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, in which probabilities to stay on these lines are all equal. We also establish a result of convergence in distribution for this walk with suitable normalizations under more precise assumptions. In particular, our model proves to be, in many cases, even more superdiffusive than the random walks introduced by Campanino and Petritis.

Introduction

In this paper we consider a random walk (M n ) n starting from 0 on an oriented version of Z 2 . Let ε = (ε k ) k∈Z be a sequence of random variables with values in {-1, 1} and joint distribution µ. We assume that the k th horizontal line is entirely oriented to the right if ε k = 1, and to the left if ε k = -1. We suppose that the probabilities p k to stay on the k th horizontal line are given by a sequence of independent identically distributed random variables ω = (p k ) k∈Z (with values in (0, 1) and joint distribution η) and that the probability to go up or down are equal.

More precisely, given ε and ω, the process (M n = (M

(1) n , M (2) 
n )) n is a Markov chain satisfying M 0 = (0, 0) with transition probabilities given by : We also define the annealed probability P as follows: P(.) := P ε,ω (.)dη(ω) dµ(ε).

P ε,ω (M n+1 -M n = (ε M (2) n , 0) |M 0 , ..., M n ) = p M (2)
We denote by E and E ε,ω the expectations with regard to P and P ε,ω respectively.

Our model corresponds to a random walk in a two dimensional stratified medium with oriented horizontal layers and with random probability to stay on each layer.

The model with p k = 1/2 and with the ε k s iid and centered can be seen as a discrete version of a model introduced by G. Matheron and G. de Marsily in [START_REF] Matheron | Is transport in porous media always diffusive? A counterexample[END_REF] to modelize transport in a stratified porus medium. This discrete model appears in [START_REF] Bouchaud | Superdiffusion in Random Velocity Fields[END_REF] to simulate the Matheron and de Marsily model. It has also been introduced, separately, by mathematicians with motivations linked to quantum field theory or propagation on large networks (see respectively [START_REF] Campanino | Random walks on randomly oriented lattices[END_REF] and [START_REF] Campanino | Type transition of simple random walks on randomly directed regular lattices[END_REF] and references therein).

In [START_REF] Campanino | Random walks on randomly oriented lattices[END_REF], M. Campanino and D. Petritis proved that, when the p k 's are all equal, the behavior of the walk (M n ) n depends on the choice of the orientations (ε k ) k . First, they prove that the walk is recurrent when ε k = (-1) k (i.e. when the horizontal even lines are oriented to the right and the uneven to the left). Second, they prove that the walk is almost surely transient when the ε k s are iid and centered. These results have been recently improved in [START_REF] Campanino | Type transition of simple random walks on randomly directed regular lattices[END_REF]. Let us mention that extensions of this second model can be found in [START_REF] Guillotin-Plantard | Transient random walks on 2d-oriented lattices[END_REF][START_REF] Pène | Transient random walk in Z 2 with stationary orientations[END_REF], and that its Martin boundary is computed in [START_REF] De Loynes | Random walk on a directed graph and Martin boundary[END_REF].

In order to take into account the different nature of the successive layers of a stratified porus medium, it is natural to study the case where the p k 's are random instead of being all equal. In this paper, we prove that taking the p k 's random and i.i.d. can induce very different behaviors for the random walk.

First, we prove that under general hypotheses, the random walk is transient for every deterministic or random orientations, contrarily to the results obtained by Campanino and Petritis in [START_REF] Campanino | Random walks on randomly oriented lattices[END_REF] and [START_REF] Campanino | Type transition of simple random walks on randomly directed regular lattices[END_REF] for their model. Hence, even very small random perturbations of their (constant) p k 's transform their recurrent walks into transient ones.

Second, it was proved in [START_REF] Guillotin-Plantard | A functional limit theorem for a 2d-random walk with dependent marginals[END_REF] that when the p k 's are all equal, the random walk is superdiffusive, and that the horizontal position at time n is, asymptotically, of order n 3/4 . This was conjectured in [START_REF] Matheron | Is transport in porous media always diffusive? A counterexample[END_REF] and was one main motivation for the introduction of this model. We prove that, depending on the law of p 0 , our model can be even more superdiffusive, with horizontal position at time n of order n δ , where δ can take all the values in [3/4, 1).

More precisely, our results are the following. We start by stating our theorem about transience. Theorem 1. Let (p k ) k be a sequence of independent identically distributed random variables. Suppose here that p 0 is non-constant and that E[(1 -p 0 ) -α ] < ∞ (for some α > 1). Then, for every deterministic or random sequence (ε k ) k , the random walk (M n ) n is transient for almost every ω.

We now give a functional theorem under more precise hypotheses. In particular, we will assume that p 0 1-p 0 is integrable and that the distribution of p 0 1-p 0 -E p 0 1-p 0 belongs to the normal domain of attraction of a strictly stable distribution G β of index β ∈ (1, 2], which means that

P n -1/β n k=1 p k 1 -p k -E p 0 1 -p 0 ≤ x → n→+∞ G β (x), x ∈ R, (1) 
the characteristic function ζ β of G β being of the form

ζ β (θ) := exp[-|θ| β (A 1 + iA 2 sgn(θ))], θ ∈ R, (2) 
with

A 1 > 0 and |A -1 1 A 2 | ≤ | tan(πβ/2)|. Notice that this is possible iff A 2 = A 1 tan(πβ/2) (since p 0
1-p 0 ≥ 0 a.s., see e.g. [12, thm 2.6.7]).

If β ∈ (1, 2), we consider two independent right continuous stable processes (Z x , x ≥ 0) and (Z -x , x ≥ 0), with characteristic functions

E(e iθZt ) = exp[-A 1 |t||θ| β ], t ∈ R, θ ∈ R.
If β = 2, we denote by Z a two-sided standard Brownian motion. We also introduce a standard Brownian motion (B t , t ≥ 0), and denote by (L t (x), x ∈ R, t ≥ 0) the jointly continuous version of its local time. We assume that Z and B are defined in the same probability space and are independent processes. We now define, as in [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF], the continuous process

∆ t := R L t (x) dZ x , t ≥ 0.
We prove the following result.

Theorem 2. Let (p k ) k be a sequence of independent identically distributed random variables with values in (0, 1). Suppose here that E p 0 1-p 0 < ∞ and that the distribution of p 0 1-p 0 -E p 0 1-p 0 belongs to the normal domain of attraction of a strictly stable distribution of index β ∈ (1, 2] (i.e. that we have (1) and ( 2)).

We also assume that (ε k ) k satisfies one of the following hypotheses :

(a) for every k, ε k = (-1) k , (b) (ε k ) k is a sequence of independent identically distributed centered random variables with values in {±1}; (ε k ) k is independent of (p k ) k .
Then, setting δ := 1 2 + 1 2β , the sequence of processes

n -δ M (1) nt , n -1/2 M (2) nt t≥0 n
converges in distribution under the probability P (in the space of Skorokhod D([0; +∞), R 2 )) to (γ -δ σ∆ t , γ -1/2 B t ) t≥0 with γ := 1 + E p 0 1-p 0 and with :

* σ = V ar p 0 1-p 0 1/2
in case (a) with β = 2,

* σ = E p 0 1-p 0 2 1/2 in case (b) with β = 2, * σ = 1 in cases (a) or (b) with β ∈ (1, 2).
We remind that p 0 1-p 0 has a finite variance if β = 2 (see e.g. [12, Thm 2.6.6.]), hence σ is finite in all cases.

The proof of this second result is based on the proof of the functional limit theorem established by N. Guillotin and A. Le Ny [START_REF] Guillotin-Plantard | A functional limit theorem for a 2d-random walk with dependent marginals[END_REF] for the walk of M. Campanino and D. Petritis (with (p k ) k constant and (ε k ) k centered, independent and identically distributed).

