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PARABOLIC DELIGNE-LUSZTIG VARIETIES.

FRANÇOIS DIGNE AND JEAN MICHEL

Abstract. Motivated by the Broué conjecture on blocks with abelian defect
groups for finite reductive groups, we study “parabolic” Deligne-Lusztig va-
rieties and construct on those which occur in the Broué conjecture an action
of a braid monoid, whose action on their ℓ-adic cohomology will conjecturally
factor trough a cyclotomic Hecke algebra. In order to construct this action,
we need to enlarge the set of varieties we consider to varieties attached to a
“ribbon category”; this category is a Garside category, which plays an impor-
tant role in our proof, so we devote the first part of our paper to the necessary
background on Garside categories.

1. Introduction

In this paper, we study “parabolic” Deligne-Lusztig varieties, one of the main
motivations being the Broué conjecture on blocks with abelian defect groups for
finite reductive groups.

Let G be a connected reductive algebraic group over an algebraic closure Fp of
the prime field Fp of characteristic p. Let F be an isogeny on G such that some
power F δ is a Frobenius endomorphism attached to a split structure over the finite
field Fqδ ; this defines a real number q such that qδ is an integral power of p. When

G is quasi-simple, any isogeny F such that the group of fixed points GF is finite is
of the above form; such a group GF is called a “finite reductive group” or a “finite
group of Lie type”.

Let L be an F -stable Levi subgroup of a (non necessarily F -stable) parabolic
subgroup P of G. Then, for ℓ a prime number different from p, Lusztig has con-
structed a “cohomological induction” RG

L which associates to any QℓL
F -module a

virtual QℓG
F -module. We study the particular case RG

L (Id), which is given by the
alternating sum of the ℓ-adic cohomology groups of the variety

XP = {gP ∈ G/P | gP ∩ F (gP) 6= ∅}
on which GF acts on the left. We will construct a monoid of endomorphisms M
of XP related to the braid group, which conjecturally will induce in some cases a
cyclotomic Hecke algebra on the cohomology of XP. To construct M we need to
enlarge the set of varieties we consider, to include varieties attached to morphisms in
a “ribbon category” — the most general “parabolic Deligne-Lusztig varieties” that
we consider; M corresponds to the endomorphisms in the “conjugacy category” of
this ribbon category of the object attached to XP.

The relationship with Broué’s conjecture for the principal block comes as follows:
assume, for some prime number ℓ 6= p, that the ℓ-Sylow S of GF is abelian. Then
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2 F. DIGNE AND J. MICHEL

Broué’s conjecture predicts in this special case an equivalence of derived categories
between the principal block of ZℓG

F and that of ZℓNGF (S). Now L := CG(S) is a
Levi subgroup of a (non F -stable unless ℓ|q − 1) parabolic subgroup P; restricting
to unipotent characters and discarding an eventual torsion by changing coefficients
from Zℓ to Qℓ, this translates into conjectures about the cohomology of XP, see
10.1; these conjectures predict in particular that the image in the cohomology of
our monoid M is a cyclotomic Hecke algebra.

The main feature of the ribbon categories we consider is that they are Garside
categories. This concept has appeared in recent work to understand the ordinary
and dual monoids attached to the braid groups; in the first part, we recall its basic
properties and go as far as computing the centralizers of “periodic elements”, which
is what we need in the applications.

In the second part, we first define the parabolic Deligne-Lusztig varieties which
are the aim of our study, and then go on to establish their properties. We extend
to this setting in particular all the material in [BM] and [BR2].

We thank Cédric Bonnafé and Raphaël Rouquier for discussions and an initial
input which started this work, and Olivier Dudas for some useful remarks.

Part 1. Garside categories

This part collects some prerequisites on Garside categories. It is mostly self-
contained apart from the next section where the proofs are omitted; we refer for
them to the book [DDGKM] to appear.

2. Basic results on Garside categories

Given a category C, we write f ∈ C to say that f is a morphism of C, and
C(x, y) for the set of morphisms from x ∈ ObjC to y ∈ ObjC. We write fg for the
composition of f ∈ C(x, y) and g ∈ C(y, z), and C(x) for C(x, x). By S ⊂ C we mean
that S is a set of morphisms in C.

All the categories we consider will be left-cancellative, that is a relation hf = hg
implies f = g. We say that f left divides g, written f 4 g, if there exists h such
that g = fh.

We denote C× the set of invertible morphisms of C, and write f =× g if there
exists h ∈ C× such that fh = g (or equivalently there exists h ∈ C× such that
f = gh).

Definition 2.1. A Garside family in C is a subset S ⊂ C such that;

• S together with C× generates C.
• C×S ⊂ SC× ∪ C×.
• For every product fg with f, g ∈ S−C×, either fg ∈ SC× in which case we
say that (fg) is the S-normal decomposition of fg, or we have fg = f1g1,
where f1 ∈ S, g1 ∈ SC×−C× and f1, g1 have the property that any relation
h 4 kf1g1 with h ∈ S implies h 4 kf1; in this case we say that (f1, g1) is
an S-normal decomposition of fg.

A category is Garside if it has a Garside family S (we should talk of a Garside
system (C,S)).

In a Garside category every non-invertible element x admits a normal decom-
position (x1, . . . , xn) which means that x = x1 . . . xn and that each (xi, xi+1) is
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an S-normal decomposition. Normal decompositions are unique up to invertibles,
precisely

Lemma 2.2. If (x1, . . . , xn) and (x′1, . . . , x
′
n′) are two normal decompositions of x

then n = n′ and for any i we have x1 . . . xi =
× x′1 . . . x

′
i.

For f ∈ C we define lgS(f) to be the minimum number k of morphisms s1, . . . , sk ∈
S such that s1 . . . sk =× f , thus lgS(f) = 0 if f ∈ C×; if f /∈ C× then lgS(f) is also
the number of terms in a normal decomposition of f .

We have the following criterion to be Garside:

Proposition 2.3. Let S ⊂ C together with C× generate C, and let H be a function

C H−→ S. Consider the following properties

(i) ∀g ∈ C, H(g) 4 g.
(ii) ∀h ∈ S, h 4 g ⇒ h 4 H(g).
(iii) ∀f, g ∈ C, H(fg) =× H(fH(g)).
(iv) SC× ∪ C× is closed under right-divisor.

Then S is Garside if (i), (ii), (iii) hold for some H, or if (i) and (ii) hold for some
H, and (iv) holds. Conversely if S is Garside then (iv) holds and there exists H
satisfying (i) to (iii) above; such a function is called a S-head function.

A S-head function H computes the first term of a normal decomposition in the
sense that if (x1, . . . , xn) is a normal decomposition of x then H(x) =× x1.

We have the following property:

Lemma 2.4. Let H be a S-head function, and for x ∈ C − C× let x′ be defined by
x = H(x)x′. Then lgS(x

′) < lgS(x).

The following shows that S “determines” C up to invertibles; we say that a subset
C1 of C is closed under right quotient if an equality f = gh with f, g ∈ C1 implies
g ∈ C1.
Lemma 2.5. Let S be a Garside family in C. Let C1 be a subcategory of C closed
under right-quotient which contains S. Then C = C1C× and S is a Garside family
in C1.
gcds and lcms, Noetherianity. The existence of gcds and lcms are related when C is
right-Noetherian, which means that there is no infinite sequence f0 < f1 . . . < fn <

. . . where fi is a proper right divisor of fi+1, that is we do not have fi =
× fi+1.

It means equivalently since C is left cancellative that there is no infinite sequence
f0 4 f1 . . . 4 fn 4 . . . 4 f where fi is a proper left divisor of fi+1.

We say that C admits local right lcms if, whenever f and g have a common right
multiple, they have a right lcm. We then have:

Proposition 2.6. If C is right Noetherian and admits local right lcms, then any
family of morphisms of C with the same source has a left gcd.

Here is a more general situation when a Garside family of a subcategory can be
determined:

Lemma 2.7. Let S be a Garside family in C assumed right-Noetherian and having
local right lcms. Let S1 ⊂ S be a subfamily such that S1C× is as a subset of
SC× closed under right-lcm and right-quotient; then S1 is a Garside family in the
subcategory C1 generated by S1C×. Moreover C1 is a subcategory closed under right-
quotient.
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The following lemma about Noetherian categories will also be useful:

Lemma 2.8. Let C be a category and S be a set of morphisms which generates C.
Let X be a set of morphisms of C with same source satisfying

(i) X is closed under left divisor and X = XC×.
(ii) X is a bounded and right Noetherian poset.
(iii) If f ∈ X, g, h ∈ S and fg, fh ∈ X then g and h have a common right-

multiple m such that fm ∈ X.

Then X is the set of left-divisors of some morphism of C.

2.1. Garside maps. An important special case is when S is attached to a Garside

map. A Garside map is a map ObjC ∆−→ C where ∆(x) ∈ C(x,−) such that SC×∪C×

is the set of left divisors of ∆. Since by Proposition 2.3(iv) the set SC× ∪ C× is
stable by right divisor, it is also the set of right divisors of ∆.

This allows to define a functor Φ, first on objects by taking for Φ(x) the target
of ∆(x), then on maps, first on morphisms s ∈ S by, if s ∈ C(x,−) defining s′ by
ss′ = ∆ (we omit the source of ∆ if it is clear from the context) and then Φ(s) by
s′Φ(s) = ∆. We then extend ∆ by using normal decompositions; it can be shown
that this is well-defined and defines a functor such that for any f ∈ C we have
f∆ = ∆Φ(f). We then have

Proposition 2.9. In the above context, the following are equivalent:

• Φ is an automorphism (that is, an invertible functor).
• C is right-cancellative.

We will assume from now on that these properties hold. We then have the
following properties:

Proposition 2.10. (i) If f 4 g then lgS(f) ≤ lgS(g).
(ii) Assume f, g, h ∈ S and (f, g) is S-normal; then lgS(fgh) ≤ 2 implies

gh ∈ SC×.

2.2. Garside automorphisms. An automorphism of a category C is a functor
F : C → C which has an inverse.

When C has Garside family S, we call Garside automorphism of (C,S), an
automorphism F which preserves SC×. A typical example is the automorphism Φ
of the previous subsection that we will call the canonical Garside automorphism.

We have the following property

Proposition 2.11. Assume that C has a Garside family S and has no non-trivial
invertible morphisms. Left F be a Garside automorphism of C. Then the subcate-
gory of fixed objects and morphisms CF has a Garside family which consists of the
fixed points SF .

2.3. An example. An example of a Garside category is a Garside monoid, which
is just the case where C has one object. A classical example is given by the Artin
monoid (B+,S) associated to a Coxeter system (W,S). Then B+ is left-cancellative,
Noetherian, admits local right-lcm’s and has a Garside family, the canonical lift W
of W in B+, which consists of the elements whose length with respect to S is equal
to the length of their image in W .
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3. Categories with automorphism

Given an automorphism F of finite order of the category C, we define

Definition 3.1. The semi-direct product category C ⋊ 〈F 〉 is the category whose
objects are the objects of C and whose morphisms with source x are the pairs (g, F i),
which will be denoted by gF i, where g is a morphism of C with source x and i
is an integer. The target of this morphism is F−i(target(g)), where target(g) is
the target of g. The composition rule is given by gF i · hF j = gF i(h)F i+j when
source(h) = F−i(target(g)).

The conventions on F are such that the composition rule is natural. However,
they imply that the morphism F of the semi-direct product category represents the
functor F−1: it is a morphism from the object F (A) to the object A and we have
the commutative diagram:

F (A)
F (f) //

F

��

F (B)

F

��
A

f // B

Lemma 3.2. If S is a Garside family in C, and F a Garside automorphism of
(C,S), then S is also a Garside family in C ⋊ 〈F 〉.
Proof. A S-normal decomposition in C of an element of S2 is still S-normal in
C ⋊ 〈F 〉 and since F is = F i(s)F i for all s ∈ S, we have as required (C ⋊ 〈F 〉)×S ⊂
S(C ⋊ 〈F 〉)×. �

If (f1, . . . fk) is a normal decomposition of f ∈ C then (f1, . . . , fkF
i) is a normal

decomposition of fF i ∈ C ⋊ 〈F 〉. Note that if C has no non-trivial invertible
element, then the only invertibles in C ⋊ 〈F 〉 are {F i}i∈Z. In general, if a, b ∈ C
then aF i 4 bF j if and only if a 4 b.

4. The conjugacy category

In this section we do not need C left-cancellative unless explicitly stated.

Definition 4.1. Given a category C, we define the conjugacy category Ad C of C
as the category whose objects are the endomorphisms of C and where, for w ∈ C(A)
and w′ ∈ C(B) we set Ad C(w,w′) = {x ∈ C(A,B) | xw′ = wx}. We say that
x conjugates w to w′ and if w = w′, we call centralizer of w the set Ad C(w).
The composition of morphisms in Ad C is given by the composition in C, which is
compatible with the above rules.

Note that the formula for Ad C(, ) is what forces the objects of Ad C to be endo-
morphisms of C. We can rephrase the condition x ∈ Ad C(w,−) as x 4 wx.

If C is left-cancellative, then the data x and w determine w′ (resp. if C is right-
cancellative x and w′ determine w). In that case we will write wx for w′ (resp.
xw′ for w). This way of writing the morphisms illustrates that our category Ad C
is a right conjugacy category; we could call left conjugacy category the opposed
category.

A proper name for an element of Ad C(w,w′) should be a triple (w, x, w′) (or
perhaps a pair (w, x) if C left-cancellative), since x by itself does specify neither its
source w nor its target w′, but we will use just x when C is left-cancellative and
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the context makes clear which source w is meant (or C is right-cancellative and
the context makes clear which target is meant). We should keep in mind that the
functor I which sends w ∈ Obj(Ad C) to source(w) and (w, x, w′) to x is faithful,
but definitely not injective on objects. Nevertheless, the fact that I is faithful
implies that Ad C(w,−) identifies to a subset of I(Ad C(w,−)) = C(source(w),−)
(resp. Ad C(−, w) identifies to a subset of C(−, source(w))). It follows that the
category Ad C inherits automatically from C properties such as cancellativity or
Noetherianity. The functor I maps (Ad C)× surjectively to C×, so in particular the
subset Ad C(w,−) of C(source(w),−) is closed under multiplication by C×,

Lemma 4.2. • Assume that C is left-cancellative. Then Ad C(w,w′) as a
subset of C(source(w), source(w′)) is closed under right-quotient, that is if
we have an equality y = xz where y ∈ Ad C(w,w′), x ∈ Ad C(w,−) and
z ∈ C(−, source(w′)), then z ∈ AdC(−, w′); and Ad C(w,−) identifies to
a subset of C(source(w),−) closed under right-lcm, in the sense that if
x, y ∈ Ad C(w,−) have a right-lcm in C(source(w),−) then this right-lcm
is in Ad C(w,−) and is a right-lcm of x and y in Ad C. In particular if C
admits local right-lcms then so does Ad C.

• Similarly if C is right-cancellative, Ad C(−, w) identifies to a subset of
C(−, source(w)) closed under left-lcm and left-quotient.

Proof. We assume C left-cancellative and show the stability by right-quotient. We
have x 4 wx and yw′ = wy. By cancellation, let us define w′′ by xw′′ = wx. Then
from xz = y 4 wy = wxz = xw′′z we deduce by cancellation that z 4 w′′z, so
z ∈ Ad C(w,w1) where zw1 = w′′z. Now since y = xz the equality yw′ = wy gives
xzw′ = wxz = xw′′z = xzw1 which shows by cancellation that w1 = w′.

We now show stability by right-lcm. x, y ∈ Ad C(w,−) means that x 4 wx
and y 4 wy. Suppose now that x and y have a right-lcm z in C. Then x 4 wz
and y 4 wz from which it follows that z 4 wz, that is z ∈ Ad C(w,−), and z is
necessarily a right-lcm of x and y in Ad C.

The proof of the second part is just a mirror symmetry of the above proof. �

Proposition 4.3. Assume that C is left-cancellative and that S is a Garside family
in C; then I−1(S) is a Garside family in Ad C.

Proof. We will use Proposition 2.3 by showing that I−1(S) ∪ C× generates Ad C
and exhibiting a function H : Ad C → I−1(S) which satisfies Proposition 2.3(i), (ii)
and (ii).

Let H be a S-head function in C. We first show that if x ∈ Ad C(w,−) then
H(x) ∈ I−1(S), or equivalently H(x) ∈ Ad C(w,−). Indeed if x 4 wx then H(x) 4
H(wx) =× H(wH(x)) 4 wH(x).

We now deduce by induction on the lgS of a morphism that I−1(S)∪C× generates
Ad C. If x ∈ Ad C is such that lgS(x) = 1 then x = sε with s ∈ S and ε ∈ C×.
Since Ad C is closed under multiplication by C× and sε ∈ Ad C, we have s ∈ I−1(S),
whence the result in this case. Assume now that for x ∈ Ad C we have lgS(x) = n
and define x′ by x = H(x)x′. Since we know that H(x) ∈ Ad C, we deduce by
Lemma 4.2 that x′ ∈ Ad C; by Lemma 2.4 we have lgS(x

′) < n, whence the result.
We now claim that the restriction of H to Ad C fits our purpose: it takes its

values in I−1(S), and it satisfies Proposition 2.3 (i), (ii), (iii) since H does. �
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Simultaneous conjugacy. A straightforward generalization of conjugacy cate-
gories is “simultaneous conjugation categories”, where objects are families of mor-
phisms w1, . . . , wn with same source and target, and morphisms verify x 4 wix for
all i. Most statements have a straightforward generalization to this case.

F -conjugacy. We want to consider “twisted conjugation” by an automorphism,
which will be useful for applications to Deligne-Lusztig varieties, but also for in-
ternal applications, with the automorphism being the one induced by a Garside
map.

Definition 4.4. Let F be an automorphism of the category C. We define the F -
conjugacy category of C, denoted by F -Ad C, as the category whose objects are
the morphisms in some C(A,F (A)) and where, for w ∈ C(A,F (A)) and w′ ∈
C(B,F (B)) we set F -Ad C(w,w′) = {x ∈ C | xw′ = wF (x)}. We say that x
F -conjugates w to w′ and we call F -centralizer of a morphism w of C the set
F -Ad C(w).

Note that F -conjugacy specializes to conjugacy when F = Id and that the F -
centralizer of x is empty unless x ∈ C(A,F (A)) for some object A.

We explore now how these notions relate to conjugation in a semi-direct product
category.

• Consider the application which sends w ∈ C(A,F (A)) ⊂ Obj(F -Ad C)
to wF ∈ C ⋊ 〈F 〉(A) ⊂ Obj(Ad(C ⋊ 〈F 〉)). Since x(w′F ) = (wF )x is
equivalent to xw′ = wF (x), this extends to a functor J from F - Ad C to
Ad(C ⋊ 〈F 〉). This functor is clearly an isomorphism onto its image.

The image J(Obj(F - Ad C)) identifies via I to the set of endomorphisms in C⋊〈F 〉
which lie in CF . The image by J of F -Ad C(w,w′) is the set of morphisms in Ad(C⋊
〈F 〉)(wF,w′F ) which, viewed via I as morphisms in C⋊〈F 〉(source(wF ), source(w′F )),
lie in C.

Let Ad(CF ) be the full subcategory of Ad(C⋊〈F 〉) whose objects are morphisms
in CF ⊂ C ⋊ 〈F 〉. As it is a union of connected components of Ad(C ⋊ 〈F 〉) (in
Ad(C ⋊ 〈F 〉), there is no morphism between two objects which do not have the
same power of F ) all properties we are interested in will transfer automatically
from Ad(C ⋊ 〈F 〉) to Ad(CF ).

In particular, if C has a Garside family S and F is a Garside automorphism,
then S is still a Garside family for C ⋊ 〈F 〉 by 3.2, and by the above gives rise to a
Garside family I−1(S) of Ad(CF ). Now the relationship between Ad(CF ) and the
image of J is as in Lemma 2.5: the image of J is a subcategory closed under right
quotient (because in a relation fg = h if f and h do not involve F the same must
be true for g) and contains the Garside family I−1(S) of Ad(CF ).

This will allow to generally translate statements about conjugacy categories to
statements about F -conjugacy categories. For example, Proposition 4.3 implies
that I−1(S) is a Garside family in Ad(C ⋊ 〈F 〉) which implies in turn that it is a
Garside family in Ad(CF ), thus J−1(I−1(S)) is one for F -Ad C; this last family
consists just of the x ∈ F -Ad C(w,w′) for various w,w′ which are in S.

If F has finite order, since (xF )x = Fx = (xF )F
−1

we see that two morphisms
in CF are conjugate in C ⋊ 〈F 〉 if and only if they are conjugate by a morphism of
C.
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5. The cyclic conjugacy category

A restricted form of conjugation called “cyclic conjugacy” will be important in
applications. In particular, it turns out that two periodic braids are conjugate if
and only if they are cyclically conjugate.

Definition 5.1. We define the cyclic conjugacy category cyc C of C as the subcat-
egory of Ad C generated by {x ∈ Ad C(w,w′) | x 4 w}.

That is, cyc C has the same objects as Ad C but contains only the products of
elementary conjugations of the form w = xy → w′ = yx. Note that if C is left- and
right-cancellative, then ∪w{x ∈ Ad C(w,w′) | x 4 w} = ∪w{x ∈ Ad C(w,w′) | w′ <

x} so cyclic conjugacy “from the left” and “from the right” are the same in this
case. To be more precise, the functor which is the identity on objects, and when
w = xy and w′ = yx, sends x ∈ cyc C(w,w′) to y ∈ cyc C(w′, w), is an isomorphism
between cyc C and its opposed category.

Proposition 5.2. let C be a left-cancellative and right-Noetherian category that
admits local right-lcm’s; if S a Garside family in C then the set S1 = ∪w{x ∈
Ad C(w,−) | x 4 w and x ∈ S} is a Garside family in cyc C.
Proof. We first observe that S1C× generates cyc C. Indeed if x 4 w and we choose
a decomposition x = s1 . . . sn as a product of morphisms in SC× it is clear that
each si is in cyc C, so is in S1.

We use Lemma 2.7.
The lemma applies to cyc C, and gives the proposition, since S1C× is closed

under right-divisor and right-lcm; this is obvious for right-divisor and for right-lcm
results from the facts that S as a Garside family is closed under right-lcm and that
a right-lcm of two divisors of w is a divisor of w. �

We also see by Lemma 2.7 that cyc C is closed under right-quotient.
We now prove that if without assuming that C has a Garside family anyway cyc C

has a Garside family associated to a Garside map; when C has a Garside family
this Garside family is larger than the Garside family S1 of Proposition 5.2, since it
contains all left divisors of w even if w is not in S.
Proposition 5.3. If C is a left cancellative and right Noetherian category which
admits local right-lcms then the set S ′ = ∪w∈C{x ∈ Ad C(w,−) | x 4 w} is a
Garside family in cyc C associated to the Garside map ∆ such that ∆(w) = w ∈
cyc C(w); the corresponding Φ∆ is the identity functor.

Proof. The set S ′ generates cyc C by definition of cyc C. It is closed under right-
divisors since xy 4 w implies x 4 w so that wx is defined and y 4 wx; since C is
right Noetherian and admits local right-lcms, any two morphisms of C with same
source have a gcd by Proposition 2.6. We define a function H : cyc C → S ′ by
letting H(x) be an arbitrarily chosen left-gcd of x and w if x ∈ cyc C(w,−). Since
cyc C is closed under right-divisor, the function H satisfies properties Proposition
2.3 (i), (ii) and (iv), so S ′ is a Garside family for cyc C. The set of morphisms in S ′

with source w has an lcm which is w. Moreover if v is a right-divisor of ∆(w) = w
in cyc C, which implies that w = v′v, then v′ ∈ cyc C(w, vv′) thus the source of v is
vv′ and v divides vv′, so v ∈ S ′; all conditions of Proposition 2.3 are fulfilled, and
∆ is a Garside map since S ′(w,−) is the set of left divisors of ∆(w). The equation
xwx = wx shows that Φ∆ is the identity. �
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Proposition 5.4. If C is a right-Noetherian category which admits local right-lcms,
the subcategory cyc C of Ad C is closed under left-gcd (that is, a gcd in Ad C of two
morphisms in cyc C is in cyc C).
Proof. Let (x1, . . . , xn) and (y1, . . . , ym) be normal decompositions respectively of
x ∈ cyc C(w,−) and y ∈ cyc C(w,−) with respect to the Garside family S ′ of
Proposition 5.3.

We first prove that if gcd(x1, y1) =× 1 then gcd(x, y) =× 1 (here we consider
left-gcds in Ad C). We proceed by induction on inf{m,n}. We write ∆ for ∆(w)
when there is no ambiguity on the source w. We have that gcd(x, y) divides

gcd(x1 . . . xn−1∆, y1 . . . ym−1∆) =× gcd(∆x1 . . . xn−1,∆y1 . . . ym−1)

=× ∆gcd(x1 . . . xn−1, y1 . . . ym−1) =
× ∆ = w,

where the first equality uses that Φ∆ is the identity and the one before last results
from the induction hypothesis. So we get that gcd(x, y) divides w in Ad C, so
gcd(x, y) ∈ S ′; thus gcd(x, y) divides x1 and y1, so is trivial.

