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, we give new examples of number fields with norm-Euclidean ideal classes. Extending the results of Cioffari ([5]), we also establish the complete list of pure cubic number fields which admit a norm-Euclidean ideal class.

Introduction

The classical notion of norm-Euclidean number field has been deeply studied, in particular from the second half of the 19th century. Let us recall that a number field K, whose ring of integers is denoted by Z K and norm by N K/Q is said to be norm-Euclidean if and only if ∀(a, b) ∈ Z K × Z K \ {0}, ∃(q, r) ∈ Z 2 K , a = bq + r and

N K/Q (r) < N K/Q (b) , or equivalently, ∀x ∈ K, ∃u ∈ Z K , N K/Q (x -u) < 1. (1) 
In the 1970s, Hendrik W. Lenstra generalized this notion while studying ideals 0

I ⊆ Z K verifying ∀(a, b) ∈ Z K × Z K \ {0}, ∃(q, r) ∈ I × Z K , a = bq + r and N K/Q (r) < NI • N K/Q (b) , or equivalently, ∀x ∈ K, ∃u ∈ I, N K/Q (x -u) < NI, (2) 
where N is the norm of ideals:

NI = Z K I ,
Obviously, if K is principal, condition (2) holds if and only if for every integral ideal I = {0}, condition (1) holds. However, there exist some non-principal number fields K admitting integral ideals I such that (1) holds. Nevertheless, such examples are quite scarce in the literature, and our main purpose will be to present new ones.

First, we will recall the definitions and main properties of norm-Euclidean ideal classes. Then, by analogy with the principal case, we will introduce a notion of Euclidean minimum, whose properties will allow us to write an algorithm (Algorithm 3.7) to prove the existence of a norm-Euclidean ideal class. Afterwards, we will list present examples of imaginary cubic fields with a norm-Euclidean ideal class and study the family of pure cubic number fields to obtain the following result. √ n) admits a norm-Euclidean class if and only if n ∈ {2, 3, 10}. In particular, there exists no pure cubic number field with a non-principal norm-Euclidean ideal class.

Then, we will deal with examples in other signatures and using Algorithm 3.7, we will obtain the following examples.

Theorem 5.1. We can list quintic and sextic number fields admitting a non-principal norm-Euclidean class. Besides, there exists a (quartic) number field whose class number is equal to 4 and which admits a norm-Euclidean ideal class.

On the other hand, we will show that the number field presented by Graves in [START_REF] Graves | Q √ 2, √ 35 has a non-principal Euclidean ideal[END_REF] admits no norm-Euclidean ideal class.

Theorem 5.3. K = Q √ 2, √ 35 
admits a Euclidean ideal class a but no norm-Euclidean ideal class.

Definitions

We consider an algebraic number field K, we denote by Z K its ring of integers, r 1 its number of real places, 2r 2 its number of imaginary places, n = r 1 +2r 2 its degree (over Q), r = r 1 +r 2 -1 the rank of the units Z × K of Z K and N K/Q the usual norm. We denote by N the norm of ideals, extended by multiplicativity to the fractional ideals. Given an ideal I ⊆ Z K , we denote by [I] its class in the class group. We write h K the class number of K.

Basic presentation

Definition 2.1. Let I be a fractional ideal of Z K . We say that I is a norm-Euclidean ideal if for any (α, β) ∈ Z K × Z K \ {0}, there exists γ ∈ I such that

N K/Q (α -βγ) < N K/Q (β) • NI. Remark 2.2.
• With this definition, Z K is norm-Euclidean if and only if it is norm-Euclidean as an ideal.

• Thanks to the multiplicativity of the norm, I is norm-Euclidean if and only if any ideal of the class [I]

is norm-Euclidean. Consequently, we rather speak of norm-Euclidean ideal classes. So, if K admits a norm-Euclidean ideal, we also say that K admits a norm-Euclidean ideal class.

• Using again the multiplicativity of the norm, we see that I is a norm-Euclidean ideal if and only if for any x ∈ K, there exists some z ∈ I such that

N K/Q (x -z) < NI.
As the notion of norm-Euclidean ideal depends only on the ideal class, it is particularly interesting in the case where K is not principal.

a This notion will be defined in section 5.3. Definition 2.3. We say that an ideal {0} I Z K is of minimal norm if for any ideal J such that {0} J Z K , NI NJ.

An ideal of minimal norm always exists, we denote its norm by Λ(K). The results of the following proposition were proved by Lenstra ([11]). Proposition 2.4.

1. If K admits an norm-Euclidean ideal I, then for every integral ideal J of Z K , there exists an integer 0 n < NJ such that [J] = [I] n . In particular, the class group of K is cyclic and generated by [I]. 

K admits at most one norm

Z K = Z + Z √ 229-1 2
. Then Λ(K) = 3, we have the two following ideals of norm 3:

I 1 = 3Z + Z √ 229 -1 2 and I 2 = 3Z + Z √ 229 + 1 2 .
These ideals are not principal,

I 1 + I 2 = Z K , so I 1 I 2 = I 1 ∩ I 2 = 3Z K , therefore [I 1 ] = [I 2 ].
Consequently, K has no norm-Euclidean ideal class.

