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GRADIENT ESTIMATES FOR A DEGENERATE PARABOLIC EQUATION

WITH GRADIENT ABSORPTION AND APPLICATIONS

Jean-Philippe Bartier1 and Philippe Laurençot2

Abstract

Qualitative properties of non-negative solutions to a quasilinear degenerate parabolic
equation with an absorption term depending solely on the gradient are shown, provid-
ing information on the competition between the nonlinear diffusion and the nonlinear
absorption. In particular, the limit as t → ∞ of the L

1-norm of integrable solutions is
identified, together with the rate of expansion of the support for compactly supported
initial data. The persistence of dead cores is also shown. The proof of these results
strongly relies on gradient estimates which are first established.

1 Introduction

We investigate the properties of non-negative and bounded continuous solutions to the
Cauchy problem

∂tu−∆pu+ |∇u|q = 0 , (t, x) ∈ Q∞ := (0,∞)× R
N , (1.1)

u(0) = u0 ≥ 0 , x ∈ R
N , (1.2)

the parameters p and q ranging in (2,∞) and (1,∞), respectively, and the p-Laplacian
operator ∆p being defined by

∆pu := div
(

|∇u|p−2 ∇u
)

.

When p > 2, (1.1) is a quasilinear degenerate parabolic equation with a nonlinear absorption
term |∇u|q depending solely on the gradient of u, and reduces to the semilinear diffusive
Hamilton-Jacobi equation

∂tv −∆v + |∇v|q = 0 in Q∞ , (1.3)

when p = 2. Several recent papers have been devoted to the study of properties of non-
negative solutions to (1.3) with a particular emphasis on the large time behaviour which
turns out to depend strongly on the value of the parameter q ∈ (0,∞) [1, 4, 5, 6, 7, 8, 19].
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route de Narbonne, F–31062 Toulouse Cedex 9, France. E-mail: laurenco@mip.ups-tlse.fr

1



One of the keystones of these investigations are optimal gradient estimates of the form
‖∇ (vα) (t)‖∞ ≤ C(‖v(0)‖∞) t−β for suitable exponents α ∈ (0, 1) and β > 0, both depending
on N and q [5, 20]. Not only do such estimates provide an instantaneous smoothing effect
from L∞(RN) to W 1,∞(RN) but temporal decay estimates as well, the latter being the
starting point of a precise study of the large time dynamics. Let us recall here that the proof
of the above-mentioned gradient estimates relies on a modification of the Berstein technique
[5, 20].

Owing to the nonlinearity of the diffusion term when p > 2, the availability of similar
gradient estimates for solutions to (1.1), (1.2) is unclear and is actually our first result.
More precisely, for p > 2 and q > 1, we introduce the exponents αp ∈ (0, 1) and βp,q ∈ (0, 1)
defined by

1

αp
:=

p− 1

p− 2
−

N − 1

p(N + 3)− 2(N + 1)
and βp,q := max

{

αp,
q − 1

q

}

. (1.4)

Theorem 1.1 Consider a non-negative initial condition u0 ∈ BC(RN). There is a non-
negative viscosity solution u ∈ BC([0,∞)× R

N) to (1.1), (1.2) such that

0 ≤ u(t, x) ≤ ‖u0‖∞ , (t, x) ∈ Q∞ , (1.5)

|∇ (uαp) (t, x)| ≤ C(p,N) ‖u(s)‖(pαp+2−p)/p
∞ (t− s)−1/p , (1.6)

∣

∣∇
(

uβp,q
)

(t, x)
∣

∣ ≤ C(p, q, N) ‖u(s)‖(qβp,q+1−q)/q
∞ (t− s)−1/q , (1.7)

and
∫

RN

(u(t, x)− u(s, x)) ϑ(x) dx+

∫ t

s

∫

RN

(

|∇u|p−2∇u · ∇ϑ+ |∇u|q ϑ
)

dxdτ = 0 (1.8)

for t > s ≥ 0 and ϑ ∈ C∞
0 (RN).

Furthermore, this solution is unique if u0 ∈ BUC(RN ).

Let us emphasize that the main contribution of Theorem 1.1 is the estimates (1.6), (1.7),
and not the existence of a viscosity solution to (1.1) which could probably be obtained by
alternative approaches. But, owing to the poor regularity of the solutions to (1.1), (1.2), we
cannot prove (1.6) and (1.7) directly and instead use an approximation procedure. Indeed,
the proof of (1.6) and (1.7) relies on a modification of the Bernstein technique. It requires the
study of the partial differential equation solved by |∇ϕ(u)|2 for a suitably chosen function
ϕ and thus some regularity which is not available for solutions to (1.1), (1.2). The existence
part of Theorem 1.1 is in fact an intermediate step in the proof of (1.6) and (1.7).

