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The extreme-value index γ is an important parameter in extreme-value theory since it controls the first order behavior of the distribution tail. In the literature, numerous estimators of this parameter have been proposed especially in the case of heavy-tailed distributions, which is the situation considered here. Most of these estimators depend on the k largest observations of the underlying sample. Their bias is controlled by the second order parameter ρ. In order to reduce the bias of γ's estimators or to select the best number k of observations to use, the knowledge of ρ is essential. In this paper, we propose a simple approach to estimate the second order parameter ρ leading to both existing and new estimators. We establish a general result that can be used to easily prove the asymptotic normality of a large number of estimators proposed in the literature or to compare different estimators within a given family. Some illustrations on simulations are also provided.

Introduction

Extreme-value theory establishes the asymptotic behavior of the largest observations in a sample.

It provides methods for extending the empirical distribution function beyond the observed data. It is thus possible to estimate quantities related to the tail of a distribution such as small exceedance probabilities or extreme quantiles. We refer to [START_REF] Embrechts | Modelling extremal events[END_REF][START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF] for general accounts on extreme-value theory. More specifically, let X 1 , . . . , X n be a sequence of random variables (rv), independent and identically distributed from a cumulative distribution function (cdf) F . Extreme-value theory establishes that the asymptotic distribution of the maximum X n,n = max{X 1 , . . . , X n } properly rescaled is the extreme-value distribution with cdf

G γ (x) = exp (-(1 + γx) + ) -1/γ
where y + = max(y, 0). The parameter γ ∈ R is referred to as the extreme-value index. Here, we focus on the case where γ > 0. In such a situation, F is said to belong to the maximum domain of attraction of the Fréchet distribution. In this domain of attraction, a simple characterization of distributions is available: the quantile function U (x) := F ← (1 -1/x) can be written as

U (x) = x γ (x),
where is a slowly varying function at infinity i.e. for all λ > 0,

lim x→∞ (λx) (x) = 1. (1) 
The distribution F is said to be heavy tailed and the extreme-value parameter γ governs the heaviness of the tail. The estimation of γ is a central topic in the analysis of such distributions. Several estimators have thus been proposed in the statistical literature and their asymptotic distributions established under a second order condition: There exist a function A(x) → 0 of constant sign for large values of x and a second order parameter ρ < 0 such that, for every λ > 0,

lim x→∞ 1 A(x) log (λx) (x) = K ρ (λ) := λ 1 u ρ-1 du. (2) 
Let us highlight that (2) implies that |A| is regularly varying with index ρ, see [START_REF] Geluk | Regular Variation, Extensions and Tauberian Theorems[END_REF]. Hence, as the second order parameter ρ decreases, the rate of convergence in (1) increases. Thus, the knowledge of ρ can be of high interest in real problems. For example, the second order parameter is of primordial importance in the adaptive choice of the best number of upper order statistics to be considered in the estimation of the extreme-value index [START_REF] Gomes | The bootstrap methodology in statistics of extremes -Choice of the optimal sample fraction[END_REF]. The estimation of ρ can also be used to propose bias reduced estimators of the extreme value index (see for instance [START_REF] Cairo | Direct reduction of bias of the classical Hill estimator[END_REF][START_REF] Gomes | Asymptotically unbiased" estimators of the tail index based on external estimation of the second order parameter[END_REF][START_REF] Gomes | Improving second order reduced bias extreme value index estimator[END_REF]) or of the Weibull tail-coefficient [START_REF] Diebolt | Bias-reduced estimators of the Weibull tailcoefficient[END_REF][START_REF] Diebolt | Bias-reduced extreme quantile estimators of Weibull tail-distributions[END_REF], even though some bias reduction can be achieved with the canonical choice ρ = -1 as suggested in [START_REF] Feuerverger | Estimating a tail exponent by modeling departure from a Pareto distribution[END_REF][START_REF] Gomes | Bias reduction and explicit semi-parametric estimation of the tail index[END_REF]. For the above mentioned reasons, the estimation of the second order parameter ρ has received a lot of attention in the extreme-value literature, see for instance [START_REF] Cai | Bias correction in extreme value statistics with index around zero[END_REF][START_REF] Ciuperca | Semi-parametric estimation for heavy tailed distributions[END_REF][START_REF] Fraga Alves | A new class of semi-parametric estimators of the second order parameter[END_REF][START_REF] Fraga Alves | Estimation of the parameter controlling the speed of convergence in extreme value theory[END_REF][START_REF] Goegebeur | Kernel estimators for the second order parameter in extreme value statistics[END_REF][START_REF] Gomes | Semi-parametric estimation of the second order parameter in statistics of extreme[END_REF][START_REF] Hall | Adaptative estimates of parameters of regular variation[END_REF][START_REF] De Wet | Asymptotically unbiased estimation of the second order tail parameter[END_REF][START_REF] Worms | Estimation of second order parameters using probability weighted moments[END_REF].

In this paper, we propose a simple and general approach to estimate ρ.

Let I = t (1, . . . , 1) ∈ R d .
The two main ingredients of our approach are a random variable

T n = T n (X 1 , . . . , X n ) ∈ R d
verifying the following three assumptions:

(T1) There exists rvs ω n , χ n and a function f :

R -→ R d such that ω -1 n (T n -χ n I) P -→ f (ρ).
and a function ψ : R d → R such that

(Ψ1) ψ(x + λI) = ψ(x) for all x ∈ R d and λ ∈ R, (Ψ2) ψ(λx) = ψ(x) for all λ ∈ R \ {0}.
Note that (T1) imposes that T n properly normalized converges in probability to some function of ρ, while (Ψ1) and (Ψ2) mean that ψ is both location and shift invariant. Starting from these three assumptions, we straightforwardly obtain that

ψ(ω -1 n (T n -χ n I)) = ψ(T n ) P -→ ψ(f (ρ)),
under a continuity condition on ψ. Denoting by

Z n := ψ(T n ) and by ϕ := ψ • f : R -→ R, we obtain Z n P -→ ϕ(ρ).
It is thus clear that, under an additional regularity assumption and assuming that both Z n and ϕ are known, ρ can be consistently estimated thanks to ϕ -1 (Z n ). This estimation principle is described more precisely in Section 2. The consistency and asymptotic normality of the proposed estimator is also established. Examples of T n random variables are presented in Section 3. Some functions ψ are proposed in Section 4 and it is shown that the above mentioned estimators [START_REF] Ciuperca | Semi-parametric estimation for heavy tailed distributions[END_REF][START_REF] Fraga Alves | A new class of semi-parametric estimators of the second order parameter[END_REF][START_REF] Fraga Alves | Estimation of the parameter controlling the speed of convergence in extreme value theory[END_REF][START_REF] Goegebeur | Kernel estimators for the second order parameter in extreme value statistics[END_REF][START_REF] Gomes | Semi-parametric estimation of the second order parameter in statistics of extreme[END_REF] can be read as particular cases of our approach. As a consequence, this remark permits to establish their asymptotic properties in a simple and unified way. We illustrate how several asymptotically Gaussian estimators can be derived from this framework. Finally, some estimators are compared in Section 5 both from the asymptotic and finite sample size performances points of view.