Example 2.6. We can consider the other example

K = Q (x) where x 4 -x 3 -32x 2 + 23x + 229 = 0. Then h K = 3, disc K = 97025 and Λ(K) = 4.
Besides, Z K admits the following two ideals of norm 4:

I 1 =2Z + Z x 3 + 2x 2 -18x -39 4 + Z(x -1) + Z x 3 + 6x 2 -18x -99 4 
and

I 2 =2Z + Z x 3 + 2x 2 -18x -39 4 + Z -x 3 -2x 2 + 26x + 39 8 + Z 3x 3 + 14x 2 -54x -237 8 .
We can prove that I 1 I 2 = 2Z K , whereas I 1 and I 2 are not principal, therefore,

[I 1 ] = [I 2 ].
Consequently, K cannot admit a norm-Euclidean ideal class.

From now on, we will denote by I an ideal of minimal norm.

Euclidean minimum

As in the classical case, given an ideal 0 J ⊆ Z K , we define a local Euclidean minimum by

m K,J (x) := inf z∈J N K/Q (x -z) NJ .
We immediately notice that this minimum is reached, that is to say that there exists z 0 ∈ J

such that m K,J (x) = |NK/Q(x-z0)|

NJ

. Therefore, K admits a norm-Euclidean ideal J if and only if for any x ∈ K, m K,J (x) < 1.

This leads to the following natural definition.

Definition 2.7. We call Euclidean minimum with respect to J the nonnegative real number

M (K, J) := sup x∈K m K,J (x).
Let k ∈ K × , for any x ∈ K, m K,J (k -1 x) = m K,kJ (x). As a result, M (K, J) only depends on the class [J], and we can write M (K, [J]) = M (K, J).

Taking into account 2.4, 2 we will be particularly interested in M (K, [I]), for any integral ideal I of minimal norm, given the following observation. If M (K, [I]) < 1, then K admits the norm-Euclidean ideal class [I], if M (K, [I]) > 1, then K admits no norm-Euclidean ideal class.

As we choose any ideal I of minimal norm, we may wonder about the dependence of M (K, [I]) on this choice. Proof. This is a simple consequence of the fact that K admits at most one norm-Euclidean ideal class, and that this class may only be the class of any ideal of minimal norm.

Example 2.9. As in the classical Euclidean case, we can easily compute the Euclidean minimum in the imaginary quadratic case. Let K stand for Q( √ -m) where m is a positive squarefree integer. Proposition 2.10. According to the value of m, there exists an ideal of minimal norm I such that we have the following formulae.

• If m ≡ 1 (mod 4), then M (K, [I]) = (m+1) 2 8m for I = 2Z + Z 1 + √ -m of norm 2. • If m = 2, then M (K, [I]) = 3 4 for I = 2Z + Z √ -m of norm 2. • If m = 3, then M (K, [I]) = 1 3 for I = 3Z + Z 3+ √ -3 2 of norm 3. • If m ≡ 7 (mod 8), then M (K, [I]) = m 2 +10m+9 32m for I = 2Z + Z 1+ √ -m 2 of norm 2. • If m ≡ 11 (mod 24), then M (K, [I]) = m 2 +26m+25 48m for I = 3Z + Z 1+ √ -m 2 of norm 3. • If m ≡ 19 (mod 24), then M (K, [I]) = (m+1) 2 16m for I = 2Z K of norm 4. • If m ≡ 3 (mod 24) and m = 3, then M (K, [I]) = (m+9) 2 48m for I = 3Z + Z 3+ √ -m 2 of norm 3.
In particular, K has a norm-Euclidean class if and only if m ∈ {1, 2, 3, 5, 7, 11, 15}. This result was already stated in [START_REF] Lenstra | Euclidean ideal classes[END_REF]. An extension to a more general case was provided by [START_REF] Graves | Euclidean ideals in quadratic imaginary fields[END_REF].

Inhomogeneous minimum

As in the classical case, we will study M (K, [I]) in a geometric setting.

We denote by (σ i ) 1 i n the embeddings of K into C. We suppose that the r 1 first ones are real and that for any r 1 < i r 1 + r 2 ,

σ i = σ i+r2 .
We define Φ :

K -→ R n x -→ Φ(x)
, where Φ(x) = (σ 1 (x), . . . , σ r1 (x), ℜσ r1+1 (x), . . . , ℜσ r1+r2 (x), ℑσ r1+1 (x), . . . , ℑσ r1+r2 (x)) .

We will infer properties of K from results on Φ(K). To do this, we extend the product defined on K to R n through Φ: for x = (x i ) 1 i n and y = (y i ) 1 i n , we put x • y = (z i ) 1 i n where

z i =    x i y i if 1 i r 1 , x i y i -x i+r2 y i+r2 if r 1 < i r 1 + r 2 , x i-r2 y i + x i y i-r2 if r 1 + r 2 < i n.
We introduce H = K ⊗ Q R, which we identify with R n equipped with the product previously defined. We can extend the norm to H by setting

N : H -→ R 0 x = (x i ) 1 i n -→ r1 i=1 x i r1+r2 i=r1+1 (x 2 i + x 2 i+r2 )
.