It is clear from (1.6) and (1.7) with s = 0 that they lead to different temporal decay
estimates. In fact, as we shall see below, (1.6) results from the diffusive part of (1.1) while
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(1.7) stems from the absorption term. In particular, it is worth mentioning that (1.6) is also
valid for non-negative solutions to the p-Laplacian equation

∂tw −∆pw = 0 in Q∞ , (1.9)

which seems to be new for N ≥ 2. When N = 1, it has been proved in [17, Theorem 2].
Also, (1.7) is true for non-negative viscosity solutions to the Hamilton-Jacobi equation

∂th+ |∇h|q = 0 in Q∞ , (1.10)

and can be deduced from [26, Theorem I.1]. For p = 2, similar gradient estimates have been
obtained in [5, 20] with α2 = β2,q = (q − 1)/q.

The previous gradient estimates may be improved for non-negative, radially symmetric,
and non-increasing initial data.

Theorem 1.2 Assume that the initial condition u0 ∈ BC(RN) is non-negative, radially
symmetric, and non-increasing. There is a non-negative viscosity solution u to (1.1), (1.2)
satisfying (1.5), (1.8) and such that

x 7−→ u(t, x) is non-negative, radially symmetric, and non-increasing,

∣

∣∇
(

u(p−2)/(p−1)
)

(t, x)
∣

∣ ≤ C(p,N) ‖u(s)‖(p−2)/p(p−1)
∞ (t− s)−1/p , (1.11)

∣

∣∇
(

u(q−1)/q
)

(t, x)
∣

∣ ≤
(q − 1)(q−1)/q

q
t−1/q if q ≥ p− 1 , (1.12)

and
∣

∣∇
(

u(p−2)/(p−1)
)

(t, x)
∣

∣ ≤ C(p, q) ‖u(s)‖(p−1−q)/q(p−1)
∞ (t− s)−1/q if q ∈ (1, p− 1) , (1.13)

for t > s ≥ 0.

Theorem 1.2 is proved as Theorem 1.1 for N = 1. We will thus only give the proof of
the latter.

Here again, the gradient estimate (1.11) is valid for non-negative solutions to the p-
Laplacian equation (1.9) with radially symmetric and non-increasing initial data and is
easily seen to be optimal in that case: indeed, the Barenblatt solution to the p-Laplacian
equation (1.9) is given by

B(t, x) = t−Nη

(

1− γp

(

|x|

tη

)p/(p−1)
)(p−1)/(p−2)

+

, (t, x) ∈ (0,∞)× R
N ,

with η = 1/(N(p − 2) + p) (see, e.g., [16, Ch. XI, Eq. (1.6)]) and ∇
(

Bϑ
)

(t, x) is bounded
only for ϑ ≥ (p− 2)/(p− 1).
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Remark 1.3 Since we are mainly interested in qualitative properties of solutions to (1.1),
(1.2), we leave aside the question of uniqueness of such solutions for initial data in BC(RN)\
BUC(RN). Nevertheless, since the solutions in Theorems 1.1 and 1.2 are constructed as limits
of classical solutions, they still enjoy a comparison principle. More precisely, if u0 and û0 are
two non-negative functions in BC(RN) such that u0 ≤ û0, then the corresponding solutions u
and û to (1.1) with initial data u0 and û0 constructed in Theorem 1.1 satisfy u(t, x) ≤ û(t, x)
for all (t, x) ∈ Q∞. This fact will be used repeatedly in the sequel.

Several qualitative properties follow from the previous gradient estimates. As a first con-
sequence, we derive temporal decay estimates in W 1,∞(RN) for non-negative and integrable
solutions to (1.1), (1.2). We set

q∗ := p−
N

N + 1
, ξ :=

1

q(N + 1)−N
, η :=

1

N(p− 2) + p
. (1.14)

Proposition 1.4 Assume that

u0 ∈ L1(RN) ∩ BC(RN) , u0 ≥ 0 , (1.15)

and denote by u the corresponding viscosity solution to (1.1), (1.2) constructed in Theo-
rem 1.1. Then u ∈ C([0,∞);L1(RN)).

Let t > 0. If q ∈ (1, q∗), then

‖u(t)‖∞ ≤ C ‖u0‖
qξ
1 t−Nξ , (1.16)

‖∇u(t)‖∞ ≤ C ‖u0‖
ξ
1 t−(N+1)ξ , (1.17)

while, if q > q∗,

‖u(t)‖∞ ≤ C ‖u0‖
pη
1 t−Nη , (1.18)

‖∇u(t)‖∞ ≤ C ‖u0‖
2η
1 t−(N+1)η . (1.19)

Recall that the L∞-norm of non-negative and integrable solutions w to the p-Laplacian
equation (1.9) decays as t−Nη [22, Theorem 3]. However this decay might be enhanced by the
nonlinear absorption term and this is indeed the case for q ∈ (1, q∗). Indeed, t

−Nξ ≤ t−Nη for
t ≥ 1 and q ∈ (1, q∗). According to Proposition 1.4, we thus expect the nonlinear absorption
term to be negligible as t → ∞ for q > q∗ and the large time dynamics to feel the effects of
the absorption only for q ∈ (1, q∗). The next result is a further step in that direction.