Main results

Recall that T n is a R d -random vector verifying (T1) and ψ is a function

R d → R verifying (Ψ1)
and (Ψ2). We further assume that:

(Ψ3) There exist J 0 ⊆ R -and an open interval J ⊂ R such that ϕ = ψ • f is a bijection J 0 → J.
Under this assumption, the following estimator of ρ may be considered:

ρn = ϕ -1 (Z n ) if Z n ∈ J 0 otherwise. (3) 
To derive the consistency of ρn , an additional regularity assumption is introduced:

(Ψ4) ψ is continuous in a neighborhood of f (ρ) and f is continuous in a neighborhood of ρ.

The proof of the next result is based on the heuristic consideration of Section 1 and is detailed in Section 6.

Theorem 1. If (T1) and (Ψ1)-(Ψ4) hold then ρn

P -→ ρ as n → ∞.
The asymptotic normality of ρn can be established under a stronger version of (Ψ4):

(Ψ5) ψ is continuously differentiable in a neighborhood of f (ρ) and f is continuously differentiable in a neighborhood of ρ, and the assumption that a normalized version of T n is itself asymptotically Gaussian:

(T2) There exists two rvs ω n , χ n , a sequence v n → ∞, two functions f , m : R -→ R d and a d × d matrix Σ such that v n (ω -1 n (T n -χ n I) -f (ρ)) d -→ N d (m(ρ), γ 2 Σ).
Theorem 2. Suppose (T2), (Ψ1)-(Ψ3) and (Ψ5) hold. If ρ ∈ J 0 and ϕ (ρ) = 0, then

v n (ρ n -ρ) d -→ N m ψ (ρ) ϕ (ρ) , γ 2 σ 2 ψ (ρ) (ϕ (ρ)) 2 ,
with ϕ (ρ) = t f (ρ)∇ψ(f (ρ)) and where we have defined

m ψ (ρ) := t m(ρ) ∇ψ(f (ρ)), σ 2 ψ (ρ) := t ∇ψ(f (ρ)) Σ ∇ψ(f (ρ)).

Examples of T n random variables

Let X 1,n ≤ . . . ≤ X n,n be the sample of ascending order statistics and k = k n be an intermediate sequence i.e. such that k → ∞ and k/n → 0 as n → ∞. Most extreme-value estimators are based either on the log-excesses (log X n-j+1,n -log X n-k,n ) or on the rescaled log-spacings j(log X n-j+1,n -log X n-j,n ) defined for j = 1, . . . , k. In the following, two examples of T n random variables are presented based on weighted means of the log-excesses and of the rescaled log-spacings.

The first example is based on

R k (τ ) = 1 k k j=1 H τ j k + 1 j(log X n-j+1,n -log X n-j,n ), (4) 
where H τ : [0, 1] → R is a weight function indexed by a parameter τ ∈ (0, ∞). Without loss of generality, one can assume that H τ integrates to one. This random variable is used for instance in [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF] to estimate the extreme-value index γ, in [START_REF] Goegebeur | Kernel estimators for the second order parameter in extreme value statistics[END_REF][START_REF] Hall | Adaptative estimates of parameters of regular variation[END_REF][START_REF] De Wet | Asymptotically unbiased estimation of the second order tail parameter[END_REF] to estimate the second order parameter ρ and in [START_REF] Goegebeur | Estimation of the third-order parameter in extreme value statistics[END_REF] to estimate the third order parameter, see condition (C2) below. It is a particular case of the kernel statistic introduced in [START_REF] Csörgö | Kernel estimates of the tail index of a distribution[END_REF]. Let us also note that, in the case where H τ (u) = 1 for all u ∈ [0, 1], R k (τ ) reduces to the well-known Hill estimator [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF]. The asymptotic properties of R k (τ ) require some technical condition (denoted by (C1)) on the weight function H τ . It has been first introduced in [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF] and it is recalled hereafter. Introducing the operator

µ : h ∈ L 2 ([0, 1]) -→ µ(h) = 1 0 h(u)du ∈ R
and I t (u) = u -t for t ≤ 0 and u ∈ (0, 1], the condition can be written as

(C1) H τ ∈ L 2 ([0, 1]), µ(|H τ |I ρ+1+ε ) < ∞ and H τ (t) = 1 t t 0 u(ν)dν and
for some ε > 0 and for some function u satisfying for all j = 1, . . . , k

(k + 1) j/(k+1) (j-1)/(k+1) u(t)dt ≤ g j k + 1 ,
where g is a positive continuous and integrable function defined on (0, 1). Furthermore, for η ∈ {0, 1}, and k → ∞:

1 k k j=1 H τ j k + 1 j k + 1 -ηρ = µ(H τ I ηρ ) + o(k -1/2 ), max j∈{1,...,k} H τ j k + 1 = o(k 1/2 ).
It is then possible to define T (R) n on the basis of R k (τ ), given in (4), as

T (R) n = T (R) n,i = (R k (τ i )/γ) θi , i = 1, . . . , d , (5) 
where θ i , i = 1, . . . , d are positive parameters. In the next lemma, it is proved that T (R) n satisfies condition (T2) under a third order condition, which is a refinement of (2):

(C2) There exist functions A(x) → 0 and B(x) → 0 both of constant sign for large values of x, a second order parameter ρ < 0 and a third order parameter β < 0 such that, for every λ > 0, 

lim x→∞ (log (λx) -log (x)) /A(x) -K ρ (λ) B(x) = L (ρ,β) (λ) := λ 1 s ρ-1 s 1 u β-1 duds,
k → ∞, n/k → ∞, k 1/2 A(n/k) → ∞, k 1/2 A 2 (n/k) → λ A and k 1/2 A(n/k)B(n/k) → λ B , (6) 
for λ A ∈ R and λ B ∈ R. Then, the random vector

T (R) n satisfies (T2) with ω (R) n = A(Y n-k,n )/γ, χ (R) n = 1, v n = k 1/2 A(n/k), f (R) (ρ) = (θ i µ(H τi I ρ ), i = 1, . . . , d) , m (R) (ρ) = λ A θ i (θ i -1) 2γ µ 2 (H τi I ρ ) -λ B θ i µ(H τi I ρ K -β ); i = 1, . . . , d ,
and, for

(i, j) ∈ {1, . . . , d} 2 , Σ (R) i,j = θ i θ j µ(H τi H τj ).
The proof is a straightforward consequence of Theorem 2 and Appendix A.5 in [START_REF] Goegebeur | Kernel estimators for the second order parameter in extreme value statistics[END_REF].