We now prove the proposition. If gcd(x1, y1) =
× 1 then gcd(x, y) =× 1 thus is in

cyc C and we are done. Otherwise let d1 be a gcd of x1 and y1 and let x(1), y(1) be
defined by x = d1x

(1), y = d1y
(1). Similarly let d2 be a gcd of the first terms of a

normal decomposition of x(1), y(1) and let x(2), y(2) be the remainders, etc. . . Since
C is right-Noetherian the sequence d1, d1d2, . . . of increasing divisors of x must
stabilize at some stage k, which means that the corresponding remainders x(k) and
y(k) have first terms of their normal decomposition coprime, so by the first part are
themselves coprime. Thus gcd(x, y) =× d1 . . . dk ∈ cyc C. �

We now give a quite general context where cyclic conjugacy is the same as
conjugacy.

Proposition 5.5. Let C be a right Noetherian category with a Garside map ∆, and
let x be an endomorphism of C such that for n large enough we have ∆ 4 xn. Then
for any y we have cyc C(x, y) = Ad C(x, y).
Proof. We first show that the property ∆ 4 xn is stable by conjugacy (up to
changing n). Indeed, if u ∈ Ad C(x,−) then there exists k such that u 4 ∆k. Then
(xu)n(k+1) = (xn(k+1))u = (u−1xn(k+1))u is divisible by ∆ since ∆k+1 4 xn(k+1).

It follows that it is sufficient to prove that if f ∈ Ad C(x, y), f /∈ C×, then
gcd(f, x) /∈ C×. Indeed write f = uf1 where u = gcd(f, x) then since u ∈
cyc C(x, xu) it is sufficient to prove that f1 ∈ Ad C(xu, y) is actually in cyc C(xu, y),
which we do by induction since C is Noetherian and xu still satisfies the same
condition.

Since as observed any u ∈ Ad C(x,−) divides some power of x (xnk if u 4 ∆k) it
is enough to show that if u ∈ Ad C(x,−), u /∈ C× and u 4 xn, then gcd(u, x) /∈ C×.
We do this by induction on n. From u ∈ Ad C(x,−) we have u 4 xu, and from
u 4 xn we deduce u 4 x gcd(u, xn−1). If gcd(u, xn−1) ∈ C× then u 4 x and we are
done: gcd(x, u) = u. Otherwise let u1 = gcd(u, xn−1). We have u1 4 xu1, u1 /∈ C×

and u1 4 xn−1 thus we are done by induction. �

The F -cyclic conjugacy. Let F be a finite order automorphism of the category C.
We define F - cyc C as the subcategory of F -Ad C generated by {x ∈ F -Ad C(w,w′) |
x 4 w}, or equivalently, if C is left- and right-cancellative, by {x ∈ Ad C(w,w′) |
w′ < F (x)}. By the functor J , the morphisms in F - cyc C(w,w′) identify to the
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morphisms in cyc(C ⋊ 〈F 〉)(wF,w′F ) which lie in C. To simplify notation, we will
denote by cyc C(wF,w′F ) this last set of morphisms. If C is right-Noetherian and
admits local right-lcms, then C ⋊ 〈F 〉 also. If S is a Garside family in C and F
is a Garside automorphism, and we translate Proposition 5.2 to the image of J
and then to F - cyc C, we get that ∪w{x ∈ F -Ad C(w,−) | x 4 w and x ∈ S} is a
Garside family in F - cyc C.

Similarly Proposition 5.3 says that the set ∪w{x ∈ F - Ad C(w,−) | x 4 w} is a
Garside family in F - cyc C associated to the Garside map ∆ which sends the object
w to the morphism w ∈ F - cyc C(w,F (w)); the associated Φ∆ is the functor F .

Finally Proposition 5.4 says that under the assumptions of Proposition 5.3 the
subcategory F - cyc C of F - Ad C is closed under left-gcd.

6. An example: ribbon categories

The “ribbon” category that we consider in this section occurs in particular in
the study of the normalizer of a parabolic submonoid of an Artin monoid (the
submonoid generated by a part of the atoms), which has been done by Paris and
Godelle. The morphisms in this category will correspond to parabolic Deligne-
Lusztig varieties, and the conjugacy category to endomorphisms of these varieties.

We place ourselves in the context of Artin monoids as in the example of Sub-
section 2.3 and want to study the category whose objects are the conjugates of a
parabolic submonoid generated by I ⊂ S.

Most results work in the more general situation of a category and a subcategory
satisfying certain assumptions that we state now.

Definition 6.1. Let C be a left-cancellative right-Noetherian category which admits
local right lcm’s. We say that a subcategory C′ is parabolic if it is closed by left-
divisor and right-lcm.

Lemma 6.2. The above assumption is satisfied when we take for C an Artin monoid
B+ and for C′ the “parabolic” submonoid B+

I generated by I ⊂ S.

Proof. We first show that B+
I is closed by left-divisors. Since both sides of each

defining relation for B+ involve the same generators, two equivalent words involve
the same generators. Hence if xy = z with z ∈ B+

I then x has an expression

involving only elements in I so is in B+
I . This implies also that if two elements have

a right-lcm in B+
I , this right-lcm is a right-lcm in B+ since it is divisible by that

right-lcm. It remains to show that two elements which have a common multiple in
B+ have a common multiple (hence a right-lcm) in B+

I . Taking heads we see that it
is sufficient to prove that two elements of WI which have a common right-multiple
in W have a common multiple in WI. This is true since any element of W can be
written uniquely as vw with v ∈ WI and w not divisible by any element of I . �

Lemma 6.3. Let C′ be a parabolic subcategory of C. Then any u ∈ C has a maximal
left-divisor αC′(u) in C′.

Proof. The setX = {x ∈ C′ | x 4 u} is a subset of C′ which satisfies the assumptions
of Lemma 2.8: it is closed under left-divisor, it is right-Noetherian and if xg and
xh are in X with g, h ∈ C′, then lcm(g, h) exists, since g and h left-divide x−1u,
hence x lcm(g, h) is in X since it divides u and lcm(g, h) ∈ C′. Thus X is the set of
divisors of some morphism αC′(u). �
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The simultaneous conjugacy category. We now consider a parabolic subcate-
gory generated by a subset of the atoms. Let S be the set of atoms of C, let I ⊂ S

and let CI be the subcategory generated by I.

Assumption 6.4. We assume that for s ∈ S any conjugate t in C of s is in S

(that is, if sf = ft with f and t in C then t ∈ S).

The above assumption is automatic if C has homogeneous relations, or equiva-
lently has an additive length function with atoms of length 1. This is clearly the
case for Artin monoids.

It follows that if I is the set of conjugates of I, for any J ∈ I we have J ⊂ S.
We assume further that for any J ∈ I, the category CJ is parabolic.

Let Ad C(I) be the connected component of the simultaneous conjugacy category
whose objects are the elements of I. A morphism in Ad C(I) is a b ∈ C such that
for each s ∈ I we have sb ∈ C, which implies sb ∈ S. We denote such a morphism

in Ad C(I)(I,J) by I
b−→ J where J = {sb | b ∈ I}, and in this situation we write

J = Ib.

If S is a Garside family in C, by Proposition 4.3 the set {I b−→ J | I,J ∈ I and b ∈
S} is a Garside family in the category Ad C(I).
The ribbon category. In our context we will just write αI for αCI

and denote by
ωI(b) the morphism defined by b = αI(b)ωI(b). We say that b ∈ C is I-reduced if
it is divisible on the left by no element of I, or equivalently if αI(b) = 1.

Definition 6.5. We define the ribbon category C(I) as the subcategory of Ad C(I)
generated by the morphisms I

b−→ J such that b is I-reduced.

Statements (i) and (ii) in the next proposition are a motivation for restricting
to the I-reduced morphisms: (i) shows that we “lose nothing” in doing so, and (ii)
shows that being reduced is compatible with the product in Ad C(I).

Proposition 6.6. (i) I
b−→ J ∈ (Ad C(I)) if and only if I

αI(b)−−−→ I ∈ (Ad C(I))
and I

ωI(b)−−−→ J ∈ (C(I)).
(ii) If I

b−→ J ∈ (Ad C(I)) then for any b′ ∈ C we have αJ(b
′) = αI(bb

′)b. In

particular if I
b−→ J ∈ (C(I)) and J

b′

−→ K ∈ (Ad C(I)) then I
bb′

−−→ K ∈
(C(I)) if and only if J

b′

−→ K ∈ (C(I)).
(iii) By Lemma 4.2 two morphisms I

b−→ J and I
b′

−→ J′ of Ad C(I) have a

right-lcm I
c−→ Ic where c is the right-lcm in C of b and b′; if b and b′ are

I-reduced, then c is also.

Proof. Let us prove (i). We prove by induction on the length of b that if s ∈ I

and sb ∈ C then sαI(b) ∈ I. This will prove (i) in one direction. The converse is
obvious.

By Assumption 6.4 we have sb = bt for some t ∈ S. If s 4 b we write b = sb′

so that sb′ = b′t. We have αI(b) = sαI(b
′) and we are done by induction. If s

does not divide b then the lcm of s and αI(b) divide sb = bt and this lcm can be
written sv = αI(b)u, with v and u in CI since CI is closed by right-lcm. We get
then that v divides b, so divides αI(b); thus αI(b)u = vau for some a ∈ C. By
Assumption 6.4 we have that au ∈ S, thus a = 1 and u ∈ S, hence u ∈ I which is
the result.
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Let us prove (ii). For s ∈ I let s′ = sb ∈ J. Assume first that s 64 b. Then
bs′ = sb is a common multiple of s and b which has to be their lcm since s′ is
an atom. So for s ∈ I we have s 4 bb′ if and only if bs′ 4 bb′, that is, sb 4 b′

whence the result. Now if s 4 b we write b = skb1 with s 64 b1; we have s′ = sb1

and the above proof, with b1 instead of b, applies.
To prove (iii) we will actually show the stronger statement that if for b, c ∈ C we

have b 4 c, Ib ⊂ S then αI(b) 4 αI(c) (which is obvious) and ωI(b) 4 ωI(c) (then
in the situation of (iii) we get that ωI(c) is a common multiple of b and b′, thus
c 4 ωI(c), which is impossible unless αI(c) = 1). By dividing b and c by αI(b)
we may as well assume that αI(b) = 1 since IωI(b) ⊂ S by (i). We write c = bb1

and J = Ib. By (ii) we have αI(c)
b = αJ(b1), whence αI(c)b = bαJ(b1) 4 bb1 =

c = αI(c)ωI(c). Left-canceling αI(c) we get b 4 ωI(c) which is what we want since
b = ωI(b). �

By Proposition 6.6 items (6.6(ii)) and (6.6(iii)) the subcategory C(I) of Ad C(I)
is closed under right-quotient and right-lcm. Next proposition shows that S ∩ C(I)
generates C(I). By Lemma 2.7 this implies that S ∩ C(I) is a Garside family in
C(I).
Proposition 6.7. Let b be a morphism of C(I); then all the terms of the normal
decomposition in Ad C(I) of b are in C(I).
Proof. Let b = w1 . . .wk be the normal decomposition in Ad C(I) of b ∈ C(I)(I,J)
(it is also the normal decomposition in C since the Garside family of Ad C(I) consists
of the morphisms I

w−→ J where w ∈ S). As wi ∈ Ad C(I), the source of wi is
Ii =

wi...wkJ ⊂ S. Now, w1...wi−1αIi(wi) ∈ CI and
w1...wi−1αIi(wi) 4 w1 . . .wi−1αIi(wi) 4 w1 . . .wi−1wi 4 b

so divides αI(b), thus this element has to be 1, whence the result. �

As explained above the proposition we then get

Corollary 6.8. The set S = {I w−→ J ∈ Ad C(I) | w ∈ S and αI(w) = 1} is a
Garside family for C(I).

We now describe, in the case of Artin monoids, the atoms of C(I), using the
work of [BH].

In that case we have S = {I w−→ J ∈ Ad C(I) | w ∈ W and αI(w) = 1}. Note

that a morphism I
w−→ J ∈ S is determined by the image (I, w, J) in W of the

triple.
If I is such that WI is finite, we denote by wI the longest element of WI . With

these notations, we have

Proposition 6.9. The atoms of C(I) are the triples (v(s,I)I, v(s, I), I) where s ∈
S − I is such that, if K is the connected component of s in the Coxeter diagram of
W{s}∪I , then WK is finite, and where v(s, I) = wKwK−{s}.

Proof. We first show that S identifies to a subset of the groupoid G defined before
[BH, Proposition 2.3]: precisely S has the same objects and morphisms as G, but a
product of two morphisms (I, w, J) and (J,w′,K) is defined in S (and equal to the
value (I, ww′,K) it takes in G) if and only if l(ww′) = l(w) + l(w′). Since this last
condition is the condition for the lift to W of ww′ to be ww′, where w and w′ are
the respective lifts of w and w′, it is enough to show that if w ∈ W is I-reduced and
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Iw ⊂ S then Iw ⊂ S where w is the lift in W of w. Take s ∈ I, then sw = t ∈ S
that is sw = wt. Since w is I-reduced we have l(sw) = 1 + l(w) thus the lift of sw
is sw. Since sw = wt we also have l(wt) = l(w) + 1 thus the lift of wt is wt, and
we have in C the equality sw = wt, that is sw ∈ S.

G is generated by the morphisms (v(s,I)I, v(s, I), I) of the statement by [BH,
Proposition 2.3], and by the property on the length given in that proposition this
is true also for S.

Finally, for proving that the elements (v(s,I)I, v(s, I), I) are atoms we show that
if (v(t,I)I, v(t, I), I) is a right-divisor of (v(s,I)I, v(s, I), I) then s = t. Let L be the
connected component of {t}∪I containing t. If we denote by R(W ) the set of reflec-
tions of a Coxeter group W , we know by [BH, lemma 3.2] that (v(t,I)I, v(t, I), I) is
a right-divisor of (v(s,I)I, v(s, I), I) if and only if R(WL)−R(WL−{t}) ⊂ R(WK)−
R(WK−{s}). Since t is in the left-hand side, it has to be in K, hence L = K. The
condition becomes then R(WK−{s}) ⊂ R(WK−{t}), so that K − {s} ⊂ K − {t}
which means that s = t as required. �

The spherical case. We show now that C(I) is a Garside category when W is
finite. We recall that in that case C = B+ has a Garside element wS. We denote
by Φ the involution on S given by conjugation by wS. This extends naturally
to involutions on I, on C, and finally on C(I) that we denote in the same way.
We define a natural transformation ∆I from the identity to Φ as the collection of

morphisms J
w

−1
J

wS−−−−−→ Φ(J). The properties which must be satisfied by ∆I to be a
Garside map are easily checked.

Proposition 6.10. When W is finite the category C(I) is a Garside category with
Garside map ∆I as defined above.

7. Periodic elements

Definition 7.1. Let C be a Garside category with Garside natural transformation
∆; then an endomorphism x of the enveloping groupoid G is said to be (d, p)-periodic
if xd ∈ ∆pC× for some non-zero integers d, p.

Note that if x is (d, p)-periodic it is also (nd, np)-periodic for any non-zero integer
n. We call d/p the period of x. Note that if Φ is of finite order, then a conjugate of
a periodic element is periodic of the same period (though the minimal pair (d, p)
may change). It can be shown that, up to cyclic conjugacy, the notion of being
(d, p)-periodic depends only on the fraction d/p; it results from Proposition 5.5
that two periodic morphisms of same period are conjugate if and only if they are
cyclically conjugate; our main interest is to be able to describe the centralizers of
periodic morphisms.

We deal here with the case p = 2. We show by elementary computations that a
(d, 2)-periodic element of C is the same up to cyclic conjugacy as a (d/2, 1)-periodic
element when d is even, and get a related characterization when d is odd.

We denote by S the Garside family of C and by Φ the canonical Garside auto-
morphism Φ corresponding to the natural transformation ∆.

Lemma 7.2. Let f be an endomorphism in C such that fd ∈ ∆2C×, and let e = ⌊d2⌋.
Then there exists g ∈ Obj(cyc C) such that cyc C(f, g) 6= ∅ and ge ∈ SC× and
gd ∈ ∆2C×.
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Further, if g is as in the conclusion above, that is gd ∈ ∆2C× and ge ∈ SC×,
then if d is even we have ge ∈ ∆C×, and if d is odd there exists h ∈ SC× such that
g = hΦ(h)ε and geh = ∆, where ε ∈ C× is defined by gd = ∆2ε.

Proof. We will prove by increasing induction on i that for i ≤ d/2 there exists
v ∈ cyc C such that (fv)i ∈ SC× and (fv)d ∈ ∆2C×. We start the induction with
i = 0 where the result holds trivially with v = 1.

We consider now the general step: assuming the result for i such that i + 1 ≤
d/2, we will prove it for i + 1. We thus have a v for step i, thus replacing if
needed f by fv we may assume that f i ∈ SC× and fd ∈ ∆2C×; we will conclude
by finding v ∈ S such that v 4 f and (fv)i+1 ∈ SC× and (fv)d ∈ ∆2C×. If
f i+1 4 ∆ we have the desired result with v = 1. We may thus assume that
lgS(f

i+1) ≥ 2. Since f i+1 4 ∆2 we have actually lgS(f
i+1) = 2 (see Proposition

2.10(i)); let (f iv, w) be a normal decomposition of f i+1 where f iv ∈ S and w ∈
SC×. As f ivw(f iv) 4 f ivw(f ivw) = f2(i+1) 4 fd =× ∆2, we still have 2 =
lgS((f

iv)w(f iv)) = lgS((f
iv)w). By Proposition 2.10(ii) we thus have w(f iv) ∈

SC×. Then SC× ∋ w(f iv) = w((vw)i)v = (fv)i+1 and v 4 f .
So v will do if we can show (fv)d ∈ ∆2C×. Since fd = ∆2ε with ε ∈ C×, we

have that f commutes with ∆2ε, thus f i+1 also, that is Φ2(f i+1)ε = εf i+1 or
equivalently Φ2(f iv)Φ2(w)ε = εf ivw. Now (Φ2(f iv),Φ2(w)ε) is an SC×-normal
decomposition and since (f iv, w) is a normal decomposition, by Lemma 2.2 there
exists ε′ ∈ C× such that Φ2(f iv)ε′ = εf iv. We have f i∆2Φ2(v)ε′ = ∆2Φ2(f iv)ε′ =
∆2εf iv = f i∆2εv, the last equality sincef i commutes with ∆2ε. Canceling ∆2

we get Φ2(v)ε′ = εv. We have then v(fv)d = fdv = ∆2εv = ∆2Φ2(v)ε′ = v∆2ε′

whence the result by canceling v on the left.
We prove now the second part. From ge ∈ SC× we get that there exists h ∈ SC×

such that geh = ∆. If gd = ∆2ε with ε ∈ C× we get geh∆ε = ∆2ε = gd, whence by
cancellation h∆ε = gega with a = 1 if d is odd and a = 0 if d is even. We deduce
gega = h∆ε = ∆Φ(h)ε = gehΦ(h)ε, thus hΦ(h)ε = ga.

If d is odd we get the statement of the lemma, and if d is even we get hΦ(h) ∈ C×,
so h ∈ C× so ge ∈ ∆C×. �

F -periodic elements. Let us apply Lemma 7.2 to the case of a semi-direct prod-
uct category C ⋊ 〈F 〉 with F a Garside automorphism of finite order, where C has
no non-trivial invertible element and the Garside family S of C⋊ 〈F 〉 is in C. Then
a map yF ∈ CF is (d, p) periodic if and only if target(y) = F (source(y)) and
(yF )d = ∆pF d.

From the lemma we can deduce the following.

Corollary 7.3. Assume Φ2 = Id and that yF ∈ CF satisfies (yF )d = ∆2F d. Then

(i) If d = 2e is even, there exists x such that cyc C(yF, xF ) 6= ∅ and (xF )e =
∆F e. The centralizer of xF in C identifies to cyc C(xF ). Further, we may
compute these endomorphisms in the category of fixed points (cyc C)ΦF e

since the morphisms in cyc C(xF ) are ΦF e-stable.
(ii) If d = 2e+1 is odd, there exists x such that cyc C(yF, xF ) 6= ∅ and (xF )d =

∆2F d and (xF )eF−e 4 ∆. The element s defined by (xF )eF−es = ∆ is
such that, in the category C⋊ 〈Λ〉 with Λ = Φ−1F−e, we have xΛ2 = (sΛ)2

and (sΛ)d = ∆Λd. The centralizer of xF in C identifies to cyc C(sΛ).
Further, we may compute these endomorphisms in the category of fixed

points (cyc C)Fd

since cyc C(sΛ) is stable by F d.
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Proof. The lemma shows that y is cyclically F -conjugate to an x such that (xF )e ∈
SF e and (xF )d = ∆2F d.

If d is even then (xF )e = ∆F e.
If d is odd from (xF )eh = ∆ we get h = sF−e with s ∈ S, and xF =

sF−eΦ(sF−e)F d = sΛ(s)F . As xF is F d-stable, and F dΛ2 = F , this can be
rewritten xΛ = (sΛ)2. Since the elements of the centralizer of xF commute to F d

the centralizer is the same as that of xΛ, and from (xF )es = ∆F e centralizes sΛ.
From xΛ = (sΛ)2 we get that the centralizer of sΛ is the same as that of xF .

We get the corollary if we know that the centralizer of xF , for d even (resp. sΛ,
for d odd) is the same as cyc C(xF ) (resp. cycC(sΛ)). But this is an immediate
consequence of Proposition 5.5. �

Conjugacy of periodic elements. We recall the result of David Bessis on pe-
riodic elements. Two periodic elements of same period x and y in the classical
Artin monoid are also periodic and have equal periods in the dual monoid. By the
results of Bessis ([B1, 11.21]), such elements are conjugate in the dual monoid, so
are conjugate in the Artin group, hence are conjugate in the classical monoid. By
Proposition 5.5 they are cyclically conjugate in the classical monoid. We conjecture
that the same results extend to the case of F -conjugacy.

We conjecture that similarly, all periodic elements in C(I) of a given period
are conjugate (thus cyclically conjugate); and that this extends also to the case of
F -conjugacy.
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7.1. Two examples. In two examples we show a picture of the category associated
to the centralizer of a braid (a root of π as will be considered in Section 9).

We first look at the case of a w in the braid monoid C = B+(W (D4)) such that
w2 = ∆, and describe the category cyc C(w)Φ.
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We now look at the case of a w in the braid monoid C = B+(W (A5)) such that
w3 = ∆, and describe the category cyc C(sΦ−1) where s is such that w = sΦ(s).
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Part 2. Deligne-Lusztig varieties and eigenspaces

In this part, we first study the Deligne-Lusztig varieties which give rise to a
Lusztig induction functor RG

L (Id); we then generalize these varieties to varieties
attached to morphisms in a braid category.

In the next section we consider the morphisms in this braid category which
correspond to varieties which play a role in the Broué conjectures.

We finish with a section which spells out the particular form that the conjectures
take on our varieties.

8. Parabolic Deligne-Lusztig varieties

Let G be a connected reductive algebraic group over Fp, and let F be an isogeny
on G such that some power F δ is a Frobenius for a split Fqδ -structure (this defines

a positive real number q such that qδ is an integral power of p).
Let L be an F -stable Levi subgroup of a (non-necessarily F -stable) parabolic

subgroup P of G and let P = LV be the corresponding Levi decomposition of P.
Let

XV = {gV ∈ G/V | gV ∩ F (gV) 6= ∅} = {gV ∈ G/V | g−1Fg ∈ VFV}
≃ {g ∈ G | g−1Fg ∈ FV}/(V ∩ FV)

XV is a GF -variety-LF .
We choose a prime number ℓ 6= p. Then the virtualGF -module-LF given byM =

∑

i(−1)iHi
c(XV,Qℓ) defines the cohomological induction RG

L which by definition
maps λ ∈ Irr(LF ) to M ⊗QℓL

F λ.

The map gV 7→ gP makes XV an LF -torsor over

XP = {gP ∈ G/P | gP ∩ F (gP) 6= ∅} = {gP ∈ G/P | g−1Fg ∈ PFP}
≃ {g ∈ G | g−1Fg ∈ FP}/(P ∩ FP),

a GF -variety such that RG
L (Id) =

∑

i(−1)iHi
c(XP,Qℓ). The variety XP is the

prototype of the varieties we want to study.
Let T ⊂ B be a pair of an F -stable maximal torus and an F -stable Borel

subgroup of G. To this choice is associated a basis Π of the root system Φ of G
with respect to T, and a Coxeter system (W,S) for the Weyl group W = WG(T).
Let XR = X(T)⊗R; on the vector space XR, the isogeny F acts as qφ where φ is of
order δ and stabilizes the positive cone R+Π; we will still denote by φ the induced
automorphism of (W,S).

To a subset I ⊂ Π corresponds a subgroup WI ⊂ W , a parabolic subgroup
PI =

∐

w∈WI
BwB, and the Levi subgroup LI of PI which contains T.