We see that for any x, y ∈ H, N (x • y) = N (x)N (y) and that for any

ξ ∈ K, N K/Q (ξ) = N (Φ(ξ)).
With these notations, we write for any x ∈ H, m K,I (x) := inf Z∈Φ(I)

|N (x-Z)| NI
and we set

M K, I := sup x∈H m K,I (x).
As previously, this real number depends only on the class [I], so we can write M K, [I] = M K, I . The units Z × K act on H, for any x ∈ H, we define the orbit of x modulo Φ(I) by Orb (x) := Φ(ν) • x modulo Φ(I), ν ∈ Z × K .

Computation of the local Euclidean minimum

Given x ∈ K, there exists z ∈ I such that m K,I (x) = |NK/Q(x-z)|
NI but this property is not enough to compute m K,I (x) in practice. However, we may compute it exactly as in the classical Euclidean case (see [START_REF]Euclidean minima of totally real number fields[END_REF]) and we may compute a function k -→ Γ(k) which depends on the number field K such that we have the following statement.

Lemma 2.11. Let x ∈ Φ(K) \ Φ(I) and k > 0. If there exists X ∈ I such that 0 < |NK/Q(x-X)| NI < k, then there exists ν ∈ Φ(Z × K ) and Y ∈ Φ(I) such that N K/Q (ν • x -Y ) NI < k and |Y i | Γ(k) for all 1 i n.
With this result, we can compute the local Euclidean minimum, for any given z ∈ Φ(K). Let us set

I z := {Z ∈ I, |z i -Z i | Γ(k) for all 1 i n}.
Proposition 2.12. Let x ∈ Φ(K) and k > 0. Then Orb (x) is finite and for any z ∈ Orb (x),

I z is finite. Let us write M k := min z∈Orb(x) min Z∈Iz |NK/Q(z-Z)| NI . Then M k k implies m K,I (x) = M k . As the function k -→ M k is nonincreasing, if k ′ := M k > k, then m K,I (x) = M k ′
and this provides a procedure to compute m K,I .

Properties

Link between Euclidean and inhomogeneous minima

As for the classical Euclidean minimum, we have the following result, which is a direct generalisation of [START_REF] Cerri | Euclidean and inhomogeneous spectra of number fields with unit rank strictly greater than 1[END_REF]. Theorem 3.1. Let K be a number field such that r > 1 and J be an ideal. Then there exists

ξ ∈ K such that M K, [J] = m K,J (ξ). In particular, M K, [J] = M (K, [J]).
Corollary 3.2. Let K be a number field such that r > 1 and I an ideal of minimal norm of K. Then K admits a norm-Euclidean ideal class if and only if

M (K, [I]) = M K, [I] < 1.
With this result, we can write a slight extension of Proposition 2.8. Proof. The proof is the similar to the one of Proposition 2.8, except we can now use Corollary 3.2 to conclude when M (K, [I]) = 1. Even though this easy bound seems quite bad, it may be used in some cases to conclude quickly that a number field admits no norm-Euclidean ideal class.

Lower bound for the Euclidean minimum

Example 3.5. The totally real cubic field K of discriminant 2597 admits no norm-Euclidean ideal class since M (K) = 5 2 and Λ(K) = 2.

Upper bounds

We know upper bounds for M (K) expressed with the discriminant of K in the cases r 1 = 2, r 2 = 0 (the best one is given by [START_REF] Ennola | On the First Inhomogeneous Minimum of Indefinite Binary Quadratic Forms and Euclid's Algorithm in Real Quadratic Fields[END_REF]) and r 1 = r 2 = 1 ([2]) and r 1 = 0, r 2 = 2 ([2], corrected by [START_REF] Van Der Linden | Euclidean rings with two infinite primes[END_REF]). Such bounds are proved with quadratic and cubic forms and still hold for norm-Euclidean ideal classes (this was already noted by [START_REF] Van Der Linden | Euclidean rings with two infinite primes[END_REF]). Theorem 3.6 (Ennola, Cassels, van der Linden). Let K be a number field with an norm-Euclidean ideal class such that r = 1. Table 1: Non-principal complex cubic number fields with a norm-Euclidean ideal class up to discriminant -3299.

• if r 1 = 2, r 2 = 0, then disc K 945, • if r 1 = r 2 = 1, then |disc K | 170520, • if r 1 = 0, r 2 = 2, then disc K 230202117. disc K h K M (K, [I]) -283 2

Algorithm

We can modify the algorithm described in [START_REF] Lezowski | Computation of the Euclidean minimum of algebraic number fields. submitted[END_REF] to compute the minimum M (K, [I]) of a given number field. Generally speaking, we replace Z K with any ideal I of minimal norm. In practice, we know a Z-basis of the ideal I denoted by (z i ) 1 i n and, instead of M, we use the matrix M ′ = m ′ i,j 1 i,j n where for any 1 i, j n, In practice, this algorithm is almost always successful, its execution may even be shorter if we only want to know if M (K, [I]) < 1.

m ′ i,j =    σ i (z j ) if 1 i r 1 , ℜσ i (z j ) if r 1 < i r 1 + r 2 , ℑσ i-r2 (z j ) if r 1 + r 2 < i n.