The second example requires some additional notations. Let us consider the operator

ϑ : (h 1 , h 2 ) ∈ L 2 ([0, 1]) × L 2 ([0, 1]) -→ ϑ(h 1 , h 2 ) = 1 0 1 0 h 1 (u)h 2 (v)(u ∧ v -uv)dudv ∈ R
and the two functions Īt (u) = (1 -u) -t and J t (u) = (-log u) -t defined for t ≤ 0 and u ∈ (0, 1].

The random variables of interest are

S k (τ, α) = 1 k k j=1 G τ,α j k + 1 (log X n-j+1,n -log X n-k,n ) α , (7) 
where G τ,α is a positive function indexed by two positive parameters α and τ . Without loss of generality, it can be assumed that µ(G τ,α J -α ) = 1. In [START_REF] Dekkers | A moment estimator for the index of an extreme-value distribution[END_REF][START_REF] Gomes | Generalizations of the Hill estimator -asymptotic versus finite sample behaviour[END_REF][START_REF] Segers | Residual estimators[END_REF] several estimators of γ based on S k (τ, α) are introduced in the particular case where G is constant. Most recently, in [START_REF] Ciuperca | Semi-parametric estimation for heavy tailed distributions[END_REF][START_REF] Fraga Alves | Estimation of the parameter controlling the speed of convergence in extreme value theory[END_REF][START_REF] Hall | Adaptative estimates of parameters of regular variation[END_REF][START_REF] Peng | Asymptotic unbiased estimators for the extreme value index[END_REF],

S k (τ, α) is used to estimate the parameters γ and ρ. The asymptotic distribution of these estimators is obtained under the following assumption on the function G τ,α .

(C3) The function G τ,α is positive, non-increasing and integrable on (0, 1). Furthermore, there

exists δ > 1/2 such that 0 < µ(G τ,α I δ ) < ∞ and 0 < µ(G τ,α Īδ ) < ∞.

It is then possible to define T (S) n

on the basis of S k (τ, α), see ( 7), as

T (S) n = T (S) n,i = (S k (τ i , α i )/γ αi ) θi , i = 1, . . . , d . (8) 
The following result is the analogous of Lemma 1 for the above random variables. 

n = A(n/k)/γ, χ (S) n = 1, v n = k 1/2 A(n/k), f (S) (ρ) = (-θ i α i µ(G τi,αi J 1-αi K -ρ ); i = 1, . . . , d) , m (S) (ρ) = λ A θ i α i (α i -1) 2γ µ(G τiαi J 2-αi K 2 -ρ ) + λ B α i θ i µ(G τi,αi J 1-αi L (-ρ,-β) ); i = 1, . . . , d ,
and, for (i, j) ∈ {1, . . . , d} 2 , Σ

(S) i,j = θ i θ j α i α j ϑ(G τi,αi J 1-αi , G τj ,αj J 1-αj ).
The proof is a straightforward consequence of Proposition 3 and Lemma 1 in [START_REF] Ciuperca | Semi-parametric estimation for heavy tailed distributions[END_REF]. In the next section, we illustrate how the combination of T 

Applications

In this section, we propose estimators of ρ based on the random variable T 

ψ δ : D → R \ {0} is considered ψ δ (x 1 , . . . , x 8 ) = ψ δ (x 1 -x 2 , x 3 -x 4 , x 5 -x 6 , x 7 -x 8 ), (9) 
where δ ≥ 0, D = {(x 1 , . . . , x 8 ) ∈ R 8 ; x 1 = x 2 , x 3 = x 4 , and (x 5 -x 6 )(x 7 -x 8 ) > 0}, and ψ δ : R 4 → R is given by:

ψ δ (y 1 , . . . , y 4 ) = y 1 y 2 y 4 y 3 δ .
Let us highlight that ψ δ verifies the invariance properties (Ψ1) and (Ψ2). (C4) {θ i = θ i/2 , i = 1, . . . , 8} with δ = ( θ1 -θ2 )/( θ3 -θ4 ). Furthermore,

τ 1 < τ 2 ≤ τ 3 < τ 4 , τ 5 < τ 6 ≤ τ 7 < τ 8 ,
where x = inf{n ∈ N|x ≤ n}. Under this condition, T (R) n involves 12 free parameters. We also introduce the following notations:

Z (R) n = ψ δ (T (R) n ) and ϕ (R) δ = ψ δ • f (R) where f (R) is given in Lemma 1. Note that, since δ = ( θ1 -θ2 )/( θ3 -θ4 ), it is easy to check that Z (R) n
does not depend on the unknown parameter γ. We now establish the asymptotic normality of the estimator ρ(R)

n defined by (3) when T (R) n
and the function ψ δ are used:

ρ(R) n = (ϕ (R) δ ) -1 (Z (R) n ) if Z (R) n ∈ J 0 otherwise. ( 10 
)
The following additional condition is required:

(C5) The function ν ρ (τ ) = µ(H τ I ρ ) is differentiable with, for all ρ < 0 and all τ ∈ R, ν ρ (τ ) > 0.
Let us denote for i ∈ {1, . . . , 4},

m (R,i) A = exp ( θi -1)(ν ρ (τ 2i-1 ) + ν ρ (τ 2i )) , m (R,i) B = exp µ (H τ2i-1 -H τ2i )I ρ K -β ν ρ (τ 2i-1 ) -ν ρ (τ 2i ) ,
and for u ∈ [0, 1],

v (R,i) (u) = exp H τ2i-1 (u) -H τ2i (u) ν ρ (τ 2i-1 ) -ν ρ (τ 2i ) .
For the sake of simplicity, we also introduce m (R)

A = (m (R,i) A , i = 1, . . . , 4), m (R) B = (m (R,i) B , i = 1, . . . , 4) and v (R) = (v (R,i) , i = 1, . . . , 4).
Corollary 1. Suppose (C1), (C2), (C4) and (C5) hold. There exist two intervals J and J 0 such that for all ρ ∈ J 0 and for a sequence k satisfying (6),

k 1/2 A(n/k)(ρ (R) n -ρ) d -→ N λ A 2γ AB (R) 1 (δ, ρ) -λ B AB (R) 2 (δ, ρ, β), γ 2 AV (R) (δ, ρ)
where

AB (R) 1 (δ, ρ) = ϕ (R) δ (ρ) [ϕ (R) δ ] (ρ) log ψδ (m (R) A ), AB (R) 2 (δ, ρ, β) = ϕ (R) δ (ρ) [ϕ (R) δ ] (ρ) log ψδ (m (R) B ), AV (R) (δ, ρ) = ϕ (R) δ (ρ) [ϕ (R) δ ] (ρ) 2 µ log 2 ψδ (v (R) ) .
Note that this result can be read as an extension of [START_REF] Goegebeur | Kernel estimators for the second order parameter in extreme value statistics[END_REF], Proposition 3, in two ways. First, we do not limit ourselves to the case δ = 1. Second, we do not assume that the function ϕ (R) δ is a bijection, but it is shown to be a consequence of (C4). Besides, the proof of Corollary 1 is very simple based on Theorem 2 and Lemma 1, see Section 6 for details.