It may be possible that the transience remains true for every non degenerate distribution of the p k 's on (0, 1). Indeed, roughly speaking, taking the p k 's closer to one should make the random walk even more transient; however this is just an intuition and not a mathematical evidence. We prove our Theorem 1 under a very general moment condition, which covers all the cases of our Theorem 2. In particular, the most superdiffusive cases, with δ > 3/4, are obtained when the support of 1/(1 -p 0 ) is not compact.

The proof of our first result is built from the proof of [START_REF] Campanino | Random walks on randomly oriented lattices[END_REF]Thm 1.8] with many adaptations. The idea is to prove that, when (ε k ) k∈Z Z is a fixed sequence of orientations, that is when µ is a Dirac measure, k≥1 P(M k = (0, 0)) < +∞.

(3)

In the model we consider here, contrarily to the models envisaged in [START_REF] Campanino | Random walks on randomly oriented lattices[END_REF], the second coordinate of (M n ) n is not a random walk but it is a random walk in a random environment, since the probability to stay on a horizontal line depends on the line, which complicates the model. Even if a central limit theorem and functional limit theorem have been established in [START_REF] Heyde | The asymptotic behavior of a random walk on a dual-medium lattice[END_REF] and in [START_REF] Heyde | On the asymptotic behavior of random walks on an anisotropic lattice[END_REF] for M

(2)

n , the local limit theorem for M

(2) n

has not already been proved, to the extent of our knowledge. Moreover, in Theorem 1 we do not assume that the distribution of p 0 1-p 0 belongs to the domain of attraction of a stable distribution. For these reasons, it does not seam simple to make a precise estimation of P(M n = (0, 0)) as it has been done in [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF]. We also mention that the random walk (M n ) n is not reversible.

It will be useful to observe that under P ε,ω and P, (M

(2)
Tn ) n is a simple random walk (S n ) n on Z, where the T n 's are the times of vertical displacement :

T 0 := 0; ∀n ≥ 1, T n := inf{k > T n-1 : M (2) k = M (2)
k-1 }. We will use several times the fact that there exists M > 0 such that, for every n ≥ 1, we have

P(S n = 0) ≤ M n -1 2
. Now, let us write X n the first coordinate of M Tn . We observe that

X n+1 -X n = ε Sn ξ n ,
where ξ n := T n+1 -T n -1 corresponds to the duration of the stay on the horizontal line S n after the n-th change of line. Moreover, given ω = (p k ) k∈Z , ε = (ε k ) k∈Z Z and S = (S k ) k , the ξ k 's are independent and with distribution given by P ε,ω (ξ k = m|S) = (1 -p S k )p m S k for every k ≥ 0 and m ≥ 0. With these notations, we have

X n = n-1 k=0 ε S k ξ k .
This representation of (M Tn ) n will be very useful in the proof of both the results.

Estimate of the variance

To point out the difference between our model and the model with (p k ) k constant considered by M. Campanino and D. Petritis in [START_REF] Campanino | Random walks on randomly oriented lattices[END_REF], we start by estimating the variance of X 2n under the probability P for these two models in the particular case when ε k = (-1) k for every k ∈ Z and when (1 -p 0 ) -1 is square integrable.

Proposition 3. Let ε k = (-1) k for every k ∈ Z. (1) If the p k 's do not depend on k, then V ar(X 2n ) = E 2p 0 (1-p 0 ) 2 n.
(2) If the (1-p k ) -1 's are iid, square integrable with positive variance, then there exists C > 0 such that V ar(X 2n ) ∼ n→+∞ Cn 3/2 .

Proof of Proposition 3. We observe that

E ε,ω [ξ k |S] = p S k 1 -p S k and V ar ε,ω (ξ k |S) = p S k (1 -p S k ) 2 .
Moreover, S is independent of ω under P, hence E(X 2n ) = 0. We have

V ar(X 2n ) = n-1 k, =0 E [(ξ 2k -ξ 2k+1 ) (ξ 2 -ξ 2 +1 )] = n-1 k=0 E (ξ 2k -ξ 2k+1 ) 2 + 2 0≤k< ≤n-1 E [(ξ 2k -ξ 2k+1 ) (ξ 2 -ξ 2 +1 )] = n-1 k=0 E p 0 (1 -p 0 ) 2 + p 1 (1 -p 1 ) 2 + p 0 1 -p 0 - p 1 1 -p 1 2 + 2 n-1 k=1 (n -k)E [(ξ 0 -ξ 1 ) (ξ 2k -ξ 2k+1 )] = Cn + 2 n-1 k=1 (n -k)E p S 0 1 -p S 0 - p S 1 1 -p S 1 p S 2k 1 -p S 2k - p S 2k+1 1 -p S 2k+1
.

This gives the result in case [START_REF] Billingsley | Convergence of probability measures[END_REF]. Now, to prove the result in case (2), we notice that, since p y and p y are independent as soon as y = y , we have

E p 0 1 -p 0 - p S 1 1 -p S 1 p S 2k 1 -p S 2k - p S 2k+1 1 -p S 2k+1 = E p 0 1 -p 0 p S 2k 1 -p S 2k + p S 1 1 -p S 1 p S 2k+1 1 -p S 2k+1 -2E p 0 1 -p 0 2 = 2 E p 0 1 -p 0 p S 2k 1 -p S 2k -E p 0 1 -p 0 2 = 2 E p 2 0 (1 -p 0 ) 2 -E p 0 1 -p 0 2 P(S 2k = 0) = 2V ar p 0 1 -p 0 P(S 2k = 0).
We conclude as H. Kesten and F. Spitzer did in [14, p. 6], using the fact that P(S 2k = 0) ∼ ck -1/2 (as k goes to infinity) for some c > 0.

Proof of Theorem 1 (transience)

We come back to the general case. It is enough to prove the result for any fixed (ε k ) k . Let (ε k ) k∈Z be some fixed sequence of orientations. Hence µ is a Dirac measure on {-1, 1} Z Z . Without any loss of generality, we assume throughout the proof of Theorem 1 that ε 0 = 1 and α ≤ 2. We have

k≥1 P(M k = (0, 0)) = n≥1 P(S 2n = 0 and X 2n ≤ 0 ≤ X 2n+1 ).
Hence, to prove the transience, it is enough to prove that n≥1

P(S 2n = 0 and X 2n ≤ 0 ≤ X 2n+1 ) < +∞. ( 4 
)
This sum is divided into 8 terms which are separately estimated in Lemmas 4, 5, 6, 7, 8, 11, 12 and 13 provided δ 0 , δ 1 , δ 2 , δ 3 are well chosen. One way to choose these δ i so that they satisfy simultaneously the hypotheses of all these lemmas is given at the end of this section.

For every y ∈ Z and m ∈ N, we define N m (y) := #{k = 0, ..., m -1 : S k = y}. We will use the fact that X 2n = S 2n + D 2n with

D 2n := y∈Z ε y p y 1 -p y N 2n (y) and S 2n := 2n-1 k=0 ε S k ξ k - p S k 1 -p S k .
Roughly speaking, the idea of the proof is that X 2n ≤ 0 ≤ X 2n+1 implies that X 2n cannot be very far away from 0, which means that D 2n and S 2n should be of the same order, but this is false with a large probability. More precisely, we will prove that, with a large probability, we have

|D 2n | > n 3 4 -δ 3 and |S 2n | < n 1 4 + 1
2α +υ for small δ 3 > 0 and υ > 0 (see the definition of B n and the end of the proof of Lemma 6). Now let us carry out carefully this idea.