Already known examples

In degrees n 3, few examples of number fields with a norm-Euclidean ideal class were known if h K > 1. An example in signature (1, 1) was found by van der Linden ( [START_REF] Van Der Linden | Euclidean rings with two infinite primes[END_REF], it is the number field of discriminant -283 in Table 1), an example in signature (0, 2) was originally given by Lenstra ([11], number field of discriminant 1521 in Table 5). Lemmermeyer gave another example in signature (1, 1) (number field of discriminant -331 in Table 1).

Complex cubic number fields and pure cubic number fields

We consider an ideal I of minimal norm and compute M (K, [I]) with the algorithm described in section 3.4. We present in Table 1 the examples found of non-principal Euclidean number fields which admit an ideal class. These are the only ones such that |disc K | < 3299. We know that these number fields have a class number h K 4 (see [START_REF] Lenstra | Euclidean ideal classes[END_REF] or [START_REF] Van Der Linden | Euclidean rings with two infinite primes[END_REF] for details), however, no example with class number equal to 4 was found.

We can use several criteria given in [START_REF] Van Der Linden | Euclidean rings with two infinite primes[END_REF] to restrict the possibilities of Euclidean ideal classes. However, as in the case of the (classical) norm-Euclideanity, we cannot prove yet that these examples are the only ones.

In the remainder or this section, we will restrict ourselves to pure cubic number fields.

Notations and result

Let n > 1 be an integer, which we may assume cubefree. We consider

K = Q( 3 √ n).
Cioffari ( [START_REF] Cioffari | The Euclidean condition in pure cubic and complex quartic fields[END_REF]) listed all norm-Euclidean pure cubic number fields, in a similar fashion, we may investigate the pure cubic number fields which admit an Euclidean ideal class. We suppose that K is such a field, then 1 h K 4. As the case h K = 1 was solved in [START_REF] Cioffari | The Euclidean condition in pure cubic and complex quartic fields[END_REF], let us suppose that 2 h K 4. The remainder of this section will be devoted to the proof of Theorem 4.1.

General properties of a pure cubic number field

We will describe several properties of a pure cubic number fields, our purpose is to restrict as much as possible the list of possible values of n such that Q ( 3 √ n) admits a norm-Euclidean ideal class.

Ring of integers, ramification and ideals of minimal norm

As we assume that n is cubefree, we can write n = ab 2 , where a and b are two coprime integers such that ab is squarefree. For Q

3 √ ab 2 = Q 3 √
a 2 b , we may suppose that b < a. We will write α = 3 √ n.

The following statement provides information on the integers and some ideals of K. These result are well-known, pure cubic number fields were studied by Dedekind.

Lemma 4.2. With the previous notations, we can describe the ring of integers of K:

• if a 2 ≡ b 2 (mod 9), then Z K = Z + Zα + Z α 2 b and disc K = -27a 2 b 2 , • if a 2 ≡ b 2 (mod 9), then Z K = Zα + Z α 2 b + Z 1+aα+α 2 3 and disc K = -3a 2 b 2 .
Besides, the primes are ramified in K as follows.

• Let p be a prime factor of n, p = 3, then p is totally ramified in K.

• If a 2 ≡ b 2 (mod 9), then 3 is totally ramified in K. If a 2 ≡ b 2 (mod 9) and 9|n, then 3 is totally ramified in K.

• If 2 |n, then 2 splits into two distinct factors.

Consequently, in any case, there exists an ideal of norm 2 in K and Λ(K) = 2.

Proof. All these statements are proved in section 6.4 of [START_REF] Cohen | A Course in Computational Algebraic Number Theory[END_REF], where the author gives the explicit expression of ideals of norm 2.

Class number

Firstly, genus theory gives us the following property. The fact that K admits a norm-Euclidean ideal class provides the class number number with another condition.

Proposition 4.4. If K = Q ( 3 √ n) admits a norm-Euclidean ideal class, then h K 4.

Besides, if 2|n and K admits a non-principal norm-Euclidean ideal class, then h

K = 3.
Proof. Thanks to Lemma 4.2, we know that 2 is either totally ramified in K, or splits into two distinct factors.

If 2 is totally ramified in K (that happens exactly when 2 divides n), then 2Z K = I 3 for some ideal I of minimal norm. Then [I] 3 = Z K and as [I] is a generator of the class group of K, h K divides 3.

If 2Z K = IJ, where I is an ideal of minimal norm 2 and NJ = 4, then, thanks to Proposition 2.4, 1, there exists 0 n < 4 such that [J] = [I] n . Therefore, [I] n+1 = [Z K ] and h K n + 1 4.