It readily follows from (1.1) and the non-negativity of u that t 7−→ ‖u(t)‖1 is a non-
increasing and non-negative function. Introducing

I1(∞) := lim
t→∞

‖u(t)‖1 = inf
t≥0

{‖u(t)‖1} ∈ [0, ‖u0‖1] , (1.20)

we study the possible values of I1(∞).
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Proposition 1.5 Assume that u0 satisfies (1.15) with ‖u0‖1 > 0 and denote by u the cor-
responding viscosity solution to (1.1), (1.2) constructed in Theorem 1.1. Then I1(∞) > 0 if
and only if q > q∗, the parameter q∗ being defined in (1.14).

Since ‖w(t)‖1 = ‖w(0)‖1 for all t ≥ 0 for non-negative and integrable solutions w to
the p-Laplacian equation (1.9), we realize that the absorption term is not strong enough
for q > q∗ to drive the L1-norm of u(t) to zero as t → ∞, thus indicating a diffusion-
dominated behaviour for large times. For q ∈ (p− 1, p) Proposition 1.5 is already proved in
[1, Theorems 1.3 & 1.4] by a different method.

We next turn to a property which marks a striking difference between the semilinear case
p = 2 and the quasilinear case p > 2 corresponding to slow diffusion, namely the finite speed
of propagation. Since the support of non-negative and compactly supported solutions w to
the p-Laplacian equation (1.9) grows as tη, it is natural to wonder whether the absorption
term will slow down this process.

Theorem 1.6 Assume that u0 fulfils (1.15) and is compactly supported, and denote by u
the corresponding solution to (1.1), (1.2). For t ≥ 0 we put

̺(t) := inf {R > 0 such that u(t, x) = 0 for |x| > R} . (1.21)

Then ̺(t) < ∞ for all t ≥ 0 and:

(i) If q ∈ (1, p− 1) then
lim sup
t→∞

̺(t) < ∞ . (1.22)

(ii) If q = p− 1 then
̺(t) ≤ C (1 + ln t) for t ≥ 1 . (1.23)

(iii) If q ∈ (p− 1, q∗) then

̺(t) ≤ C t(q−p+1)/(2q−p) for t ≥ 1 . (1.24)

(iv) If q ≥ q∗ then
̺(t) ≤ C tη for t ≥ 1 . (1.25)

Here again, the absorption term seems to have no real effect on the expansion on the
support of u(t) for q > q∗ as the upper bound (1.25) is exactly the growth rate of the
support for non-negative and compactly supported solutions w to the p-Laplacian equation
(1.9). But, as soon as q is below q∗, the dynamics starts to feel the effects of the absorption
term and the expansion of the support of u(t) slows down. It even stops for q ∈ (1, p− 1).
In that case, the support of u(t) remains localized in a fixed ball of RN : such a property is
already enjoyed by compactly supported non-negative solutions to second-order degenerate
parabolic equations with a sufficiently strong absorption involving the solution only as, for
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instance, ∂tz − ∆pz + zr = 0 in Q∞ when r ∈ (1, p − 1) [15, 23, 28]. It has apparently
remained unnoticed for second-order degenerate parabolic equations with an absorption term
depending solely on the gradient. In our case, this property is clearly reminiscent of that
enjoyed by the solutions h to the Hamilton-Jacobi equation (1.10): namely, the support
of h(t) does not evolve through time evolution [2]. Finally, for q ∈ (p − 1, q∗), compactly
supported self-similar solutions to (1.1) are constructed and the boundaries of their support
evolve at the speed given by the right-hand side of (1.24).

As a by-product of the proof of Theorem 1.6 we obtain improved decay estimates for the
L1-norm of solutions to (1.1), (1.2) with compactly supported initial data.