Let n ≥ 1. Following [START_REF] Campanino | Random walks on randomly oriented lattices[END_REF], we consider δ 1 > 0 and δ 2 > 0 and we define :

A n := max 0≤k≤2n |S k | ≤ n 1 2 +δ 1 and max y∈Z N 2n (y) < n 1 2 +δ 2 .
Our first lemma is standard, we give a proof for the sake of completeness.

Lemma 4.

n≥0

P(A c n ) < +∞. (5) 
Proof. Let p > 1. Thanks to Doob's maximal inequality and since

E(|S n | p ) = O(n p/2 ), we have E[max 0≤k≤2n |S k | p ] = O(n p 2
) and so, by the Chebychev inequality,

P max 0≤k≤2n |S k | > n 1 2 +δ 1 ≤ E[max 0≤k≤2n |S k | p ] n p( 1 2 +δ 1 )
= O(n -pδ 1 ).

According to [14, Lem. 1], we also have

max y E[N 2n (y) p ] = O(n p 
2 ) and hence

P max y N 2n (y) > n 1 2 +δ 2 ≤ 2n y=-2n P(N 2n (y) > n 1 2 +δ 2 ) = O(n 1-pδ 2 ).
The result follows by taking p large enough.

Let δ 0 > 0 and set

E 0 (n) := {p 0 ≤ 1 -1/n 1 2α +δ 0 } . We have Lemma 5. n≥0 P(S 2n = 0, E 0 (n) c ) < +∞. (6) 
Proof. Indeed, since S is independent of (p k ) k∈Z Z , we have

P(S 2n = 0, E 0 (n) c ) ≤ M √ n P 1 1 -p 0 > n 1 2α +δ 0 ≤ M n 1+δ 0 α E 1 1 -p 0 α whose sum is finite.
We also consider the conditional expectation of X 2n with respect to (ω, (S p ) p ) which is equal to D 2n = y∈Z εypy 1-py N 2n (y). We introduce δ 3 > 0 and

B n := |D 2n | > n Let c n := n 1 α ( 1 2 +δ 1 )+δ 0 and E 1 (n) := ∀y ∈ {-n 1/2+δ 1 , n 1/2+δ 1 }, 1 1 -p y ≤ c n .
Since p 0 ∈ (0, 1) a.s., there exist 0 < a < b < 1 such that P(a < p 0 < b) =: γ 0 > 0. Let Λ n := {k ∈ {0, . . . , 2n -1}, a < p S k < b}, P := {y ∈ Z Z, a < p y < b}, and

ζ y := 1 {a<py<b} , y ∈ Z Z. We have #Λ n = y∈Z Z ζ y N 2n (y) = y∈P N 2n (y). Let E 2 (n) := {#Λ n ≥ γ 0 n} . Define V 2n := 2n-1 k=0 ξ k - p S k 1-p S k 2 1/2 and E 3 (n) := V 2 2n ≤ n d+δ 0 , with d := 1 2 + 1 α + 3δ 0 + 2δ 1 α + δ 2 and E 4 (n) := 2n-1 k=0 1 (1 -p S k ) 2 ≤ n d . Lemma 6. If δ 3 + δ 1 α + δ 2 2 + 3δ 0 < 1 2 -1 2α , then we have n∈N P S 2n = 0; X 2n ≤ 0 ≤ X 2n+1 , A n , B n , ∩ 3 i=0 E i (n) < ∞. (7) 
Proof. Uniformly on E 0 (n) ∩ E 1 (n), we have

P ε,ω (S 2n = 0 and X 2n ≤ 0 ≤ X 2n+1 , A n , B n , E 2 (n), E 3 (n)) ≤ k≥0 P ε,ω (S 2n = 0 and X 2n = -k, A n , B n , E 2 (n), E 3 (n))(1 -n -1/(2α)-δ 0 ) k ≤ n 1/(2α)+2δ 0 k=0 P ε,ω (S 2n = 0 and X 2n = -k, A n , B n , E 2 (n), E 3 (n)) + O(n -2 ) ≤ P ε,ω (S 2n = 0 and -n 1/(2α)+2δ 0 ≤ X 2n ≤ 0, A n , B n , E 2 (n), E 3 (n)) + O(n -2 ). (8) 
In order to apply an inequality due to S.V. Nagaev [START_REF] Nagaev | On large deviations of a self-normalized sum[END_REF], we define

X k := ε S k ξ k - p S k 1-p S k , recall that S 2n = 2n-1 k=0 X k , and introduce B 2n := E ε,ω S 2 2n |S 1/2 = 2n-1 j=0 p S j (1-p S j ) 2 1/2 . We have B 2 2n ≥ a y : py≥a N 2n (y) (1 -p y ) 2 . Let C(2n) := 2n-1 k=0 E ε,ω X k 3 |S . On A n ∩ E 1 (n) ∩ E 2 (n), we have y : py<a N 2n (y) (1 -p y ) 2 ≤ 2n -#Λ n (1 -a) 2 ≤ 2 -γ 0 γ 0 #Λ n (1 -a) 2 ≤ 2 -γ 0 γ 0 y : py≥a N 2n (y) (1 -p y ) 2 (9) 
and so

C(2n) ≤ y 16N 2n (y) (1 -p y ) 3 ≤ y 16N 2n (y) (1 -p y ) 2 c n ≤ 32 γ 0 y : py≥a N 2n (y) (1 -p y ) 2 c n . Let L 2n := C(2n)/B 3 2n . On A n ∩ E 1 (n) ∩ E 2 (n), we have L 2n ≤ 32 γ 0 a 3/2   y : py≥a N 2n (y) (1 -p y ) 2   -1/2 c n ≤ 32 γ 0 a 3/2 1 -a √ γ 0 n c n ≤ 32(1 -a) (γ 0 a) 3/2 n -1 2 + 1 2α + δ 1 α +δ 0 ≤ n -2δ 0 , ( 10 
) if n is large enough, since δ 1 α + 3δ 0 < 1 2 -1 2α .
Let us recall that

V 2n = 2n-1 k=0 X 2 k 1/2
. We can now apply Nagaev ([18], Thm 1), which gives uniformly on

A n ∩ E 1 (n) ∩ E 2 (n), P ε,ω (|S 2n | ≥ n δ 0 V 2n |S) ≤ 2 n 2δ 0 4 log 2 + 1 exp - n 2δ 0 4 (1 -c L 2n n δ 0 ) + 2 exp - c L 2 2n = O(exp(-n δ 0 )) (11) 
where c > 0 and c > 0 are universal constants. We recall that

X 2n = 2n-1 k=0 ε S k ξ k = S 2n +D 2n . We have, for large n, on A n ∩ B n ∩ E 1 (n) ∩ E 2 (n), P ε,ω (-n 1 2α +2δ 0 ≤ X 2n ≤ 0, E 3 (n)|S) ≤ P ε,ω |X 2n -D 2n | ≥ n 3 4 -δ 3 -n 1 2α +2δ 0 , E 3 (n)|S ≤ P ε,ω (|S 2n | ≥ n δ 0 n (d+δ 0 )/2 , E 3 (n)|S) ≤ P ε,ω (|S 2n | ≥ n δ 0 V 2n |S), since 1 2α + 2δ 0 < 3 4 -δ 3 and since δ 3 + δ 1 α + δ 2 2 + 3δ 0 < 1 2 -1 2α .
Integrating this proves the lemma, by ( 8) and [START_REF] Heyde | The asymptotic behavior of a random walk on a dual-medium lattice[END_REF].