Remark 4.5. Any cubic number field equipped with a norm-Euclidean ideal class satisfies h K

4, to see this, the other cases when 2 splits into three factors or is inert are proved similarly. 

List of candidates

The purpose of this paragraph is to establish a finite list of candidates for pure cubic number fields with a non-principal norm-Euclidean class. , so n 233. In fact, we have a better bound if n 2 ≡ 1 (mod 9), then n < 170520 27 , so n 79. With PARI ( [START_REF]PARI/GP, version 2.4.3[END_REF]), we list all primes n satisfying these conditions such that 2 h K 4, we obtain the following fifteen primes: 7, 11, 13, 19, 31, 37, 47, 73, 89, 109, 127, 163, 181, 233. If n admits exactly two prime factors α < β, then α < 4 170520 3 , so α 13.

Proposition 4.7. If pure cubic field K admits a non-principal norm-Euclidean ideal class, then

K = Q ( 3 √ n)
• If α = 13, then β 17, so β = 17. But 13 ≡ 4 (mod 9) and 17 ≡ -1 (mod 9), consequently we cannot have a 2 ≡ b 2 (mod 9), thus -disc K = 27 • 13 2 • 17 2 > 170520.

• • If α = 2, then β 113. There are eighteen possibilities: 20, 14, 28, 22, 26, 52, 34, 68, 38, 92, 62, 74, 172, 118, 244, 134, 388 and 206. If n admits three prime factors α < β < γ, then α < 6 170520 3 and α 5.

• If α = 5, then we can easily obtain that 5 = α < β < 4 170520 3•5 2 and there is no such prime. This completes the proof.

• If α = 3, then a 2 ≡ b 2 (mod 9), therefore disc K = -
Consequently, to establish Theorem 4.1, we will prove that none of these fields admits a norm-Euclidean ideal class.

Crucial tool

In the remainder of the proof, we will use the following tool. 

z ∈ Z k such that N k/Q (z) = a.
Proof. See [START_REF] Pohst | Algorithmic algebraic number theory, Encyclopedia of mathematics and its applications[END_REF] 

First remarks and computations

Principal ideals of norm 2

First, we can discard the number fields for which an ideal of minimal norm 2 is principal, this occurs for n ∈ {31, 34, 60, 62, 68, 109, 118, 127, 172}. Indeed, if they admitted an Euclidean ideal class, then the class of this ideal would generate the class group (thanks to Proposition 2.4). This is impossible, since the class group is not trivial.

Application of Algorithm 3.7

We may then compute some of the values of M (K, [I]). In practice, this is only possible when the fundamental unit of K is "not too big".

Proposition 4.9. All the values computed in Table 2 are greater than 1, consequently, we can discard all these values of n.

Consequences of total ramification

The fact that the prime factors of n (except sometimes for 3) are totally ramified in K has some very interesting consequences. We will distinguish the properties according to the principality of the ideals above the product of primes chosen.

Principal case

Lemma 4.10. Let f be a product of different prime numbers totally ramified in K, we write

f the ideal of Z K such that f Z K = f 3 . If α, β ∈ Z K are such that α ≡ β (mod f), then N K/Q (α) ≡ N K/Q (β) (mod f ).
A very similar property is stated by Egami in [START_REF] Egami | On Finiteness of the Numbers of Euclidean Fields in Some Classes of Number Fields[END_REF], he attributes this argument to Lenstra.

Proof. Let L be the Galois closure of

K/Q. Let us write F = fZ L . Then f Z L = f Z K Z L = f 3 Z L = F 3 . Consequently, if ϕ : K -→ L is an embedding of K, then f Z L = ϕ (f Z L ) = ϕ(F) n , so ϕ(F) = F. As α ≡ β (mod F), we have N K/Q (α) ≡ N K/Q (β) (mod F). But N K/Q (α) - N K/Q (β) ∈ Z, and F ∩ Z = f Z, so N K/Q (α) ≡ N K/Q (β) (mod f ).
In practice, we know that some elements are norms, we will use this fact. Lemma 4.11. Let p be a prime such that p ≡ 1 (mod 3), then for any x ∈ Z/pZ, there exists α ∈ Z/pZ such that x = α 3 . Proof. For p = 3, we can take α = x, for other values of p, let us write p = 3k + 2, for some integer k, then we can take α = x 2k+1 . Lemma 4.12. Let f = l i=1 p i where p i ≡ 1 (mod 3) are different totally ramified primes of K. Let us write f Z K = f 3 . We assume that f is principal. If 0 < e < f is an integer such that neither e -2f , nor ef , nor e, nor e + f are norms of elements of Z K , then

