtn2_4:iljil if n is odd and 2A2dL"2—21J if n is even. If
d =2 (mod 4) w/ /2(;5 acts also by the non-trivial automorphism on Wy, , and we

get that the coset CW(Vl)wl’i/qu is of type 2A4L2<n+1” if n and LQ("%;FDJ have the
2 d

same parity and 24, (21|, otherwise.
2 d
Knowing the type of the coset in each case, we deduce the group W(w¢) (resp.
W(w)) as in the remark at the beginning of subsection 11.2. O

Type B, C=C—0---(. For d even, 2 < d < 2n we define

S1 S2 53 Sn

Vg = Spy1—dj2---525152...5, and Jg = {s; | 1 <i <n —d/2}.
Note that vg, is the Coxeter element s1s5...s,. Now for 1 < d < 2n, that we
require even if d > n, we define wy as follows: let kd be the largest even multiple
of d less than or equal to 2n so that k = [2%] if d is even and k = 2| 2] is d is odd.
We define wg = v’,jd and Iy = Jiq.
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Theorem 11.10. For W = W (B,,), (4-good mazimal elements exist for odd d less
than or equal to n and even d less than or equal to 2n. A representative is wgq, with
I = Ia; we have W(wq) = G(d, 1, |22]) if d is even and W (wq) = G(2d,1, [ 2]) if
d is odd.

Proof. We identify as usual the Weyl group of type B, to the group of signed
permutations on {1,...n} by s; — (i — 1,4) for ¢ > 2 and s; — (1,—1). The
element vy maps to the d-cycle (or signed d/2-cycle) given by (n+1—d/2,n+2—
d/2,....,n—1,n,d/2—n—1,d/2—n—2,...,—n). This element normalizes J,; and
acts trivially on the corresponding roots, so is Jgz-reduced. The same is thus true
for wq and I, since these properties carry to powers.

Lemma 11.11. For 0 < i < |4] we have [(v}) = %l(w}dlwo) and l(wh) =
%l(wl_dlwo).

Proof. As in Lemma 11.8 it is sufficient to prove the lemma for vy, which we do
now. To find the length of vy we note that sysa...s, is {s2, s3, ..., s, }-reduced so
that the lengths of s,,,1_q/2...52 and of s1s2...5, add, whence [(vq) = 2n — d/2.
Since I(wg) = n? and l(wy,) = (n — d/2)? we have l(wl_dlwo) = nd — d*/4, which
gives the result for ¢ = 1. Written as permutations wy is the product of all sign

changes and wy, is the product of all sign changes on the set {1,...,n —d/2}; a

/

direct computation shows that vg % is the product of all sign changes on {n + 1 —

d/2,...,n}, hence vg/Q = wl_dl wg. The lemma follows for the other values of d. [
Since vj/Q = wy, wo we have vg = 1, so the same property is true for wy, thus
the above lemma shows that vg and wy are (4-good elements.

Note also that Theorem 11.10 describes all d such that W has non-zero (4-rank
since the degrees of W(B,,) are all the even integers from 2 to 2n. We prove now
the maximality property 9.11(iv) for wq. If k is as in the definition of wy, the group
Wi, is a Weyl group of type By, _jq/2 and wq acts trivially on 1. Since n—kd/2 < d
the (g-rank of Wy, wg is zero on the subspace spanned by the roots corresponding
to Id.

It remains to get the type of W(wg). Since wy acts trivially on I; the space V3
of Lemma 9.14 is spanned by the root lines of Wi, and Cy (V1) is spanned by the
roots orthogonal to those, so is of type Bjq/2. We then deduce the group W (wq) as
in the remark at the beginning of subsection 11.2, as the centralizer of a (4-regular
element in a group of type Byq/z. ]

1

S2

Types D,, and 2D,, O——)---(. 2D,, is defined by the diagram automorphism

S1 53 S4 Sn

¢ which exchanges s; and s, and fixes s; for ¢ > 2.
For d even, 2 < d < 2(n — 1) we define

pifd=2(n—-1)

Vd = Snti-d/z- - 83828183 .- 5n and Jo = {{s |1<i<n-—d/2} otherwise
K2 = = .

Note that vy(,—1) is a Coxeter element. Then for 1 < d < 2(n — 1), that we require
even if d > n, we let kd be the largest even multiple of d less than 2n, so that
k= 22| if d is even and k = 2|2 | if d is odd, and define wy = vy, and
1y = Jiq.
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Note that vg, and thus wg, are ¢-stable.