Given any P = LV as above where L is F -stable, there exists I ⊂ Π such that
(L,P) is G-conjugate to (LI ,PI); if we choose the conjugating element such that
it conjugates a maximally split torus of L to T and a rational Borel subgroup
of L containing this torus to B ∩ LI , then this element conjugates (L,P, F ) to
(LI ,PI , ẇF ) where ẇ ∈ NG(T) is such that wφI = I, where w is the image of ẇ
in W .

It will be convenient to consider I as a subset of S instead of a subset of Π; the
condition on w must then be stated as “Iw = φI and w is I-reduced”. Via the
above conjugation, the variety XP is isomorphic to the variety

X(I, wφ) = {gPI ∈ G/PI | g−1Fg ∈ PIw
FPI}.
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We will denote by XG(I, wφ) this variety when there is a possible ambiguity on the
group. If we denote by UI the unipotent radical of PI , we have dimX(I, wφ) =
dimUI − dim(UI ∩ wFUI) = l(w). The ℓ-adic cohomology of the variety X(I, wφ)
gives rise to the Lusztig induction from LẇFI to GF of the trivial representation; to
avoid ambiguity on the isogenies involved, we will sometimes denote this Lusztig

induction by RG,F
LI ,ẇF

(Id).

Definition 8.1. For two parabolic subgroups P,Q we say that the pair (P,Q) is
in relative position (I, w, J), where I, J ⊂ S and w ∈ W , if (P,Q) is G-conjugate

to (PI ,
wPJ). We denote this as P

I,w,J−−−→ Q.

Since any pair (P,Q) of parabolic subgroups share a common maximal torus,
it has a relative position (I, w, J) where I, J is uniquely determined as well as the
double coset WIwWJ .

Let PI be the variety of parabolic subgroups conjugate to PI (isomorphic to
G/PI). Via the map gPI 7→ gPI we have an isomorphism

X(I, wφ) ≃ {P ∈ PI | P I,w,φI−−−−→ FP};
it is a variety over PI × PφI by the first and second projection.

The parabolic braid category B+(I). Let B+ (resp. B) denote the Artin-Tits
monoid (resp. Artin-Tits group) of W , and let S be its generating set, which is
in canonical bijection with S. To I ⊂ S corresponds I ⊂ S and the submonoid
B+

I generated by I. By Lemma 6.3 every element of b ∈ B+ has a unique longest

divisor αI(b) in B
+
I . As in Definition 6.5 we define:

Definition 8.2. Let I be the set of conjugates of some I in S. Then B+(I) is the
category whose objects are the elements of I and the morphisms from J to K are
the b ∈ B+ such that Jb = K and αJ(b) = 1.

If b ∈ B+ determines an element of HomB+(I)(I,J) for some objects I,J of I,
we will denote by I

b−→ J this morphism to lift ambiguity on its source and target.
It is shown in Proposition 6.6 that the above definition makes sense, that is if we

have a composition I
b−→ J

c−→ K in B+(I), then αI(bc) = 1. When I = ∅, B+(I)
reduces to the Artin-Tits monoid B+.

The canonical lift W
∼−→ W of W in B+ is denoted by w 7→ w. Conversely for

w ∈ W we denote w its image in W . It is shown after Proposition 6.6 that B+(I)
has a Garside family S consisting of the morphisms I

w−→ J where w ∈ W and a

Garside map ∆I given on the object I by the morphism I
w

−1
I

w0−−−−−→ Iw0 where we
denote by wI the lift to W of the longest element of WI , and write w0 for wS.
This includes the following:

Lemma 8.3. (i) S generates B+(I); specifically, if I
w−→ J ∈ B+(I) and

(w1, . . . ,wk) is the normal form of w, there exist subsets Ii with I1 = I,

Ik+1 = J such that for all i we have Ii+1 = Iwi

i ; thus I
w1−−→ I2 → · · · →

Ik
wk−−→ J is a decomposition of I

w−→ J in B+(I) as a product of elements
of S.

(ii) The relations (I
w1−−→ J

w2−−→ K) = (I
w−→ K) when w = w1w2 ∈ W form a

presentation of B+(I).
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We set α = αS; it is an S-head funtion. The above implies:

Lemma 8.4. For I
w−→ I′ ∈ B+(I) and v ∈ B+

I we have α(vw) = α(v)α(w).

Proof. We have α(vw) = α(vα(w)) = α(α(w)vα(w)) = α(α(w)α(vα(w))), the
first and last equalities from the general properties of α. Since by Lemma 8.3(i)
Iα(w) ⊂ S, we have α(vα(w)) = α(v)α(w), so that α(vw) = α(α(w)α(v)α(w)) =
α(α(v)α(w)). Since α(w) is I-reduced we have α(v)α(w) ∈ W, hence α(α(v)α(w)) =
α(v)α(w). �

We now look at the compatibility of morphisms in B+(I) with “parabolic” sub-
categories. We denote by B+

I (J ) the “parabolic” subcategory of B+(I) where S

and I are replaced respectively by I and J , where J is the set of BI-conjugates of
J ⊂ I ⊂ S. We have

Proposition 8.5. If I
w−→ I′ is a morphism in B+(I) and J

v−→ J′ is a morphism
in B+

I (J ) and if the normal form of vw is (u1, . . . ,uk) then for each i we have
ui = viwi where (w1,w2, . . . ,wk) and (v1,

w1v2,
w1w2v3, . . .) are the normal forms

of w and v respectively with perhaps some added 1’s at the end.

Proof. We proceed by induction on k. By Lemma 8.4, we have u1 = α(v)α(w) =
v1w1, so that u2 . . .uk = ω(v)α(w)ω(w). Let I′ = Iα(w) and J ′ be the set of
conjugates of Jα(w) in I′; the induction hypothesis applied to ω(v)α(w) ∈ B+

I′ (J ′)
and ω(w) ∈ B+(I) gives the result. �

The varieties O attached to B+(I). In this subsection, we shall define a repre-
sentation of B+(I) into the bicategory X of varieties over PI ×PJ , where I, J vary
over I. The bicategory X has 0-cells which are the elements of I, has 1-cells with
domain I and codomain J which are the PI × PJ -varieties and has 2-cells which
are isomorphisms of PI × PJ -varieties. We denote by V (I,J) the category whose
objects (resp. morphisms) are the 1-cells with domain I and codomain J (resp. the
2-cells between them); in other words, V (I,J) is the category of PI × PJ -varieties
endowed with the isomorphisms of PI × PJ -varieties. The horizontal composition
bifunctor V (I,J) × V (J,K) → V (I,K) is given by the fibered product over PJ .
The vertical composition is given by the composition of isomorphisms.

Here by “representation into a bicategory” we mean a morphism of bicategories
between C viewed as a trivial bicategory into the given bicategory. This amounts
to give a map T from Obj(C) to the 0-cells, and for f ∈ C of source I and target J ,
an element T (f) ∈ V (T (I), T (J)) together with for each composable pair (f, g) an

isomorphism T (f)T (g)
∼−→ T (fg) such that the resulting square

(8.6) T (f)T (f ′)T (f ′′)
∼ //

∼

��

T (ff ′)T (f ′′)

∼

��
T (f)T (f ′f ′′)

∼ // T (ff ′f ′′)

commutes.
We first give a representation in X of the Garside family S which is the same

excepted that the above square is restricted to the case where f , ff ′ and ff ′f ′′

are in S, (which implies f ′, f ′′, f ′f ′′ ∈ S since in our case S is closed under right
divisors). We will then extend our representation to the whole category B+(I) by
a general theorem on Garside categories.
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Definition 8.7. For I
w−→ J ∈ S we define

O(I,w) = {(P,P′) ∈ PI × PJ | P I,w,J−−−→ P′}
where I, w, J denote the images in W of I, w, J respectively.

For I
w−→ J ∈ S we set T (I

w−→ J) = O(I,w). The following lemma constructs

the isomorphism T (f)T (g)
∼−→ T (fg) when f, g, fg ∈ S:

Lemma 8.8. Let (I
w1−−→ I2

w2−−→ J) = (I
w−→ J) where w = w1w2 ∈ W be a defining

relation of B+(I). Then (p′, p′′) : O(I,w1) ×PI2
O(I2,w2)

∼−→ O(I,w1w2) is an

isomorphism, where p′ and p′′ are respectively the first and last projections..

Proof. First notice that for two parabolic subgroups (P′,P′′) ∈ PI × PJ we have

P′ I,w,J−−−→ P′′ if and only if the pair (P′,P′′) is conjugate to a pair containing

termwise the pair (B, wB). This shows that if P′ I,w1,I2−−−−−→ P1 and P1
I2,w2,J−−−−−→ P′′

then P′ I,w1w2,J−−−−−−→ P′′, so (p′, p′′) goes to the claimed variety.

Conversely, we have to show that given P′ I,w,J−−−→ P′′ there is a unique P1 such

that P′ I,w1,I2−−−−−→ P1
I2,w2,J−−−−−→ P′′. The image of (B, wB) by the conjugation which

sends (PI ,
wPJ ) to (P′,P′′) is a pair of Borel subgroups (B′ ⊂ P′,B′′ ⊂ P′′) in

position w. Since l(w1) + l(w2) = l(w), there is a unique Borel subgroup B1 such

that B′ w1−−→ B1
w2−−→ B′′. The unique parabolic subgroup of type I2 containing B1

has the desired relative positions, so P1 exists. And any other parabolic subgroup
P′

1 which has the desired relative positions contains a Borel subgroup B′
1 such that

B′ w1−−→ B′
1
w2−−→ B′′ (take for B′

1 the image of w1B by the conjugation which maps
(PI ,

w1PI2) to (P′,P′
1)), which implies that B′

1 = B1 and thus P′
1 = P1. Thus our

map is bijective on points. To show it is an isomorphism, it is sufficient to check
that its target is a normal variety, which is given by

Lemma 8.9. For I
w−→ J ∈ S the variety O(I,w) is smooth.

Proof. Consider the locally trivial fibrations with smooth fibers given by G×G
p−→

PI × PJ : (g1, g2) 7→ (g1PI ,
g2wPJ ) and G × G

q−→ G : (g1, g2) 7→ g−1
1 g2. It is

easy to check that O(I,w) = p(q−1(wPJ)) thus by for example [DMR, 2.2.3] it is
smooth. �

�

From the above lemma we see also that the square 8.6 commutes for elements
of S, since the isomorphism “forgetting the middle parabolic” has clearly the cor-
responding property. We have thus defined a representation T of S in X.

We will extend T to the whole of B+(I) by associating to a composition I
w1−−→

I2 → · · · → Ik
wk−−→ J where wi ∈ W the variety

O(I,w1)×PI2
. . .×PIk

O(Ik,wk) = {(P1, . . . ,Pk+1) | Pi
Ii,wi,Ii+1−−−−−−→ Pi+1},

where I1 = I and Ik+1 = J . It is a PI×PJ -variety via the first and last projections
mapping respectively (P1, . . . ,Pk+1) to P1 and Pk+1, and Lemma 8.8 shows that

up to isomorphism it does not depend on the chosen decomposition of I
w1...wk−−−−−→ J.

We have to show that actually there is a unique isomorphism between the various
models attached to different decompositions.
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This will result from a general theorem on Garside categories which generalizes
a result of Deligne [D, 1.11].

Theorem 8.10. Let C be a right Noetherian Garside category with Garside family
S and which admits local right lcm’s. Then any representation of S into a bicategory
extends uniquely to a representation of C into the same bicategory.

Proof. The proof goes exactly as in [D], in that what must been proven is a simple
connectedness property for the set of decompositions as a product of elements of S
of an arbitrary morphism in C— this generalizes [D, 1.7] and is used in the same way.
In his context, Deligne shows more, the contractibility of the set of decompositions;
on the other hand our proof, which follows a suggestion by Serge Bouc to use a
version of [Bouc, lemma 6], is simpler and holds in our more general context.

Fix g ∈ C with g /∈ C×. We denote by E(g) the set of decompositions of g into
a product of elements of S − C×.

Then E(g) is a poset, the order being defined by

(g1, . . . , gi−1, gi, gi+1, . . . , gn) > (g1, . . . , gi−1, a, b, gi+1, . . . , gn)

if ab = gi ∈ S.
We recall the definition of homotopy in a poset E (a translation of the corre-

sponding notion in a simplicial complex isomorphic as a poset to E). A path from
x1 to xk in E is a sequence x1 . . . xk where each xi is comparable to xi+1. The
composition of paths is defined by concatenation. Homotopy, denoted by ∼, is the
finest equivalence relation on paths compatible with concatenation and generated
by the two following elementary relations: xyz ∼ xz if x ≤ y ≤ z and both xyx ∼ x
and yxy ∼ y when x ≤ y. Homotopy classes form a groupoid, as the composition of
a path with source x and of the inverse path is homotopic to the constant path at
x. For x ∈ E we denote by Π1(E, x) the fundamental group of E with base point
x, which is the group of homotopy classes of loops starting from x.

A poset E is said to be simply connected if it is connected (there is a path linking
any two elements of E) and if the fundamental group with some (or any) base point
is trivial.

Note that a poset with a smallest or largest element x is simply connected since
any path (x, y, z, t, . . . , x) is homotopic to (x, y, x, z, x, t, x, . . . , x) which is homo-
topic to the trivial loop.

Proposition 8.11. The set E(g) is simply connected.

Proof. First we prove a version of a lemma from [Bouc] on order preserving maps
between posets. For a poset E we put E≥x = {x′ ∈ E | x′ ≥ x}, which is a
simply connected subposet of E since it has a smallest element. If f : X → Y
is an order preserving map it is compatible with homotopy (it corresponds to a
continuous map between simplicial complexes), so it induces a homomorphism f∗ :
Π1(X, x) → Π1(Y, f(x)).

Lemma 8.12. (Bouc) Let f : X → Y an order preserving map between two posets.
We assume that Y is connected and that for any y ∈ Y the poset f−1(Y≥y) is
connected and non empty. Then f∗ is surjective. If moreover f−1(Y≥y) is simply
connected for all y then f∗ is an isomorphism.

Proof. Let us first show that X is connected. Let x, x′ ∈ X ; we choose a path
y0 . . . yn in Y from y0 = f(x) to yn = f(x′). For i = 0, . . . , n, we choose xi ∈
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f−1(Y≥yi) with x0 = x and xn = x′. Then if yi ≥ yi+1 we have f−1(Y≥yi) ⊂
f−1(Y≥yi+1) so that there exists a path in f−1(Y≥yi+1) from xi to xi+1; otherwise
yi < yi+1, which implies f−1(Y≥yi) ⊃ f−1(Y≥yi+1) and there exists a path in

f−1(Y≥yi) from xi to xi+1. Concatenating these paths gives a path connecting x
and x′.

We fix now x0 ∈ X . Let y0 = f(x0). We prove that f∗ : Π1(X, x0) → Π1(Y, y0)
is surjective. Let y0y1 . . . yn with yn = y0 be a loop in Y . We lift arbitrarily
this loop into a loop x0— · · ·—xn in X as above, (where xi—xi+1 stands for a
path from xi to xi+1 which is either in f−1(Y≥yi) or in f−1(Y≥yi+1). Then the
path f(x0—x1— · · ·—xn) is homotopic to y0 . . . yn; this can be seen by induc-
tion: let us assume that f(x0—x1 · · ·—xi) is homotopic to y0 . . . yif(xi); then
the same property holds for i + 1: indeed yiyi+1 ∼ yif(xi)yi+1 as they are two
paths in a simply connected set which is either Y≥yi or Y≥yi+1 ; similarly we have
f(xi)yi+1f(xi+1) ∼ f(xi—xi+1). Putting things together gives

y0 . . . yiyi+1f(xi+1) ∼ y0y1 . . . yif(xi)yi+1f(xi+1)

∼ f(x0— · · ·—xi)yi+1f(xi+1)

∼ f(x0— · · ·—xi—xi+1).

We now prove injectivity of f∗ when all f−1(Y≥y) are simply connected.
We first prove that if x0— · · ·—xn and x′0— · · ·—x′n are two loops lifting the

same loop y0 . . . yn, then they are homotopic. Indeed, we get by induction on i
that x0— · · ·—xi—x′i and x′0— · · ·—x′i are homotopic paths, using the fact that
xi−1, xi, x

′
i−1 and x′i are all in the same simply connected sub-poset, namely either

f−1(Y≥yi−1) or f
−1(Y≥yi).

It remains to prove that we can lift homotopies, which amounts to show that if
if we lift as above two loops which differ by an elementary homotopy, the liftings
are homotopic. If yy′y ∼ y is an elementary homotopy with y < y′ (resp. y > y′),
then f−1(Y≥y′) ⊂ f−1(Y≥y) (resp. f−1(Y≥y) ⊂ f−1(Y≥y′)) and the lifting of yy′y
constructed as above is in f−1(Y≥y) (resp. f

−1(Y≥y′)) so is homotopic to the trivial
path. If y < y′ < y′′, a lifting of yy′y′′ constructed as above is in f−1(Y≥y) so is
homotopic to any path in f−1(Y≥y) with the same endpoints. �

We now prove Proposition 8.11 by contradiction. If it fails we choose g ∈ C
minimal for proper right divisibility such that E(g) is not simply connected.

Let L be the set of elements of S−C× which are left divisors of g. For any I ⊂ L,
since the category admits local right lcm and is right Noetherian, the elements of I
have an lcm ∆I . Let EI(g) = {(g1, . . . , gn) ∈ E(g) | ∆I 4 g1}. We claim that EI(g)
is simply connected for I 6= ∅. In the following, if ∆I 4 a, we denote by aI the
element such that a = ∆Ia

I . We apply Lemma 8.12 to the map f : EI(g) → E(gI)
defined by

(g1, . . . , gn) 7→
{

(g2, . . . , gn) if g1 = ∆I

(gI1 , g2, . . . gn) otherwise
.

This map preserves the order and any set f−1(Y≥(g1,...,gn)) has a least element,
namely (∆I , g1, . . . , gn), so is simply connected. As by minimality of g the set
E(gI) is simply connected Lemma 8.12 implies that EI(g) is simply connected.

Let Y be the set of non-empty subsets of L. We now apply Lemma 8.12 to
the map f : E(g) → Y defined by (g1, . . . , gn) 7→ {s ∈ L | s 4 g1}, where Y is
ordered by inclusion. This map is order preserving since (g1, . . . , gn) < (g′1, . . . , g

′
n)
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implies g1 4 g′1. We have f−1(Y≥I) = EI(g), so this set is simply connected. Since
Y , having a greatest element, is simply connected, 8.12 gives that E(g) is simply
connected, whence the proposition. �

�

Definition 8.13. Since B+(I) satisfies the assumptions of Theorem 8.10, this

theorem enables us to attach to any I
b−→ J ∈ B+(I) a (well-defined) variety O(I,b)

which for any decomposition I
b−→ J = O(I,w1)×PI2

. . .×PIk
O(Ik,wk) in elements

of S is isomorphic to

{(P1, . . . ,Pk+1) ∈ PI1 × . . .× PIk+1
| Pi

Ii,wi,Ii+1−−−−−−→ Pi+1},
where we have set I1 = I and Ik+1 = J .

The Deligne-Lusztig varieties attached to B+(I). The automorphism φ lifts
naturally to an automorphism of B+ which stabilizes S, which we will still denote

by φ, by abuse of notation. If I
w−→ φI is a simple morphism, then X(I, wφ) is the

intersection of O(I,w) with the graph of F , (that is, points whose image under
(p′, p′′) has the form (P, FP)). More generally,

Definition 8.14. Let I
b−→ φI be any morphism of B+(I); we define the variety

X(I,bφ) as the intersection of O(I,b) with the graph of F .

To any decomposition I1
w1−−→ I2 → · · · wk−−→ φI of I

b−→ φI in elements of S
corresponds a model of X(I,bφ) as sequences of parabolics (P1, . . . ,Pk+1) such
that Pk+1 = F (P1). Such a model can be interpreted as an “ordinary” parabolic
Deligne-Lusztig variety in a group which is a descent of scalars:

Proposition 8.15. Let I = I1
w1−−→ I2 → · · · → Ik

wk−−→ φI be a decomposition

into elements of S of I
b−→ φI ∈ B+(I), let F1 be the isogeny of Gk defined by

F1(g1, . . . , gk) = (g2, . . . , gk, F (g1)) and let φ1 be the corresponding automorphism
of W k.

Then XG(I,bφ) ≃ XGk(I1 × . . .× Ik, (w1, . . . , wk)φ1). By this isomorphism the
action of F δ corresponds to that of F kδ1 and the action of GF corresponds to that
of (Gk)F1 .

Proof. An element P1× . . .×Pk ∈ XGk(I1× . . .× Ik, (w1, . . . , wk)φ1) by definition
satisfies

P1 × . . .×Pk
I1×...Ik,(w1,...,wk),I2×...Ik×

φI1−−−−−−−−−−−−−−−−−−−−−→ P2 × . . .×Pk × FP1

thus is equivalently given by a sequence (P1, . . . ,Pk+1) such thatPi
Ii,wi,Ii+1−−−−−−→ Pi+1

with Pk+1 = FP1 and Ik+1 = φI1, which is the same as an element

(P1, . . . ,Pk+1) ∈ O(I1,w1)×PI2
O(I2,w2) . . .×PIk−1

O(Ik,wk)

such that Pk+1 = FP1. But, by construction, we have

O(I,b) ≃ O(I1,w1)×PI2
O(I2,w2) . . .×PIk−1

O(Ik,wk),

and thus via this isomorphism we get an element of O(I,b) which is in XG(I,bφ).
One checks easily that this sequence of identifications is compatible with the

actions of F δ and GF as described by the proposition. �
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Proposition 8.16. The variety X(I,bφ) is irreducible if and only if I∪c(b) meets
all the orbits of φ on S, where c(b) is the set of elements of S which appear in a
decomposition of b.

Proof. This is, using Proposition 8.15, an immediate translation in our setting of
the result [BR, Theorem 2] of Bonnafé-Rouquier. �

The varieties X̃(I,wφ). The conjugation which transforms XP into X(I, wφ)
maps XV to the GF -variety-LẇFI given by

X̃(I, ẇF ) = {gUI ∈ G/UI | g−1Fg ∈ UI ẇ
FUI},

where ẇ is a representative of w (any representative can be obtained by choosing an

appropriate conjugation). The map gUI 7→ gPI makes X̃(I, ẇF ) a LẇFI -torsor over

X(I, wφ). We will sometimes write X̃(I, ẇ.F ) to separate the Frobenius endomor-
phism from the representative of the Weyl group element. This will be especially
useful when the ambient group is a Levi subgroup with Frobenius endomorphism
of the form ẋF .

In this section, we define a variety X̃(I,wφ) which generalizes X̃(I, ẇF ) by
replacing ẇ by elements of the braid group. Since ẇ represents a choice of a lift of
w to NG(T), we have to make uniformly such choices for all elements of the braid
group, which we do by using a “Tits homomorphism”.

First, we need, when w ∈ W, to define a variety Õ(I, ẇ) “above” O(I,w) such

that X̃(I, ẇF ) is the intersection of Õ(I, w) with the graph of F , and then we
extend this construction to B+(I).

Definition 8.17. Let I
w−→ J ∈ S, and let ẇ ∈ NG(T) be a representative of w.

We define Õ(I, ẇ) = {(gUI , g
′UJ ) ∈ G/UI ×G/UJ | g−1g′ ∈ UI ẇUJ}.

We can prove an analogue of Lemma 8.8.

Lemma 8.18. Let (I
w1−−→ I2

w2−−→ J) = (I
w1w2−−−−→ J) where w1w2 ∈ W be a defining

relation of B+(I), and let ẇ1, ẇ2 be representatives of the images of w1 and w2 in

W . Then (p′, p′′) : Õ(I, ẇ1) ×G/UI2
Õ(I2, ẇ2)

∼−→ Õ(I, ẇ1ẇ2) is an isomorphism

where p′ and p′′ are the first and last projections.

Proof. We first note that if I
w−→ J ∈ B+(I) and ẇ is a representative in NG(T) of

the image of w in W , then UIẇUJ is isomorphic by the product morphism to the
direct product of varieties (UI ∩ wU−

J )ẇ ×UJ , where U−
J is the unipotent radical

of the parabolic subgroup opposed to PJ containing T. We now use the lemma:

Lemma 8.19. Under the assumptions of Lemma 8.18, the product gives an iso-
morphism (UI ∩ ẇ1U−

I2
)ẇ1 × (UI2 ∩ ẇ2U−

J )ẇ2
∼−→ (UI ∩ ẇ1ẇ2U−

J )ẇ1ẇ2.