M (K) > 2, therefore M (K, [I]) > 1 for any ideal I of minimal norm 2.
Proof. Thanks to Lemma 4.11 and Chinese Remainder Theorem, we know that there exists some integer α such that e ≡ α 3 (mod f ). Consequently, e ≡ N K/Q (α) (mod f ). Let us write f = γZ K , where γ ∈ Z K \ {0}. Then there exists some δ ∈ Z K such that

m K α γ = N K/Q α γ -δ = 1 Nf N K/Q (α -δγ) .
But αδγ ≡ α (mod f), so, thanks to Lemma 4.10, For 74, we can take f = 74 = 2 • 37. We have 37 ≡ 1 (mod 3), but we can take into account Remark 4. The previous result only applies when the ideal above a product of totally ramified primes is principal. We can establish a similar result in another case. Proof. Once again, we can apply Lemma 4.11 and Chinese Remainder Theorem to find an integer α such that e ≡ α 3 ≡ N K/Q (α) (mod f ). Then there exists γ ∈ f such that m K,f (α) = 1

N K/Q (α -δγ) ≡ N K/Q (α) ≡ e (mod f ).
Nf N K/Q (αγ) . But αγ ≡ α (mod f), and Lemma 4.10 implies 

N K/Q (α -γ) ≡ e (mod f ). Consequently, m K,f (α) max{2f -e,e+f } f > 1. Therefore, M (K, [I]) = M (K, [f]) > 1,
K . Therefore, [f] = [I] or [f] = [I] 2 .
In the latter case, fI is a principal ideal, thus 2f is a norm of an element of Z K . We easily check that this is false, so [f] = [I], and

M (K, [f]) = M (K, [I]).

Remaining values

As for the seven remaining values, even though the lemmas previously described do not exactly apply, the ideas remain basically identical: we exhibit a point t = a b ∈ K (where a, b ∈ Z K \ {0}), then by computing

N K/Q (a -bu)
for any element u of the ideal I of minimal norm 2 (in these cases, there is a unique ideal of norm 2 and we know a Z-basis of I), we remark that there exist l ∈ Z >0 Therefore, N K/Q (abu) ∈ e + lZ. We exclude some of these possibilities because they are not norms of integers of K and denote by N the smallest (in absolute value) such possible norm. Consequently,

m K,I (t) |N | N K/Q (b) • NI = |N | 2 N K/Q (b) If |N | 2 N K/Q (b) , this proves that K admits no norm-Euclidean ideal class.
For instance, for n = 78, we write x = 3 √ n. Then, let us consider a = x and b = 3. We know that I = 2Z + Zx + Zx 2 is the ideal of norm 2 of Z K . For any α, β, γ ∈ Z, we can compute

N K/Q a + 3 2α + βx + γx 2 =54 • 4α 3 -234αβγ -78αγ + 39β 3 + 39β 2 + 13β + 3042γ 3 + 1 + 24.
Consequently, for any u ∈ I, N K/Q (abu) ≡ 24 (mod 54), or with the previous notations, l = 54 and e = 24. Neither 24, nor -30 are norms of elements of Z K , therefore N = 78 54 = 2 N K/Q (b) .

We list corresponding elements a, b, l, e and N in Table 4.

5 Other examples 

a x 4 -x 3 + 9x 2 -4x + 16 b x 4 -x 3 -6x 2 -x + 19 c x 4 + x 2 + 4 d x 4 -5x 2 + 25 e x 4 -x 3 + 11x 2 -2x + 28 f x 4 -x 3 -10x 2 + 7x + 31 g x 4 -2x 3 -12x 2 + 13x + 43 h x 4 -x 3 -12x 2 + 2x + 49

Other signatures

With Algorithm 3.7, we can find many new examples of number fields with a non-principal norm-Euclidean ideal class. In particular, we found examples with the following properties. In Table 6, we list some of them, according to their signature and class number. For a given signature, the non-principal number field of smallest discriminant may have no norm-Euclidean ideal class. For instance, the number field of discriminant 1957 and of signature (3, 0) admits no norm-Euclidean ideal class. In fact, we have M (K, [I]) = 1, where I is the ideal of norm 2 of Z K .

Graves's example

Lenstra introduced Euclidean ideal classes without restricting himself to the norm. Definition 5.2. Let R be a Dedekind domain, I the set of its invertible integral ideals and I ∈ I . We say that I is Euclidean if there exists a map ψ : I → Z >0 such that for all J ∈ I and all x ∈ J -1 I \ I, there exists some y ∈ I such that ψ (xy)JI -1 < ψ(J).

Obviously, if R is the ring of integers of a number field K and ψ is the norm of ideals, this is equivalent to Definition 2.1. (2, 1) 2 x 4 -2x Graves ([9]) presented the example K = Q √ 2, √ 35 , which admits a Euclidean ideal class for some ψ, but did not know about the existence of a norm-Euclidean ideal class. Using Algorithm 3.7, we can prove the following statement. In the case of imaginary quadratic number fields, Graves and Ramsey ( [START_REF] Graves | Euclidean ideals in quadratic imaginary fields[END_REF]) proved that all number fields with an Euclidean ideal class admit in fact a norm-Euclidean ideal class, however, this provides a number field of signature (4, 0) with an Euclidean ideal class, which admits no norm-Euclidean ideal class.

Theorem 4 . 1 .

 41 A pure cubic field K = Q( 3

Proposition 2 . 8 .