Lemma 7. n≥0 P(E 2 (n) c ) < +∞. ( 12 
)
Proof. According to [7, Thm 1.3] applied twice with u = γ 0 /2 : first with the scenery (γ 0 -1 {a<p 2y <b} ) y∈Z and with the strongly aperiodic Markov chain (S 2n /2) n≥0 , and second with the scenery (γ 0 -1 {a<p 2y+S 1 <b} ) y∈Z and with the strongly aperiodic Markov chain ((S 2n+1 -S 1 )/2) n≥0 conditionally on S 1 , we get the existence of c 1 > 0 such that, for every n ≥ 1, we have

P(E 2 (n) c ) ≤ exp -c 1 n 1 3 . Lemma 8. We have n∈N P(E 4 (n) \ E 3 (n)) < ∞. ( 13 
)
Proof. We recall that, taken ω and S, ξ k -

p S k 1-p S k y,k
is a sequence of independent, centered random variables. For every integer ν ≥ 2, there exists a constant Cν > 0 such that

E ε,ω (ξ k - p S k 1-p S k ) ν |S ≤ Cν 1 1-p S k ν P-almost surely. Consequently, for every N ≥ 1, there exists a constant C N > 0 such that for all 2 ≤ ν ≤ 2N , E ε,ω (ξ k - p S k 1-p S k ) ν |S ≤ C N 1-p S k ν .
Hence, for every n ≥ 1 and N ≥ 1, we have on E 4 (n) :

E ε,ω [(V 2 2n ) N |S] = 2n-1 k 1 =0 2n-1 k 2 =0 • • • 2n-1 k N =0 E ε,ω N i=1 X 2 k i |S = 2n-1 k 1 =0 2n-1 k 2 =0 • • • 2n-1 k N =0 E ε,ω   2n-1 j=0 X 2θ j (k 1 ,...k N ) j |S   ≤ 2n-1 k 1 =0 2n-1 k 2 =0 • • • 2n-1 k N =0 2n-1 j=0 C N 1 -p S j 2θ j (k 1 ,...,k N ) = (C N ) 2N 2n-1 k=0 1 (1 -p S k ) 2 N ≤ (C N ) 2N n dN where θ j (k 1 , k 2 , . . . , k N ) := #{1 ≤ i ≤ N, k i = j}. Consequently, on E 4 (n), P ε,ω (V 2 2n > n d+δ 0 |S) ≤ n -(d+δ 0 )N E ε,ω (V 2 2n ) N |S ≤ (C N ) 2N n -δ 0 N = O(n -2 )
by taking N large enough. Integrating this on E 4 (n) yields the result.

Lemma 9. We have on E 2 (n), uniformly on ω, S and on k ∈ Z:

P ε,ω (X 2n = -k | S ) = O ln(n)n -1 . (14) 
Proof. On E 2 (n), we have :

P ε,ω (X 2n = -k| S) = 1 2π π -π E ε,ω e itX 2n | S e ikt dt ≤ 1 2π π -π E ε,ω e itX 2n | S dt ≤ 1 π π 0 y∈P (χ py (ε y t)) N 2n (y) with χ p (t) := E ε,ω [e itξ 0 |p 0 = p] = 1 -p 1 -pe it = 1 -p (1 + p 2 -2p cos(t)) 1 2 .
Since χ p (t) is decreasing in p and since 0 < a < p y < b < 1 for y ∈ P , there exist 0 < β < π/2 and c > 0 such that for a.e. ω, ∀y ∈ P, ∀t ∈ [0, β], χ py (t) ≤ 1 -a

(1 + a 2 -2a cos(t)) 1 2 
≤ exp(-ct 2 ).

Let us define a

n := 2 ln(n)/(cγ 0 n). Since #Λ n = y∈P N 2n (y) ≥ γ 0 n on E 2 (n), we have β an y∈P (χ py (t)) N 2n (y) dt ≤ β an exp(-ct 2 #Λ n ) dt ≤ β an exp(-ct 2 γ 0 n) dt ≤ n -1 on E 2 (n). Moreover, an 0 y∈P (χ py (t)) N 2n (y) dt ≤ a n and π β y∈P (χ py (t)) N 2n (y) dt ≤ π β y∈P 1 -p y 1 -p y cos(β) N 2n (y) dt ≤ π 1 -a 1 -a cos(β) γ 0 n/2
, since p > a > 0 for p ∈ P .

Lemma 10. Suppose that δ := δ 3 -δ 2 2 -δ 1 > 0 and δ 3 + δ 2 < 1 4 . Then, uniformly on p 0 and (S k ) k ,

P(A n \ B n |S, p 0 ) = O n -δ .
Proof. Up to an enlargement of the probability space, we consider a centered gaussian random variable G with variance n 3 2 -2δ 3 independent of (ω, S). We have Let χ be the characteristic function of p 0 1-p 0 . Since p 0 is non-constant, there exist β > 0 and c > 0 such that 1 ∀u ∈ [-β; β], | χ(u)| ≤ e -cu 2 . Consequently,

P(|D 2n | ≤ n 3 4 -δ 3 |S, p 0 )P(|G| ≤ n 3 4 -δ 3 ) ≤ P |D 2n + G| ≤ 2n
P |D 2n + G| ≤ 2n 3 4 -δ 3 |S, p 0 = 2n 3 4 -δ 3 π R sin(2tn 3 4 -δ 3 ) 2tn 3 4 -δ 3 E[e itD 2n |S, p 0 ]E[e itG ] dt = 2n 3 4 -δ 3 π R sin(2tn 3 4 -δ 3 ) 2tn 3 4 -δ 3 e it p 0 1-p 0 N 2n (0) y =0 χ (ε y N 2n (y)t) e -t 2 2 n 3 2 -2δ 3 dt ≤ 2n 3 4 -δ 3 π R y =0 | χ (ε y N 2n (y)t)| e -t 2 2 n 3 2 -2δ 3 dt.
Let δ 4 > 0 be such that δ 5 := 1 4 -δ 3 -δ 2 -δ 4 > 0 and let b n := n δ 4 +δ 3 -3 4 . On the one hand, we have

I 1 := {|t|> βbn} y =0 | χ (ε y N 2n (y)t)| e -t 2 2 n 3 2 -2δ 3 dt ≤ {|t|> βbn} e -t 2 2 n 3 2 -2δ 3 dt ≤ n δ 3 -3 4 {|s|> βn δ 4 } e -s 2 /2 ds ≤ 2n δ 3 -3 4 e -β2 n 2δ 4 /2 .
On the other hand, we will estimate the following quantity on A n : Lemma 3.7.5,p. 58] to the random variable Y := p 0 1-p 0 -p 1 1-p 1 which is not identically equal to 0 and whose characteristic function is | χ| 2 , we get that for every r > 0 and every t ∈ -

I 2 := {|t|≤ βbn} y =0 | χ (ε y N 2n (y)t)| e -t 2 2 n 3 2 -2δ 3 dt. Let us define F n := {y = 0 : N 2n (y) ≥ n 1/2-δ 1 /2} and ρ n := #F n . On A n , we have 2n -n 1/2+δ 2 ≤ y =0 N 2n (y) ≤ ρ n n 1/2+δ 2 + (2n 1/2+δ 1 -ρ n ) n 1/2-δ 1 2 and hence ρ n ≥ n 1/2-δ 2 /2 (if 1 Applying [16,
1 r ; 1 r , |1 -| χ(t)| 2 | ≥ t 2 3 E[Y 2 1 {|Y |≤r} ].
We take β such that c :