Proof. As a product of root subgroups, we have UI ∩ wU−
J =

∏

−α∈wN(w) Uα,

where N(w) = {α ∈ Φ+ | wα ∈ Φ−}. The lemma is then a consequence of the
equality N(w1)

w2
∐

N(w2) = N(w1w2) when l(w1) + l(w2) = l(w1w2). �

The lemma proves in particular that if g−1
1 g2 ∈ UIẇ1UI2 and g−1

2 g3 ∈ UI2 ẇ2UJ

then g−1
1 g3 ∈ UI ẇ1UI2ẇ2UJ = (UI ∩ ẇ1U−

I2
)ẇ1(UI2 ∩ ẇ2U−

J )ẇ2UJ = (UI ∩
ẇ1ẇ2U−

J )ẇ1ẇ2UJ = UI ẇ1ẇ2UJ , so the image of the morphism (p′, p′′) in Lemma

8.18 is indeed in the variety Õ(I, ẇ1ẇ2).
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Conversely, we have to show that given (g1UI , g3Uj) ∈ Õ(I, ẇ1ẇ2), there exists

a unique g2UI2 such that (g1UI , g2UI2) ∈ Õ(I, ẇ1) and (g2UI2 , g3UI3) ∈ Õ(I2, ẇ2).
The varieties involved being invariant by left translation by G, it is enough to solve
the problem when g1 = 1. Then we have g3 ∈ UI ẇ1ẇ2UJ , and the conditions for
g2UI2 is that g2UI2 ⊂ UIẇ1UI2 . Any such coset has then a unique representative
in (UI ∩ ẇ1U−

I2
)ẇ1 and we will look for such a representative g2. But we must have

g−1
2 g3 ∈ UI2ẇ2UJ = (UI2 ∩ ẇ2U−

J )ẇ2UJ and since by the lemma the product gives

an isomorphism between (UI ∩ ẇ1U−
I2
)ẇ1 × (UI2 ∩ ẇ2U−

J )ẇ2UJ and UIẇ1ẇ2UJ ,

the element g3 can be decomposed in one and only one way in a product g2(g
−1
2 g3)

satisfying the conditions. �

We will now use a Tits homomorphism, which is a homomorphism B
t−→ NG(T)

which factors the projectionB → W (their existence is proved in [T]). Theorem 8.10

implies that, setting T (I
w−→ J) = Õ(I, t(w)) for I

w−→ J ∈ S and replacing Lemma

8.8 by Lemma 8.18, we can define a representation of B+(I) in the bicategory X̃

of varieties above G/UI ×G/UJ for I, J ∈ I.

Definition 8.20. The above representation defines, for any I
b−→ J ∈ B+(I), a

variety Õ(I,b) which, for any decomposition into elements of S given by (I
b−→

J) = (I
w1−−→ I2 → . . .→ Ik

wk−−→ J) is isomorphic to Õ(I, t(w1))×G/UI2
. . .×G/UIk

Õ(Ik, t(wk)).

Proposition 8.21. There exists a Tits homomorphism t which is F -equivariant,
that is such that t(φ(b)) = F (t(b)).

Proof. To any simple reflection s ∈ S is associated a quasi-simple subgroup Gs

of rank 1 of G, generated by the root subgroups Uαs and U−αs ; the 1-parameter
subgroup of T given by T ∩Gs is a maximal torus of Gs. By [T, Theorem 4.4] if
for any s ∈ S we choose a representative ṡ of s in Gs, then these representatives
satisfy the braid relations, which implies that s 7→ ṡ induces a well defined Tits
homomorphism. We claim that if s is fixed by some power φd of φ then there exists
ṡ ∈ Gs fixed by F d; we then get an F -equivariant Tits homomorphism by choosing
arbitrarily ṡ for one s in each orbit of φ. If s is fixed by φd then Gs is stable
by F d; the group Gs is isomorphic to either SL2 or PSL2 and F d is a Frobenius
endomorphism of this group. In either case the simple reflection s of Gs has an
F d-stable representative in NGs(T ∩Gs). �

Notation 8.22. We assume now that we have chosen, once and for all, an F -
equivariant Tits homomorphism t which is used to define the varieties Õ(I,b). For
w ∈ W we will write ẇ for t(w) where w ∈ W is the canonical lift of w.

Definition 8.23. For any morphism (I
b−→ φI) ∈ B+(I) we define X̃(I,bφ) = {x ∈

Õ(I,b) | p′′(x) = F (p′(x))}.

When w ∈ W we have X̃(I,wφ) = X̃(I, ẇF ) (the variety defined at the begin-
ning of this section).

Lemma 8.24. For any (I
w−→ φI) ∈ B+(I), there is a natural projection X̃(I,wφ)

π−→
X(I,wφ) which makes X̃(I,wφ) a L

t(w)F
I -torsor over X(I,wφ).
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Proof. Let I
w1−−→ I2 → · · · → Ir

wr−−→ φI be a decomposition into elements of S of

I
w−→ φI, so that X̃(I,wφ) identifies to the set of sequences (g1UI , g2UI2 , . . . , grUIr )

such that g−1
j gj+1 ∈ UIj t(wj)UIj+1 for j < r and g−1

r
Fg1 ∈ UIr t(wr)UφI . We

define π by gjUIj 7→ gjPIj . It is easy to check that the morphism π thus de-
fined commutes with an “elementary morphism” in the bicategories of varieties
X̃ or X consisting of passing from the decomposition (w1, . . . ,wi,wi+1, . . . ,wr)

to (w1, . . . ,wiwi+1, . . . ,wr) when Ii
wiwi+1−−−−−→ Ii+2 ∈ S. Thus by 8.6 the mor-

phism π is well-defined independently of the decomposition chosen of w. We
claim that π makes X̃(I,wφ) a Lt(w)F -torsor over X(I,wφ). Indeed, the fiber

π−1((g1PI ,
g2PI2 , . . . ,

grPIr )) consists of the (g1l1UI , . . . , grlrUIr ) ∈ X̃(I,wφ) with
li ∈ LIi , that is such that

for j < r we have g−1
j gj+1 ∈ (UIj t(wj)UIj+1 ) ∩ li(UIj t(wj)UIj+1 )l

−1
i+1

and g−1
r

Fg1 ∈ (UIr t(wr)UφI) ∩ lr(UIr t(wr)UφI)
F l−1

1 .

Now

(UIj t(wj)UIj+1 )∩li(UIj t(wj)UIj+1 )l
−1
i+1 = (UIj t(wj)UIj+1 )∩UIj t(wj)UIj+1 l

t(wj)
i l−1

i+1

and the intersection is non-empty if and only if U
t(wj)
Ij

∩UIj+1 l
t(wj)
i l−1

i+1 6= ∅, which,
since P

t(wj)
Ii

and PIi+1 are two parabolic subgroups with the same Levi subgroup,

occurs only if l
t(wi)
i = li+1. Similarly we get l

t(wr)
r = F l1, so in the end the fiber is

given by the l1 such that l1 = t(w)F l1. �

We end this subsection with the analogue of Proposition 8.15 for X̃(I,bφ).

Proposition 8.25. Let I = I1
w1−−→ I2 → · · · → Ik

wk−−→ φI be a decomposition into

elements of S of I
b−→ φI ∈ B+(I), let F1 be the isogeny of Gk as in Proposition

8.15.
Then X̃G(I,bφ) ≃ X̃Gk(I1 × . . .× Ik, (ẇ1, . . . , ẇk)F1). By this isomorphism the

action of F δ corresponds to that of F kδ1 , the action of GF corresponds to that of

(Gk)F1 , and the action of L
t(b)F
I corresponds to that of (LI1 ×· · ·×LIk )

(ẇ1,...,ẇk)F1 .

Proof. An element x1UI1 × . . . × xkUIk ∈ X̃Gk(I1 × . . . × Ik, (ẇ1, . . . , ẇk)F1) by

definition satisfies (xiUIi , xi+1UIi+1) ∈ Õ(Ii, ẇi) for i = 1, . . . , k, where we have

put Ik+1 = FI1 and xk+1UIk+1 = F(x1UI1 ). This is the same as an element in the

intersection of Õ(I1,w1)×G/UI2
Õ(I2,w2) . . .×G/UIk−1

Õ(Ik,wk) with the graph

of F . Since, by definition, we have

Õ(I,b) ≃ Õ(I1,w1)×G/UI2
Õ(I2,w2) . . .×G/UIk−1

Õ(Ik,wk),

via this last isomorphism we get an element of Õ(I,b) which is in X̃G(I,bφ).
One checks easily that this sequence of identifications is compatible with the

actions of F δ, of GF and of L
t(b)F
I as described by the proposition. �

Cohomology. We start with an isomorphism which reflects the transitivity of
Lusztig’s induction.

Proposition 8.26. Let I
w−→ φI ∈ B+(I). Then if w is the image of w in W , the

automorphism wφ lifts to an automorphism that we will still denote wφ of B+
I . For

J ⊂ I, let J
v−→ wφJ ∈ B+

I (J ). Then
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(i) We have an isomorphism X̃(I,wφ)×
L

t(w)F
I

X̃LI (J,vwφ)
∼−→ X̃(J,vwφ) of

GF -varieties-L
t(vw)F
J . This isomorphism is compatible with the action of

Fn for any n such that I, J, v and w are φn-stable.

(ii) Through the quotient by L
t(vw)F
J (see Lemma 8.24) we get an isomorphism

of GF -varieties

X̃(I,wφ) ×
L

t(w)F
I

XLI (J,vwφ)
∼−→ X(J,vwφ).

Proof. We first look at the case w,v ∈ W (which implies vw ∈ W), in which case
the isomorphism we seek is

X̃(I, ẇF )×LẇF
I

X̃LI (J, v̇.ẇF )
∼−→ X̃(J, v̇ẇF )

where v is the image of v in W . This is the content of Lusztig’s proof of the
transitivity of his induction (see [Lu, lemma 3]), that we recall and detail in our
context. We claim that (gUI , lVJ) 7→ gUI lVJ = glUJ where VJ = LI ∩ UJ

induces the isomorphism we want. We have

UJ v̇ẇ
FUJ = UIVJ v̇ẇ

FVJ
FUI = UIVJ v̇

ẇFVJ ẇ
FUI .

Since VJ v̇
ẇFVJ is in LI , so normalizes UI we get finally

UJ v̇ẇ
FUJ = VJ v̇

ẇFVJUI ẇ
FUI .

Hence if (gUI , lVJ) ∈ X̃(I, ẇF )× X̃LI (v̇ẇφ), we have

(gl)−1F (gl) ∈ l−1UI ẇ
FUI

F l = l−1UI
ẇF lẇFUI

= l−1 ẇF lUIẇ
FUI ⊂ VJ v̇

ẇFVJUIẇ
FUI = UJ v̇ẇ

FUJ .

Hence we have defined a morphism X̃(I, ẇF ) × X̃LI (v̇.ẇφ) → X̃(J, v̇ẇF ) of GF -
varieties-Lv̇ẇFJ . We show now that it is surjective. The product LI .(UI ẇ

FUI) is
direct: a computation shows that this results from the unicity in the decomposition
PI ∩ ẇFUI = LI .(UI ∩ ẇFUI). Hence an element x−1Fx ∈ UJ v̇ẇ

FUJ defines
unique elements l ∈ VJ v̇

ẇFVJ and u ∈ UI ẇ
FUI such that x−1Fx = lu. If, using

Lang’s theorem, we write l = l′−1 ẇF l′ with l′ ∈ LI , the element g = xl′−1 satisfies
g−1Fg = l′x−1FxF l′−1 = ẇF l′uF l′−1 ∈ ẇF l′UI ẇ

FUI
F l′−1 = UIẇ

FUI . Hence
(gUI , l

′VJ) is a preimage of xUJ in X̃(I, ẇF )× X̃LI (J, v̇ẇφ).
Let us look now at the fibers of the above morphism. If g′UI l

′VJ = gUI lVJ

then g′−1g ∈ PI so up to UI we may assume g′ = gλ with λ ∈ LI ; we have then
λl′UJ = lUJ , so that l−1λl′ ∈ UJ ∩ LI = VJ ; moreover if gλUI ∈ X̃(I, ẇF ) with
λ ∈ LI , then λ

−1UIẇ
FUI

Fλ = UI ẇ
FUI which implies λ ∈ LẇFI . Conversely, the

action of λ ∈ LẇFI given by (gUI , lVJ) 7→ (gλUI , λ
−1lVJ) preserves the subvariety

X̃(I, ẇF ) × X̃LI (v̇wφ), of G/UI × LI/VJ . Hence the fibers are the orbits under
this action of LẇFI .

Now the morphism j : (gUI , lVJ) 7→ glUJ is an isomorphism G/UI ×LI

LI/VJ ≃ G/UJ since gUJ 7→ (gUI ,VJ ) is its inverse. By what we have seen

above the restriction of j to the closed subvariety X̃(I, ẇF ) ×LẇF
I

X̃LI (J, v̇ẇφ)

maps this variety surjectively on the closed subvariety X̃(J, v̇ẇF ) of G/UJ , hence
we get the isomorphism we want.

We now consider the case of generalized varieties. Let k be the number of terms

of the normal form of vw and let I
w1−−→ I2

w2−−→ I3 → · · · → Ir
wr−−→ φI be the

normal form of I
w−→ φI, perhaps extended by some identity morphisms. We have
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X̃(I,wφ) ≃ X̃(I1×I2×· · ·×Ik, (t(w1), . . . , t(wk))F1), where F1 is as in Proposition
8.15. Let us write (v1w1, . . . ,vkwk) for the normal form of vw, with same notation
as in Proposition 8.5. Let J1 = J and Jj+1 = J

vjwj

j ⊂ Ij+1 for j = 1, . . . , k−1. We

apply the first part of the proof to the group Gk with isogeny F1 with I, J , w, and
v replaced respectively by I1 × · · · × Ik, J1 × · · · × Jk, (w1 . . . , wk) and (v1, . . . , vk).
Using the isomorphisms from Proposition 8.25;

X̃Gk(J1 × · · · Jk, (v̇1ẇ1, . . . , v̇kẇk)φ1) ≃ X̃(J,vwφ)

and

X̃LI1×···×Ik
(J1 × · · · × Jk, (v1, . . . , vk).(t(w1), . . . , t(wk))F1) ≃ X̃LI (J,vwφ),

we get (i). Now (ii) is immediate from (i) taking the quotient on both sides by

L
t(vw)F
J . �

If π is the projection of Lemma 8.24, the sheaf π!Qℓ decomposes into a direct

sum of sheaves indexed by the irreducible characters of L
t(w)F
I . We will denote by

St the subsheaf indexed by the Steinberg character of L
t(w)F
I .

In the particular case where I = ∅ we write X(wφ) for X(I,wφ). Quite a few
theorems are known about the ℓ-adic cohomology of these varieties (see [DMR]).
The following corollary of Proposition 8.26 relates the cohomology of a general
variety to this particular case; its part (ii) is a refinement of Corollary 8.42.

Corollary 8.27. Let I
w−→ φI ∈ B+(I).

(i) For all v ∈ B+
I and all i we have the following inclusions of GF ⋊ 〈F δ〉-

modules:

Hi
c(X(I,wφ),Qℓ) ⊂ Hi+2l(v)

c (X(vwφ),Qℓ)(−l(v))
and

Hi
c(X(I,wφ),St) ⊂ Hi+l(v)

c (X(vwφ),Qℓ)

(ii) For all i we have the following equality of GF ⋊ 〈F δ〉-modules:

Hi
c(X(wIwφ),Qℓ) =

∑

j+2k=i

Hj
c (X(I,wφ),Qℓ)⊗Qℓ

nI,k
(k)

where nI,k = |{v ∈ WI | l(v) = k}|, where wI is the longest element of
WI and the variety X(wIwφ) is the union

⋃

v∈WI
X(vwφ) as defined in

[DMR, 2.3.2].

Proof. For getting (i), we apply the Künneth formula to the isomorphism of Propo-
sition 8.26 when J = ∅. If we decompose the equality given by the Künneth formula

according to the characters of L
t(w)F
I , we get

⊕
χ∈Irr(L

t(w)F
I

)
⊕jHi−j

c (X̃(I,wφ),Qℓ)χ⊗L
t(w)F
I

Hj
c (XLI

(vwφ),Qℓ)χ ≃ Hi
c(X(vwφ),Qℓ).

We now use thatHi
c(X(I,wφ),Qℓ) = Hi

c(X̃(I,wφ),Qℓ)Id, andH
i
c(X(I,wφ),St) =

Hi
c(X̃(I,wφ),Qℓ)St where Id and St denote the identity and Steinberg characters

of L
t(w)F
I , and the facts that

• the only j such that Hj
c (XLI (vwφ),Qℓ)Id is non-trivial is j = 2l(v) and in

that case the cohomology group has dimension 1 and t(wF ) acts by ql(v)

(see [DMR, 3.3.14]).
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• the only j such that Hj
c (XLI (vwφ),Qℓ)St is non-trivial is j = l(v) and

that isotypic component is of multiplicity one, with trivial action of t(wF )
(see [DMR, 3.3.15]).

Hence we have

⊕jHi−j
c (X̃(I,wφ),Qℓ)Id ⊗Hj

c (XLI
(vwφ),Qℓ)Id = Hi−2l(v)

c (X(I,wφ),Qℓ)(l(v)),

and similarly

⊕jHi−j
c (X̃(I,wφ),Qℓ)St ⊗Hj

c (XLI
(vwφ),Qℓ)St = Hi−l(v)

c (X(I,wφ),Qℓ).

We now prove (ii). Let BI be the variety of Borel subgroups of LI , identified

to LI/BI . We first prove that we have an isomorphism X̃(I,wφ) ×
L

wφ
I

BI ∼−→
X(wIwφ). The variety X(wIwφ) is the union

⋃

v∈WI
X(vwφ). The variety BI is

the union of the varietiesXLI (vwφ) when v runs overWI. The isomorphisms given
by Proposition 8.26 when J = ∅ and v running overWI can be glued together since
they are defined by a formula independent of v. We thus get a bijective morphism
X̃(I,wφ)×

L
wφ
I

BI → X(wIwφ) which is an isomorphism since X(wIwφ) is normal

(see [DMR, 2.3.5]). We now get (ii) from the fact that Hk
c (BI ,Qℓ) is 0 if k is odd

and if k = 2k′ is a trivial L
t(w)F
I -module of dimension nI,k′ , where F acts by the

scalar qk
′

; this results for example from the cellular decomposition into affine spaces

given by the Bruhat decomposition and the fact that the action of L
t(w)F
I extends

to the connected group LI . �

Corollary 8.28. (i) The GF -module Hi
c(X(I,wφ),Qℓ) is unipotent. The

eigenvalues of F δ on an irreducible GF -submodule ρ of Hi
c(X(I,wφ),Qℓ)

are in qδNλρωρ, where λρ is a root of unity and ωρ is an element of {1, qδ/2}
which are both independent of i and w.

(ii) We have Hi
c(X(I,wφ),Qℓ) = 0 unless l(w) ≤ i ≤ 2l(w).

(iii) The eigenvalues of F δ on Hi
c(X(I,wφ),Qℓ) are of absolute value less than

qδi/2.
(iv) The Steinberg representation does not occur in any cohomology group of

X(I,wφ) unless I = ∅ in which case it occurs with multiplicity 1 in

H
l(w)
c (X(wφ),Qℓ), associated to the eigenvalue 1 of F δ.

(v) The trivial representation occurs with multiplicity 1 in H
2l(w)
c (X(I,wφ),Qℓ),

associated to the eigenvalue qδl(w) of F δ, and does not occur in any other
cohomology group of X(I,wφ).

Proof. (i) is a straightforward consequence of Corollary 8.27(i) since the result is
known for Hj

c (X(vwφ),Qℓ) (see [DMR, 3.3.4] and [DMR, 3.3.10 (i)]).
(ii) and (iii) are similarly a straightforward consequence of Corollary 8.27(i)

applied with v = 1 and of [DMR, 3.3.22] and [DMR, 3.3.10(i)].
For (iv), we first note that by Corollary 8.27(i) applied with v = 1 and [DMR,

3.3.15] the Steinberg representation has multiplicity at most 1 inH
l(w)
c (X(I,wφ),Qℓ),

associated to the eigenvalue 1 of F δ, and does not occur in any other cohomology
group of X(I,wφ). To see when it does occur, it is enough then to use Proposition
8.40 and the Lefschetz formula. The only Uχ̃ such that the Steinberg representation
has a non-zero scalar product with ShFm/F Uχ̃ is the Steinberg representation, and
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for the corresponding χ̃ we have

χ̃qm(X1Twφ) =

{

(−1)l(w) if I = ∅
0 otherwise

.

(v) is similarly a consequence of Corollary 8.27(i), [DMR, 3.3.14], 8.40, the Lef-
schetz formula, and that if χ̃qm corresponds to the trivial representation we have

χ̃qm(X1Twφ) = qml(w). �

Endomorphisms of parabolic Deligne-Lusztig varieties — the conjugacy

category D+(I).

Definition 8.29. Given any morphism I
v−→ J ∈ B+(I) which is a left divisor of

I
w−→ φI we define morphisms of varieties:

(i) Dv : X(I,wφ) → X(J,v−1wφv) as the restriction of the morphism

(a, b) 7→ (b, Fa) : O(I,w) = O(I,v) ×PJ O(J,v−1w) →
O(J,v−1w)×PφI

O(φI, φv) = O(J,v−1wφv).

(ii) D̃v : X̃(I,wφ) → X̃(J,v−1wφv) as the restriction of the morphism

(a, b) 7→ (b, Fa) : Õ(I,w) = Õ(I,v)×G/UJ
Õ(J,v−1w) →

Õ(J,v−1w)×G/UφI
Õ(φI, φv) = Õ(J,v−1wφv).

Note that the existence of well-defined decompositions as above ofO(I,w) and of

Õ(I,w) are consequences of Theorem 8.10. We have written v−1wφv for v−1wφvφ.
Note that when v, w and v−1wφv are in W the endomorphism Dv maps

gPI ∈ X(I, wφ) to g′PJ ∈ X(J, v−1wφv) such that g−1g′ ∈ PIvPJ and g′−1Fg ∈
PJv

−1wFPI and similarly for D̃v.
Note also that Dv and D̃v are equivalences of étale sites; indeed, the proof of

[DMR, 3.1.6] applies without change in our case.

The definition of D̃v and Dv shows the following property:

Lemma 8.30. The following diagram is commutative:

X̃(I,wφ)
D̃v //

��

X̃(J,v−1wφv)

��
X(I,wφ)

Dv // X(J,v−1wφv)

where the vertical arrows are the respective quotients by L
t(w)F
I and L

t(v−1wφv)F
J as

explained in Lemma 8.24.

Definition 8.31. We denote by D+(I) the category φ- cycB+(I); that is the ob-

jects of D+(I) are the morphisms in B+(I) of the form I
w−→ φI and the morphisms

are generated by the “simple” morphisms that we will denote adv, for v 4 w;

such a morphism, more formally denoted by I
adv−−→ J, where J = Iv, goes from

I
w−→ φI to J

v−1wφv−−−−−→ φJ. The relations are given by the equalities adv1 . . . advk =
adv′

1 . . . adv
′
k′ whenever advi are simple and v1 . . .vk = v′

1 . . .v
′
k′ in B

+.
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We will denote I
adv−−→ J a general morphism of D+(I) (where v = v1 . . .vk with

the advi simple).
As a further consequence of Theorem 8.10, the map which sends a simple mor-

phism adv to Dv gives a natural morphism of monoids EndD+(I)(I
w−→ φI) →

EndGF (X(I,wφ)), whose image consists of equivalences of étale sites.
By Proposition 5.2 the category D+(I) has a Garside family consisting of the

simple morphisms. Those of source I
w−→ φI correspond to the set of v 4 w such

that Iv ⊂ S. For J ⊂ I ⊂ S we will denote by D+
I (J ) the analogous category

where S is replaced by I and I by J .

Proposition 8.32. With same assumptions and notation as in Proposition 8.26,

let J
x−→ Jx ∈ B+

I (J ) be a left divisor of J
v−→ wφJ. The following diagram is

commutative:

X̃(I,wφ) ×LẇF
I

X̃LI (J,v · wφ) ∼ //

Id×D̃x

��

X̃(J,vwφ)

D̃x

��
X̃(I,wφ) ×LẇF

I
X̃LI (J

x,x−1(v · wφ)x) ∼ // X̃(Jx,x−1vwφx)

Proof. Decomposing x into a product of simples in D+
I (J ) the definitions show that

it is sufficient to prove the result for x ∈ W. We use then Proposition 8.25 to reduce
the proof to the case where vw and v−1wφv are inW (in which casew and v−1wφw

are in W too). We can make this reduction if we know that the isomorphism of
Proposition 8.25 is compatible with the action of Dx for x ∈ W (we will then use

this fact in G and in LI). Take (I,y, φI) ∈ B+(I) and x ∈ W such that I
x−→ Ix

is a left divisor of I
y−→ φI. Let y = y1 . . .yk be a decomposition of y as a product

of elements of W such that x = y1. The endomorphism Dx maps the sequence
(g1U1, . . . , gkUk) such that g−1

i gi+1 ∈ UiẏiUi+1 and g−1
k

Fg1 ∈ Ukẏk
FU1 to the

sequence (g2U2, . . . , gkUk,
Fg1

FU1). On the other hand, via the isomorphism of
Proposition 8.25, using the decomposition (y1,y2, . . . ,yk, 1) of y, the sequence

(g1U1, . . . , gkUk) corresponds to ((g1, . . . , gk,
Fg1)(U1, . . . ,Uk,

FU1) ∈ X̃Gk+1(I1×
. . . × Ik × FI1, (ẏ1, . . . , ẏk, 1)F1). This element is mapped by D(y1,1,...,1) to the

element (g2, g2, . . . , gk,
Fg1)(U2,U2, . . . ,Uk,

FU1) which is in X̃Gk+1(I2× I2× I3×
. . . × Ik × FI1, (1, ẏ2, . . . , ẏk,

Fy1)F1). Since this last element corresponds by the
isomorphism of Proposition 8.25 to (g2U2, . . . , gkUk,

Fg1
FU1), we have proved the

compatibility we want.
Assume now vw and v−1wφv in W. We start with (gUI , lVJ) ∈ X̃(I, ẇF ) ×

X̃LI (J, vwφ). This element is mapped by the top isomorphism of the diagram to
glUJ . As we have seen above Lemma 8.30 it is mapped by Id×Dx to (gUI , l

′VJx)
where l−1l′ ∈ VJxVJx and l′−1 ẇF l ∈ VJxx−1vwFVJ . This element is mapped
to gl′UJx by the bottom isomorphism of the diagram. We have to check that
gl′UJx = Dx(glUJ). But (gl)

−1gl′ = l−1l′ is in VJxVJx ⊂ UJxUJx and

(gl′)−1F(gl) = l′−1g−1FgF l ∈ l′−1UI ẇ
FUI

F l = UI l
′−1 ẇF lẇFUI

⊂ UIVJxx−1vwFVJ
FUI = UJxx−1vwFUJ ,

so that (gl′UJx) = Dx(glUJ). �

Using Proposition 8.26(ii) and Lemma 8.30 we get
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Corollary 8.33. The following diagram is commutative:

X̃(I,wφ) ×LẇF
I

XLI (J,v · wφ) ∼ //

Id×Dx

��

X(J,vwφ)

Dx

��
X̃(I,wφ) ×LẇF

I
XLI (J

x,x−1(v · wφ)x) ∼ // X(Jx,x−1vwφx)

In the following example we can describe explicitly EndD+(I) I
w−→ φI.