 28 Let I be an ideal of minimal norm. If M (K, [I]) < 1, then K admits a norm-Euclidean ideal class and the value M (K, [I]) does not depend on the choice of such an ideal I. If M (K, [I]) > 1, then K has no norm-Euclidean ideal norm. The value M (K, [I]) may depend on the choice of I, but for any ideal J of minimal norm, M (K, [J]) 1.

Proposition 3 . 3 .

 33 Let K be a number field such that r > 1 and I be an ideal of minimal norm of Z K . If M (K, [I]) < 1, then K admits a norm-Euclidean ideal class and the value M (K, [I]) does not depend on the choice of such an ideal I. If M (K, [I]) 1, then K has no norm-Euclidean ideal norm. The value M (K, [I]) may depend on the choice of I, but for any ideal J of minimal norm, M (K, [J]) 1.

Lemma 3 . 4 .

 34 For any ideal J, max{M(K),1} NJ M (K, [J]) .

Algorithm 3 . 7 .

 37 Given a number field K, there exists a procedure which returns failure or an ideal I of minimal norm, M (K,[I]) and all points x ∈ K modulo I such that M (K, [I]) = m K,I (x).

Theorem 4 . 1 .

 41 K = Q( 3 √ n) admits a norm-Euclidean class if and only if n ∈ {2, 3, 10}. In particular, there exists no pure cubic number field with a non-principal norm-Euclidean ideal class.

Lemma 4 . 3 (

 43 [START_REF] Barrucand | A rational genus, class number divisibility, and unit theory for pure cubic fields[END_REF], Theorem 4.1). Let t be the number of totally ramified primes in K. If t 2, then 3 t-2 divides h K .

Corollary 4 . 6 .

 46 If K = Q ( 3 √n) admits a norm-Euclidean ideal class, then n has at most 3 prime factors.Proof. Thanks to Lemma 4.3, we know that n admits at most 4 prime factors and may admit 4 prime factors if and only if 3 is one of them. Let us assume that n has exactly four prime factors (including 3). As 3|n = ab 2 , we havea 2 ≡ b 2 (mod 9), therefore disc K = -27a 2 b 2 . Consequently, -disc K 27 • (2 • 3 • 5 • 7) 2 =1190700 170520, and K admits no norm-Euclidean ideal class.

  If α = 11, then β 19. As in the previous subcase, we can exclude β = 17 and β = 19 with congruences modulo 9. Besides, 11 ≡ 2 (mod 9) and 13 ≡ 4 (mod 9), so we can only have a norm-Euclidean ideal class if n = 11 • 13 = 143. • If α = 7, then β 31. There are three possible values 77, 539 and 161. • If α = 5, then β 47, there are four possible values: 35, 175, 275 and 325. • If α = 3, then a 2 ≡ b 2 (mod 9), so β < 170520 27•3 2 and 5 β 23. Keeping only values for which 2 h K 4, we find four possible values 15, 21, 117 and 51.

--

  27a 2 b 2 , and 3 = α < β < 4 170520 27•3 2 , consequently, β = 5. Then 5 = β < γ < 170520 27•3 2 •5 2 , there is no such integer. • If α = 2, then we find similarly β 7. If β = 7, then γ 17 and there are three possibilities 154, 1666 and 476. -If β = 5, then γ 23 and eight values are possible for n: 350, 550, 260, 170, 1700, 190, 1900 and 460. If β = 3, then γ 13 (taking into account a 2 ≡ b 2 (mod 9)) and there are nine possibilities: 30, 90, 60, 42, 84, 132, 396, 78 and 156.

Proposition 4 . 8 .

 48 Given a number field k and a ∈ Z 0 , we can effectively determine if there exists

  13 with e = 31 to conclude thatM (K, [I]) > 1, because 179 = N K/Q (2x 2x -31) ≡ e mod f .For 190, similarly, take f = 190 = 2•5•19, and e = 152, we can conclude that M (K, [I]) > 1, given that 532 = N K/Q 3393x 2 + 19506x + 112138 ≡ e (mod f ).For 206, we can proceed likewise with f = 206 = 2 • 103 and e = 31 because we know that 443 = N K/Q (x 2 -3x -17) ≡ e (mod f ).

4. 4 . 2 Lemma 4 . 15 .

 42415 Other case Let f = l i=1 p i where p i ≡ 1 (mod 3) are different totally ramified primes of K. Let us write f Z K = f 3 . We assume that [f] = [I], where I is an ideal of minimal norm 2. If 0 < e < f is an integer such that neither ef , nor e are norms of elements of Z K then M (K, [I]) > 1.

Theorem 5 . 1 .

 51 We can list examples of quintic and sextic number fields admitting a nonprincipal norm-Euclidean class. The number field of signature (2, 1) and discriminant -54764 has a class number equal to 4 and a norm-Euclidean ideal class.

n (r 1

 1 , r 2 ) h K a minimal polynomial such that K = Q(x)

Theorem 5 . 3 . 4 .

 534 K = Q √ 2, √35admits a Euclidean ideal class but no norm-Euclidean ideal class.Proof. If we write K = Q(x) where x 4 -36x 2 + 289 = 0, we can consider the following ideal of minimal norm 2, Therefore, K admits no norm-Euclidean ideal class.