Corollary 1.7 Assume that u0 fulfils (1.15) and is compactly supported. Then

(i) If q ∈ (1, p− 1) then
‖u(t)‖1 ≤ C t−1/(q−1) , t ≥ 2 . (1.26)

(ii) If q = p− 1 then

‖u(t)‖1 ≤ C t−1/(q−1) (ln t)1/ξ(q−1) for t ≥ 2 . (1.27)

(iii) If q ∈ (p− 1, q∗) then

‖u(t)‖1 ≤ C t−((N+1)(q∗−q))/(2q−p) for t ≥ 2 . (1.28)

(iv) If q = q∗ then

‖u(t)‖1 ≤ C (ln t)−1/(q−1) for t ≥ 2 . (1.29)

For q ∈ (p−1, q∗], Theorem 1.6 and Corollary 1.7 are already proved in [1, Theorems 1.1
& 1.2] by a completely different approach. In addition, for non-compactly supported initial
data, temporal decay estimates involving the behaviour of u0 for large values of x are obtained
in [1, Theorem 1.3] for the L1-norm of u. Let us also mention that the decay rate of ‖u(t)‖1 for
q ∈ (1, p−1) is the same as the one obtained in [2] for non-negative and compactly supported
solutions to the Hamilton-Jacobi equation (1.10). The bound (1.26) then provides another
clue of the dominance of the absorption term for q ∈ (1, p − 1). That it is indeed true is
shown in [25].

For q ∈ (1, p − 1), it follows from Theorem 1.6 (i) that the support of the solutions to
(1.1), (1.2) with compactly supported initial data remains bounded through time evolution.
A natural counterpart of this phenomenon is to study what happens to a solution to (1.1),
(1.2) starting from an initial condition vanishing inside a ball of RN . It turns out that, if
the radius of the ball is sufficiently large, the solution still vanishes inside of a smaller ball
for all times, a phenomenon which may be called the persistence of dead cores.
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Proposition 1.8 Consider a non-negative initial condition u0 ∈ BC(RN) such that

u0(x) = 0 if |x| ≤ R0 (1.30)

for some R0 > 0, and denote by u the corresponding solution to (1.1), (1.2) constructed
in Theorem 1.1. If q ∈ (1, p − 1) there is a constant δ0 = δ0(p, q) > 0 such that, if R0 ≥

δ0 ‖u0‖
(p−1−q)/(p−q)
∞ then

u(t, x) = 0 if |x| ≤ R0 − δ0 ‖u0‖
(p−1−q)/(p−q)
∞ and t ≥ 0 .

The proof of Proposition 1.8 is in fact quite similar to that of Theorem 1.6 (i).

This paper is organized as follows: gradient estimates for an approximation of (1.1) are
established in Section 2 by a modified Bernstein technique with the help of a trick introduced
in [10] to obtain gradient estimates for the porous medium equation. Theorems 1.1 and 1.2
are then proved in Section 3. Sections 4 and 5 are devoted to integrable initial data for
which we prove Propositions 1.4 and 1.5. We focus on compactly supported initial data in
Section 6 where Theorem 1.6 and Corollary 1.7 are proved. The persistence of dead cores is
studied in Section 7 while the proof of a technical lemma from Section 2 is postponed to the
appendix.

2 Gradient estimates

As already mentioned the proof of the gradient estimates (1.6) and (1.7) rely on a modified
Bernstein technique: owing to the degeneracy of the diffusion we cannot expect (1.1) to have
smooth solutions and we thus need to use an approximation procedure. We first report the
following technical lemma.

Lemma 2.1 Let a and b be two non-negative functions in C2([0,∞)) and u be a classical
solution to

∂tu− div
(

a
(

|∇u|2
)

∇u
)

+ b
(

|∇u|2
)

= 0 in Q∞ . (2.1)

Consider next a C3-smooth increasing function ϕ and set v := ϕ−1(u) and w := |∇v|2. Then
w satisfies the following differential inequality

∂tw −Aw − V · ∇w + 2 R1 w2 + 2 R2 w ≤ 0 in Q∞ , (2.2)

where A, R1 and R2 are given by

Aw := a ∆w + 2a′ (∇u)tD2w∇u , (2.3)

R1 := −a

(

ϕ′′

ϕ′

)′

−

(

(N − 1)
a′2

a
+ 4 a′′

)

(ϕ′ϕ′′)
2
w2 − 2 a′ w

(

2ϕ′′2 + ϕ′ϕ′′′
)

, (2.4)

R2 :=
ϕ′′

ϕ′2

(

2 b′ ϕ′2 w − b
)

, (2.5)

7



while V is given by (A.2) below. Here and in the following we omit the variable in a, b and
ϕ and their derivatives.

Furthermore, if ϕ is convex, a is non-decreasing and x 7−→ u(t, x) is radially symmetric
and non-increasing for each t ≥ 0, then R1 may be replaced by Rr

1 given by

Rr
1 := −a

(

ϕ′′

ϕ′

)′

− 4 a′′ (ϕ′ϕ′′)
2
w2 − 2 a′ w

(

2ϕ′′2 + ϕ′ϕ′′′
)

, (2.6)

The proof of Lemma 2.1 is rather technical and is postponed to the appendix. We
however emphasize that it uses a trick introduced by Bénilan [10] to prove gradient estimates
for solutions to the porous medium equation in several space dimensions. It is also worth
noticing that R1 = Rr

1 for N = 1.