= 1 6 E[Y 2 1 {|Y |≤ β-1 } ] > 0. For every u ∈ [-β; β], we have |1 -| χ(u)|| ≥ 1 2 |1 -| χ(u)| 2 | ≥ cu 2 and so | χ(u)| ≤ 1 -cu 2 .
n is large enough). Therefore, on A n , we have α n := y∈Fn N 2n (y) ≥ n 1-δ 2 -δ 1 /4. Now, using the Hölder inequality, we have

I 2 ≤ y∈Fn {|t|≤ βbn} | χ (ε y N 2n (y)t)| αn N 2n (y) dt N 2n (y) αn ≤ sup y∈Fn {|t|≤ βbn} | χ (ε y N 2n (y)t)| αn N 2n (y) dt ≤ b n sup y∈Fn |v|≤ β | χ (ε y N 2n (y)vb n )| αn N 2n (y) dv .
Let us notice that, if |v| ≤ β, we have on A n ,

|ε y N 2n (y)vb n | ≤ βn 1/2+δ 2 n δ 4 +δ 3 -3 4 = βn -δ 5 ≤ β,
since δ 5 > 0. Hence, on A n , we have

I 2 ≤ b n sup y∈Fn {|v|≤ β} e -c(N 2n (y)) 2 v 2 n 2δ 4 +2δ 3 -3 2 αn N 2n (y) dv ≤ b n sup y∈Fn {|v|≤ β} e -cN 2n (y)v 2 n 2δ 4 +2δ 3 -1 2 -δ 2 -δ 1 /4 dv ≤ sup y∈Fn b n n -δ 3 -δ 4 + δ 2 +δ 1 2 + 1 4 N 2n (y) R e -cs 2 /4 ds ≤ √ 2n -3 4 +δ 1 + δ 2 2 R
e -cs 2 /4 ds.

Hence, uniformly on A n and on p 0 , we have

P(A n \ B n |(S k ) k , p 0 ) = O(n δ 1 + δ 2 2 -δ 3 ).
Lemma 11. Under the same hypotheses, we have

n P(S 2n = 0, X 2n ≤ 0 ≤ X 2n+1 ; A n ∩ E 2 (n) \ B n ) < ∞.
Proof. According to Lemma 9, Lemma 10 and since

P(S 2n = 0) = O(n -1/2 ) and E[1/(1 -p 0 )] < ∞, we have E ∞ k=0 P ε,ω (S 2n = 0, X 2n = -k, A n ∩ E 2 (n) \ B n )p k 0 = E ∞ k=0 p k 0 1 {S 2n =0} 1 (An\Bn)∩E 2 (n) P ε,ω (X 2n = -k|S) ≤ C (ln n)n -1 E 1 1 -p 0 1 {S 2n =0} P(A n \ B n |S, p 0 ) = O(n -1-δ √ ln n). (15) 
Lemma 12. If δ 0 α < δ 1 , we have

n P (S 2n = 0, X 2n ≤ 0 ≤ X 2n+1 , E 4 (n) c , A n , E 2 (n), E 0 (n)) < +∞. (16) 
Proof. We notice that on E 0 (n) ∩ A n ,

P(E 4 (n) c |S, p 0 ) ≤ n -dα/2 E      n 1/2+δ 1 y=-n 1/2+δ 1 1 (1 -p y ) 2 N 2n (y)   α/2 S, p 0    ≤ n -dα/2 E   |y|≤n 1/2+δ 1 ,y =0 1 (1 -p y ) α N α/2 2n (y) + 1 (1 -p 0 ) α N α/2 2n (0) S, p 0   (17) ≤ n -dα/2 2n 1/2+δ 1 E 1 (1 -p 0 ) α + n 1 2 +δ 0 α n (1/2+δ 2 )α/2 = O(n -3δ 0 α/2 ), (18) 
since α ≤ 2, δ 0 α < δ 1 and d = 1 2 + 1 α + 2δ 1 α + 3δ 0 + δ 2 .
Similarly as in [START_REF] De Loynes | Random walk on a directed graph and Martin boundary[END_REF], this yields

E ∞ k=0 P ε,ω (S 2n = 0, X 2n = -k, E 4 (n) c ∩ A n ∩ E 2 (n) ∩ E 0 (n))p k 0 = O(n -1-3δ 0 α/2 √ ln n).
Hence we have

P (S 2n = 0, X 2n ≤ 0 ≤ X 2n+1 , E 4 (n) c , A n , E 2 (n), E 0 (n)) = O(n -1-δ 0 α/2 √ ln n). Lemma 13. If δ 0 < 1 2 (1 -1 α ), we have n P (S 2n = 0, X 2n ≤ 0 ≤ X 2n+1 , E 2 (n) \ E 1 (n)) < ∞.
Proof. Notice that on { 1 1-p 0 ≤ c n }, we have

P(E 1 (n) c |p 0 ) ≤ 2n 1/2+δ 1 P 1 1 -p 0 > c n ≤ 2n 1/2+δ 1 c α n E 1 1 -p 0 α = O(n -δ 0 α ).
Similarly as in [START_REF] De Loynes | Random walk on a directed graph and Martin boundary[END_REF], since E[1/(1 -p 0 )] < ∞, for δ 0 small enough, we have

E ∞ k=0 P ε,ω (S 2n = 0, X 2n = -k, E 2 (n) \ E 1 (n))p k 0 = E ∞ k=0 p k 0 1 {S 2n =0} 1 E 2 (n)\E 1 (n) P ε,ω (X 2n = -k|S) ≤ C (ln n)n -1 n -1/2 E ∞ k=0 P(E 1 (n) c |p 0 )1 {(1-p 0 ) -1 ≤cn} p k 0 + E 1 1 -p 0 1 {(1-p 0 ) -1 >cn} = O(n -1-cδ 0 √ ln n),
where we can use Hölder's inequality, to deal with the second term of the third line, since α > 1 and δ 0 < 1 2 (1 -1 α ).

We take δ 3 ∈ 0, 1 2 -1 2α (since α > 1) and then δ 1 > 0 and δ 2 > 0 such that

δ 1 < 1 6 , δ 2 < 1 6 , δ 2 < 1 4 -δ 3 , δ 1 α + δ 2 2 < 1 2 - 1 2α -δ 3 , δ 1 + δ 2 2 < δ 3
and finally δ 0 such that

δ 0 < 1 8 , δ 0 α < δ 1 and δ 1 α + δ 2 2 + 3δ 0 < 1 2 - 1 2α -δ 3 .
Combining all the previous lemmas with these choices for δ 0 , δ 1 , δ 2 , δ 3 , we get (4), which proves Theorem 1.

Proof of Theorem 2 (functional limit theorem)

We assume that (p k ) k satisfies the conditions of Theorem 2.