  -Euclidean ideal class. If K admits a norm-Euclidean ideal class C and I is an integral ideal of minimal norm, then C = [I]. Note that if K admits a norm-Euclidean ideal class, it is the class of any ideal of minimal norm. By contraposition, if two ideals of minimal norm are not in the same class, then K has no norm-Euclidean class.

Example 2.5. Take K = Q √ 229 , we have h K = 3 and

Table 2 :

 2 , section 6.4. Computations of some values of the Euclidean minimum of pure cubic fields.

	n	7	11	13	14	15	19
	M (K, [I])	19 10	9 4	479 147	140 23	13857 4052	9 8
	20	21	22	26	28	30	35
	36	24749	335	24	5	6859	181
	19	4976	66	19	4	1215	75
	37	38	42	52	73	84	90
	883	770729	682075	61	629127	2972191	1033977
	332	86762	63512	8	150124	250051	174968
	117	150	325	350	539		
	960584	491159	33403	301431	6669477		
	96905	73620	6864	66158	970472		

  The hypothesis "p i ≡ 1 (mod 3)" is only used to find an element α ∈ Z K such that N K/Q (α) ≡ e mod f , this hypothesis may be dropped if we provide such an element α. Apply Lemma 4.12 with values given in Table3, (a). This proves Proposition 4.14 except in the cases 74, 190 and 206. For these values, let us write x a root of X 3n in K.

	Therefore, m K	α γ	min {3f -e, e + 2f } f	> 2.
	Remark 4.13. Proposition 4.14. The fields corresponding to the values 47, 51, 74, 89, 154, 170, 175, 190,
	206, 233, 460, 476, 550, 1666, 1700 admit no norm-Euclidean ideal class.
	Proof.			

Table 3 :

 3 These fields admit no norm-Euclidean ideal class.

				(b) Other case.	
	n	f	e	n	f	e
	47 51	3 • 47 17	29 2	77 92	3 • 11 7 23 5
	89	89	5	132	11	5
	154 170 2 • 5 • 17 5 4 2 • 11 175 3 • 5 4 233 233 5	143 161 260 275	11 23 2 • 5 3 2 2 11 4
	460	23	2	350	5	2
	476 550 1666 1700	2 • 17 17 2 • 17 2 • 11	3 2 3 2	396 1900	11 5	4 2

  and K admits no norm-Euclidean ideal class. Apply Lemma 4.15 with values given in Table3, (b). For each value of n in the table, h K = 3. Besides, the corresponding values of f are not norms of elements of Z

	Proposition 4.16. The fields corresponding to the values 77, 92, 132, 143, 161, 260, 275,
	350, 396, 1900 admit no norm-Euclidean ideal class.
	Proof.

Table 4 :

 4 and e ∈ Remaining cases, x = 3 √ n.

	n	a	b	l	e	N
	78	x	3	54	24	78
	134	67	x	134	67	1139
	156	x	3	54	50	104
	163	32	x	326	168	484
	181	60	x	382	248	476
	244	x	2	8	4	20
	388	97	x	194	97	873

{0, 1, . . . , l -1} such that N K/Q (abu) ≡ e (mod l).

5.1 Totally complex quartic number fields

  

	With Algorithm 3.7, we can list 26 examples of non-principal number fields with a norm-
	Euclidean ideal class in

Table 5 .

 5 The first one, of discriminant 1521, was already given by Lenstra in[START_REF] Lenstra | Euclidean ideal classes[END_REF]. The best bound known for a quartic number field with a norm-Euclidean ideal class is h K 6, but all the examples listed here are such that h K = 2.

	disc K	h K M (K, [I]) 3025	2	11 16	4400	2	19 25
	1521	2					

Table 5 :

 5 Examples of non-principal totally imaginary quartic number fields with a norm-Euclidean ideal class. I is an ideal of minimal norm. If there is an ambiguity, a minimal polynomial is given below. The table is certainly incomplete.

Table 6 :

 6 Some new examples of non-principal number fields with a norm-Euclidean ideal class, I is an ideal of minimal norm of K.

	5	(5, 0)	3 4 2	3 +5x 2 -2x-1 x 4 -x 3 -3x 2 +12x-8 x 4 -x 3 -2x 2 +4x-24 x 5 -11x 3 -9x 2 +14x+ 9	-6848 -27620 -54764 4010276	4 9 7 8 7 8 3 4
		(3, 1) (1, 2)	2 2 3	x 5 -2x 4 +2x 3 -12x 2 + 21x -9 x 5 -x 4 -2x 2 + 4x -1 x 5 -2x 4 + 4x 3 -6x 2 + 3x + 1	-243219 41381 130925	4 9 4 9 3 4
	6	(2, 2) (0, 3)	2 2	x 6 -2x 5 -x 4 + 7x 3 -6x 2 + 3x -1 x 6 -3x 5 + 3x 4 -x 3 + 3x 2 -3x + 1	1387029 -273375	< 1 < 1
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