Theorem 11.12. o For W =W(D,,) there exist (4-good maximal elements
for odd d less than or equal to n and even d less than or equal to 2(n—1).
When d does not divide n a representative is wq, with I = Ig; in this
case, if d is odd W(wq) = G(2d,1,[2F]) and if d is even W(wq) =
G(d. 1, [2572]).
If d|n a representative is wz/d where W, = $15283...5,53584...5n—1- In
this case I =0 and W(wi'?) = G(2d, 2,n/d).

o For W¢ there exist (4-good maximal elements for odd d less than n, for
even d less than 2(n—1) and for d = 2n. Except in the case when d divides
2n and 2n/d is odd a representative is wqo, with I = Iy and W(wqp) =
G(2d, 1,22 ]) if d is odd and W (wa¢) = G(d, 1, |22-2]) if d is even. In

2n/d

the excluded case a representative is (way, @) where Wy, = $158384 ... 5,.

In this case I = 0 and W ((w2,¢)?"?) = G(d,2,2n/d).

Proof. The cases D,, with d|n or 2D,, with d|2n and 2n/d odd involve regular
elements, so are dealt with in [BM]. We thus consider only the other cases.

We identify the Weyl group of type D, to the group of signed permutations
on {1,...n} with an even number of sign changes, by mapping s; to (i — 1,4) for
1 # 2 and s9 to (1,—2)(—1,2). For d even vy maps to (1,—1)(n+1—d/2,n+2—
d/2,...,n—1,n,d/2—n—1,...,1 —n,—n). This element normalizes .J;: when
Jg # 0, it exchanges the simple roots corresponding to s; and sy and acts trivially
on the other simple roots indexed by Jy, so it is Jgz-reduced. It follows that wy
normalizes I and is I -reduced.

Lemma 11.13. For 0 < i < |4]| we have I(v}) = %l(w;ﬁlwo) and l(wh) =
%l(w;(llwo).

Proof. As in Lemma 11.8 it is sufficient to prove the lemma for vg. To find the
length of vy we note that s3518384 ... 8, is {83, ..., s, }-reduced so that the lengths
of 8,41-4/2...53 and of sps183...5, add, whence [(vq) = 2n — 1 — d/2. Since
lwo) = n? —n and l(wy,) = (n —d/2)* — (n — d/2), we have l(w] wy) =
d/2(2n — 1 — d/2). which gives the result for ¢ = 1. Written as permutations
wo = (1, -1)"(2,-2)...(n,—n)and wy, = (1, -1)""¥2(2,-2)...(n—d/2,d/2—n);
a direct computation shows that 03/2 = (1,-1)¥?(n+1-d/2,d/2—n—1) ... (n, —n),

hence UZ/ 2= w;dl wp. The lemma follows for smaller 4. ]
Since vfll/ 2= w;dlwo and J; is wp stable we have v¢ = 1, so the same property

follows for wy which shows that vy and wy are (4-good elements.

We also note that the theorem describes all d such that the (4-rank is not zero,
since the degrees of W (D,,) are all the even integers from 2 to 2n — 2 and n, and
in the twisted case the factor associated to the degree n is -1 and the other factors
are equal to 1.

Since wy is ¢-stable the element wq¢ is also (4-good.

We now check Lemma 9.11(iv), that is that the (4-rank of W, wg in the untwisted
case, resp. Wr,wq¢ in the twisted case is 0 on the subspace spanned by the roots
corresponding to I;. This property is clear if I; = (). Otherwise:

e In the untwisted case the type of the coset is D,,_jq/2 if k is even and 2Dn,kd/2
if k£ is odd, where k is as in the definition of wy. In both cases the set of values i
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such that the (;-rank is not 0 consists of the even i less than 2n — kd, the odd i
less than n — kd/2 and in the twisted case (k odd) i = 2n — kd. Since if d is even
we have 2n — kd < d and if d is odd we have n — kd/2 < d, the only case where d
could be in this set is k odd and d = 2n — kd, which means that k—;rld =n. But d
is assumed not to divide n, so this case does not happen.

e In the twisted case the type of the coset is D,,_pq/2 if k is odd and 2Dn_kd/2
if k£ is even. In both cases the set of values 7 such that the (;-rank is not 0 consists
of the even i less than 2n — kd, the odd 7 less than n — kd/2 and in the twisted case
(k even) i = 2n — kd. Since if d is even we have 2n — kd < d and if d is odd we have
n — kd/2 < d, the only case where d could be in this set is k even and d = 2n — kd,
which means that (k 4+ 1)d = 2n. But this is precisely the excluded case.