As an example, the function H τ : u ∈ [0, 1] → τ u τ -1 , τ ≥ 1 satisfies conditions (C1) and (C5)

since ν ρ (τ ) = τ /(τ -ρ). Letting τ 1 ≤ τ 5 , τ 2 = τ 3 , τ 4 = τ 8 and τ 6 = τ 7 leads to a simple expression of ϕ (R) δ : ϕ (R) δ (ρ) = ω(δ, θ) τ 4 -ρ τ 1 -ρ τ 5 -ρ τ 4 -ρ δ where ω(δ, θ) = θ1 (τ 1 -τ 2 ) θ2 (τ 2 -τ 4 ) θ4 (τ 6 -τ 4 ) θ3 (τ 5 -τ 6 ) δ . (11) 
Moreover, one also has explicit forms for J 0 and J in two situations:

(i) If 0 ≤ δ ≤ δ 0 := (τ 4 -τ 1 )/(τ 4 -τ 5 ) then ϕ (R) δ is increasing from J 0 = R -to J = ω(δ, θ) • (1, ψ δ (τ 4 , τ 1 , τ 4 , τ 5 )). (ii) If δ ≥ δ 1 := δ 0 τ 5 /τ 1 then ϕ (R) δ is decreasing from J 0 = R -to J = ω(δ, θ)•( ψ δ (τ 4 , τ 1 , τ 4 , τ 5 ), 1).
Here, • denotes the scaling operator. The case δ ∈ (δ 0 , δ 1 ) is not considered here, since one can show that, in this situation, J 0 R -and thus the condition ρ ∈ J 0 of Corollary 1 is not necessarily satisfied. Let us now list some particular cases where the inverse function of

ϕ (R) δ is explicit. Example 1. Let δ = 1 i.e. θ1 -θ2 = θ3 -θ4 . The rv Z (R) n is denoted by Z (R)
n,1 . Since δ 0 > 1, we are in situation (i) and

ρ(R) n,1 = τ 5 ω(1, θ) -τ 1 Z (R) n,1 ω(1, θ) -Z (R) n,1 1l{Z (R) n,1 ∈ ω(1, θ) • (1, ψ 1 (τ 4 , τ 1 , τ 4 , τ 5 ))}.
Remark that this estimator coincides with the one proposed in [START_REF] Goegebeur | Kernel estimators for the second order parameter in extreme value statistics[END_REF], Lemma 1.

Example 2. Let δ = 0 i.e. θ1 = θ2 . The rv

Z (R) n is thus denoted by Z (R)
n,2 . Again, we are in situation (i) and a new estimator of ρ is obtained

ρ(R) n,2 = τ 4 ω(0, θ) -τ 1 Z (R) n,2 ω(0, θ) -Z (R) n,2 1l{Z (R) n,2 ∈ ω(0, θ) • (1, ψ 0 (τ 4 , τ 1 , τ 4 , τ 5 ))}.
Example 3. Let τ 1 = τ 5 . In this case δ 0 = δ 1 = 1 and thus, we are in situation (i) if δ < 1 and in situation (ii) otherwise. In this case, the rv

Z (R) n is denoted by Z (R) n,3 . A new estimator of ρ is obtained: ρ(R) n,3 = τ 4 (Z (R) n,3 /ω(δ, θ)) 1/(δ-1) -τ 1 (Z (R) n,3 /ω(δ, θ)) 1/(δ-1) -1 1l{Z (R) n,3 ∈ J}.

Estimators based on the random variable S k (τ, α)

The random variable T (S) n defined in (8) depends on 24 parameters:

{(θ i , τ i , α i ) ∈ (0, ∞) 3 , i = 1, . . . , 8}. Let (ζ 1 , . . . , ζ 4 ) ∈ (0, ∞) 4 with ζ 3 = ζ 4 .
In the following, we assume that

(C6) {θ i α i = ζ i/2 , i = 1, . . . , 8} with δ = (ζ 1 -ζ 2 )/(ζ 3 -ζ 4 ). Furthermore, (τ 2i-1 , α 2i-1 ) = (τ 2i , α 2i ), for i = 1, . . . , 4 and, for i = 3, 4, (τ 2i-1 , α 2i-1 ) < (τ 2i , α 2i ),
where (x, y) = (s, t) means that x = s and/or y = t and (x, y) < (s, t) means that x < s and y ≤ t or x = s and y < t. We introduce the notations: Z does not depend on the unknown parameter γ.

To establish the asymptotic distribution of the estimator ρ(S) n , the following condition is required:

(C7) For all ρ < 0, the function ν ρ (τ, α) = µ(G τ,α J 1-α K -ρ ) is differentiable with ∂ ∂τ ν ρ (τ, α) > 0 and ∂ ∂α ν ρ (τ, α) > 0 for all α > 0 and all τ ∈ R.

For i = 1, . . . , 4, we introduce the notations:

m (S,i) A = exp (α 2i-1 -1)µ(G τ2i-1,α2i-1 J 2-α2i-1 K 2 -ρ ) -(α 2i -1)µ(G τ2i,α2i J 2-α2i K 2 -ρ ) ν ρ (τ 2i , α 2i ) -ν ρ (τ 2i-1 , α 2i-1 ) , m (S,i) B = exp µ(G τ2i-1,α2i-1 J 1-α2i-1 L (-ρ,-β) ) -µ(G τ2i,α2i J 1-α2i L (-ρ,-β) ) ν ρ (τ 2i , α 2i ) -ν ρ (τ 2i-1 , α 2i-1 ) ,
and for u ∈ [0, 1],

v (S,i) (u) = G τ2i-1,α2i-1 (u)J 1-α2i-1 (u) -G τ2i,α2i (u)J 1-α2i (u) ν ρ (τ 2i , α 2i ) -ν ρ (τ 2i-1 , α 2i-1
) .

Let us also consider m , i = 1, . . . , 4). The next result is a direct consequence of Theorem 2 and Lemma 2, see Section 6 for a short proof.