Definition 8.34. We define π = w2
0 (it is a generator of the center of the pure

braid group) and similarly for I ⊂ S we define πI = w2
I .

An example. Let w = π/πI = w−1
I w0 · w0w

−1
I . Then any v ∈ HomB+(I)(I, I)

φ

gives endomorphisms D̃v and Dv of X̃(I, (π/πI)φ) and X(I, (π/πI)φ) respectively.

This comes from Lemma 8.3 since if the i-th term of the normal form of I
v−→ φI is

Ii
wi−−→ Ii+1 then wi divides π/πIi and conjugates it to π/πIi+1 .

Let w ∈ HomB+(I)(I,
φI) be such that (wφ)d = (π/πI)φ

d. The map gUI 7→
(gUI ,

F(gUI),
F 2

(gUI), . . . ,
Fd−1

(gUI)) identifies X̃(I,wφ) with the subvariety of

X̃(I, (π/πI)φ
d) defined by the equation D̃wx = Fx. This implies that the inter-

section of the centralizer of wφ with HomB+(I)(I, I) acts on X̃(I,wφ).

Similarly the map P 7→ (P, FP, F
2

P, . . . , F
d−1

P) identifies X(I,wφ) with the
subvariety of X(I, (π/πI)φ

d) defined by the equation Dwx = Fx and the intersec-
tion of the centralizer of wφ with HomB+(I)(I, I) acts on X(I,wφ). �

We now give a more general case where we can describe EndD+(I)(I
w−→ φI).

Theorem 8.35. Assume that some power of wφ is divisible on the left by w−1
I w0.

Then EndD+(I) I
w−→ φI consists of the morphisms I

adb−−−→ I where b runs over

the submonoid B+
w of CB+(wφ) consisting of the elements such that bI = I and

αI(b) = 1.

Proof. This is an immediate translation of Proposition 5.5, since the Garside map

of B+(I) is I
w

−1
I

w0−−−−−→ Iw0 ; the submonoid B+
w is the centralizer of the morphism

I
w−→ φI of B+(I). �

Note that if k is the smallest power such that φk

I = I and φk

w = w, then

w(k) := wφw . . . φ
k−1

w is in B+
w. Since I

adw−−−→ φI is the Garside map of D+(I)
described in Proposition 5.3, it follows that under the assumptions of Theorem
8.35 every element of B+

w divides a power of w(k). In particular, in the case I = ∅,
the group CB(wφ) is generated as a monoid, with the notations of [DM2, 2.1], by
EndD+(w) and (w(k))−1. Thus Theorem 8.35 in this particular case gives a positive
answer to conjecture [DM2, 2.1].

Affineness. Until the end of the text, we will consider varieties which satisfy the
assumption of Theorem 8.35. They have many nice properties. We show in this
subsection that they are affine, by adapting the proof of Bonnafé and Rouquier
[BR2] to our case; we use the existence of the varieties Õ(I,b) and X̃(I,bφ) to
replace doing a quotient by LI by doing a quotient by LFI .
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Proposition 8.36. Assume the morphism I
b−→ J ∈ B+(I) is left-divisible by ∆I .

Then the variety Õ(I,b) is affine.

Proof. By assumption there exists a decomposition into elements of S of I
b−→ J of

the form I
w

−1
I

w0−−−−−→ I1
v1−→ I2

v2−→ I3 → · · · → Ir
vr−→ J. We show that the map ϕ

defined by:

G×
i=r
∏

i=1

(UIi ∩ viU−
Ii+1

)v̇i →

Õ(I,ẇ−1
I ẇ0)×G/UI1

Õ(I1, v̇1) . . .×G/UIr
Õ(Ir , v̇r)

(g, h1, . . . , hr) 7→
(gUI ,gẇ

−1
I ẇ0UI1 , gẇ

−1
I ẇ0h1UI2 , . . . , gẇ

−1
I ẇ0h1 . . . hrUJ )

is an isomorphism; since the first variety is a product of affine varieties this will
prove our claim.

Since UIi v̇iUIi+1 is isomorphic to (UIi ∩ viU−
Ii+1

)v̇i × UIi+1 , by composition

with the first projection we get a morphism ηi : UIi v̇iUIi+1 → (UIi ∩ viU−
Ii+1

)v̇i
for i = 1, . . . , r, where Ir+1 = J . For x = (gUI , g1UI1 , g2UI2 , . . . , grUIr , gr+1UJ )

in Õ(I, ẇ−1
I ẇ0) ×G/UI1

Õ(I1, v̇1) . . . ×G/UIr
Õ(Ir, v̇r) we put ψ(x) = gη(g−1g1),

ψ1(x) = ψ(x)ẇ0, ψi(x) = ηi((ψ(x)ψ1(x) . . . ψi−1(x))
−1gi). We claim that the maps

ψ (resp. ψi) are well defined, that is do not depend on the representative g (resp.
gi) chosen; the morphism x 7→ (ψ(x), ψ1(x), . . . , ψr(x)) is then clearly inverse to ϕ.
Since ηi(hu) = ηi(h) for all h ∈ UIi v̇iUIi+1 and all u ∈ UIi+1 , we get that all ψi
are well-defined. Since moreover η(uh) = uη(h) for all h ∈ UIẇ

−1
I ẇ0UI1 and all

u ∈ UI , we get that ψ also is well-defined, whence our claim. �

Proposition 8.37. Assume that we are under the assumptions of Theorem 8.35,

that is (I
w−→ φI) ∈ B+(I) has some power divisible by ∆I , or equivalently some

power of wφ is divisible on the left by w−1
I w0. Assume further that the Tits homo-

morphism t has been chosen F -equivariant. Then X̃(I,wφ) is affine.

Proof. Let us, similarly to after Theorem 8.35, define k as the smallest power such

that φ
k

I = I, φ
k

w = w and w−1
I w0 4 w(k), where w(k) := wφw . . . φ

k−1

w.

We will embed X̃(I,wφ) as a closed subvariety in Õ(I,w(k)), which will prove it
is affine.

Let I
w1−−→ I2

w2−−→ I3 → · · · → Ir
wr−−→ φI be a decomposition of I

w−→ φI into
elements of S, so that Õ(I,w(k)) identifies to the set of sequences

(g1,1UI , g1,2UI2 , . . . , g1,rUIr ,

g2,1UφI , g2,2UφI2 , . . . , g2,rUφIr ,

. . . ,

gk,1Uφk−1I , gk,2Uφk−1I2
, . . . , gk,rUφk−1Ir

,

gk+1,1UI)

such that for j < r we have g−1
i,j gi,j+1 ∈ Uφi−1Ij

F i−1

ẇjUφi−1Ij+1
and g−1

i,r gi+1,1 ∈
Uφi−1Ir

F i−1

ẇrUφiI ; note that we have used the F -equivariance of t to write F i

ẇj

for t(φ
i

wj).
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Similarly X̃(I,wφ) identifies to the set of sequences (g1UI , g2UI2 , . . . , grUIr )
such that g−1

j gj+1 ∈ UIj ẇjUIj+1 for j < r and g−1
r

Fg1 ∈ UIr ẇrUφI . It is thus
clear that the map

(g1UI , g2UI2 , . . . , grUIr ) 7→ (g1UI , g2UI2 , . . . , grUIr ,

Fg1UφI ,
Fg2UφI2 , . . . ,

FgrUφIr ,

. . . ,

Fk−1

g1Uφk−1I , . . . ,
Fk−1

grUφk−1Ir
, F

k

g1UI)

identifies X̃(I,wφ) to the closed subvariety of Õ(I,w(k)) defined by gi+1,jUφiIj
=

F(gi,jUφi−1Ij
) for all i, j. �

Corollary 8.38. Assume that we are under the assumptions of Theorem 8.35, that

is (I
w−→ φI) ∈ B+(I) has some power divisible by ∆I , or equivalently some power

of wφ is divisible on the left by w−1
I w0. Then X(I,wφ) is affine.

Proof. Indeed, by Proposition 8.37 and Lemma 8.24, it is the quotient of an affine
variety by a finite group, so is affine. �

Shintani descent identity. In this subsection we give a formula for the Leftschetz
number of a variety X(I,wF ) which we deduce from a “Shintani descent identity”.

Letm be a multiple of δ, and let Hqm(W ) := EndGFm (Qℓ[(G/B)F
m

]). Let eB =

|BFm |−1|∑b∈BFm b; the GFm

-module Qℓ[(G/B)F
m

] identifies with Qℓ[G
Fm

]eB
and Hqm(W ) with eBQℓ[G

Fm

]eB acting by right multiplication. It has a basis

consisting of the operators Tw = |BFm ∩ wBFm |∑g∈BFmwBFm g = eBweB for

w ∈ W , since W is a set of representatives of BFm\G/BFm

(see [Bou] IV, §2
exercice 22). If we identify G/B to the variety B of the Borel subgroups of G, the
operator Tw becomes

Tw : B′ 7→
∑

{B′′∈BFm |B′′
w−→B′}

B′′.

Similarly the algebra Hqm(W,WI) := EndGFm (Qℓ[(G/PI)
Fm

]) has a Qℓ-basis

consisting of the operators Xw = |PFm

I ∩wPF
m

I |∑g∈PFm

I wPFm

I
g = ePIwePI where

ePI = |PFm

I |−1
∑

p∈PFm

I
p and w runs over a set of representatives of the double

cosets PF
m

I \GFm

/PF
m

I ≃ WI\W/WI . Identifying G/PI to the variety PI of the
parabolic subgroups G-conjugate to PI we have

Xw : P 7→
∑

{P′∈PFm

I |P′
I,w,I−−−→P}

P′,

The multiplication by the idempotent X1 = ePI =
∑

v∈WI
|BFm ∩ vBFm |−1Tv

makes Qℓ[(G/PI)
Fm

] into a direct factor of Qℓ[(G/B)F
m

] and the equality Xw =
X1TwX1 is compatible with this inclusion. Note that this inclusion maps a parabolic
P conjugate to PI in GFm

to the sum of all Fm-stable Borel subgroups of P.
We may define a Qℓ-representation of EndB+(I)(I) on Qℓ[(G/PI)

Fm

] by sending

I
w−→ I to the operator Xw ∈ H(W,WI) defined by

Xw(P) =
∑

{x∈O(I,w)Fm |p′′(x)=P}

p′(x).
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In the particular case where I = ∅ we get an operator denoted by Tw, defined for any

w in B+. For I
w−→ I ∈ EndB+(I)(I) the operatorXw identifies toX1TwX1 = X1Tw

since Iw = I.
Similarly, if I

w−→ φI is a morphism of B+(I), we may associate to it an endo-
morphism Xwφ of Qℓ[(G/PI)

Fm

] by the formula

Xwφ(P) =
∑

{x∈O(I,w)Fm |p′′(x)=F (P)}

p′(x).

When φ(I) = I we have Xwφ = Xwφ. In general we have Xwφ = X1Twφ on

Qℓ[(G/PI)
Fm

] seen as a subspace of Qℓ[(G/B)F
m

]: on the latter representation one
can separate the action of F ; the operator F sends the submodule Qℓ[(G/PI)

Fm

]
to Qℓ[(G/Pφ(I))

Fm

] which is sent back to Qℓ[(G/PI)
Fm

] by X1Tw. The endomor-

phism Xwφ commutes with GFm

like F , hence normalizes Hqm(W,WI); its action
identifies to the conjugation action of Twφ on Hqm(W,WI) inside Hqm(W )⋊ 〈φ〉 .

Recall that ShFm/F denotes the “norm” map which maps the F -class of g′ =

h.Fh−1 ∈ GFm

to the class of g = h−1.F
m

h ∈ GF .

Proposition 8.39 (Shintani descent identity). Let I
w−→ φI be a morphism of

B+(I), and let m be a multiple of δ. Then

(g 7→ |X(I,wφ)gF
m |) = ShFm/F (g

′ 7→ Trace(g′Xwφ | Qℓ[(G/PI)F
m

]).

Proof. Let g = h−1.F
m

h and g′ = h.Fh−1, so that the class of g is ShFm/F of the

F -class of g′; we have X(I,wφ)gF
m

= {x ∈ O(I,w) | Fmhx = hx and p′′(hx) =
g′Fp′(hx)}. Taking hx as a variable in the last formula we get that |X(I,wφ)gF

m | =
|{x ∈ O(I,w)F

m | p′′(x) = g′Fp′(x)}|. Putting P = p′(x) this last number be-

comes
∑

P∈PFm
I

|{x ∈ O(I,w)F
m | p′(x) = P and p′′(x) = g′FP}|. On the other

hand the trace of g′Xwφ is the sum over P ∈ PFm

I of the coefficient of P in
∑

{x∈O(I,w)Fm |p′′(x)=F (P)} g
′p′(x). This coefficient is equal to |{x ∈ O(I,w)F

m |
g′p′(x) = P and p′′(x) = FP}| = |{x ∈ O(I,w)F

m | p′(x) = P and p′′(x) =
g′FP}|, this last equality by changing g′x into x. �

Corresponding to the specialization qm/2 7→ 1 : Hqm(W ) → QℓW , there is a
bijection χ 7→ χqm : Irr(W ) → Irr(Hqm (W )). If we choose an extension χ̃ to
W ⋊ 〈φ〉 of each character in Irr(W )φ, we get a corresponding extension χ̃qm ∈
Irr(Hqm(W )⋊ 〈φ〉), and if Uχ ∈ Irr(GFm

) is the corresponding character of GFm

,

we get a corresponding extension Uχ̃ of Uχ to GFm

⋊ 〈F 〉 (see [DM1, III théorème
1.3 ]). With these notations, the Shintani descent identity becomes

Proposition 8.40.

(g 7→ |X(I,wφ)gF
m |) =

∑

χ∈Irr(W )φ

χ̃qm(X1Twφ) ShFm/F Uχ̃

and the only characters χ in that sum which give a non-zero contribution are those
which are a component of IndWWI

Id.

Proof. We have Trace(g′Xwφ | Qℓ[(G/PI)F
m

]) = Trace(g′X1Twφ | Qℓ[(G/B)F
m

])

since X1 is the projector onto Qℓ[(G/PI)
Fm

]. Hence (g 7→ |X(I,wφ)gF
m |) =

∑

χ∈Irr(W )φ χ̃qm(X1Twφ) ShFm/F Uχ̃. Since X1 acts by 0 on the representation of

character χ if χ is not a component of IndWWI
Id, we get the second assertion. �
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Finally, if λρ is the root of unity attached to ρ ∈ E(GF , 1) as in [DMR, 3.3.4],
the above formula translates, using [DMR, 3.3.7] as

Corollary 8.41.

|X(I,wφ)gF
m | =

∑

ρ∈E(GF ,1)

λm/δρ ρ(g)
∑

{χ∈Irr(W )φ|〈ResWWI
χ,Id〉WI

6=0}

χ̃qm(X1Twφ)〈ρ,Rχ̃〉GF

where Rχ̃ = |W |−1
∑

w∈W χ̃(wφ)RG
Tw

(Id), and, using the Lefschetz formula and
taking the “limit for m→ 0” (see for example [DMR, 3.3.8]) we get the equality of
virtual characters

Corollary 8.42.
∑

i

(−1)iHi
c(X(I,wφ),Qℓ) =

∑

{χ∈Irr(W )φ|〈ResWWI
χ,Id〉WI

6=0}

χ̃(x1wφ)Rχ̃,

where w is the image of w in W and x1 = |WI |−1
∑

v∈WI
v.

9. Eigenspaces and roots of π/πI

Let ℓ 6= p be a prime such that the ℓ-Sylow S of GF is abelian.
Then “generic block theory” (see [BMM]) associates to ℓ a root of unity ζ and

some wφ ∈ Wφ such that its ζ-eigenspace in V in X := XR ⊗ C is non-zero and
maximal among ζ-eigenspaces of elements of Wφ; for any such ζ, there exists a
unique minimal subtorus S of T such that V ⊂ X(S) ⊗ C. If the coset Wφ is
rational X(S) ⊗ C is the kernel of Φd(wφ), where d is the order of ζ. Otherwise,
in the “very twisted” cases 2B2,

2F4 (resp. 2G2) we have to replace Φd by the

irreducible cyclotomic polynomial Φ over Q(
√
2) (resp. Q(

√
3)) of which ζ is a root.

The torus S is then called a Φ-Sylow; we have |SF | = Φ(q)dimV .
The relationship with ℓ is that S is a subgroup of SF , and thus that |GF |/|SF |

is prime to ℓ; we have NGF (S) = NGF (S) = NGF (L) where L := CG(S) is a
Levi subgroup of G whose Weyl group is CW (V ). Conversely, any maximal ζ-
eigenspace for any ζ determines some primes ℓ with abelian Sylow, those which
divide Φ(q)dimV and no other cyclotomic factor of |GF |.

The classes CW (V )wφ, where V = Ker(wφ − ζ) is maximal, form a single orbit
under W -conjugacy [see eg. [Br, 5.6(i)]]; the maximality implies that all elements
of CW (V )wφ have same ζ-eigenspace.

We will see in Theorem 9.1(i) that up to conjugacy we may assume that CW (V )
is a standard parabolic group WI ; then the Broué conjectures predict that for an
appropriate choice of coset CW (V )wφ in its NW (WI)-conjugacy class the cohomol-
ogy complex of the variety X(I,wφ) should be a tilting complex realizing a derived
equivalence between the unipotent parts of the ℓ-principal blocks of GF and of
NGF (S). We want to describe explicitly what should be a “good” choice of w.

Since it is no more effort to have a result in the context of any finite real reflection
group than for a context which includes the Ree and Suzuki groups, we give a more
general statement.

In what follows we look at real reflection cosets Wφ of finite order, that is W
is a finite reflection group acting on the real vector space XR and φ is an element
of NGL(XR)(W ), such that Wφ is of finite order δ, that is δ is the smallest integer

such that (Wφ)δ = W (equivalently φ is of finite order). Since W is transitive
on the chambers of the real hyperplane arrangement it determines, one can always
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choose φ so that it preserves a chamber of this arrangement. Such elements φ are
the 1-regular elements of the coset, thus are of order δ.

Theorem 9.1. Let Wφ ⊂ GL(XR) be a finite order real reflection coset, such that
φ preserves a chamber of the hyperplane arrangement on XR determined by W , thus
induces an automorphism of the Coxeter system (W,S) determined by this chamber.
We call again φ the induced automorphism of the braid group B of W , and denote
by S,W the lifts of S,W to B (see around Definition 8.2).

Let ζd = e2iπ/d and let V be a subspace of X := XR ⊗C on which some element
of Wφ acts by ζd. Then we may choose V in its W -orbit such that:

(i) CW (V ) =WI for some I ⊂ S.
(ii) If WIwφ is the WI -coset of elements which act by ζd on V , where w

is I-reduced, then when d 6= 1 we have l(w) = (2/d)(l(w0w
−1
I )) and

l((wφ)iφ−i) = il(w) if 2i ≤ d.

Further, when d 6= 1 the lift w ∈ W of a w as in (ii) satisfies wφI = I and
(wφ)d = φdπ/πI, where I ⊂ S is the lift of I.

Finally note that if d = 1 then w = 1 in (ii) and we may lift it to w := π/πI

and we still have wφI = I and (wφ)d = π/πIφ
d.

Note that in particular, for the w in (ii) we have (wφ)d = φd.

Proof. Since W 〈φ〉 is finite, we may find a scalar product on XR (extending to an
Hermitian product of X) invariant by W and φ. The subspace X ′

R of XR on which
W acts non-trivially (the subspace spanned by the root lines of W ) identifies to
the reflection representation of the Coxeter system (W,S) (see for example [Bou,
chap. 5, §3]). We will use the root system Φ on X ′

R consisting of the vectors of
length 1 for this scalar product along the root lines ofW , which is thus preserved by
W 〈φ〉. The strategy for the proof of (i) will be, rather than change V , to choose an
order on Φ such that the corresponding basis makes CW (V ) a standard parabolic
subgroup of W .

Let v ∈ V be a generic vector, that is such that CW (v) = CW (V ). Multiplying
v if needed by a complex number of absolute value 1, we may assume that for any
α ∈ Φ we have ℜ〈v, α〉 = 0 if and only if 〈v, α〉 = 0. Then there exists an order
on Φ such that Φ+ ⊂ {α ∈ Φ | ℜ(〈v, α〉) ≥ 0}. Let Π be the corresponding basis
and let I = {α ∈ Π|ℜ(〈v, α〉) = 0}. Then for α ∈ Φ we have α ∈ ΦI if and only if
〈v, α〉 = 0, thus CW (V ) = CW (v) =WI . This proves (i).

We prove now (ii). The element wφ sends v to ζdv, thus preserves ΦI , and since
we chose w to be I-reduced we have wφI = I.

Note that (wφ)d = φd. Indeed (wφ)d fixes v, thus preserves the sign of any root
not in ΦI ; as

wφI = I, it also preserves the sign of roots in ΦI . It is thus equal to
the only element φd of Wφd which preserves the signs of all roots. We get also that
φd

I = I.
Since 〈v, (wφ)mα〉 = 〈(wφ)−m

v, α〉 = ζ−md 〈v, α〉, we get that all orbits of wφ on Φ−
ΦI have cardinality a multiple of d; it is thus possible by partitioning suitably those

orbits, to get a partition of Φ−ΦI in subsets O of the form {α, wφα, . . . , (wφ)d−1

α};
and the numbers {〈v, β〉 | β ∈ O} for a given O form the vertices of a regular d-gon
centered at 0 ∈ C; the action of wφ is the rotation by −2π/d of this d-gon. Looking
at the real parts of the vertices of this d-gon, we see that for m ≤ d/2, exactly m
positive roots in O are sent to negative roots by (wφ)m. Since this holds for all O,
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we get that for m ≤ d/2 we have l(φ−m(wφ)m) = m|Φ−ΦI |
d ; thus if w is the lift of

w to W we have (wφ)i ∈ Wφi if 2i ≤ d.
If d = 1 since wφ = φ we have w = 1 so we may lift it to π/πI as stated.

Otherwise we finish with the following

Lemma 9.2. Assume that wφWI =WI , that w is I-reduced, that (wφ)d = φd and
that l((wφ)iφ−i) = (2i/d)l(w0w

−1
I ) if 2i ≤ d. Then if w is the lift of w to W we

have wφI = I and if d 6= 1 we have (wφ)d = φdπ/πI.

Proof. Since w is I-reduced and wφ normalizes WI we get that wφ stabilizes I,
which lifts to the braid group as wφI = I.

Assume first d even and let d = 2d′ and x = φ−d
′

(wφ)d
′

. Then l(x) = (1/2)l(π/πI) =
l(w0) − l(wI) and since x is reduced-I it is equal to the only reduced-I element
of that length which is w0w

−1
I . Since the lengths add we can lift the equality

(wφ)d
′

= φd
′

w0w
−1
I to the braid monoid as (wφ)d

′

= φd
′

w0w
−1
I . By a similar rea-

soning using that (wφ)d
′

φ−d
′

is the unique I-reduced element of its length, we get

also (wφ)d
′

= w−1
I w0φ

d′ . Thus (wφ)d = w−1
I w0φ

d′φd
′

w0w
−1
I = φdπ/πI, where

the last equality uses that φd = (wφ)d preserves I, whence the lemma in this case.