Lemma 14. Let (ε k ) k be a (fixed or random) sequence with values in {-1; 1}. Let (p k ) k be as in Theorem 2. Then, under P, the sequence of random variables

    n -δ nt -1 k=0 ε S k ξ k - p S k 1 -p S k , 0   t≥0   n converges in distribution (in the space of Skorokhod D([0; +∞), R 2 )) to (0, 0) t≥0 .
Proof. We first notice that it is enough to prove that

N -δ sup 0≤n≤N n-1 k=0 ε S k ξ k - p S k 1 -p S k → N →+∞ 0 in probability.
Let us define

Ẽ4 (N, v) := N -1 k=0 1 (1 -p S k ) 2 ≤ N 1 2 + 1 β +v .
We proceed as in formula [START_REF] Matheron | Is transport in porous media always diffusive? A counterexample[END_REF] (with a conditioning with respect to S only, and α < β but close enough to β) to prove that P[( Ẽ4 (N, v)) c |S] ≤ N -cv on A N for c > 0 and N large enough. Moreover, P(A c N ) → N →+∞ 0 by Lemma 4, which gives lim

N →+∞ P Ẽ4 (N, v) = 1. Now, taken (ε, S, ω), n-1 k=0 ε S k ξ k - p S k 1-p S k n
is a martingale. Hence, according to the maximal inequality for martingales we have, for every θ > 0,

P ε,ω   sup n≤N n-1 k=0 ε S k ξ k - p S k 1 -p S k 2 ≥ θ 2 N 2δ S   ≤ 2 sup n≤N E ε,ω n-1 k=0 ξ k - p S k 1-p S k 2 |S θ 2 N 2δ ≤ 2 N -1 k=0 1 (1-p S k ) 2 θ 2 N 2δ ≤ 2N 1 2 + 1 β +v θ 2 N 2δ = 2N -1 2 +v θ -2 , on Ẽ4 (n, v), since δ = 1 2 + 1 2β
. Hence, we get

P sup n≤N n-1 k=0 ε S k ξ k - p S k 1 -p S k ≥ θN δ ≤ 1 -P( Ẽ4 (N, v)) + 2N -1 2 +v θ -2 .
From this we conclude that

lim n→+∞ P sup n≤N n-1 k=0 ε S k ξ k - p S k 1-p S k ≥ θN δ = 0.
The next lemma follows from the proof of [START_REF] Guillotin-Plantard | A functional limit theorem for a 2d-random walk with dependent marginals[END_REF]Thm 4] when β = 2. The proof of the general case β ∈ (1, 2] is postponed to Section 5.

Lemma 15. Let β ∈ [START_REF] Billingsley | Convergence of probability measures[END_REF][START_REF] Bouchaud | Superdiffusion in Random Velocity Fields[END_REF]. Let S = (S n ) n≥0 be a random walk on Z starting from S 0 = 0, with iid centered square integrable and non-constant increments and such that gcd{k : P(S 1 = k) > 0} = 1. Let (ε y ) y∈Z be a sequence of iid random variables independent of S with symmetric distribution and such that (n

-1 β n k=1 εk ) n converges in distribution to a random variable Y with stable distribution of index β. Then, the following convergence holds in distribution in D([0, +∞), R 2 )   n -δ nt -1 k=0 εS k , n -1 2 S nt   t≥0 -→ n→+∞ ( ∆t , Bt ) t≥0 , with δ = 1 2 + 1 2β
, where ( Bt ) t is a Brownian motion such that V ar( B1 ) = V ar(S 1 ) and with ( Lt (x)) t,x the jointly continuous version of its local time and where

∆t := R Lt (x) d Zx ,
with Z independent of B given by two independent right continuous stable processes ( Zx ) x≥0 and ( Z-x ) x≥0 with stationary independent increments such that Z1 , Z-1 have the same distribution as Y . Now, we prove a functional limit theorem for (X nt , S nt ) from which we will deduce our theorem 2.

Proposition 16. Under the assumptions and with the notations of Theorem 2, the sequence of processes n -δ X nt , n -1/2 S nt t≥0 n converges in distribution under P (in the space of Skorokhod D([0; +∞), R 2 )) to (σ∆ t , B t ) t≥0 .

Proof of Proposition 16. We observe that X n can be rewritten

X n = n-1 k=0 ε S k ξ k - p S k 1 -p S k + n-1 k=0 ε S k p S k 1 -p S k .
According to Lemma 14, it is enough to prove, under P, the convergence [START_REF] Pène | Transient random walk in Z 2 with stationary orientations[END_REF] in distribution in D([0; +∞), R 2 ).

    n -δ nt -1 k=0 ε S k p S k 1 -p S k , n -1/2 S nt   t≥0   n → n→+∞ (σ∆ t , B t ) t≥0 ( 
In case (b), εy := ε y py 1-py y is a sequence of independent identically distributed random variables with symmetric distribution such that (n -1/β n y=1 εy ) n converges in distribution to a random variable with characteristic function θ → exp(-A 1 |θ| β ), where

A 1 := E(p 2 0 /(1 -p 0 ) 2 )/2 if β = 2.
Hence the result follows from Lemma 15.

In case (a) with β = 2, we observe that n-1 k=0 ε S k is equal to 0 if n is even and is equal to 1 if n is odd. Hence, ((n -3/4 nt -1 k=0 ε S k ) t≥0 ) n converges to 0 in D([0; +∞), R) and it remains to prove the convergence of

    n -3/4 nt -1 k=0 ε S k p S k 1 -p S k -E p 0 1 -p 0 , n -1/2 S nt   t≥0   n .
Let us write λ for the characteristic function of p 0 1-p 0 -E p 0 1-p 0 . Since p 0 1-p 0 has a finite variance and λ(ε y •) behaves as λ at 0, we can follow the proof of the convergence of the finite distributions of [9, prop 1], which gives the convergence in distribution in D([0; +∞), R 2 ) thanks to the tightness that can be proved for the first coordinate as in [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF]. Now, let us explain how case (a) with β ∈ (1, 2) will also be deduced from Lemma 15. This comes from the following lemma.

Lemma 17. Let β ∈ (1, 2). Let S = (S n ) n be a simple symmetric random walk on Z starting from S 0 = 0. Let (ã y ) y∈Z be a sequence of iid random variables such that

E(|ã 0 |) < ∞, independent of S. We have   n -δ   nt -1 k=0 (-1) k ãS k - y (ã 2y -ã2y-1 ) N nt (2y)   , 0   t≥0 -→ (0, 0)
in distribution as n goes to infinity (in D([0; +∞), R 2 )), with δ := 1 2 + 1 2δ .

Proof of Lemma 17. Let us write

e n := n-1 k=0 (-1) k ãS k - y (ã 2y -ã2y-1 ) N n (2y).
We notice that it is enough to prove that

n -δ sup 0≤k≤n |e k | P -→ n→+∞ 0.
Let η > 0 be such that 2η < 1 2β -1 4 (such a η exists since β < 2). For every n ≥ 1, we consider the set Ω n defined by

Ω n :=    sup k≤n |S k | ≤ n 1 2 +η , sup 0≤k≤n sup |y|≤n 1 2 +η +1 |N k (y) -N k (y -1)| ≤ n 1 4 +η    .
Let us show that lim n→+∞ P(Ω n ) = 1. As in Lemma 4, we have,

lim n→+∞ P sup k≤n |S k | ≤ n 1 2 +η = 1.
Now we recall that for any even integer m,

sup y E[|N n (y) -N n (y -1)| m ] = O(n m
as n goes to infinity (see [14, lem 3] and [13, p. 77]). Hence, using again the Markov inequality and taking m large enough, we get

P(Ω n ) ≥ 1 -o(1) -3n 3 2 +η sup n,y E[|N n (y) -N n (y -1)| m ] n m 4 +ηm = 1 -o(1).
On Ω n , using the fact that

k-1 =0 (-1) ãS = y (ã 2y N k (2y) -ã2y-1 N k (2y -1)) ,
for every k = 0, ..., n, we have

|e k | = y ã2y-1 (N k (2y) -N k (2y -1)) ≤ |y|≤n 1 2 +η +1 |ã y |n 1 4 +η .
Hence, thanks to the Markov inequality, we get for θ > 0.