Corollary 2. Suppose (C2), (C3), (C6) and (C7) hold. There exist two intervals J and J 0 such that for all ρ ∈ J 0 and for a sequence k satisfying (6),

k 1/2 A(n/k)(ρ (S) n -ρ) d -→ N λ A 2γ AB (S) 1 (δ, ρ) + λ B AB (S) 2 (δ, ρ, β), γ 2 AV (S) (δ, ρ)
where 4) ), v (S,1) -v (S,2) -δ(v (S,3) -v (S,4) ) .

AB (S) 1 (δ, ρ)= ϕ (S) δ (ρ) [ϕ (S) δ ] (ρ) log ψδ (m (S) A ), AB (S) 2 (δ, ρ, β)= ϕ (S) δ (ρ) [ϕ (S) δ ] (ρ) log ψδ (m (S) B ), AV (S) (δ, ρ)= ϕ (S) δ (ρ) [ϕ (S) δ ] (ρ) 2 ϑ v (S,1) -v (S,2) -δ(v (S,3) -v (S,
Let us highlight that Proposition 5, Proposition 7 and Proposition 9 of [START_REF] Ciuperca | Semi-parametric estimation for heavy tailed distributions[END_REF] are particular cases of Corollary 2 for three different value of δ (δ = 2, δ = 1 and δ = 0 respectively). The asymptotic normality of the estimators proposed in [START_REF] Gomes | Semi-parametric estimation of the second order parameter in statistics of extreme[END_REF] and in [START_REF] Fraga Alves | Estimation of the parameter controlling the speed of convergence in extreme value theory[END_REF] can also be easily established with Corollary 2.

As an example of function G τ,α , one can consider the function defined on [0, 1] by:

G τ,α (u) = g τ -1 (u) 1 0 g τ -1 (x)J -α (x)dx for τ ≥ 1 and α > 0,
where the function g τ is given by

g 0 (x) = 1, g τ -1 (x) = τ τ -1 (1 -x τ -1 ), ∀τ > 1.
Clearly, the function G τ,α satisfies condition (C7) and, under (C6), the expression of ϕ

(S) ρ is ϕ (S) δ (ρ) = ζ 1 ζ 2 ζ 4 ζ 3 δ ν ρ (τ 1 , α 1 ) -ν ρ (τ 2 , α 2 ) ν ρ (τ 3 , α 3 ) -ν ρ (τ 4 , α 4 ) ν ρ (τ 7 , α 7 ) -ν ρ (τ 8 , α 8 ) ν ρ (τ 5 , α 5 ) -ν ρ (τ 6 , α 6 ) δ with ν ρ (τ, α) = 1 -(1 -ρ) -α + (τ -ρ) -α -τ -α αρ(1 -τ -α-1 ) if τ = 1 and ν ρ (1, α) = 1 αρ (1 -ρ) α -1 (1 -ρ) α .
Even if Corollary 2 ensures the existence of intervals J 0 and J, they are impossible to specify in the general case. In the following, we consider several sets of parameters where these intervals can be easily exhibited and for which the inverse function ϕ Note that this estimator corresponds to the estimator ρ [START_REF] Beirlant | Burr regression and portfolio segmentation[END_REF] n,k defined in [START_REF] Ciuperca | Semi-parametric estimation for heavy tailed distributions[END_REF], Section 5.2.

Example 5. Let δ = 0, α 1 = α 3 = α 4 = 1 and τ 1 = τ 4 = α 2 = 2. Denoting by Z (S) n,5 the rv Z (S)
n , we find back the estimator ρ [START_REF] Cai | Bias correction in extreme value statistics with index around zero[END_REF] n,k proposed in [START_REF] Ciuperca | Semi-parametric estimation for heavy tailed distributions[END_REF], Section 5.2:

ρ(S) n,5 = 2(Z (S) n,5 -2) 2Z (S) n,5 -1 1l{Z (S) n,5 ∈ (1/2, 2)}. Example 6. Let α 1 = ζ 1 = 4, α 3 = ζ 2 = ζ 4 = 2, ζ 3 = 3 and α 2 = α 4 = α 5 = τ 1 = τ 4 = 1. These choices entail δ = 2. Denoting by Z (S) n,6 the rv Z (S)
n , the estimator of ρ given by:

ρ(S) n,6 = 6Z (S) n,6 -4 + (3Z (S) n,6 -2) 1/2 4Z (S) n,6 -3 1l{Z (S) n,6 ∈ (2/3, 3/4)}.
corresponds to the one proposed in [START_REF] Gomes | Semi-parametric estimation of the second order parameter in statistics of extreme[END_REF], equation [START_REF] Feuerverger | Estimating a tail exponent by modeling departure from a Pareto distribution[END_REF]. 

ρ(S) n,8 = 6Z (S) n,8 -4ω * (1, ζ) 2Z (S) n,8 -ω * (1, ζ) 1l{Z (S) n,8 ∈ ω * (1, ζ) • (1/2, 2/3)}. Example 9. Let τ 1 = τ 4 = α 1 = 1, α 2 = α 3 = α 5 = 2 and α 4 = 3. Denoting by Z (S) n,9 the rv Z (S)
n , the estimator of ρ is given by:

ρ(S) n,9 = 3(Z (S) n,9 /(3ω * (δ, ζ))) 1/(δ+1) -1 (Z (S) n,9 /(3ω * (δ, ζ))) 1/(δ+1) -1 1l{Z (S) n,9 ∈ ω * (δ, ζ) • (3 -δ , 3)}.
In the particular case where δ = 0, this estimator corresponds to the one proposed in [START_REF] Fraga Alves | A new class of semi-parametric estimators of the second order parameter[END_REF].

To summarize, we have illustrated how Theorem 2 may be used to prove the asymptotic normality of estimators built on T 

(R) n,2 , ρ(R) n,3 , ρ(S) n,7 , ρ(S)
n,8 and ρ(S) n,9 . All of them are explicit and are asymptotically Gaussian. The comparison of their finite sample properties is a huge task since they may depend on their parameters (θ i , τ i , α i ) as well as on the simulated distribution. We conclude this study by proposing a method for selecting some "asymptotic optimal" parameters within a family of estimators. The performances and the limits of this technique are illustrated by comparing several estimators on simulated data.

Comparison of some estimators

Some estimators of ρ are now compared on a specific Pareto-type model, namely the Burr dis-

tribution with cdf F (x) = 1 -(ζ/(ζ + x η )) λ , x > 0, ζ, λ, η > 0, considered for instance in [2], equation (3) 
. The associated extreme-value index is γ = 1/(λη) and this model satisfies the third order condition (C2) with ρ = β = -1/λ, A(x) = γx ρ /(1 -x ρ ) and B(x) = ρx ρ /(1 -x ρ ). We limit ourselves to the case ζ = 1 and λ = 1/η so that γ = 1.