Assume now that d = 2d′ + 1; then (wφ)d
′

φ−d
′

is I-reduced and φ−d
′

(wφ)d
′

is reduced-I. Using that any reduced-I simple of B+ is a right divisor of w0w
−1
I

(resp. any I-reduced simple is a left divisor of w−1
I w0), we get that there exists

simples t,u such that φd
′

w−1
I w0 = t(wφ)d

′

and w0w
−1
I φd

′

= (wφ)d
′

u. Thus

φdπ/πI = w0w
−1
I φdw−1

I w0 = (wφ)d
′

uφt(wφ)d
′

, the first equality since φd

I = I.
The image in Wφd of the left-hand side is φd, and (wφ)d = φd. We deduce that the
image in Wφ of uφt is wφ. If d 6= 1 then d′ 6= 0 and we have l(u) = l(t) = l(w)/2;
thus uφt = wφ and (wφ)d = φdπ/πI. �

�

Note that Theorem 9.1 only handles the case of eigenspaces for the eigenvalue
ζd, and not for another primitive d-th root of unity ζkd . However, note that if the
coset Wφ preserves a Q-structure on XR (which is the case for cosets associated to
finite reductive groups, excepted for the “very twisted” cases 2B2,

2G2 and 2F4),
then if ζkd is an eigenvalue of wφ, the Galois conjugate ζd is also an eigenvalue, for a
Galois conjugate eigenspace. In general, since we assume Wφ real, we may assume
2k ≤ d since if ζkd is an eigenvalue of wφ the complex conjugate ζd−kd is also an
eigenvalue, for the complex conjugate eigenspace. In this last case we may say the
following (here we assume d 6= 1):

Corollary 9.3. In the situation of Theorem 9.1, let ζ = ζkd with k prime to d and
to the order δ of φ with 2k ≤ d and let V be a subspace of X on which some element
of Wφ acts by ζ. Then we may choose V in its W -orbit such that:

(i) CW (V ) =WI for some I ⊂ S.
(ii) If WIwφ is the WI-coset of elements which act by ζ on V , and w is the

unique I-reduced element of that coset, then l(w) = (2k/d)(l(w0w
−1
I )) and

l((wφ)iφ−i) = il(w) if 2ik ≤ d.

Further, if w is the lift of w as in (ii) to W and I ⊂ S is the lift of I, then wφI = I

and (wφ)d = φd(π/πI)
k.
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Proof. The proof of (i) in Theorem 9.1 does not use that the eigenvalue is ζd, so
still applies.

Let k′ be the multiplicative inverse of k (mod lcm(d, δ)), and let w1φ1 = (wφ)k
′

,

where φ1 = φk
′

. Then w1φ1 has V as a ζd-eigenspace, so we may apply Theorem
9.1 to it. The same argument as at the beginning of the proof of Theorem 9.1(ii)

shows that (wφ)d = φd and φd

I = I. Thus the order of wφ is lcm(d, δ) and thus
wφ = (w1φ1)

k; we have also WIwφ = (WIw1φ1)
k, whence (ii).

Finally, by Theorem 9.1 the lift w1 of w1 to B satisfies w1φ1I = I and (w1φ1)
d =

φd1π/πI , thus if we define w by (w1φ1)
k = wφ, then w is the lift of w and satisfies

the last part of the corollary, using φd

I = I. �

The condition above that k is prime to δ seems a limitation but we do not know
of an example where wφ has an eigenvalue ζkd with k prime to d but not prime to

δ and does not have another Galois-conjugate eigenvalue ζk
′

d with k′ prime to δ.
We give now a converse.

Theorem 9.4. Let (W,S), φ, XR, X, S, B,B+ be as in Theorem 9.1 For d ∈ N,
let w ∈ B+ and I ⊂ S be such that:

(i) wφI = I.
(ii) (wφ)d = φdπ/πI.

Denote by w and I the images in W of w and I, let ζd = e2iπ/d, let V ⊂ X be
the ζd-eigenspace of wφ, and let XWI be the fixed point space of WI ; then WI =
CW (XWI ∩ V ), in particular CW (V ) ⊂WI .

Further, the following two assertions are equivalent:

(iii) w is maximal with respect to (i) and (ii) above, that is, there do not exist
J ( I and v ∈ B+

I such that vwφJ = J and (vwφ)d = φdπ/πJ.
(iv) No element of the coset WIwφ has a non-zero ζd-eigenvector on the sub-

space spanned by the root lines of WI .

Proof. We first notice that conditions (i) and (ii) are equivalent to require that in

the category B+(I) the morphism I
w−→ φIφ is a d-th root of ∆2

I . In our setting
Lemma 7.2 thus reduces to the following generalization of [BM, lemme 6.9]

Lemma 9.5. Let w ∈ B+ and I ⊂ S be such that wφI = I and (wφ)d = φdπ/πI.

Then there exists v ∈ (B+)φ
d

such that (wφ)v ∈ B+φ, Iv ⊂ S and ((wφ)v)⌊
d
2 ⌋ ∈

Wφ⌊
d
2 ⌋. Further, adv defines a morphism in D+(I)φd

(that is, the conjugation is
by “φd-stable cyclic permutations”).

Thus if we define w′ and J by (wφ)v = w′φ and Iv = J, we have (w′φ)d =

φdπ/πJ and w′φJ = J.
As the result to prove in Theorem 9.4 is invariant by a conjugacy in B which

sends wφ to B+φ and I to another subset of S, we may replace (wφ, I) by a
conjugate as in Lemma 9.5, thus assume that w and I satisfy the assumptions of
the next lemma.

To state the next lemma we extend the length function from W to W ⋊ 〈φ〉 by
setting l(wφi) = l(w).

Lemma 9.6. Let w ∈ W, I ⊂ S be such that (wφ)d = φd, wφI = I and such that
l((wφ)i) = 2i

d l(w
−1
I w0) for any i ≤ d/2. We have
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(i) If Φ be a φ-stable root system for W (as in the proof of Theorem 9.1),

then Φ−ΦI is the disjoint union of sets of the form {α, wφα, . . . , (wφ)d−1

α}
with α, wφα, . . . , (wφ)

⌊d/2⌋−1

α of same sign and (wφ)⌊d/2⌋α, . . . , (wφ)
d−1

α of
the opposite sign.

(ii) The order of wφ is lcm(d, δ).
(iii) If d > 1, then WI = CW (XWI ∩ ker(wφ − ζd)).

Proof. The statement is empty for d = 1 so in the following proof we assume d > 1.
For x ∈ W ⋊ 〈φ〉 let N(x) = {α ∈ Φ+ | xα ∈ Φ−}; it is well known that for

x ∈ W we have l(x) = |N(x)|. This still holds for x = wφi ∈ W ⋊ 〈φ〉 since

N(wφi) = φ−i

N(w). It follows that for x, y ∈ W ⋊ 〈φ〉 we have l(xy) = l(x)+ l(y) if

and only if N(xy) = N(y)
∐

y−1

N(x). In particular l((wφ)i) = il(wφ) for i ≤ d/2

implies (wφ)−i

N(wφ) ⊂ Φ+ for i ≤ d/2− 1.
Let us partition each wφ-orbit in Φ − ΦI into “pseudo-orbits” of the form

{α, wφα, . . . , (wφ)k−1

α}, where k is minimal such that (wφ)kα = φk

α (then k di-
vides d); a pseudo-orbit is an orbit if φ = 1. The action of wφ defines a cyclic
order on each pseudo-orbit. The previous paragraph shows that when there is a
sign change in a pseudo-orbit, at least the next ⌊d/2⌋ roots for the cyclic order have
the same sign. On the other hand, as φk preserves Φ+, each pseudo-orbit contains
an even number of sign changes. Thus if there is at least one sign change we have
k ≥ 2⌊d/2⌋. Since k divides d, we must have k = d for pseudo-orbits which have a
sign change, and then they have exactly two sign changes. As the total number of
sign changes is 2l(w) = 2|Φ− ΦI |/d, there are |Φ− ΦI |/d pseudo-orbits with sign
changes; their total cardinality is |Φ − ΦI |, thus there are no other pseudo-orbits
and up to a cyclic permutation we may assume that each pseudo-orbit consists of
⌊d/2⌋ roots of the same sign followed by d − ⌊d/2⌋ of the opposite sign. We have
proved (i).

Let d′ = lcm(d, δ). The proof of (i) shows that the order of wφ is a multiple of
d. Since the order of (wφ)d = φd is d′/d, we get (ii).

We now prove (iii). Let V = ker(wφ − ζd). Since W 〈φ〉 is finite, we may find a
scalar product on X invariant by W and φ. We have then XWI = Φ⊥

I . The map

p = 1
d′

∑d′−1
i=0 ζ−id (wφ)i is the (unique up to scalar) wφ-invariant projector on V ,

thus is the orthogonal projector on V .
We claim that p(α) 6∈< ΦI > for any α ∈ Φ − ΦI . As p((wφ)iα) = ζidp(α)

it is enough to assume that α is the first element of a pseudo-orbit; replacing if
needed α by −α we may even assume α ∈ Φ+. Looking at imaginary parts, we
have ℑ(ζid) ≥ 0 for 0 ≤ i < ⌊d/2⌋, and ℑ(ζid) < 0 for ⌊d/2⌋ ≤ i < d. Let λ be a
linear form such that λ is 0 on ΦI and is real strictly positive on Φ+ −ΦI ; we have

λ((wφ)
i

α) > 0 for 0 ≤ i < ⌊d/2⌋, and λ((wφ)iα) < 0 for ⌊d/2⌋ ≤ i < d; it follows

that ℑ(λ(ζid (wφ)
i

α)) > 0 for all elements of the pseudo-orbit. If d′ = d we have thus
ℑ(λ(p(α))) > 0, in particular p(α) 6∈< ΦI >. If d

′ > d, since φdα is also a positive
root and the first term of the next pseudo-orbit the same computation applies to
the other pseudo-orbits and we conclude the same way.

Now CW (XWI ∩ V ) is generated by the reflections whose root is orthogonal to
XWI ∩V , that is whose root is in < ΦI > +V ⊥. If α is such a root we have p(α) ∈<
ΦI >, whence α ∈ ΦI by the above claim. This proves that CW (XWI ∩ V ) ⊂ WI .
Since the reverse inclusion is true, we get (iii). �
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We return to the proof of Theorem 9.4. Assertion (iii) of Lemma 9.6 gives the
first assertion of the theorem. We now show ¬(iii)⇒ ¬(iv). If w is not maximal,
there exists J ( I and v ∈ B+

I such that vwφJ = J and (vwφ)d = φdπ/πJ. If we
denote ψ the automorphism of BI induced by the automorphism wφ of I, we have
vψJ = J and (vψ)d = ψdπI/πJ. Let XI be the subspace of X spanned by ΦI . It
follows from the first part of the theorem applied with X , φ, w and w respectively
replaced with XI , ψ, v and v that vψ = vwφ has a non-zero ζd-eigenspace in XI ,
since if V ′ is the ζd-eigenspace of vwφ we get CWI (V

′) ⊂WJ (WI ; this contradicts
(iv).

We show finally that ¬(iv)⇒ ¬(iii). If some element of WIψ has a non-zero
ζd-eigenvector on XI , by Theorem 9.1 applied to WIψ acting on XI we get the
existence of J ( I and v ∈ B+

I satisfying vψJ = J and (vψ)d = ψdπI/πJ. Using
that (wφ)d = φdπ/πI, it follows that (vwφ)

d = (wφ)dπI/πJ = φdπ/πI ·πI/πJ =
φdπ/πJ so w is not maximal. �

The assumption (iv) above can be replaced by two others, thanks to the following
lemma which holds for any complex reflection coset and any ζ.

Lemma 9.7. Let W be finite a (pseudo)-reflection group on the complex vector
space X and let φ be an automorphism of X of finite order which normalizes W .
Let V be the ζ-eigenspace of an element wφ ∈Wφ. Assume that W ′ is a parabolic
subgroup of W which is wφ-stable and such that CW (V ) ⊂ W ′, and let X ′ denote
the subspace of X spanned by the root lines of W ′. Then the condition

(i) V ∩X ′ = 0.

is equivalent to

(ii) CW (V ) =W ′.

While the stronger condition

(iv) No element of the coset W ′wφ has a non-zero ζ-eigenvector on X ′.

is equivalent to the conjunction of (ii) and

(iii) the space V is maximal among the ζ-eigenspaces of elements of Wφ.

Proof. SinceW 〈φ〉 is finite we may endow X with aW 〈φ〉-invariant scalar product,
which we shall do.

We show (i) ⇔ (ii). Assume (i); since wφ has no non-zero ζ-eigenvector in X ′

and X ′ is wφ-stable, we have V ⊥ X ′, so that W ′ ⊂ CW (V ), whence (ii) since the
reverse inclusion is true by assumption. Conversely, (ii) implies that V ⊂ X ′⊥ thus
V ∩X ′ = 0.

We show (iv) ⇒ (iii). There exists an element of Wφ whose ζ-eigenspace V1 is
maximal with V ⊂ V1. Then CW (V1) ⊂ CW (V ) ⊂ W ′ and the CW (V1)-coset of
elements of Wφ which act by ζ on V1 is a subset of the coset CW (V )wφ of elements
which act by ζ on V . Thus this coset is of the form CW (V1)vwφ for some v ∈ W ′.
By (i) ⇒ (ii) applied with wφ replaced by vwφ we get CW (V1) =W ′. Since v ∈W ′

this implies that vwφ and wφ have same action on V1 so that wφ acts by ζ on V1,
thus V1 ⊂ V .

Conversely, assume that (ii) and (iii) are true. If there exists v ∈ W ′ such that
vwφ has a non-zero ζ-eigenvector in X ′, then since v acts trivially on V by (ii), the
element vwφ acts by ζ on V and on a non-zero vector of X ′ so has a ζ-eigenspace
strictly larger that V , contradicting (iii). �
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Let us give now examples which illustrate the need for the conditions in Theorem
9.4 and Lemma 9.7.

We first show that if wφ satisfies Theorem 9.4 (i) and (ii) but is not maximal
in the sense of Theorem 9.4(iii) then ker(wφ − ζ) need not be maximal: Let us
take W = W (A3), φ = 1, d = 2, ζ = −1, I = {s2} (where the conventions for
the generators of W are as in the appendix, see 11.2), w = w−1

I w0. We have
w2 = π/πI but ker(w+1) is not maximal: it is of dimension 1 and a 2-dimensional
−1-eigenspace is obtained for w = w0.

In the above example we still have CW (V ) =WI but even this need not happen;
at the same time we illustrate that the maximality of V = ker(wφ−ζ) does not imply
the maximality of w if CW (V ) ( WI ; we take W = W (A3), φ = 1, d = 2, ζ = −1,
but this time I = {s1, s3}, w = w−1

I w0. We have w2 = π/πI and ker(w + 1) is
maximal (w is conjugate to w0, thus −1-regular) but w is not maximal. In this
case CW (V ) = {1}.

The smallest example with a maximal wφ and non-trivial I is for W =W (A4),
φ = 1, d = 3, w = s1s2s3s4s3s2 and I = {s3}. Then w3 = π/πI; this corresponds
to the smallest example with a non-regular eigenvalue: ζ3 is not regular in A4.

Lemma 9.8. Let Wφ be a complex reflection coset and let V be the ζ-eigenspace
of wφ ∈ Wφ; then

(i) NW (V ) = NW (CW (V )wφ).
(ii) If Wφ is real, and CW (V ) = WI where (W,S) is a Coxeter system and

I ⊂ S, and w is I-reduced, then the subgroup {v ∈ CW (wφ) ∩ NW (WI) |
v is I-reduced} is a section of NW (V )/CW (V ) in W .

Proof. Let W1 denote the parabolic subgroup CW (V ). All elements of W1wφ have
the same ζ-eigenspace V , so NW (W1wφ) normalizes V ; conversely, an element
of NW (V ) normalizes W1 and conjugates wφ to an element w′φ with same ζ-
eigenspace, thus w and w′ differ by an element of W1, whence (i).

For the second item, NW (WIwφ)/WI admits as a section the set of I-reduced
elements, and such an element will conjugate wφ to the element of the coset WIwφ
which is I-reduced, so will centralize wφ. �

If we have a Garside category C with Garside natural transformation ∆, on
which we are given an automorphism φ, we can consider the semi-direct product of
C by φ (see Definition 3.1). We will then call (p, q)-periodic a morphism wφ ∈ Cφ
such that target(w) = φ(source(w)) and (wφ)p = ∆qφp. An element satisfying
(i) and (ii) of Theorem 9.4 is thus a (d, 2)-periodic element of B+(I)φ, since ∆2

I

starting from the object I is I
π/πI−−−→ I. Lemma 9.5 shows that such an element is

cyclically conjugate to an element which satisfies in addition (wφ)d
′ ∈ Wφd

′

, where
d′ = ⌊d2⌋. We will call good a periodic element which satisfies the above condition.

The following proposition, which rephrases Corollary 7.3 in our setting, shows
that it makes sense to write a period of the form (d, 2) as a fraction d/2, since it
shows that when 2|d, a good (d, 2)-periodic element such that (wφ)d = ∆2

I satisfies

(wφ)d/2 = ∆I . We will thus call such elements d/2-periodic. In [DDGKM] the
analogous statement is shown for a general p/q.

Proposition 9.9. Assume the morphism I
w−→ φI is good d/2-periodic (which

means that w ∈ B+ satisfies wφI = I, (wφ)d = φdπ/πI and that in addition

(wφ)d
′ ∈ Wφd

′

, where d′ = ⌊d2⌋). Then if d is even we have (wφ)d
′

= w−1
I w0φ

d′ ,
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and if d is odd there exists u ∈ WΦd

with Iu ⊂ S such that wφ = uφ · w0φ
d′

u and
(wφ)d

′

u = w−1
I w0φ

d′ .

Let us define the ζ-rank of a (complex) reflection coset Wφ ⊂ GL(X) as the
maximal dimension of a ζ-eigenspace of an element of Wφ, and the ζ-rank of an
element of Wφ as the dimension of its ζ-eigenspace.

Let us say that a periodic element of B+(I)φ is maximal if it is maximal in
the sense of Theorem 9.4(iii). Another way to state the maximality of a periodic
element is to require that |I| be not more than the rank of the centralizer of a

maximal ζd-eigenspace: indeed if I
w−→ φI is not maximal there exists J and v as

in Theorem 9.4(iii) and, since Theorem 9.4(iii) implies Lemma 9.7(iii), the element
vwφ has maximal ζd-rank, and the centralizer of its ζd-eigenspace has rank |J| < |I|.

A particular case of Theorems 9.1 and 9.4 is

Corollary 9.10. Let V ′ be the ζd-eigenspace of an element of Wφ of maximal
ζd-rank. Then there is a W -conjugate V of V ′ such that CW (V ) = WI and the

wφ defined in Theorem 9.1(ii) induces a d/2-periodic I
w−→ φI which is maximal.

Conversely, for a d/2-periodic maximal I
w−→ φI the image wφ in Wφ has maximal

ζd-rank.

Lemma 9.11. Let Wφ ⊂ GL(XR) be a finite order real reflection coset such that
φ preserves the chamber of the corresponding hyperplane arrangement determining
the Coxeter system (W,S).

For w ∈Wφ let w ∈ W be the lift of w; for I ⊂ S, the existence of a morphism

I
w−→ φI ∈ B+(I) is equivalent to:

(i) wφI = I and w is I-reduced.

Then, for d > 1, the morphism I
w−→ φI is good d/2-periodic if and only if the

following two conditions are satisfied.

(ii) l((wφ)iφ−i) = 2i
d l(w

−1
I w0) for 0 < i ≤ ⌊d2⌋.

(iii) (wφ)d = φd.

If, moreover,

(iv) WIwφ has ζd-rank 0 on the subspace spanned by the root lines of WI ,

then wφ is maximal in the sense of Theorem 9.4(iv).

Proof. By definition, if I
w−→ φI is good d/2-periodic then (i), (ii), (iii) are satisfied.

Conversely, Lemma 9.2 shows that the lift of a w satisfying (i), (ii), (iii) is good
d/2-periodic.

Property (iv) means that no element vwφ with v ∈ WI has an eigenvalue ζd
on the subspace spanned by the root lines of WI which is exactly the equivalent
Definition 9.4(iv) of a maximal element. �

Note that d and I in the above assumptions (i), (ii), (iii) are uniquely determined
by w since d is the smallest power of wφ which is a power of φ and I is given uniquely
by (wφ)d = π/πIφ

d.

Definition 9.12. We say that wφ ∈ Wφ is ζd-good (relative to Wφ and I) if it
satisfies (i), (ii), (iii) in Lemma 9.11.

We say wφ is ζd-good maximal if it satisfies in addition (iv) in Lemma 9.11.
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In particular, ζd-good elements lift to good d/2-periodic elements, and ζd-good
maximal elements lift to good maximal d/2-periodic elements.

The ζd-good maximal elements belong to a single conjugacy class of W . The
following lemma applied with ζ = ζd gives a characterization of this class.

Lemma 9.13. Let Wφ be a finite order real reflection coset such that φ preserves a
chamber of the corresponding hyperplane arrangement. The elements of Wφ which
have a ζ-eigenspace V of maximal dimension and among those, have the largest
dimension of fixed points, are conjugate.

Proof. Let w and V be as in the lemma. Since, by [S, Theorem 3.4(iii) and Theorem
6.2(iii)], the maximal ζ-eigenspaces are conjugate, we may fix V . Since CW (V ) is a
parabolic subgroup of the Coxeter groupW normalized by wφ, the coset CW (V )wφ
is a real reflection coset; in this coset there are 1-regular elements, which are those
which preserve a chamber of the corresponding real hyperplane arrangement; the
1-regular elements have maximal 1-rank, that is have the largest dimension of fixed
points, and they form a single CW (V )-orbit under conjugacy, whence the lemma.

�

Lemma 9.14. Let wφ be a ζd-good maximal element, let I be as in Lemma 9.11
and let V1 be the fixed point subspace of wφ in the space spanned by the root lines
of WI ; then wφ is regular in the coset CW (V1)wφ.

Proof. Let W ′ = CW (V1); we first note that since wφ normalizes V1 it normalizes
also W ′, so W ′wφ is indeed a reflection coset. We have thus only to prove that
CW ′(V ) is trivial, where V is the ζd-eigenspace of wφ. This last group is generated
by the reflections with respect to roots both orthogonal to V and to V1, which are
the roots of WI = CW (V ) orthogonal to V1. Since wφ preserves a chamber of WI ,
the sum v of the positive roots of WI with respect to the order defined by this
chamber is in V1 and is in the chamber: this is well known for a true root system;
here we have taken all the roots to be of length 1 but the usual proof (see [Bou,
Chapitre VI §1, Proposition 29]) is still valid. Since no root is orthogonal to a vector
v inside a chamber, WI has no root orthogonal to V1, hence CW ′ (V ) = {1}. �

Note that the map CW ′(wφ) = NW ′(V ) → NW (V )/CW (V ) in the above proof
is injective, but not always surjective: if W of type E7, if φ = Id and ζ = i, a fourth
root of unity, thenNW (V )/CW (V ) is the complex reflection groupG8, whileW

′ is of
type D4 and NW ′(V )/CW ′(V ) is the complex reflection group G(4, 2, 2). However,
we will see in appendix 1 that there are only 4 such cases for irreducible groupsW ;
to see in the other cases that CW ′(wφ) ≃ NW (V )/CW (V ) it is sufficient to check
that they have same reflection degrees, which is a simple arithmetic check on the
reflection degrees of W and W ′.

10. Conjectures

The following conjectures extends those of [DM2, 2.1].

Conjecture 10.1. Let I
w−→ φI ∈ B+(I) be a maximal d/2-periodic morphism.

Then

(i) The group Bw generated by the monoid B+
w of Theorem 8.35 is isomorphic

to the braid group of the complex reflection group Ww := NW (WIwφ)/WI .
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(ii) The natural morphism EndD+(I) I
w−→ φI → EndGF (X(I,wφ)) (see below

Definition 8.31) gives rise to a morphism Bw → EndGF H∗
c (X(I,wφ))

which factors through a special representation of a ζd-cyclotomic Hecke
algebra Hw for Ww.

(iii) The odd and even Hi
c(X(I,wφ)) are disjoint, and the above morphism

extends to a surjective morphism Qℓ[Bw] → EndGF (H∗
c (X(I,wφ))).

Lemma 10.2. Let I
w−→ φI ∈ B+(I) be a maximal d/2-periodic morphism and

assume conjectures 10.1; then for any i 6= j the GF -modules Hi
c(X(I,wφ)) and

Hj
c (X(I,wφ)) are disjoint.

Proof. Since the image of the morphism of Conjecture 10.1(ii) consists of equiva-
lences of étale sites, it follows that the action of Hw on H∗

c (X(I,wφ)) preserves
individual cohomology groups. The surjectivity of the morphism of (iii) implies that
for ρ ∈ Irr(GF ), the ρ-isotypic part of H∗

c (X(I,wφ)) affords an irreducible Hw-
module; this would not be possible if this ρ-isotypic part was spread over several
distinct cohomology groups. �

We will now explore the information given by the Shintani descent identity on
the above conjectures

Lemma 10.3. Let I
w−→ φI ∈ B+(I) be a d/2-periodic morphism. With the nota-

tions of Proposition 8.40, we have χ̃qm(X1Twφ) = qm
l(π)−l(πI)−aχ−Aχ

d χ̃(eIwF ) for
χ ∈ Irr(W )φ, where aχ (resp. Aχ) is the valuation (resp. the degree) of generic
degree of χ and eI = |WI |−1

∑

v∈WI
v.