We now give Cyy (V1), where V; is as in Lemma 9.14, in each case where I is not
empty. In the untwisted case, if d is odd the group Cw (V1) is of type DdLanlj; if
d is even the group Cyw (V1) is of type Dajanay g if [222] is odd and Dajzn_z
if [222] is even. In the twisted case, if d is odd the coset Cy (V1)w¢ is of type
2DdLanlj+1 and if d is even the coset is of type 2D%L%J+l if |22-2] is even and

Dy j2nz) if [22-2] is odd. In all cases except if d is even and |2%-2] is even (resp.

odd) in the untwisted case (resp. twisted case) we then deduce the group W (we)
(resp. W(w)) as in the remarks at the beginning of subsection 11.2 and after Lemma
9.14, since in these cases the centralizer of the regular element w¢ (resp. w) in the
parabolic subgroup W’ = Cy (V}) has the (known) reflection degrees of W (we)
(resp. W(w)). In the excluded cases the group Cy(w¢) or Cy(w) is isomorphic
to G(d, 2, | 222 |) which does not have the reflection degrees of W (w¢), resp. W (w).
This means that the morphism of the remark after Lemma 9.14 is not surjective.
We can prove in this case that W (w¢) or W(w) is G(d, 1, 2%2]) since it is an
irreducible complex reflection group by [Br, 5.6.6] and it is the only one which
has the right reflection degrees apart from the exceptions in low rank given by
G5, Gho, G15, G1s, Gag; we can exclude these since they do not have G(d, 2, \_%J)

as a reflection subgroup. (I

Types I>(n) and 2I3(n). All eigenvalues ¢ such that the (-rank is non-zero are
regular, so this case can be found in [BM].

Exceptional types. Below are tables for exceptional finite Coxeter groups giving
information on (4-good maximal elements for each d. They were obtained with
the GAP package Chevie: first, the conjugacy class of good (z-maximal elements as
described in Lemma 9.13 was determined; then we determined I for an element of
that class, which gave [(w;). The next step was to determine the elements of the
right length 2(I(wo) — l(wy))/d in that conjugacy class; this required care in large
groups like Eg. The best algorithm is to start from an element of minimal length in
the class (known by [GP]) and conjugate by Coxeter generators until all elements
of the right length are reached.

In the following tables, we give for each possible d and each possible I for that d a
representative good we¢, and give the number of possible w¢. We then describe the
coset Wiwe by giving, if I # (), in the column I the permutation induced by we¢ of
the nodes of the Coxeter diagram indexed by I. Then we describe the isomorphism
type of the complex reflection group Ny (Wrwe)/Wr = Nw (V)/Cw(V), where
V is the (4-eigenspace of w¢. TFinally, in the cases where I # ), we give the
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isomorphism type of W' = Cy (V7), where V; is the 1-eigenspace of w¢ on the
subspace spanned by the root lines of I. We note that there are 4 cases where
Ny (V)/Cw: (V) < Nw(V)/Cw (V): for d =5 in 2Eg, for d = 4 or 5 in E7 and for
d=9in Eg.
Hs: QiQ—Q The reflection degrees are 2,6, 10.
1 2 3

d | representative w #good w Cy (w)
10 w10 = 123 4 Z10
6 we = 32121 6 Zg
5 ’LU%O 4 ZlO
3 wi 6 Zg
2 wo 1 H3
1 1 H;

Hy: OiQ—Q—Q The reflection degrees are 2,12, 20, 30.
i 2 3 1

d | representative w  #good w Chy(w)
30 wzg = 1234 8 Z30
20 Wo0 = 432121 12 ZQO
15 U}go 8 Zg()
12 | wyp = 2121432123 22 AP,
10 wiy or w3, 24 Gis
6 w3y or Wiy 40 Gao
5 w§, or wy 24 Gie
4 wh, or wi, 60 G2
3 w3 or wi, 40 Goo
2 wo 1 H4
1 . 1 H,

2

3D4: O—O—0 ¢ does the permutation (1,2,4). The reflection degrees are 2, 4,4, 6
i 3 1

with corresponding factors 1, (s, (3, 1.