P n -δ sup 0≤k≤n |e k | > θ ≤ (1 -P(Ω n )) + P    |y|≤n 1 2 +η +1 |ã y | > θn 1 2 + 1 2β -1 4 -η    ≤ (1 -P(Ω n )) + 3E (|ã 0 |) θ n -1 2β + 1 4 +2η .
Hence, for every θ > 0, we have

lim n→+∞ P(n -δ sup 0≤k≤n |e k | > θ) = 0.
Now we observe that the characteristic function of εy :=

p 2y 1-p 2y - p 2y-1 1-p 2y-1 is t → | χ (t)| 2 (
where χ stands for the characteristic function of p 0 1-p 0 ). The distribution of ε0 is symmetric and (n , we have

  n -δ nt -1 k=0 ε Sk , n -1 2 S 2nt 2   t≥0 -→ n→+∞ ( ∆t , Bt ) t≥0 , in distribution in D([0; +∞), R 2 )
, where ( Bt ) t is a Brownian motion such that V ar( B1 ) = 1 2 and with ( Lt (x)) t,x the jointly continuous version of its local time and where

∆t := R Lt (x) d Zx ,
with Z independent of B given by two independent right continuous stable processes ( Zx ) x≥0 and ( Z-x ) x≥0 , the characteristic functions of Z1 and of Z-

1 being θ → exp(-2A 1 |θ| β ). Hence, we have   n -δ nt/2 -1 k=0 ε Sk , n -1 2 S nt 2   t≥0 -→ n→+∞ ( ∆t/2 , Bt/2 ) t≥0 ,
and so

n -δ y εy N nt (2y), n -1 2 S nt t≥0 -→ n→+∞ ( ∆t/2 , B t ) t≥0 ,
with B t := 2 Bt/2 . Now we observe that

∆t/2 = R Lt/2 (x) d Zx = R L t (2x) d Zx = R L t (x) dZ x ,
where L denotes the local time of B and with Z x := Zx/2 . Now Lemma 17 applied to py 1-py y∈Z gives [START_REF] Pène | Transient random walk in Z 2 with stationary orientations[END_REF], which proves Proposition 16 in the case (a) with β ∈ (1, 2).

Proof of Theorem 2. We recall that for every n, we have

X n = M (1)
Tn and S n = M

(2)

Tn . Moreover we observe that we have

T n = n-1 k=0 (ξ k + 1) ,
that can be rewritten

T n = n-1 k=0 ξ k - p S k 1 -p S k + n-1 k=0 p S k 1 -p S k -E p 0 1 -p 0 + n 1 + E p 0 1 -p 0 .
We recall that γ = 1 + E p 0 1-p 0 and we define (U n ) n such that U n := max{k ≥ 0 : T k ≤ n}.

We notice that the sequences of processes Therefore, according to Proposition 16 and to [1, Lem p. 151, Thm 3.9], the sequence of processes

  n -1 nt -1 k=0 ξ k - p S k 1 -p S k , t ≥ 0   n and   n -1 nt -1 k=0 p S k 1 -p S k -E p 0 1 -p 0 , t ≥ 0   n converge
n -δ X U nt , n -1/2 S U nt t≥0 n converges in distribution (in D([0; +∞), R 2 )) to (σ∆ t γ , B t γ ) t≥0 . This means that n -δ M (1) T U nt , n -1/2 M (2) T U nt t≥0 n converges in distribution (in D([0; +∞), R 2 )) to (σ∆ t γ , B t γ ) t≥0 .
Moreover, we have

B t γ = γ -1/2 B t and Z x √ γ = γ -1/(2β) Z x
, where (B t ) t≥0 is a standard Brownian motion, and (Z x ) x∈R has the same distribution as (Z x ) x∈R and is independent of (B t ) t≥0 . Furthermore we have

L t γ (x) = γ -1/2 L t (γ 1/2 x), t ≥ 0, x ∈ R,
where (L t ) t≥0 is the local time of (B t ) t and so

∆ t γ = γ -1 2 R L t (γ 1 2 x) dZ x = γ -δ R L t (y) dZ y .
Hence (σ∆ t γ , B t γ ) t≥0 has the same distribution as (σγ -δ ∆ t , γ -1 2 B t ) t≥0 . Now we observe that we have

M (2) nt = M (2) T U nt and M (1) nt -M (1) T U nt ≤ ξ U nt
and that for every θ > 0 and T > 0,

P sup t∈[0;T ] n -δ ξ U nt ≥ θ ≤ nT k=0 P ξ k ≥ θn δ ≤ nT k=0 E[(ξ 0 ) β-η ] (θn δ ) β-η = o(1) (20) 
for η > 0 small enough, since δβ > 1 and since

2 (if η < β -1) E[(ξ 0 ) β-η |p 0 ] ≤ C 1 (1-p 0 ) β-η a.s. and E 1 (1-p 0 ) β-η < ∞.
This completes the proof of Theorem 2.

Proof of Lemma 15

The proof is very similar to those in [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF] and [START_REF] Guillotin-Plantard | A functional limit theorem for a 2d-random walk with dependent marginals[END_REF], with some adaptations.

We define Dn := y∈Z εy N n (y), n ∈ N.

Lemma 18. If β ∈ (1, 2], the finite dimensional distributions of ( D nt /n δ , S nt / √ n) t≥0 converge to those of ( ∆t , Bt ) t≥0 .

Before proving Lemma 18, we first introduce some preliminary results.

We observe that n -1/β n y=1 εy converges in distribution to a stable random variable of parameter β, with characteristic function ζ β (θ) := exp(-A 0 |θ| β ) (for some A 0 > 0). We can now compute the characteristic function of the finite dimensional distributions of ( ∆t , Bt ) t≥0 .

Lemma 19. Let k ∈ N * , (t 1 , t 2 , . . . , t k ) ∈ R k + and (θ (i) 1 , θ (i) 2 , . . . , θ (i) k ) i=1,2 ∈ R 2k . We have, E   exp   i k j=1 θ (1) 
j ∆t j + θ (2) j Bt j     = E   exp   -A0 +∞ -∞ k j=1 θ (1) 
j Lt j (x)

β dx    exp   i k j=1 θ (2) j Bt j      . (21) 
Proof. We condition by B and we proceed as in [14, Lem 5]. We get

E   exp   i k j=1 θ (1) j ∆t j   B  = exp   -A0 +∞ -∞ k j=1 θ (1) j Lt j (x) β dx    ,
which gives the result.

2 This comes from the Hölder inequality since E (ξ0

) 2 |p0 ≤ 2 (1-p 0 ) 2 .
For fixed k ∈ N * and (t 1 , t 2 , . . . , t k ) ∈ R k + , we define for every (θ 1 , θ 2 , . .

. , θ k ) ∈ (R 2 ) k , ψ n (θ 1 , θ 2 , . . . , θ k ) := E   exp   -A0 y∈Z Z k j=1 θ (1) j N nt j (y)n -δ β    exp   i k j=1 θ (2) j S nt j √ n      and φ n (θ 1 , θ 2 , . . . , θ k ) := E   exp   i k j=1 θ (1) j n -δ D nt j + θ (2) j S nt j √ n     = E   y∈Z Z λ   k j=1 θ (1) j N nt j (y)n -δ   exp   i k j=1 θ (2) j S nt j √ n    
where λ(θ) := E[exp(iθε 0 )] for every θ ∈ R and θ j = (θ

(1) j , θ (2) 
j ) for every j ∈ {1, . . . , n}.