Proof. We have (X1Twφ)
d = X1Tπ/TπI

φd = q−l(πI)X1Tπφ
d since X1 commutes

with Twφ and since for any v ∈ WI we have X1Tv = ql(v)Tv. Since Tπ acts on
the representation of character χqm as the scalar qm(l(π)−aχ−Aχ), it follows that

all the eigenvalues of X1Twφ on this representation are equal to qm
l(π)−l(πI)−aχ−Aχ

d

times a root of unity. To compute the sum of these roots of unity, we may use the
specialization qm/2 7→ 1, whence χ̃qm(X1Twφ) specializes to χ̃(eIwφ). �

Proposition 10.4. Let I
w−→ φI ∈ B+(I) be a d/2-periodic morphism. For any m

multiple of δ, we have

|X(I,wφ)gF
m | =

∑

ρ∈E(GF ,1)

λm/δρ qm
l(π)−l(πI)−aρ−Aρ

d 〈ρ,RG,F
LI ,ẇF

Id〉GF ρ(g).

Proof. We start with Corollary 8.41, whose statement reads, using the value of
χ̃qm(X1Twφ) given by Lemma 10.3:

|X(I,wφ)gF
m | =

∑

ρ∈E(GF ,1)

λm/δρ ρ(g)

∑

χ∈Irr(W )φ

qm
l(π)−l(πI)−aχ−Aχ

d χ̃(eIwφ)〈ρ,Rχ̃〉GF .

Using that for any ρ such that 〈ρ,Rχ̃〉GF 6= 0 we have aρ = aχ and Aρ = Aχ the
right-hand side can be rewritten

∑

ρ∈E(GF ,1)

λm/δρ qm
l(π)−l(πI)−aρ−Aρ

d ρ(g)〈ρ,
∑

χ∈Irr(W )φ

χ̃(eIwφ)Rχ̃〉GF .
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The proposition is now just a matter of observing that
∑

χ∈Irr(W )φ

χ̃(eIwφ)Rχ̃ = |WI |−1
∑

v∈WI

∑

χ∈Irr(W )φ

χ̃(vwφ)Rχ̃ =

|WI |−1
∑

v∈WI

RG
Tvw

(Id) = RG
LI
(Id).

Where the last equality is obtained by transitivity of RG
L and the equality IdLẇF

I
=

|WI |−1
∑

v∈WI
RLI ,ẇF

Tvw
(Id), a torus T of LI of type v for the isogeny ẇF being

conjugate to Tvw in G. �

Corollary 10.5. Let I
w−→ φI ∈ B+(I) be a maximal d/2-periodic morphism and

assume conjectures 10.1; then for any ρ ∈ Irr(GF ) such that 〈ρ,RG
LI
(Id)〉GF 6= 0

the isogeny F δ has a single eigenvalue on the ρ-isotypic part of H∗
c (X(I,wφ)), equal

to λρq
δ

l(π/πI)−aρ−Aρ
d .

Proof. This follows immediately, in view of Lemma 10.2, from the comparison be-
tween Proposition 10.4 and the Lefschetz formula:

|X(I,wφ)gF
m | =

∑

i

(−1)iTrace(gFm | Hi
c(X(I,wφ),Qℓ)).

�

In view of Corollary 8.28(i) it follows that if 〈ρ,RG
LI
(Id)〉GF 6= 0 then if ωρ = 1

then
l(π/πI)−aρ−Aρ

d ∈ N, and if ωρ =
√

qδ then
l(π/πI)−aρ−Aρ

d ∈ N+ 1/2.

Assuming conjectures 10.1, we choose once and for all a specialization q1/a 7→
ζ1/a, where a ∈ N is large enough such that Hw ⊗ Qℓ[q

1/a] is split. This gives a
bijection ϕ 7→ ϕq : Irr(Ww) → Irr(Hw), and the conjectures give a further bijection
ϕ 7→ ρϕ between Irr(Ww) and the set {ρ ∈ Irr(GF ) | 〈ρ,RG

LI
(Id)〉GF 6= 0}, which is

such that 〈ρϕ, RG
LI
(Id)〉GF = ϕ(1).

Corollary 10.6. Under the assumptions of Corollary 10.5, if ωϕ is the central
character of ϕ, then

λρϕ = ωϕ((wφ)
δ)ζ−δ

l(π/πI)−aρϕ−Aρϕ
d .

Proof. We first note that it makes sense to apply ϕ to (wφ)δ , since (wφ)δ ∈ Ww.
Actually (wφ)δ is a central element of Bw and maps by the morphism of Conjecture
10.1(iii) to F δ, thus the eigenvalue of F δ on the ρϕ-isotypic part of H∗

c (X(I,wφ))

is equal to ωϕq((wφ)
δ); thus ωϕq((wφ)

δ) = λρϕq
δ

l(π/πI)−aρϕ−Aρϕ
d . The statement

follows by applying the specialization q1/a 7→ ζ1/a to this equality. �

11. Appendix 1: good ζd-maximal elements in reductive groups

We will describe, in a reductive group G, for each d, a ζd- good maximal element
wφ relative to Wφ and some I ⊂ S. Thus the variety X(I,wφ) will be the one
whose cohomology should be a tilting complex for the Broué conjectures for an ℓ
dividing Φd(q).

Since such an element depends only on the Weyl group, we may assume that
G is semi-simple and simply connected. Now, a semi-simple and simply connected
group is a direct product of restrictions of scalars of simply connected quasi-simple



48 F. DIGNE AND J. MICHEL

groups. A ζd-good (resp. maximal) element in a direct product is the product of a
ζd-good (resp. maximal) element in each component. So we reduce immediately to
the case of restriction of scalars.

11.1. Restrictions of scalars. A restriction of scalars is a group of the form
Gn, with an isogeny F1 such that F1(x0, . . . , xn−1) = (x1, . . . , xn−1, F (x0)). Thus
(Gn)F1 ≃ GF .

If F induces φ on the Weyl group W of G then (Gn, F1) corresponds to the
reflection coset Wn · σ, where σ(x1, . . . , xn) = (x2, . . . , xn, φ(x1)).

In the first two propositions of this section, we will study such a “restriction
of scalars” for arbitrary complex reflection cosets. Thus we start with a reflection
coset Wφ, with W ⊂ GL(V ) a complex reflection group where V = Cr, and φ ∈
NGL(V )(W ). We denote by δ the order ofWφ (the minimal i such that (Wφ)i =W ).
We want to study the eigenvalues of elements in the coset Wn ·σ ⊂ GL(V n), where
σ(x1, . . . , xn) = (x2, . . . , xn, φ(x1)); we call this coset the restriction of scalars of
the coset Wφ.

Recall that, if SW is the coinvariant algebra ofW (the quotient of the symmetric
algebra of V ∗ by the ideal generated by the W -invariants of positive degree), for
any W -module X the graded vector space (SW ⊗ X∗)W admits a homogeneous
basis formed of eigenvectors of φ. The degrees of the elements of this basis are
called the X-exponents of W and the corresponding eigenvalues of φ the X-factors
of Wφ. For X = V , the V -exponents ni satisfy ni = di − 1 where the di’s are the
reflection degrees of W , and the V -factors εi are equal to the factors of Wφ. For
X = V ∗, the ni−1 where ni are the V

∗-exponents are called the codegrees d∗i ofW
and the corresponding V ∗-factors ε∗i are called the cofactors of Wφ. By Springer
[S, 6.4], the ζ-rank of Wφ is equal to |{i | ζdi = εi}|. By analogy with the ζ-rank,

we define the ζ-corank of Wφ as |{i | ζd∗i = ε∗i }|. By for example [Br, 5.19.2] an
eigenvalue is regular if it has same rank and corank.

Proposition 11.1. Let Wn · σ be a restriction of scalars of the complex reflection
coset Wφ. Then the ζ-rank (resp. corank) of Wn · σ is equal to the ζn-rank (resp.
corank) of Wφ.

In particular, ζ is regular for Wn · σ if and only if ζn is regular for W · φ.
Proof. The pairs of a reflection degree and the corresponding factor of σ for the
coset Wn · σ are the pairs (di, ζ

j
n

n
√
εi), where i ∈ {1, . . . , r}, j ∈ {1, . . . , n} and

where n
√
εi represents an n-th root of εi (that we choose arbitrarily for each i).

Similarly, the pairs of a reflection codegree and the corresponding cofactor are
(d∗i , ζ

j
n

n
√

ε∗i ).

In particular the ζ-rank of Wn · σ is |{(i, j) | ζdi = ζjn n
√
εi}| and the ζ-corank is

|{(i, j) | ζd∗i = ζjn
n
√

ε∗i }|.
Given a ∈ N, there is at most one j such that the equality ζa = ζjn n

√
εi holds,

and there is one j if and only if ζna = εi. Thus we have

|{(i, j) | ζdi = ζjn
n
√
εi}| = |{i | ζndi = εi}|

and similarly for the corank, whence the two assertions of the statement. �

We assume now that ζ = ζd; note that ζnd is a d/k-th root of unity, where
k = gcd(n, d), but it is not a distinguished root of unity. We have however the
following:
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Proposition 11.2. Let Wn · σ be a restriction of scalars of the complex reflection
coset Wφ and for d ∈ N let k = gcd(n, d); then there exists m such that m(n/k) ≡ 1
(mod d/k) and gcd(m, δ) = 1, and for such an m the ζd-rank (resp. corank) ofW

n·σ
is equal to the ζd/k-rank (resp. corank) of W · φm.

Proof. We first show thatm exists. Choose anm such thatm(n/k) ≡ 1 (mod d/k).
Since m is prime to d/k it is prime to gcd(d/k, δ). By adding to m a multiple of
d/k we can add modulo δ any multiple of gcd(d/k, δ), thus we can reach a number
prime to δ, using the general fact that for any divisor δ′ of δ, the natural projection

Z/δZ
θ−→ Z/δ′Z is such that θ((Z/δZ)×) ⊃ (Z/δ′Z)×.

By Proposition 11.1, the ζd-rank (resp. corank) of Wn · σ is equal to the ζnd =

ζ
n/k
d/k -rank (resp. corank) of W · φ. Now εmi (resp. ε∗mi ) are the factors (resp. cofac-

tors) of W ·φm and since m is prime to δ and εδi = 1, we have |{i | ζdi = εi}| = |{i |
(ζm)di = εmi }|, (similarly for d∗i , ε

∗
i ); thus the ζ

n/k
d/k -rank (resp. corank) of W · φ is

equal in turn to the ζ
m·n/k
d/k -rank (resp. corank) of W · φm. Now, since m(n/k) ≡ 1

(mod d/k), we have ζ
m·n/k
d/k = ζd/k. �

We now assume, until the end of the subsection, that Wφ is a real reflection
coset of order δ, that φ preserves a chamber corresponding to the Coxeter system
(W,S), and that ζ = ζd is a distinguished root of unity. We will use the criteria of
Lemma 9.11 to check that an element is ζd-good (resp. maximal).

Proposition 11.3. Under the assumptions of Proposition 11.2, let vφm be a ζd/k-
good element relative to Wφm and I. Then

• If either k = 1 or d/k is even, define w = (w0, . . . , wn−1) ∈ Wn by
wik = φim(v), and wj = 1 if j 6≡ 0 (mod k)

• If d/k is odd and k 6= 1, by Corollary 7.3 there exists v1, v2 ∈ W such

that vφm = v1φ
mv2 and (vφm)(

d
k−1)/2v1 = w−1

I w0φ
m( d

k−1)/2; define w =
(w0, . . . , wn−1) ∈Wn by

wj =











φim(v2) if j = ik

φ(i+1)m(v1) if j = ik + ⌊k2 ⌋
1 if j 6≡ 0, ⌊k2⌋ (mod k)

In each case wσ is a ζd-good element relative toWnσ and I where I = (I0, . . . , In−1) ⊂
Sn with Ij =

wjwj+1...wn−1φI and we have NWn(WIwσ)/WI ≃ NW (WIvφ
m)/WI .

If moreover vφm is maximal then wσ is also maximal.

Proof. To lighten the notation, we set n′ = n/k and d′ = d/k.

We recall that vφm being ζd′ -good means vφ
m

I = I and v is I-reduced, (vφm)d
′

=

φmd
′

, and l((vφm)iφ−im) = 2i/d′ · l(w−1
I w0) for 0 ≤ i ≤ ⌊d′2 ⌋. We have to show the

same conditions for wσ, that is

(i) wσ(I0, . . . , In−1) = (I0, . . . , In−1) and w is (I0, . . . , In−1)-reduced.
(ii) (wσ)d = σd.
(iii) l((wσ)iσ−i) = 2in

d l(w
−1
I w0) for 0 ≤ i ≤ ⌊d2⌋.

We first note:

Lemma 11.4. φd
′

stabilizes v and I (thus φgcd(d
′,δ) also).
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Proof. As (vφm)d
′

= φmd
′

, we find that φmd
′

stabilizes vφm and I, thus v and I.

Since m is invertible modulo δ, we get that φd
′

stabilizes v and I. �

We first check that I ⊂ Sn. In the case d′ even, each Ij is of the form
φim(v)φ(i+1)m(v)...φ(n′−1)m(v)φI (where ik is the smallest multiple of k greater than j).

If d′ is odd Ij is either as above or of the form
φ(i−1)m(v2)φ

im(v)φ(i+1)m(v)...φ(n′−1)m(v)φI.

In the first case, since 1−mn′ ≡ 0 (mod d′) and φd
′

stabilizes I, by Lemma 11.4,
we can write

Ij =
φim(v)φ(i+1)m(v)...φ(n′−1)m(v)φmn′

I = φim(vφm)n
′−i

I = φim

I ⊂ S.

In the second case, if we put J = Iv1 = v2φ
m

I, a subset of S by Corollary 7.3, we

get Ij =
φ(i−1)m(v2)φ

im

I = φ(i−1)m

J .
We now check (i). The verification of wσ(I0, . . . , In−1) = (I0, . . . , In−1) reduces

to w0w1...wn−1φI = I, which itself reduces to vφm(v)...φ(n′−1)m(v)φI = I, which is
true by the case i = 0 of the above computation. Similarly, checking that wσ is
(I0, . . . , In−1)-reduced reduces to the check that for each j the element wj is Ij -
reduced, where Ij = wjwj+1...wn−1φI = Iw0...wj−1 , or equivalently that w0 . . . wj−1

is I-reduced. Thus in the d′ even case we have to check that vφm(v) . . . φim(v) is
I-reduced for 0 ≤ i < n′. This results from the fact that v is I-reduced and that vφm

normalizes I. In the d′ odd case we have also to check that vφm(v) . . . φ(i−1)m(v)φim(v1)
is I-reduced, which follows from the fact that v is I-reduced, that vφm normalizes
I and that v1 is also I-reduced, which we know by Corollary 7.3.

For checking (ii) and (iii) we compute (wσ)i. For any (w0, . . . , wn−1) ∈ Wn

we have σ(w0, . . . , wn−1) = (w1, . . . , wn−1, φ(w0))σ, thus we find that if we define

for all j the element wj = φ
j−j0

n (wj0 ) = φ⌊
j
n ⌋(wj0 ) where j0 ≡ j (mod n) and

0 ≤ j0 < n, we have

(wσ)i = (w0 . . . wi−1, w1 . . . wi, . . . , wn−1 . . . wi+n−2)σ
i.

Each product wuwu+1 . . . wu+i−1 appearing in the above expression is, up to apply-
ing a power of φ, of the form (vφm)jφ−mj or in the d′ odd case additionally of one of
the forms (v2φ

mv1)
jφ−mj , (v1φ

mv2)
jv1φ

−mj or v2(v1φ
mv2)

jφ−mj , for some j which
depends on u and i. If i is a multiple of k the last two forms do not appear and
j = i/k. In particular if i = d we get either (vφm)d/kφ−md/k or (v2φ

mv1)
d/kφ−md/k.

Since (vφm)d
′

= φd
′m we have also (v2φ

mv1)
d′ = v−1

1 (vφm)d
′

v1 = φmd
′

, since v,

hence v1, is φ
md′-stable, whence (ii).

To check (iii) it is enough check it for i = 1, which is clear since l(w) = n′l(v) =
2in
d l(w

−1
I w0) and l(v) = l(v1) + l(φm(v2)) (by Corollary 7.3) and to check that in

a product wuwu+1 . . . wu+i−1 the lengths add for all i ≤ ⌊d2⌋: the lengths will then

add in (wσ)i for i ≤ ⌊d2⌋ which gives (iii). In the d′ even case this is a result of

the lengths adding for (vφm)jφ−mj . In the d′ odd case, we know by Corollary 7.3
that the lengths add in a product of at most d′ terms of the form v1

φm

v2
φm

v1 . . .
or of the form v2

φm

v1
φmv2 . . .. We claim that to get more than d′ non-trivial

terms in the product wuwu+1 . . . wu+i−1 we need i > ⌊d2⌋. The maximal number
of non-trivial terms is obtained when the first or the last term is non trivial. To
get d′ + 1 non-trivial terms we need i ≥ d′+1

2 k + ⌊k2 ⌋, since d′ + 1 is even. But
d′+1
2 k + ⌊k2⌋ = ⌊kd′2 ⌋+ k > d

2 , whence our claim.
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Computing now NWn(WIwσ), we find that (g0, . . . , gn−1) normalizes (WIwσ) if
and only if:

g0WI0 =WI0
w0g1

. . . = . . .

gn−2WIn−2 =WIn−2

wn−2gn−1

gn−1WIn−1 =WIn−1

wn−1φg0

which, using the value Ij =
wj ...wn−1φI = Iw0...wj−1 becomes

g0WI =WI
w0g1

. . . = . . .
w0...wn−3gn−2WI =WI

w0...wn−2gn−1

w0...wn−2gn−1WI =WI
w0...wn−1φg0

We now notice that an equality aWI = WIb is equivalent to: a normalizes WI ,
and aWI = bWI . Thus our equations are equivalent to: g0 normalizes WI , the
cosets WIg0, . . . ,WI

w0...wn−2gn−1 are equal (thus determined by g0) and WIg0 =
WI

w0...wn−1φg0. The last equality means that g0 normalizes WIw0 . . . wn−1φ; we

findNWn(WIwσ)/WI ≃ NW (WIw0 . . . wn−1φ)/WI = NW (WI(vφ
m)n

′

φ1−mn
′

)/WI .

Since 1 − mn′ ≡ 0 (mod d′), by Lemma 11.4 φ1−mn
′

commutes with vφm, thus

((vφm)n
′

φ1−mn
′

)m = (vφm)n
′mφm−mn′m. Let us write n′m = ad′ + 1; using that

(vφm)d
′

= φmd
′

we get (vφm)n
′mφm−mn′m = (vφm)ad

′+1φ−amd
′

= vφm, thus the
above coset has same normalizer as WIvφ

m.
Assume now that vφm is maximal, that is WIvφ

m has ζd′-rank equal to 0. We
prove the same for wσ, that is (WI0 × . . .×WIn−1)wσ has ζd-rank 0. Identifying Ij
to I via wj . . . wn−1φ, the coset (WI0 × . . .×WIn−1)wσ identifies to Wn

I σ
′ where

σ′(x0, . . . , xn−1) = (x1, . . . , xn−1, (w0 . . . wn−1φ)(x0))

= (x1, . . . , xn−1, ((vφ
m)n

′

φ1−mn
′

)(x0)),

since in each case we have w0 . . . wn−1φ = ((vφm)n
′

φ1−mn
′

)(x0)). Now by Propo-
sition 11.2 the ζd-rank of this last coset is equal to the ζd′ -rank of the coset
W ((vφm)n

′

φ1−mn
′

)m. But we have checked above that ((vφm)n
′

nφ1−mn
′

)m = vφm,
thus the sought ζd′ -rank is the same as the ζd′-rank of WIvφ

m which is 0 by as-
sumption. �

11.2. Case of irreducible Coxeter cosets. We now look at the case of quasi-
simple simply connected reductive groups G, or equivalently at the case of irre-
ducible Coxeter cosets Wφ. We will look at any real Coxeter coset Wφ since it is
not much more effort than to look just at the rational ones.

We use the classification. We are going to give, for each irreducible type and
each possible d, a representative wφ of the ζd-good maximal elements, describing the
corresponding I; since conjecturally for a given d all such elements are conjugate in
the braid group, this describes all the ζd-good maximal elements. We also describe
the relative complex reflection groupW (wφ) := NW (V )/CW (V ), where V is the ζd-
eigenspace of wφ. In the cases where the injection CW ′(wφ) → NW (V )/CW (V ) =
W (wφ) of the remark after Lemma 9.14, is surjective, where W ′ = CW (V1) and
V1 is the fixed point subspace of wφ in the space spanned by the root lines of WI ,
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we use it to deduce W (wφ) from W ′ = CW (V1) since the centralizers of regular
elements are known (see [BM, Annexe 1]).

Types An and 2An. ©
s1

©
s2

· · ·©
sn

. 2An is defined by the diagram automorphism

φ which exchanges si and sn+1−i.
For any integer 1 < d ≤ n+ 1, we define

vd = s1s2 . . . sn−⌊ d
2 ⌋
snsn−1 . . . s⌊ d+1

2 ⌋ and Jd = {si | ⌊
d+ 1

2
⌋+ 1 ≤ i ≤ n− ⌊d

2
⌋}.

If d is odd we have vd = v′d
φv′d, where v

′
d = s1s2 . . . sn−⌊ d

2 ⌋
.

Now, for 1 < d ≤ n+ 1, let kd be the largest multiple of d less than or equal to
n+1, so that n+1

2 < kd ≤ n+1 and k = ⌊n+1
d ⌋. We then define wd = vkkd, Id = Jkd

and if d is odd we define w′
d by

w′
dφ =

{

(v′kdφ)
k if k is odd,

v
k/2
kd φ if k is even,

Theorem 11.5. For W = W (An), ζd-good maximal elements exist for 1 < d ≤
n+ 1; a representative is wd, with I = Id and W (wd) = G(d, 1, ⌊n+1

d ⌋).
For Wφ, ζd-good maximal elements exist for the following d with representatives

as follows:

• d ≡ 0 (mod 4), 1 < d ≤ n + 1; a representative is wdφ with I = Id and
W (wdφ) = G(d, 1, ⌊n+1

d ⌋).
• d ≡ 2 (mod 4), 1 < d ≤ 2(n+ 1); a representative is w′

d/2φ with I = Id/2

and W (w′
d/2φ) = G(d/2, 1, ⌊ 2(n+1)

d ⌋).
• d odd, 1 < d ≤ n+1

2 . If d 6= 1 a representative is w2
2dφ with I = I2d and

W (w2
2dφ) = G(2d, 1, ⌊n+1

2d ⌋).
Proof. We identify the Weyl group of type An as usual with Sn+1 by si 7→ (i, i+1);
the automorphism φ maps to the exchange of i and n+2− i. An easy computation
shows that the element vd maps to the d-cycle (1, 2, . . . , ⌊d+1

2 ⌋, n+1, n, . . . , n+2−
⌊d2⌋) and that for d odd v′d maps to the cycle (1, 2, . . . , n− d−3

2 ).

Lemma 11.6. If d is even vd and wd are φ-stable. If d is odd we have wd = w′
d.
φw′

d.

Proof. That d is even implies ⌊d+1
2 ⌋ = ⌊d2⌋, thus in the above cycle φ exchanges

the two sequences 1, 2, . . . , ⌊d+1
2 ⌋ and n+ 1, n, . . . , n+ 2− ⌊d2⌋, thus vd is φ-stable.

The same follows for wd, with k = ⌊n+1
d ⌋, since kd is even if d is even.

For d odd we have

w′
d.
φw′

d = (w′
dφ)

2 =

{

(v′kdφ)
2k if k is odd,

v
k/2
kd .

φ(v
k/2
kd ) if k is even.

If k is odd we have (v′kdφ)
2k = (v′kd

φv′kd)
k = vkkd = wd. If k is even then vkd is

φ-stable thus v
k/2
kd .

φ(v
k/2
kd ) = vkkd = wd. �

Lemma 11.7. For 1 < d ≤ n+ 1,

• the element vd is Jd-reduced and stabilizes Jd.
• the element wd is Id-reduced and stabilizes Id.
• for d odd, the element v′d is Jd-reduced and v′dφ stabilizes Jd.
• for d odd, the element w′

d is Id-reduced and w′
dφ stabilizes Id.
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Proof. The property for wd (resp. w′
d) follows from that for vd (resp. v′d) and the

definitions since being Id-reduced and stabilizing Id are properties stable by taking
a power.

It is clear on the expression of vd as a cycle that it fixes i and i + 1 if si ∈ Jd
thus it fixes the simple roots corresponding to Jd, whence the lemma for vd.

For d odd, 1 < d ≤ n+1, an easy computation shows that v′d = (1, 2, . . . , n− d−3
2 ),

and that v′dφ preserves the simple roots corresponding to Jd. �

Lemma 11.8. For 1 < d ≤ n+ 1 and for 0 < i ≤ ⌊d2⌋, we have

• l(vid) =
2i
d l(w

−1
Jd
w0) and l(w

i
d) =

2i
d l(w

−1
Id
w0)

• (for d odd) l((v′dφ)
iφ−i) = i

d l(w
−1
Jd
w0) and l((w

′
dφ)

iφ−i) = i
d l(w

−1
Id
w0).