d | representative w¢ #good wp Cuw (we)
12 U}12¢ = 13(;5 6 Z4
6 wep = 1243¢ 8 Gy
3 wgqb 8 G4
2 w0¢) 1 GQ
1 1) 1 Go
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Fy: O—O=(—) The reflection degrees are 2,6, 8,12.
1 2 3 1

d | representative w #good w Cy (w)
12 wig = 1234 8 Z12
8 wg = 214323 14 7
6 wi, 16 Gs
4 wis or w3 12 Gs
3 Wiy 16 Gs
2 wo 1 Fy
1 . 1 Fy

2Fy: ¢ does the permutation (1,4)(2,3). The factors, in increasing order of the
degrees, are 1, —1,1, —1.

d | representative w¢ #good wp Cyy (we)
24 U)24¢ == 12(;5 6 Z12
12| wiee = 32316 10 Zs

8 (w24¢>)3 12 Gg

4 (’LU12¢7)3 24 G12

2 w0¢7 1 IQ (8)

1 & 1 I(8)

2

Es: O—O—O—O—) The reflection degrees are 2,5,6,8,9,12.
i1 3 4 5 6

d | representative w #good w I Ny (Wrw)/W; Cw (V1)

12 wio = 123654 8 VAD)

9 wg = 12342654 24 Zy

8 wg = 123436543 14 3

6 w?, 16 Gs

5 24231454234565 8 (3) Zs Asg
12435423456543 8 (4)
12314235423654 8 (5)

4 w? or wi, 12 Gs

3 wiy or w3 80 Gas

2 wo 1 F4

1 : 1 B
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2Eg: ¢ does the permutation (1,6)(3,5). The factors, in increasing order of the
degrees, are 1,—1,1,1,—1, 1.

d | representative w¢ #goodwep I Ny (Wrwe)/ Wi Cw (Vi)wed

12| wize = 1236540 8 Zi

10 24315436 8 (3) Zs 245
5423145¢ 8 (4)
3143542¢) 8 (5)

8 | wgp = 1234365430 14 Z3

6 (’LU18¢7)3 80 G25

4 (w129)? 12 Gs

3 w‘fQ(,b 16 G5

2 ’LUQ¢ 1 EG

1 & 1 £

ﬁ)z

E7: O—O—~O—O—O— The reflection degrees are 2,6,8,10,12,14,18.
i 3 4 5 6 7

d representative w #good w 1 Ny (Wiw) /Wi Cw(V7)
18 wig = 1234567 64 Z1s
14 wig = 123425467 160 Z14
12 w2 = 1342546576 8 (2,5,7) AP I
10 Wioa = 134254234567 8 (2,4) Zo Ds
wiop = 243154234567 8 (3,4)
wige = 124354265437 8 (4,5)
9 w%8 64 Zlg
8 134234542346576 14 (2)(5,7) Zg Ds
7 wi, 160 Z14
6 wig or wiy 800 Gag
5 wioa 8 (2)(4) Z10 As
wiy, 5 (3))
Wipe 8 (4)(5)
4 | 131423454231465423456765423456 12 (2)(5)(7) Gs D,
3 wls or wi, 800 Gag
2 wo 1 E7
1 1 E,
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(Pz

Es: O—O—O—O—O—O—O The reflection degrees are 2,8,12, 14,18, 20, 24, 30.
i 3 4 5 6 7 8

d representative w #good w I Nw (Wrw) /Wi Cw (V7))
30 Wao = 12345678 128 7%
24 woq = 1234254678 320 Zay
20 wap = 123425465478 624 Zoo
18| wise = 1342542345678 16 (2,4) Zis E;
wigy = 2431542345678 16 (3,4)
wise = 1243542654378 16 (4,5)
15 w2, 128 Zso
14 | wi4e = 13423454234565768 128 (2) 14 Er
wygp = 24231454234565768 88 (3)
Wi4e = 12435423456543768 108 (4)
wiag = 12342543654276548 68 (5)
12 w§4 2696 G10
10 w3y or w3, 3370 Gie
9 ’LU%ga 16 (2)(4) Zlg EG
wly 16 (3))
Wige 16 (4)(5
8 w3, 7748 Gy
7 w?,, 128 (2) Z14 E;
wiy, 88 (3)
Wy, 108 (4)
Wiy 68 (5)
6 w3, or wiy 4480 Gso
5 w$y or wip 3370 Gie
4 wg4 or wgo 15120 G31
3 w3 or wh, 4480 G3a
2 wo 1 Eg
1 : 1 Fg
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