Estimators based on the random variable R k (τ )

Let us first focus on the estimators of ρ based on the random variables R k (τ i ) considered in Section 4.1 with kernel functions H τi (u) = τ i u τi-1 , for i = 1, . . . , 8. The values of the parameters τ 1 , ..., τ 8 , θ1 , θ3 and θ4 are taken as in [START_REF] Goegebeur | Kernel estimators for the second order parameter in extreme value statistics[END_REF][START_REF] De Wet | Asymptotically unbiased estimation of the second order tail parameter[END_REF]: is obtained, see [START_REF] Embrechts | Modelling extremal events[END_REF], and we have δ 0 = 1.5 and δ 1 = 1.8.

τ 1 = 1.25, τ 2 = τ 3 = 1.75, τ 4 = τ 8 = 2, τ 5 = 1.5,
Recall that θ2 = θ1 + δ( θ4 -θ3 ) for δ ≥ 0. In the following, we propose to choose the remaining parameter δ using a method similar to the one proposed in [START_REF] Gardes | Conditional extremes from heavy-tailed distributions: An application to the estimation of extreme rainfall return levels[END_REF]. It consists in minimizing with respect to δ an upper bound on the asymptotic mean-squared error. The method is described in Paragraph 5.1.1 and an example of application is presented in Paragraph 5.1.2.

Controlling the asymptotic mean-squared error

As in [START_REF] Goegebeur | Kernel estimators for the second order parameter in extreme value statistics[END_REF], we assume that ρ = β. Following Corollary 1, the asymptotic bias components of ρ(R)

n are respectively proportional to AB (R) 1 (δ, ρ) and AB (R)
2 (δ, ρ, ρ) while its asymptotic variance is proportional to AV (R) (δ, ρ). The asymptotic mean-squared error of ρ(R) n can be defined as

AMSE(δ, γ, ρ) = 1 kA 2 (n/k) λ A 2γ AB (R) 1 (δ, ρ) -λ B AB (R) 2 (δ, ρ, ρ) 2 + γ 2 AV (R) (δ, ρ) . ( 12 
)
One way to choose the parameter δ could be to minimize the above asymptotic mean-squared error.

In practice, the parameters γ, ρ as well as the functions A and B are unknown and thus the asymptotic mean-squared error cannot be evaluated. To overcome this problem, it is possible to introduce an upper bound on AMSE(δ, γ, ρ).

Assuming that δ ∈ [0, δ 0 ) ∪ (δ 1 , ∞) and ρ ∈ [ρ min , ρ max ], it is easy to check that |AB (R) 1 (δ, ρ)| ≥ |AB (R) 1 (δ 1 , ρ max )|, |AB (R) 2 (δ, ρ, ρ)| ≥ |AB (R)
2 (δ 0 , ρ min , ρ min )| and,

Comparison in terms of asymptotic mean-squared error

From Corollary 2, the asymptotic bias and variance components of ρ(S) n are respectively proportional to 2) , v (S,1) -v (S,2) ), where

AB (S) 1 (δ, ρ) = g (S) (ρ) (g (S) ) (ρ) log m (S,1) A -log m (S,2) A , AB (S) 2 (δ, ρ) = g (S) (ρ) (g (S) ) (ρ) log m (S,1) B -log m (S,2) B , AV (S) (δ, ρ) = g (S) (ρ) (g (S) ) (ρ) 2 ϑ(v (S,1) -v (S,
g (S) (ρ) = ζ 1 ζ 2 µ(G τ1,α1 J 1-α1 K -ρ ) -µ(G τ2,α2 J 1-α2 K -ρ ) µ(G τ3,α3 J 1-α3 K -ρ ) -µ(G τ4,α4 J 1-α4 K -ρ ) .
It thus appears that the asymptotic mean-squared error (defined similarly to ( 12)) does not depend on δ. From the asymptotic point of view, all the estimators ρ(S) n such that (τ 1 , α 1 ) = (τ 7 , α 7 ), (τ 2 , α 2 ) = (τ 8 , α 8 ), (τ 3 , α 3 ) = (τ 5 , α 5 ) and (τ 4 , α 4 ) = (τ 6 , α 6 ) are thus equivalent.

Comparison on the simulated Burr distribution

For the sake of simplicity, we fix

α 1 = α 7 = θ 5 = θ 7 = τ 1 = • • • = τ 8 = 1, α 2 = α 3 = α 5 = α 8 = 2,
α 4 = α 6 = 3, θ 3 = θ 8 = 1/2, θ 4 = 1/3, θ 6 = 2/3, θ 1 = δ + 1 and θ 2 = (δ + 1)/2 so that δ is the unique free parameter. The resulting estimator is ρ(S) n,9 , it coincides with the one proposed in [START_REF] Fraga Alves | A new class of semi-parametric estimators of the second order parameter[END_REF] when δ = 0. For each value of k ∈ {500, . . . , 4999}, the empirical mean-squared error associated to ρ(S) n,9 is computed on 500 replications of the sample of size n = 5000 for δ ∈ {0, 1, 2} and for ρ ∈ {-0.25, -1}. The results are displayed on Figure 2. It appears that δ = 0 yields the best results for both values of ρ: the empirical mean-squared error is smaller than these associated to δ = 1 or δ = 2. This hierarchy cannot be observed on the asymptotic mean-squared error.

Tentative conclusion

The families of estimators of the second order parameter usually depend on a large set, say Θ, of parameters (12 parameters for estimators based on the random variables R k (τ ) and 20 parameters for S k (τ, α)). The methodology proposed in Paragraph 5.1.1 permits to compute an upper bound π(.) on the asymptotic mean-squared error AMSE associated to the estimators. This requires to show that the quantities AB 1 , AB 2 and AV are lower bounded when Θ varies in some region R Θ . Thus, it may be possible, for some well chosen region R Θ , to find an "optimal" set of parameters minimizing π(.). Unfortunately, the AMSE may not depend on all the parameters in Θ (see Paragraph 5.2.1) whereas the finite sample performances of the estimator does (see Paragraph 5.2.2). In such a case, the definition of a criterion for selecting an optimal Θ is an open question.