Proof. It is straightforward to see that the result for wd (resp. w′
d) results from the

result for vd (resp. v′d or vd) and the definitions.

Note that the groupWJd
is of type An−d, thus l(w

−1
Jd
w0) =

n(n+1)
2 − (n−d)(n−d+1)

2 =
(2n−d+1)d

2 .
We first prove the result for vd and v′d when i = 1. For odd d we have by

definition l(v′d) = n− d−1
2 = 2n−d+1

2 which is the formula we want for v′d. To find
the length of vd one can use that snsn−1 . . . s⌊ d+1

2 ⌋ is {s1, s2, . . . , sn−1}-reduced,
thus adds to s1s2 . . . sn−⌊ d

2 ⌋
, which gives l(vd) = 2n− d+ 1, the result for vd.

We now show by direct computation that when d is even v
d/2
d = w−1

Jd
w0. Rais-

ing the cycle (1, 2, . . . , d2 , n + 1, n, . . . , n + 2 − d
2 ) to the d/2-th power we get

(1, n + 1)(2, n) . . . (d2 , n + 2 − d
2 ) which gives the result since wJd

= (d2 + 1, n +

1 − d
2 ) . . . (⌊n2 ⌋, ⌊n+1

2 ⌋). The lemma follows for vd with d even since its truth for

i = 1 and i = d
2 implies its truth for all i between these values.

We show now similarly that for odd d we have (v′dφ)
d = w−1

Jd
w0φ

d. Since φ acts

on W by the inner automorphism given by w0, this is the same as (v′dw0)
d = wJd

.

We find that (1, 2, . . . , n− d−3
2 )w0 = (1, n+1, 2, n, 3, n−1 . . . , n− d−5

2 , d+1
2 )(d+3

2 , n−
d−3
2 ) . . . (⌊n+3

2 ⌋, ⌊n+4
2 ⌋) as a product of disjoint cycles, which gives the result since

(1, n+1, 2, n, 3, n−1, . . . , n− d−5
2 , d+1

2 ) is a d-cycle and (d+3
2 , n− d−3

2 ) . . . (⌊n+3
2 ⌋, ⌊n+4

2 ⌋) =
wJd

. This proves the lemma for w′
d by interpolating the other values of i as above.

It remains the case of vd for odd d. We then have vd = (v′dφ)
2 where the lengths

add, and we deduce the result for vd from the result for v′d. �

Lemma 11.9. The following elements are ζd-good

• For 1 < d ≤ n+ 1, the elements vd and wd.
• For d ≡ 0 (mod 4), d ≤ n+ 1 the elements vdφ and wdφ.
• For d ≡ 2 (mod 4), d ≤ 2(n+ 1) the elements v′d/2φ and w′

d/2φ.

• For d odd, d ≤ n+1
2 the elements v22dφ and w2

2dφ.

Proof. In view of the previous lemmas, the only thing left to check is that in each
case, the chosen element x in W (resp. Wφ) satisfies xd = 1 (resp. (xφ)d = φd).
Once again, it is easy to check that the property for wd (resp. w′

d) results from that
for vd (resp. v′d or vd) and the definitions.

It is clear that vdd = 1 since then it is a d-cycle, from which it follows that when

d ≡ 2 (mod 4) we have (v′d/2φ)
d = v

d/2
d/2 = 1. The other cases are obvious. �

To prove the theorem, it remains to check that:
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• The possible d for which the ζd-rank of W (resp. Wφ) is non-zero are as
described in the theorem. In the untwisted case they are the divisors of one of
the degrees, which are 2, . . . , n + 1. In the twisted case the pairs of degrees and
factors are (2, 1), . . . , (i, (−1)i), . . . , (n + 1, (−1)n+1) and we get the given list by
the formula for the ζd-rank recalled above Proposition 11.1.

• The coset WIwφ has ζd-rank 0 on the subspace spanned by the root lines of
WI . For this we first have to describe the type of the coset, which is a consequence
of the analysis we did to show that wφ stabilizes I. We may assume I non-empty.

Let us look first at the untwisted case. We found that wd acts trivially on Id,
so the coset is of untwisted type An−kd where k = ⌊n+1

d ⌋. Since 1 + n− kd < d by
construction, this coset has ζd-rank 0.

In the twisted case, if d ≡ 0 (mod 4), the coset is WIdwdφ, which since wd acts
trivially on Id and φ acts by the non-trivial diagram automorphism, is of type
2An−kd where k = ⌊n+1

d ⌋. Since n − kd = n − ⌊n+1
d ⌋d < d − 1, this coset has

ζd-rank 0.
If d is odd, the coset is WI2dw

2
2dφ, which since w2d acts trivially on I2d and φ

acts by the non-trivial diagram automorphism, is of type 2An−2kd where k = ⌊n+1
2d ⌋.

Since n− 2kd = n− ⌊n+1
2d ⌋2d < 2d, this coset has ζd-rank 0.

Finally, if d ≡ 2 modulo 4, the coset is WId/2w
′
d/2φ. Let k = ⌊ 2(n+1)

d ⌋; then

WId/2 is of type An−kd/2. If k is even then w′
d/2 = w

k/2
kd/2 and the coset is of type

2An−kd/2. Since n − kd/2 < d/2 − 1, this coset has ζd-rank 0. Finally if k is odd

w′
d/2φ = (w′

kd/2φ)
k. Since kd/2 is odd, we found that w′

kd/2φ acts trivially on Id/2
so the coset is of type An−kd/2, and has also has ζd-rank 0.

• Determine the group W (wφ) (resp. W (w)) in each case, We first give V1 and
the coset CW (V1)wφ or CW (V1)w. In the untwisted case wd acts trivially on the
roots of WId , hence V1 is spanned by these roots and CW (V1) is generated by the
reflection with respect to the roots orthogonal to those, which gives that CW (V1) is
of type Ad⌊n+1

d ⌋−1 if d 6 |n and An otherwise. In the twisted case if d ≡ 0 (mod 4)

since wd acts trivially on the roots of WId the space V1 is spanned by the sums
of the orbits of the roots under φ which is the non-trivial automorphism of that
root system. Hence the type of the coset CW (V1)wdφ is 2Ad⌊n+1

d ⌋−1 if n is odd

and 2Ad⌊n+1
d ⌋ if n is even. If d is odd a similar computation gives that the type

of the coset CW (V1)w
2
2dφ is 2A2d⌊n+1

2d ⌋−1 if n is odd and 2A2d⌊n+1
2d ⌋ if n is even. If

d ≡ 2 (mod 4) w′
d/2φ acts also by the non-trivial automorphism on WId/2 and we

get that the coset CW (V1)w
′
d/2φ is of type 2A d

2 ⌊
2(n+1)

d ⌋
if n and ⌊ 2(n+1)

d ⌋ have the

same parity and 2A d
2 ⌊

2(n+1)
d ⌋−1

otherwise.

Knowing the type of the coset in each case, we deduce the group W (wφ) (resp.
W (w)) as in the remark at the beginning of subsection 11.2. �

Type Bn ©
s1

©
s2

©
s3

· · ·©
sn

. For d even, 2 ≤ d ≤ 2n we define

vd = sn+1−d/2 . . . s2s1s2 . . . sn and Jd = {si | 1 ≤ i ≤ n− d/2}.
Note that v2n is the Coxeter element s1s2 . . . sn. Now for 1 ≤ d ≤ 2n, that we
require even if d > n, we define wd as follows: let kd be the largest even multiple
of d less than or equal to 2n so that k = ⌊ 2n

d ⌋ if d is even and k = 2⌊nd ⌋ is d is odd.

We define wd = vkkd and Id = Jkd.
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Theorem 11.10. For W =W (Bn), ζd-good maximal elements exist for odd d less
than or equal to n and even d less than or equal to 2n. A representative is wd, with
I = Id; we have W (wd) = G(d, 1, ⌊ 2n

d ⌋) if d is even and W (wd) = G(2d, 1, ⌊nd ⌋) if
d is odd.

Proof. We identify as usual the Weyl group of type Bn to the group of signed
permutations on {1, . . . n} by si 7→ (i − 1, i) for i ≥ 2 and s1 7→ (1,−1). The
element vd maps to the d-cycle (or signed d/2-cycle) given by (n+1− d/2, n+2−
d/2, . . . , n− 1, n, d/2−n− 1, d/2−n− 2, . . . ,−n). This element normalizes Jd and
acts trivially on the corresponding roots, so is Jd-reduced. The same is thus true
for wd and Id, since these properties carry to powers.

Lemma 11.11. For 0 < i ≤ ⌊d2⌋ we have l(vid) = 2i
d l(w

−1
Jd
w0) and l(wid) =

2i
d l(w

−1
Id
w0).

Proof. As in Lemma 11.8 it is sufficient to prove the lemma for vd, which we do
now. To find the length of vd we note that s1s2 . . . sn is {s2, s3, . . . , sn}-reduced so
that the lengths of sn+1−d/2 . . . s2 and of s1s2 . . . sn add, whence l(vd) = 2n− d/2.

Since l(w0) = n2 and l(wJd
) = (n − d/2)2 we have l(w−1

Id
w0) = nd − d2/4, which

gives the result for i = 1. Written as permutations w0 is the product of all sign
changes and wId is the product of all sign changes on the set {1, . . . , n − d/2}; a
direct computation shows that v

d/2
d is the product of all sign changes on {n+ 1 −

d/2, . . . , n}, hence vd/2d = w−1
Id
w0. The lemma follows for the other values of d. �

Since v
d/2
d = w−1

Id
w0 we have vdd = 1, so the same property is true for wd, thus

the above lemma shows that vd and wd are ζd-good elements.
Note also that Theorem 11.10 describes all d such that W has non-zero ζd-rank

since the degrees of W (Bn) are all the even integers from 2 to 2n. We prove now
the maximality property 9.11(iv) for wd. If k is as in the definition of wd, the group
WId is a Weyl group of type Bn−kd/2 and wd acts trivially on Id. Since n−kd/2 < d
the ζd-rank of WIdwd is zero on the subspace spanned by the roots corresponding
to Id.

It remains to get the type of W (wd). Since wd acts trivially on Id the space V1
of Lemma 9.14 is spanned by the root lines of WId and CW (V1) is spanned by the
roots orthogonal to those, so is of type Bkd/2. We then deduce the groupW (wd) as
in the remark at the beginning of subsection 11.2, as the centralizer of a ζd-regular
element in a group of type Bkd/2. �

Types Dn and 2Dn©
s1

©s2

©
s3

©
s4

· · ·©
sn

. 2Dn is defined by the diagram automorphism

φ which exchanges s1 and s2 and fixes si for i > 2.
For d even, 2 ≤ d ≤ 2(n− 1) we define

vd = sn+1−d/2 . . . s3s2s1s3 . . . sn and Jd =

{

∅ if d = 2(n− 1)

{si | 1 ≤ i ≤ n− d/2} otherwise.

Note that v2(n−1) is a Coxeter element. Then for 1 ≤ d ≤ 2(n− 1), that we require
even if d > n, we let kd be the largest even multiple of d less than 2n, so that
k = ⌊ 2n−2

d ⌋ if d is even and k = 2⌊n−1
d ⌋ if d is odd, and define wd = vkkd and

Id = Jkd.
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Note that vd, and thus wd, are φ-stable.

Theorem 11.12. • For W =W (Dn) there exist ζd-good maximal elements
for odd d less than or equal to n and even d less than or equal to 2(n− 1).
When d does not divide n a representative is wd, with I = Id; in this
case, if d is odd W (wd) = G(2d, 1, ⌊n−1

d ⌋) and if d is even W (wd) =

G(d, 1, ⌊ 2n−2
d ⌋).

If d|n a representative is w
n/d
n where wn = s1s2s3 . . . sns3s4 . . . sn−1. In

this case I = ∅ and W (w
n/d
n ) = G(2d, 2, n/d).

• For Wφ there exist ζd-good maximal elements for odd d less than n, for
even d less than 2(n−1) and for d = 2n. Except in the case when d divides
2n and 2n/d is odd a representative is wdφ, with I = Id and W (wdφ) =
G(2d, 1, ⌊n−1

d ⌋) if d is odd and W (wdφ) = G(d, 1, ⌊ 2n−2
d ⌋) if d is even. In

the excluded case a representative is (w2nφ)
2n/d where w2n = s1s3s4 . . . sn.

In this case I = ∅ and W ((w2nφ)
2n/d) = G(d, 2, 2n/d).

Proof. The cases Dn with d|n or 2Dn with d|2n and 2n/d odd involve regular
elements, so are dealt with in [BM]. We thus consider only the other cases.

We identify the Weyl group of type Dn to the group of signed permutations
on {1, . . . n} with an even number of sign changes, by mapping si to (i − 1, i) for
i 6= 2 and s2 to (1,−2)(−1, 2). For d even vd maps to (1,−1)(n+ 1 − d/2, n+ 2−
d/2, . . . , n − 1, n, d/2 − n − 1, . . . , 1 − n,−n). This element normalizes Jd: when
Jd 6= ∅, it exchanges the simple roots corresponding to s1 and s2 and acts trivially
on the other simple roots indexed by Jd, so it is Jd-reduced. It follows that wd
normalizes Id and is Id-reduced.

Lemma 11.13. For 0 < i ≤ ⌊d2⌋ we have l(vid) = 2i
d l(w

−1
Jd
w0) and l(wid) =

2i
d l(w

−1
Id
w0).

Proof. As in Lemma 11.8 it is sufficient to prove the lemma for vd. To find the
length of vd we note that s2s1s3s4 . . . sn is {s3, . . . , sn}-reduced so that the lengths
of sn+1−d/2 . . . s3 and of s2s1s3 . . . sn add, whence l(vd) = 2n − 1 − d/2. Since

l(w0) = n2 − n and l(wJd
) = (n − d/2)2 − (n − d/2), we have l(w−1

Jd
w0) =

d/2(2n − 1 − d/2). which gives the result for i = 1. Written as permutations
w0 = (1,−1)n(2,−2) . . . (n,−n) and wJd

= (1,−1)n−d/2(2,−2) . . . (n−d/2, d/2−n);
a direct computation shows that v

d/2
d = (1,−1)d/2(n+1−d/2, d/2−n−1) . . . (n,−n),

hence v
d/2
d = w−1

Jd
w0. The lemma follows for smaller i. �

Since v
d/2
d = w−1

Jd
w0 and Jd is w0 stable we have vdd = 1, so the same property

follows for wd which shows that vd and wd are ζd-good elements.
We also note that the theorem describes all d such that the ζd-rank is not zero,

since the degrees of W (Dn) are all the even integers from 2 to 2n− 2 and n, and
in the twisted case the factor associated to the degree n is -1 and the other factors
are equal to 1.

Since wd is φ-stable the element wdφ is also ζd-good.
We now check Lemma 9.11(iv), that is that the ζd-rank ofWIdwd in the untwisted

case, resp. WIdwdφ in the twisted case is 0 on the subspace spanned by the roots
corresponding to Id. This property is clear if Id = ∅. Otherwise:

• In the untwisted case the type of the coset is Dn−kd/2 if k is even and 2Dn−kd/2

if k is odd, where k is as in the definition of wd. In both cases the set of values i
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such that the ζi-rank is not 0 consists of the even i less than 2n − kd, the odd i
less than n − kd/2 and in the twisted case (k odd) i = 2n− kd. Since if d is even
we have 2n− kd ≤ d and if d is odd we have n− kd/2 ≤ d, the only case where d
could be in this set is k odd and d = 2n− kd, which means that k+1

2 d = n. But d
is assumed not to divide n, so this case does not happen.

• In the twisted case the type of the coset is Dn−kd/2 if k is odd and 2Dn−kd/2

if k is even. In both cases the set of values i such that the ζi-rank is not 0 consists
of the even i less than 2n− kd, the odd i less than n− kd/2 and in the twisted case
(k even) i = 2n−kd. Since if d is even we have 2n−kd ≤ d and if d is odd we have
n− kd/2 ≤ d, the only case where d could be in this set is k even and d = 2n− kd,
which means that (k + 1)d = 2n. But this is precisely the excluded case.

We now give CW (V1), where V1 is as in Lemma 9.14, in each case where I is not
empty. In the untwisted case, if d is odd the group CW (V1) is of type Dd⌊n−1

d ⌋; if

d is even the group CW (V1) is of type D d
2 ⌊

2n−2
d ⌋+1 if ⌊ 2n−2

d ⌋ is odd and D d
2 ⌊

2n−2
d ⌋

if ⌊ 2n−2
d ⌋ is even. In the twisted case, if d is odd the coset CW (V1)wφ is of type

2Dd⌊n−1
d ⌋+1 and if d is even the coset is of type 2D d

2 ⌊
2n−2

d ⌋+1 if ⌊ 2n−2
d ⌋ is even and

D d
2 ⌊

2n−2
d ⌋ if ⌊ 2n−2

d ⌋ is odd. In all cases except if d is even and ⌊ 2n−2
d ⌋ is even (resp.

odd) in the untwisted case (resp. twisted case) we then deduce the group W (wφ)
(resp.W (w)) as in the remarks at the beginning of subsection 11.2 and after Lemma
9.14, since in these cases the centralizer of the regular element wφ (resp. w) in the
parabolic subgroup W ′ = CW (V1) has the (known) reflection degrees of W (wφ)
(resp. W (w)). In the excluded cases the group CW ′ (wφ) or CW ′(w) is isomorphic
to G(d, 2, ⌊ 2n−2

d ⌋) which does not have the reflection degrees ofW (wφ), resp.W (w).
This means that the morphism of the remark after Lemma 9.14 is not surjective.
We can prove in this case that W (wφ) or W (w) is G(d, 1, ⌊ 2n−2

d ⌋) since it is an
irreducible complex reflection group by [Br, 5.6.6] and it is the only one which
has the right reflection degrees apart from the exceptions in low rank given by
G5, G10, G15, G18, G26; we can exclude these since they do not have G(d, 2, ⌊ 2n−2

d ⌋)
as a reflection subgroup. �

Types I2(n) and 2I2(n). All eigenvalues ζ such that the ζ-rank is non-zero are
regular, so this case can be found in [BM].

Exceptional types. Below are tables for exceptional finite Coxeter groups giving
information on ζd-good maximal elements for each d. They were obtained with
the GAP package Chevie: first, the conjugacy class of good ζd-maximal elements as
described in Lemma 9.13 was determined; then we determined I for an element of
that class, which gave l(wI). The next step was to determine the elements of the
right length 2(l(w0)− l(wI))/d in that conjugacy class; this required care in large
groups like E8. The best algorithm is to start from an element of minimal length in
the class (known by [GP]) and conjugate by Coxeter generators until all elements
of the right length are reached.

In the following tables, we give for each possible d and each possible I for that d a
representative good wφ, and give the number of possible wφ. We then describe the
coset WIwφ by giving, if I 6= ∅, in the column I the permutation induced by wφ of
the nodes of the Coxeter diagram indexed by I. Then we describe the isomorphism
type of the complex reflection group NW (WIwφ)/WI = NW (V )/CW (V ), where
V is the ζd-eigenspace of wφ. Finally, in the cases where I 6= ∅, we give the
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isomorphism type of W ′ = CW (V1), where V1 is the 1-eigenspace of wφ on the
subspace spanned by the root lines of I. We note that there are 4 cases where
NW ′(V )/CW ′ (V ) � NW (V )/CW (V ): for d = 5 in 2E6, for d = 4 or 5 in E7 and for
d = 9 in E8.

H3: ©
1

5©
2

©
3
The reflection degrees are 2, 6, 10.

d representative w #good w CW (w)
10 w10 = 123 4 Z10

6 w6 = 32121 6 Z6

5 w2
10 4 Z10

3 w2
6 6 Z6

2 w0 1 H3

1 · 1 H3

H4: ©
1

5©
2

©
3

©
4
The reflection degrees are 2, 12, 20, 30.

d representative w #good w CW (w)
30 w30 = 1234 8 Z30

20 w20 = 432121 12 Z20

15 w2
30 8 Z30

12 w12 = 2121432123 22 Z12

10 w3
30 or w2

20 24 G16

6 w5
30 or w2

12 40 G20

5 w6
30 or w4

20 24 G16

4 w5
20 or w3

12 60 G22

3 w10
30 or w4

12 40 G20

2 w0 1 H4

1 · 1 H4

3D4: ©
1

©2

©
3

©
4
φ does the permutation (1, 2, 4). The reflection degrees are 2, 4, 4, 6

with corresponding factors 1, ζ3, ζ
2
3 , 1.

d representative wφ #good wφ CW (wφ)
12 w12φ = 13φ 6 Z4

6 w6φ = 1243φ 8 G4

3 w2
6φ 8 G4

2 w0φ 1 G2

1 φ 1 G2
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F4: ©
1

©
2

©
3

©
4
The reflection degrees are 2, 6, 8, 12.

d representative w #good w CW (w)
12 w12 = 1234 8 Z12

8 w8 = 214323 14 Z8

6 w2
12 16 G5

4 w3
12 or w2

8 12 G8

3 w4
12 16 G5

2 w0 1 F4

1 · 1 F4

2F4: φ does the permutation (1, 4)(2, 3). The factors, in increasing order of the
degrees, are 1,−1, 1,−1.

d representative wφ #good wφ CW (wφ)
24 w24φ = 12φ 6 Z12

12 w12φ = 3231φ 10 Z6

8 (w24φ)
3 12 G8

4 (w12φ)
3 24 G12

2 w0φ 1 I2(8)
1 φ 1 I2(8)

E6: ©
1

©
3

©2

©
4

©
5

©
6
The reflection degrees are 2, 5, 6, 8, 9, 12.

d representative w #good w I NW (WIw)/WI CW (V1)
12 w12 = 123654 8 Z12

9 w9 = 12342654 24 Z9

8 w8 = 123436543 14 Z8

6 w2
12 16 G5

5 24231454234565 8 (3) Z5 A5

12435423456543 8 (4)
12314235423654 8 (5)

4 w2
8 or w3

12 12 G8

3 w4
12 or w3

9 80 G25

2 w0 1 F4

1 · 1 E6
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2E6: φ does the permutation (1, 6)(3, 5). The factors, in increasing order of the
degrees, are 1,−1, 1, 1,−1, 1.

d representative wφ #goodwφ I NW (WIwφ)/WI CW (V1)wφ
18 w18φ = 1234φ 24 Z9

12 w12φ = 123654φ 8 Z12

10 2431543φ 8 (3) Z5
2A5

5423145φ 8 (4)
3143542φ 8 (5)

8 w8φ = 123436543φ 14 Z8

6 (w18φ)
3 80 G25

4 (w12φ)
3 12 G8

3 w4
12φ 16 G5

2 w0φ 1 E6

1 φ 1 F4

E7: ©
1

©
3

©2

©
4

©
5

©
6

©
7
The reflection degrees are 2, 6, 8, 10, 12, 14, 18.

d representative w #good w I NW (WIw)/WI CW (V1)
18 w18 = 1234567 64 Z18

14 w14 = 123425467 160 Z14

12 w12 = 1342546576 8 (2, 5, 7) Z12 E6

10 w10a = 134254234567 8 (2, 4) Z10 D6

w10b = 243154234567 8 (3, 4)
w10c = 124354265437 8 (4, 5)

9 w2
18 64 Z18

8 134234542346576 14 (2)(5, 7) Z8 D5

7 w2
14 160 Z14

6 w3
18 or w2

12 800 G26

5 w2
10a 8 (2)(4) Z10 A5

w2
10b 8 (3)(4)

w2
10c 8 (4)(5)

4 131423454231465423456765423456 12 (2)(5)(7) G8 D4

3 w6
18 or w4

12 800 G26

2 w0 1 E7

1 · 1 E7
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E8: ©
1

©
3

©2

©
4

©
5

©
6

©
7

©
8
The reflection degrees are 2, 8, 12, 14, 18, 20, 24, 30.

d representative w #good w I NW (WIw)/WI CW (V1)
30 w30 = 12345678 128 Z30

24 w24 = 1234254678 320 Z24

20 w20 = 123425465478 624 Z20

18 w18a = 1342542345678 16 (2, 4) Z18 E7

w18b = 2431542345678 16 (3, 4)
w18c = 1243542654378 16 (4, 5)

15 w2
30 128 Z30

14 w14a = 13423454234565768 128 (2) Z14 E7

w14b = 24231454234565768 88 (3)
w14c = 12435423456543768 108 (4)
w14d = 12342543654276548 68 (5)

12 w2
24 2696 G10

10 w3
30 or w2

20 3370 G16

9 w2
18a 16 (2)(4) Z18 E6

w2
18b 16 (3)(4)

w2
18c 16 (4)(5)

8 w3
24 7748 G9

7 w2
14a 128 (2) Z14 E7

w2
14b 88 (3)

w2
14c 108 (4)

w2
14d 68 (5)

6 w5
30 or w4

24 4480 G32

5 w6
30 or w4

20 3370 G16

4 w6
24 or w5

20 15120 G31

3 w10
30 or w8

24 4480 G32

2 w0 1 E8

1 · 1 E8
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