Lemma 20. For every k ∈ N * , (t

1 , t 2 , . . . , t k ) ∈ R k + and (θ 1 , θ 2 , . . . , θ k ) ∈ (R 2 ) k , lim n→+∞ |ψ n (θ 1 , θ 2 , . . . , θ k ) -φ n (θ 1 , θ 2 , . . . , θ k )| = 0.
Proof. As in [14, p. 7], we have 1 -λ(θ) ∼ θ→0 A 0 |θ| β since the distribution of ε0 belongs to the normal domain of attraction of the stable distribution with characteristic function ζ β . The remainder of the proof is the same as in [9, Lem 5] with δ instead of 3/4 and β instead of 2, since

P(n -δ sup y∈Z Z | k j=1 θ (1) 
j N nt j (y)| > ε) → n→+∞ 0 for ε > 0 by [14, Lem 4] and since we have 

E( y∈Z Z |n -δ k j=1 θ (1) 
j N nt j (y)| β ) ≤ C < ∞
) ∈ (R 2 ) k ,   n -δβ y∈Z Z k j=1 θ (1) j N nt j (y) β , k j=1 θ (2) j S nt j / √ n    n converges in distribution as n → +∞ to    +∞ -∞ k j=1 θ (1) j Lt j (x) β dx, k j=1 θ (2) j Bt j    .
Proof. The proof is very similar to the one of [START_REF] Guillotin-Plantard | A functional limit theorem for a 2d-random walk with dependent marginals[END_REF]Lem 6], and to the proof of [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF]Lem 6] which deals with the first coordinate. Throughout the proof, C denotes a positive constant, which can vary from line to line, and can depend on (θ (i) j , i = 1, 2; j = 1, . . . , k). For n ∈ N and real numbers a < b and t > 0, we introduce the notation

T n t (a, b) := nt /n 0 1 {a≤S ns / √ n<b} ds,
which is the occupation time of [a, b) by S n. / √ n up to time nt /n. We consider τ > 0 and two real numbers µ 1 and µ 2 . We define for M > 0, ∈ Z and n ∈ N,

U (τ, M, n) := µ 1 n -δβ y < -M τ √ n or y ≥ M τ √ n k j=1 θ (1) j N nt j (y) β , T ( , n) := k j=1 θ (1) j T n t j ( τ, ( + 1)τ ) = 1 n k j=1 θ (1) j τ √ n≤y<( +1)τ √ n N nt j (y), V (τ, M, n) := µ 1 τ 1-β -M ≤ <M |T ( , n)| β + µ 2 n -1/2 k j=1 θ (2) 
j S nt j .

We are interested in

A(τ, M, n) := µ 1 n δβ y∈Z Z k j=1 θ (1) 
j N nt j (y)

β + µ 2 k j=1 θ (2) j S nt j √ n -U (τ, M, n) -V (τ, M, n) = µ 1 n δβ -M ≤ <M τ √ n≤y<( +1)τ √ n k j=1 θ (1) 
j N nt j (y) β -µ 1 -M ≤ <M τ 1-β |T ( , n)| β .
First step: We define c( , n) := #{y ∈ Z Z, τ √ n ≤ y < ( + 1)τ √ n}. As in [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF], we have for

µ 1 = 0, µ -1 1 A(τ, M, n) = -M ≤ <M τ √ n≤y<( +1)τ √ n n -δβ    k j=1 θ (1) j N nt j (y) β -n β (τ √ n) -β |T ( , n)| β    (22) + -M ≤ <M n β-δβ (τ √ n) -β c( , n) -τ 1-β |T ( , n)| β . (23) 
As in [14, p. 19], the right hand side of (23) tends to 0 in probability as n → +∞. Then we just have to study (22). To this aim, we use the inequality suggested by [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF], that is

∀(a, b) ∈ R 2 + , |a β -b β | ≤ β|a -b|(a β-1 + b β-1 ) ≤ 2β|a -b|(a + b) β-1
since β > 1. We define T ( , n) by the same formula as T ( , n) where we replace each θ (26) by the Cauchy-Schwarz inequality and by the second triangular inequality in (25). In the following RHS will stand for right hand side. We have by [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF] equations (3.9) and (2.26), RHS of (25) ≤ (C

1 τ n) 1/2 , (27) 
where C 1 is a constant, which is finite since gcd{k : P(S Since this is true for every µ 1 ∈ R, µ 2 ∈ R and η > 0, this proves Lemma 21.

Proof of Lemma 18. Applying Lemma 21, we get the convergence of ψ n (θ 1 , . . . , θ k ) to the right hand side of (21) as n → +∞. This combined with Lemma 19 and Lemma 20 proves Lemma 18.

Proof of Lemma 15. We now turn to the tightness. We know that ( D nt /n δ , t ≥ 0) n and (S nt / √ n, t ≥ 0) n both converge in distribution in D([0, +∞), R) to continuous processes (respectively by [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF] and by the theorem of Donsker), and the finite dimensional distributions of ( D nt /n δ , S nt / √ n) t≥0 converge to those of ( ∆t , Bt ) t≥0 by Lemma 18, hence the distributions of ( D nt /n δ , S nt / √ n) t≥0 are tight in D([0, +∞), R 2 ) (this is a consequence of [1] Theorems 13.2 and 13.4, Corollary p.142 and inequalities (12.7) and (12.9)). This proves Lemma 15.

1 ,

 1 1}, P ε,ω (M n+1 -M n = (0, y) |M 0 , ..., M n ) = 1 -p M (2)

3 4 -δ 3 3 4 -δ 3 3 4 -δ 3

 333333 |S, p 0 and so P(|D 2n | ≤ n |S, p 0 ) ≤ P |D 2n + G| ≤ 2n |S, p 0 /0, 6.

  n converges in distribution to a random variable with characteristic function θ → exp(-2A 1 |θ| β ). According to Lemma 15 applied with the random walk Sk := S 2k 2 k

  in distribution in D([0, +∞), R) to 0. The first convergence follows from Lemma 14 where we take ε k = 1 for every k ∈ Z Z. The second convergence is a consequence of [14, Thm 1.1] since n δ /n → 0 as n → +∞. Hence n -1 T nt , t ≥ 0 n converges in distribution to (γt) t , We conclude that n -1 U nt t≥0 n converges in distribution (in D([0; +∞), R)) to (t/γ) t .

  1 = k) > 0} = 1. Moreover, setting a( , n) := τ √ n,by the Hölder inequality and [9, p. 346], we have [RHS of (26)]

2 .-jj

 2 n)≤x<a( +1,n) (E(N nt j (x) 3 ) 2/3 + E(N nt j (y) 3 ) 2/3 ) ≤ CE(N n max(t 1 ,...,t k ) (0) 3 ) 2/3 ≤ Cn (29) by [14, Lem 1]. Combining (27) and (29), we get RHS of (24) ≤ Cτ of (22)|) ≤ C(2M + 1)τ 3 As in [14, p. 20], for each η > 0 we can take M τ so large thatP(U (M, n, τ ) = 0) ≤ η(30)and then τ so small thatE(|RHS of (22)|) ≤ η 2 /|µ 1 |.(31) Hence, by (30) and (31), and since the right hand side of (23) tends to 0 in probability as n → +∞, we get for n large enough (even when µ 1 = 0),P(|A(τ, M, n) + U (τ, M, n)| > 3η) ≤ P(|A(τ, M, n)| > 3η) + P(U (M, n, τ ) = 0) ≤ 3η.Second step: As in [9, Lem 2], we have (T (n) t j ( τ, ( + 1)τ ), S nt j / √ n) j=1,...,k, =-M,...,M → (Λ t j ( τ, ( + 1)τ ), Bt j ) j=1,...,k, =-M,...,M in distribution, as n → +∞, where Λ t (a, b) := b a Lt (x)dx for t > 0 and a < b. Consequently, (V (τ, M, n)) n converges in distribution as n → +∞ to V (τ, M ) := µ 1 τ 1-β Bt j .Since Lt (.) is continuous with a compact support, we get almost surely V (τ, M ) → M τ →+∞,τ →0 µ Bt j =: V .Hence by choosing adequate M and τ we get for n large enough exp(i V ) ≤ 11η.

-δ 3 .
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