Proof of Theorem 1. Clearly, (Ψ1) and (Ψ2) entail Z n = ψ(ω -1 n (T n -χ n I)). Moreover, (T1) and (Ψ4) yield Z n P -→ ψ(f (ρ)) = ϕ(ρ). For all ε > 0, we have

P(|ρ n -ρ| > ε) = P({|ρ n -ρ| > ε} ∩ {Z n ∈ J}) + P({|ρ n -ρ| > ε} ∩ {Z n / ∈ J}) ≤ P({|ρ n -ρ| > ε} ∩ {Z n ∈ J}) + P({Z n / ∈ J}) = P({|ϕ -1 (Z n ) -ρ| > ε} ∩ {Z n ∈ J}) + P({Z n / ∈ J}).
From (Ψ3) and (Ψ4), ϕ -1 is also continuous in a neighborhood of ϕ(ρ). Since

Z n P -→ ϕ(ρ), it follows that P({|ϕ -1 (Z n ) -ρ| > ε} ∩ {Z n ∈ J}) → 0 as n → ∞. Besides, ρ ∈ J 0 yields ϕ(ρ) ∈ J
and thus

P({Z n / ∈ J}) → 0 as n → ∞. (13) 
As a conclusion, P(|ρ n -ρ| > ε) → 0 as n → ∞ and the result is proved.

Proof of Theorem 2. Recalling that Z n = ψ(ω -1 n (T n -χ n I)), a first order Taylor expansion shows that there exists ε ∈ (0, 1) such that

v n (Z n -ϕ(ρ)) = t (v n ξ n ) ∇ψ(f (ρ) + εξ n ),
where we have defined ξ n = ω -1 n (T n -χ n I) -f (ρ). Therefore, ξ n P -→ 0 and (Ψ5) entail that ∇ψ(f (ρ) + εξ n ) P -→ ∇ψ(f (ρ)). Thus, taking account of (T2), we obtain that

v n (Z n -ϕ(ρ)) d -→ N (m ψ (ρ), γ 2 σ 2 ψ (ρ)). (14) 
Now, P n (x) := P({v n (ρ n -ρ) ≤ x}) can be rewritten as

P n (x) = P({v n (ρ n -ρ) ≤ x} ∩ {Z n ∈ J}) + P({v n (ρ n -ρ) ≤ x} ∩ {Z n / ∈ J}) = P({v n (ϕ -1 (Z n ) -ρ) ≤ x} ∩ {Z n ∈ J}) + P({v n (ρ n -ρ) ≤ x} ∩ {Z n / ∈ J}) =: P 1,n (x) + P 2,n (x).
Let us first note that

0 ≤ P 2,n (x) ≤ P({Z n / ∈ J}) → 0 as n → ∞, (15) 
in view of (13) in the proof of Theorem 1. Focusing on P 1,n (x), since ϕ is continuously differentiable in a neighborhood of ρ and ϕ (ρ) = 0, it follows that ϕ is monotone in a neighborhood of ρ. Let us consider the case where ϕ is decreasing, the case ϕ increasing being similar. Writing J = (a, b), it follows that

P 1,n (x) = P({a ∨ ϕ(ρ + x/v n ) ≤ Z n ≤ b}) = P({v n (a ∨ ϕ(ρ + x/v n ) -ϕ(ρ)) < v n (Z n -ϕ(ρ)) ≤ v n (b -ϕ(ρ))}).
Introducing G n the cumulative distribution function of v n (Z n -ϕ(ρ)), we have

1 -P 1,n (x) = 1 -G n (v n (b -ϕ(ρ))) + G n (v n (a ∨ ϕ(ρ + x/v n ) -ϕ(ρ))) = 1 -G n (v n (b -ϕ(ρ))) + G n (v n (a -ϕ(ρ))) ∨ G n (v n (ϕ(ρ + x/v n ) -ϕ(ρ))) =: P 1,1,n + P 1,2,n ∨ P 1,3,n (x).
Let G denote the cumulative distribution function of the N (m ψ (ρ), γ 2 σ 2 ψ (ρ)) distribution. It is straightforward that [START_REF] Fraga Alves | Estimation of the parameter controlling the speed of convergence in extreme value theory[END_REF] shows that G n (t) → G(t) for all t ∈ R and thus G n (t) → G(t) uniformly, see for instance [START_REF] Embrechts | Modelling extremal events[END_REF], p.552. As a preliminary conclusion P 1,1,n → 0 and, similarly, P 1,2,n → 0 as n → ∞. 

P 1,1,n ≤ 1 -G(v n (b -ϕ(ρ))) + sup t∈R |G n (t) -G(t)|. Since ρ ∈ J 0 , we have ϕ(ρ) ∈ J = (a, b). In particular, b > ϕ(ρ) yields 1 -G(v n (b -ϕ(ρ))) → 0 as n → ∞. Besides,

Lemma 1 .

 1 and the functions |A| and |B| are regularly varying functions with index ρ and β respectively. This condition is the cornerstone for establishing the asymptotic normality of estimators of ρ. Let us denote by Y n-k,n the n -k largest order statistics from a n-sample of standard Pareto rv. Suppose (C1), (C2) hold and let k = k n be an intermediate sequence k such that

Lemma 2 .

 2 Suppose (C2), (C3) hold. If the intermediate sequence k satisfy (6) then the random vector T

  n with some function ψ following (3) can lead to existing or new estimators of ρ.

  .2). In both cases, d = 8 and the following function

4. 1

 1 Estimators based on the random variable R k (τ ) Since d = 8, the random variable T (R) n defined in (5) depends on 16 parameters: {(θ i , τ i ) ∈ (0, ∞) 2 , i = 1, . . . , 8}. The following condition on these parameters is introduced. Let θ = ( θ1 , . . . , θ4 ) ∈ (0, ∞) 4 with θ3 = θ4 .

=

  ψ δ • f (S) where f (S) is given in Lemma 2. Under this condition, T (S) n involves 20 free parameters. Besides, since δ = (ζ 1 -ζ 2 )/(ζ 3 -ζ 4 ), it is easy to check that Z (S) n

  i) A , i = 1, . . . , 4) and m (S) B = (m (S,i) B

ζ 2 3ζ 4 ζ 3 δ.

 3 form. To this end, it is assumed that τ 2 = τ 3 = τ 5 = τ 6 = τ 7 = τ 8 = α 7 = 1, α 6 = 3, α 8 = 2 and the following notation is introduced:ω * (δ, ζ) = ζ 1In all the examples below, J 0 = R -and thus the condition ρ ∈ J 0 is always satisfied. The first three examples correspond to existing estimators of the second order parameter while the three last examples give rise to new estimators.

Example 4 .

 4 Let δ = 0 (i.e. ζ 1 = ζ 2 ), α 1 = α 2 = α 3 = α 4 = 1, τ 1 =2 and τ 4 = 3. Denoting by Z

Example 7 . 2 and τ 4 = 3 .