Consider next a non-negative function u0 ∈ BC(RN). There is a sequence of functions
(u0,k)k≥1 such that, for each integer k ≥ 1, u0,k ∈ BC∞(RN),

0 ≤ u0,k(x) ≤ u0,k+1(x) ≤ u0(x) , x ∈ R
N , (2.7)

and (u0,k) converges uniformly towards u0 on compact subsets of RN . In addition, if u0 ∈
W 1,∞(RN) we may assume that

‖∇u0,k‖∞ ≤

(

1 +
K1

k

)

‖∇u0‖∞ , (2.8)

for some constant K1 > 0 depending only on the approximation process. Next, since ξ 7−→
|ξ|p−2 and ξ 7−→ |ξ|q are not regular enough for small values of p and q, we set

aε(ξ) :=
(

ε2 + ξ
)(p−2)/2

and bε(ξ) :=
(

ε2 + ξ
)q/2

− εq , ξ ≥ 0 , (2.9)

for ε ∈ (0, 1/2). Then, given

0 < γ ≤ min

{

3

4
, 2βp,q, q,

q + 2

2

}

, (2.10)

the Cauchy problem

∂tuk,ε − div
(

aε
(

|∇uk,ε|
2
)

∇uk,ε

)

+ bε
(

|∇uk,ε|
2
)

= 0 , (t, x) ∈ Q∞ , (2.11)

uk,ε(0) = u0,k + εγ , x ∈ R
N , (2.12)

has a unique classical solution uk,ε ∈ C(3+δ)/2,3+δ([0,∞) × R
N) for some δ ∈ (0, 1) [24].

Observing that εγ and ‖u0‖∞ + εγ are solutions to (2.11) with εγ ≤ uk,ε(0, x) ≤ ‖u0‖∞ + εγ ,
the comparison principle warrants that

εγ ≤ uk,ε(t, x) ≤ ‖u0‖∞ + εγ , (t, x) ∈ [0,∞)× R
N . (2.13)
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We now turn to estimates on the gradient of uk,ε and first point out that, thanks to the
regularity of aε, bε and uk,ε, we may use Lemma 2.1. We first take ϕ(r) = ϕ0(r) := r for
r ≥ 0 so that w = |∇uk,ε|

2 and R1 = R2 = 0. Therefore w satisfies

∂tw −Aw − V · ∇w ≤ 0 in Q∞ .

Since w(0) ≤ ‖∇u0,k‖
2
∞ the comparison principle ensures that

‖∇uk,ε(t)‖∞ ≤ ‖∇u0,k‖∞ , t ≥ 0 . (2.14)

We now establish gradient estimates similar to (1.6) and (1.7) for uk,ε. We first use the
specific choice of aε and bε to compute R1 and R2.

Lemma 2.2 Introducing g := (|∇uk,ε|
2 + ε2)

1/2
, we have

R1 = −(p− 1) gp−2

{

(

ϕ′′

ϕ′

)′

+
αp

1− αp

(

ϕ′′

ϕ′

)2
}

+ ε2 R11 (2.15)

with

R11 = (p− 2)

(

ϕ′′

ϕ′

)′

gp−4 +
(p− 2)(p(N + 3)− 2(N + 1))

4

(

ϕ′′

ϕ′

)2

gp−4

+
(p− 2)(p(N + 3)− 2(N + 7))

4

(

ϕ′′

ϕ′

)2
(

g2 − ε2
)

gp−6 ,

and

R2 =
ϕ′′

ϕ′2

{

(q − 1) gq + εq − q ε2 gq−2
}

. (2.16)

After these preliminary computations we are in a position to state and prove the main
result of this section.

Proposition 2.3 There are positive real numbers C = C(p,N) and D1(k) = D1(k, p,N)
such that, for ε ∈ (0, 1/2), x ∈ R

N , and t ∈
(

0, ε−1/4
)

,

∣

∣∇
(

u
αp

k,ε

)

(t, x)
∣

∣ ≤ C
(

1 +D1(k) ε
1/4
)2/p

(‖u0,k‖∞ + εγ)(pαp+2−p)/p t−1/p . (2.17)

There are a positive real number D2(k) = D2(k, p, q, N) and a positive function ω ∈
C([0,∞)) such that ω(ε) → 0 as ε → 0 and

∣

∣

∣
∇
(

u
βp,q

k,ε

)

(t, x)
∣

∣

∣
≤

βp,q

(q − 1)1/q(1− βp,q)1/q

(

1

q
+D2(k) ω(ε)

1/2

)1/q

(2.18)

× (‖u0,k‖∞ + εγ)(qβp,q+1−q)/q t−1/q

for t ∈ (
(

0, ω(ε)−1/2
)

, x ∈ R
N , and ε ∈ (0,min {q − 1, 1/2}).
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The proof of Proposition 2.3 relies on suitable choices of the function ϕ in R1 and R2.
To motivate the forthcoming choices, we first note that, if ϕ(r) = r1/αp , then R1 = ε2 R11

and (2.17) will in fact be obtained by choosing a “small perturbation” of r 7→ r1/αp , namely

ϕ(r) = ϕ1(r) := (2Kr − r2)
1/αp for K sufficiently large. Such a choice has already been

employed for the p-Laplacian equation in one space dimension N = 1 for the same purpose
[17]. Next, previous investigations for the case p = 2 suggest that ϕ(r) = rq/(q−1) is a suitable
choice in R2 [5]. However, with this choice of ϕ, R1 might give a non-positive contribution
according to the value of p and a suitable choice turns out to be ϕ(r) = ϕ2(r) := βp,q r

1/βp,q .

Proof of Proposition 2.3. We first establish (2.17). Consider µ > 0 to be specified later
and put

K :=
√

1 + µ Mαp , M := ‖u0,k‖∞ + εγ

and ϕ1(r) := (2Kr − r2)
1/αp for r ∈ [0, K]. Then v is given by

v := K −
(

K2 − u
αp

k,ε

)1/2
(2.19)

and satisfies
εγαp

2K
≤ v ≤ K −

(

K2 −Mαp
)1/2

≤ Mαp/2 (2.20)

by (2.13). Thanks to the bounds (2.20), we can find µ large enough such that ϕ1 enjoys the
following properties:

0 ≥

(

ϕ′′
1

ϕ′
1

)′

(v) ≥ −
C1(µ)

v2
, (2.21)

0 ≤
ϕ′′
1

ϕ′
1

(v) ≤
C2(µ)

v
, (2.22)

(

ϕ′′
1

ϕ′
1

)′

(v) +
αp

1− αp

(

ϕ′′
1

ϕ′
1

)2

(v) ≤ −
1 + αp

2αp

1

Kv
. (2.23)

We then infer from (2.21) and (2.22) that

R11 ≥ −
C3(µ)

v2
gp−4 .

Therefore, by (2.20) and the elementary inequality g ≥ |∇uk,ε|, we have

w R11 ≥ −
|∇uk,ε|

2

(ϕ′
1)

2(v)

C3(µ)

v2
gp−4 ≥ −

C4(µ)

M v2/αp
gp−2 ≥ −

C5(µ)

ε2γ
gp−2 .

Combining the previous inequality with (2.15) and (2.23), we obtain

w2 R1 ≥
C6(µ) M

−αp/2

v
gp−2 w2 − C5(µ) ε

2(1−γ) gp−2 w .
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Now, we have g ≤ ‖∇u0,k‖∞ + ε by (2.14) and

g2 ≥ |∇uk,ε|
2 = (ϕ′

1)
2(v) ≥ C7(µ) M v2(1−αp)/αp w

by (2.20). The previous lower bound for w2 R1 then gives

w2 R1 ≥
C8(µ) M

(p−2−αp)/2

v((p−1)αp−(p−2))/αp
w(p+2)/2 − C9(µ, k) ε

2(1−γ) w .

Since (p− 1)αp ≥ (p− 2) and v ≤ Mαp/2 by (2.20), we end up with

w2 R1 ≥ C10(µ) M
(2(p−2)−pαp)/2 w(p+2)/2 − C9(µ, k) ε

2(1−γ) w . (2.24)

Next, since q > 1 and g ≥ ε, we infer from the monotonicity of ϕ1 and (2.22) that R2 ≥ 0.
Recalling (2.2) and (2.24) we have shown that

L1w := ∂tw −Aw − V · ∇w + 2 C10(µ) M
(2(p−2)−pαp)/2 w(p+2)/2 − 2 C9(µ, k) ε

2(1−γ) w ≤ 0

in Q∞. It is then straightforward to check that

S1(t) :=

(

1 + 2 C9(µ, k) ε
1/4

p C10(µ)

)2/p

M (pαp−2(p−2))/p t−2/p

satisfies L1S1 ≥ 0 in
(

0, ε−1/4
)

× R
N . The comparison principle then ensures that w(t, x) ≤

S1(t) for (t, x) ∈
(

0, ε−1/4
)

× R
N . The estimate (2.17) then readily follows with the help of

(2.20).