 7243 Consider the case δ = 1 (i.e. ζ 1 -ζ 2 = ζ 3 -ζ 4 ), α 1 = α 2 = α 3 = α 4 = 1, τ 1 = α 5 = Denoting by Z (S) n,7 the rv Z (S) n , a new estimator of ρ is given by: ∈ ω * (1, ζ) • (-4/3, -2/3)}. Example 8. Let δ = 1, α 1 = α 3 = α 4 = 1 and τ 1 = τ 4 = α 2 = α 5 = 2. Denoting by Z (S) n,8 the rv Z (S) n , we obtain a new estimator of ρ:

  n : Corollary 1 and Corollary 2 cover a large number of estimators proposed in the literature. Five new estimators of ρ have been introduced: ρ

τ 6 =

 6 τ 7 = 1.75, θ1 = 0.01, θ3 = 0.02 and θ4 = 0.04. According to the authors, these values yield good results for distributions satisfying the third order condition (C2) with β = ρ. For these parameters, a simple expression of ϕ (R) δ

  Finally,|P 1,3,n (x) -G(xϕ (ρ))| ≤ |G(v n (ϕ(ρ + x/v n ) -ϕ(ρ)) -G(xϕ (ρ))| + sup t∈R |G n (t) -G(t)| and, in view of (Ψ5), v n (ϕ(ρ + x/v n ) -ϕ(ρ)) → xϕ (ρ) as n → ∞, which leads to P 1,3,n (x) → G(xϕ (ρ))as n → ∞. We thus have shown thatP 1,n (x) → 1 -G(xϕ (ρ)) = G(x|ϕ (ρ)|) as n → ∞.(16)Collecting (15) and (16) yieldsP({v n (ρ n -ρ) ≤ x}) → G(x|ϕ (ρ)|) as n → ∞and concludes the proof.Proof of Corollary 1. Clearly, ψ δ given in (9) satisfies (Ψ1) and (Ψ2). Moreover, Lemma 1shows that (T2) holds. To apply Theorem 2 it only remains to prove that (Ψ3) and (Ψ5) are satisfied. First remark that under (C4) and (C5),ϕ (R) δ (ρ) is well defined for all ρ ≤ 0 since f (R) (ρ) ∈ D. Furthermore, from Lemma 1, we have for i = 1, . . . , 4, = θi A(Y n-k,n ) γ (ν ρ (τ 2i-1 ) -ν ρ (τ 2i ))(1 + o P (1)),as n goes to infinity. Hence, conditions (C4) and (C5) imply that T (R) n ∈ D. Finally, using Lerch's Theorem (see[START_REF] Carslaw | Operational Methods in Applied Mathematics[END_REF], page 345), condition (C4) implies that there exists ρ 0 < 0 such that the first derivative of ϕ (R) δis non zero at ρ 0 . Thus, the inverse function theorem insures the existence of intervals J 0 and J for which the function ϕ (R) δ is a continuously differentiable bijection from J 0 to J. In conclusion, conditions (Ψ3) and (Ψ5) are satisfied and Theorem 2 applies. Proof of Corollary 2. The proof follows the same lines as the one of Corollary 1. It consists in remarking that, under (C6) and (C7), one has f (S) (ρ) ∈ D and T = ζ i A(n/k) γ (ν ρ (τ 2i , α 2i ) -ν ρ (τ 2i-1 , α 2i-1 )) (1 + o P (1)), in view of Lemma 2.

Figure 1 :

 1 Figure 1: Asymptotic mean-squared errors (left) and empirical mean-squared errors (right) of ρ(R) n,0 , ρ(R) n,1 and ρ(R) n,2 as a function of k for a Burr distribution.

Figure 2 :

 2 Figure 2: Empirical mean-squared errors of ρ(S) n,9 as a function of k for a Burr distribution.
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numerically, we can see that AV (R) (δ, ρ) ≥ AV (R) (1.32, -0.46). We thus have:

2 (δ, ρ, ρ)) 2 AV (R) (δ, ρ) and where the constant C does not depend on δ and ρ. We thus consider for ρ < 0 the parameter δ minimizing the function π(δ, ρ). For instance, when ρ is in the neighborhood of 0, one can show that the optimal value is δ = δ 0 = 1.5.

Illustration on the Burr distribution

Three estimators are compared:

• the estimator ρ(R) n,1 proposed in [START_REF] Goegebeur | Kernel estimators for the second order parameter in extreme value statistics[END_REF], and which corresponds to the case δ = 1, see Example 1,

• the new explicit estimator ρ(R) n,2 introduced in Example 2 which corresponds to the case δ = 0,

• the new implicit estimator defined by ρ(R) n,0 := ρ(R)

n with δ = δ 0 = 1.5, see equation [START_REF] Diebolt | Bias-reduced extreme quantile estimators of Weibull tail-distributions[END_REF].

First, the estimators are compared on the basis of their asymptotic mean-squared errors. Taking

) and λ B = ρλ A /γ, the asymptotic mean-squared errors are plotted on the left panel of Figure 1 as a function of k ∈ {1500, . . . , 4999} with n = 5000 and for ρ ∈ {-1, -0.25}. It appears that ρ(R) n,0 yields the best results for ρ = -1. This is in accordance with the results from the previous paragraph: δ = 1.5 is the "optimal" when ρ is close to 0. As a preliminary conclusion, the criterion π(.) seems to be well-adapted for tuning the estimator parameters. At the opposite, when ρ = -0.25, the best estimator from the asymptotic mean-squared error point of view is ρ(R) n,2 . Second, the estimators are compared on their finite sample size performances. For each estimator, and for each value of k ∈ {1500, . . . , 4999}, the empirical mean-squared error is computed on 500 replications of the sample of size n = 5000. The results are displayed on the right panel of Figure 1. The conclusions are qualitatively the same: ρ(R) n,0 yields the best results in the case ρ ≥ -1 where as ρ(R) n,2 yields the best results in the case ρ < -1. Let us note that, consequently, ρ(R) n,1 is never the best estimator in the situation considered here. In practice, the case ρ ≥ -1 is the more interesting one, since it corresponds to a strong bias. For this reason, it seems to us that ρ(R) n,0 should be preferred.

Estimators based on the random variable S k (τ, α)

Let us now consider the estimators of ρ based on the random variables S k (τ i , α i ) for i = 1, . . . , 8 considered in Section 4.2 in the case where (τ 1 , α 1 ) = (τ 7 , α 7 ), (τ 2 , α 2 ) = (τ 8 , α 8 ), (τ 3 , α 3 ) = (τ 5 , α 5 ) and (τ 4 , α 4 ) = (τ 6 , α 6 ). In Paragraph 5.2.1, we show that the asymptotic mean-squared error is independent of δ. In contrast, Paragraph 5.2.2 illustrates the finite sample behavior of the estimators when δ varies.