To prove (2.18) we take ϕ2(r) := βp,q r
1/βp,q , so that v = (u/βp,q)

βp,q satisfies

εγβp,q

β
βp,q
p,q

≤ v ≤
Mβp,q

β
βp,q
p,q

with M := ‖u0,k‖∞ + εγ , (2.25)

by (2.13). Concerning R1, the computations are much simpler than in the previous case and
it follows from the definition of βp,q and (2.14) that

w2 R1 ≥ C11
βp,q − αp

αpβp,q

gp−2 w2

v2
− C12 ε(2βp,q−γ)/βp,q gp−2 w

w2 R1 ≥ −C13(k) ε
(2βp,q−γ)/βp,q w . (2.26)

For R2, we first claim that

(q − 1) gq + εq − q ε2 gq−2 ≥ (q − 1− ε) gq − C14

(

ε(q+2)/2 + εq
)

. (2.27)

Indeed, if q > 2, it follows from the Young inequality that

(q − 1) gq + εq − q ε2 gq−2 ≥ (q − 1) gq − ε gq − 2 (q − 2)(q−2)/2 ε(q+2)/2

≥ (q − 1− ε) gq − 2 (q − 2)(q−2)/2 ε(q+2)/2 .
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If q ∈ (1, 2], we have

(q − 1) gq + εq − q ε2 gq−2 ≥ (q − 1) gq + εq − q εq ≥ (q − 1− ε) gq − (q − 1) εq ,

which completes the proof of (2.27). We then infer from (2.16), (2.25), and (2.27) that

R2 ≥
1− βp,q

βp,q

1

v1/βp,q

[

(q − 1− ε) (ϕ′
2)

q(v) wq/2 − C14

(

ε(q+2)/2 + εq
)]

≥
1− βp,q

βp,q

(q − 1− ε) v(q(1−βp,q)−1)/βp,q wq/2 − C15

(

ε(q+2−2γ)/2 + εq−γ
)

≥
1− βp,q

β
q(1−βp,q)
p,q

(q − 1− ε) M q(1−βp,q)−1 wq/2 − C15

(

ε(q+2−2γ)/2 + εq−γ
)

,

Recalling (2.26) we have thus shown that w satisfies

L2w := ∂tw −Aw − V · ∇w + 2
1− βp,q

β
q(1−βp,q)
p,q

(q − 1− ε) M q(1−βp,q)−1 w(q+2)/2

− C16(k) ω(ε) w ≤ 0

in Q∞, where ω(ε) := ε(2βp,q−γ)/βp,q + ε(q+2−2γ)/2 + εq−γ → 0 as ε → 0 by the choice (2.10) of
γ. The function

S2(t) :=
β
2(1−βp,q)
p,q

22/q (1− βp,q)2/q (q − 1− ε)2/q

(

2 + q C16(k) ω(ε)
1/2

q

)2/q

M2(1−q(1−βp,q))/q t−2/q

satisfies L2S2 ≥ 0 in
(

0, ω(ε)−1/2
)

×R
N . We then deduce from the comparison principle that

w(t, x) ≤ S2(t) for (t, x) ∈
(

0, ω(ε)−1/2
)

× R
N . The estimate (2.18) then readily follows. �

3 Existence

We are now in a position to prove Theorem 1.1 and proceed along the lines of [20].
Step 1: ε → 0. We first let ε → 0. For that purpose, we observe that the gradient bound
(2.14) and (2.11) imply the time equicontinuity of (uk,ε)ε>0.

Lemma 3.1 For k ≥ 1, ε > 0, x ∈ R
N , t1 ≥ 0, and t2 > t1, we have

|uk,ε(t2, x)− uk,ε(t1, x)| ≤ C
(

‖∇u0,k‖∞ + ‖∇u0,k‖
p−1
∞

)

(t2 − t1)
1/2 + ‖∇u0,k‖

q
∞ (t2 − t1) .

The proof of Lemma 3.1 is similar to that of [20, Lemma 5] to which we refer.

We next fix k ≥ 1. Owing to (2.13), (2.14), and Lemma 3.1, we may apply the Arzelà-
Ascoli theorem to obtain a subsequence of (uk,ε)ε>0 (not relabeled) and a non-negative func-
tion uk ∈ BC([0,∞)× R

N) such that

uk,ε −→ uk uniformly on any compact subset of [0,∞)× R
N . (3.1)
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Furthermore, as uk,ε is a classical solution to (2.11), (2.12), the classical stability result for
continuous viscosity solutions allows us to conclude that uk is a viscosity solution to (1.1)
with initial condition u0,k (see, e.g., [13, Theorem 1.4] or [3, Théorème 2.3]). By (3.1) and
weak convergence arguments, we next infer from (2.13), (2.17), and (2.18) that

0 ≤ uk(t, x) ≤ ‖u0‖∞ , (3.2)
∣

∣∇
(

u
αp

k

)

(t, x)
∣

∣ ≤ C ‖u0,k‖
(pαp+2−p)/p
∞ t−1/p , (3.3)

∣

∣

∣
∇
(

u
βp,q

k

)

(t, x)
∣

∣

∣
≤

βp,q

(q2 − q)1/q(1− βp,q)1/q
‖u0,k‖

(qβp,q+1−q)/q
∞ t−1/q (3.4)

for all (t, x) ∈ Q∞. Finally, (2.11) also reads

∂tuk,ε − div
(

|∇uk,ε|
p−2 ∇uk,ε

)

= div (fk,ε) + gk,ε in Q∞

with
fk,ε :=

{

aε
(

|∇uk,ε|
2
)

− |∇uk,ε|
p−2
}

∇uk,ε and gk,ε := −bε
(

|∇uk,ε|
2
)

.

It follows from the definition of aε and (2.14) that (gk,ε) is bounded in L∞(Q∞) and (fk,ε)
converges to zero in L∞(Q∞) as ε → 0. We may then apply [12, Theorem 4.1] to conclude
that

∇uk,ε −→ ∇uk a.e. in Q∞ . (3.5)

Consequently, upon extracting a further subsequence, we may assume that

∇uk,ε −→ ∇uk a.e. in Lr((0, T )× B(0, R)) (3.6)

for every r ∈ [1,∞), T > 0, and R > 0. It then readily follows that uk satisfies (1.8) with
u0,k instead of u0.

Step 2: k → ∞. It remains to pass to the limit as k → ∞. To this end we first observe that
(2.7) implies that u0,k(x)− u0,k+1(y) ≤ ‖∇u0,k‖∞ |y − x| for k ≥ 1, x ∈ R

N , and y ∈ R
N . It

then follows from the comparison principle [18, Theorem 2.1] that

uk(t, x) ≤ uk+1(t, x) for (t, x) ∈ Q∞ and k ≥ 1 . (3.7)

Therefore, by (2.7), (3.2), and (3.7), the function

u(t, x) := sup
k≥1

uk(t, x) ∈ [0, ‖u0‖∞] (3.8)

is well-defined for (t, x) ∈ [0,∞)× R
N . We next readily deduce from (3.2) and (3.3) that,

for τ > 0,
‖∇uk(t)‖∞ ≤ C ‖u0‖

2/p
∞ t−1/p ≤ C ‖u0‖

2/p
∞ τ−1/p for t ≥ τ . (3.9)

Thanks to (3.9) we may argue as in the previous step and conclude that

uk −→ u uniformly on any compact subset of Q∞ . (3.10)
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Using again the stability of continuous viscosity solutions, we deduce from the convergence
(3.10) that (t, x) 7−→ u(t+ τ, x) is a viscosity solution to (1.1) with initial condition u(τ) for
each τ > 0. In addition, denoting by ũk the solution to the p-Laplacian equation (1.9) with
initial condition u0,k, the comparison principle entails that

uk(t, x) ≤ ũk(t, x) for (t, x) ∈ Q∞ and k ≥ 1 . (3.11)

Furthermore, (ũk)k≥1 converges uniformly on any compact subset of [0,∞) × R
N towards

the solution ũ to the p-Laplacian equation (1.9) with initial condition u0 [16, Ch. III]. This
property and (3.11) warrant that u(t, x) ≤ ũ(t, x) for (t, x) ∈ [0,∞)× R

N . Recalling (3.8),
we thus obtain the following inequality

uk(t, x) ≤ u(t, x) ≤ ũ(t, x) for (t, x) ∈ Q∞ and k ≥ 1 . (3.12)

We then infer from (3.12) that (u(.+1/j))j≥1 converges towards u uniformly on any compact
subset of [0,∞) × R

N as j → ∞. Using once more the stability of continuous viscosity
solutions, we conclude that u is a viscosity solution to (1.1), (1.2). We next argue as in
the previous step to deduce from (3.3) and (3.4) that u satisfies (1.6), (1.7) and (1.8) for
t > s > 0. In addition, u ∈ L∞(Q∞) by (1.5) and we deduce from (1.5) and (1.6) that

‖∇u(t)‖∞ ≤ C ‖u0‖
2/p
∞ t−1/p for t > 0. Consequently, ∇u belongs to Lp−1((0, T )×B(0, R)) for

all T > 0 and R > 0. We then let s → 0 in (1.8) to conclude that ∇u ∈ Lq((0, T )×B(0, R))
for all T > 0 and R > 0 which in turn warrants that (1.8) is also valid for s = 0.

To complete the proof of Theorem 1.1, it remains to check the uniqueness assertion for
u0 ∈ BUC(RN) which actually follows at once from [18, Theorem 2.1].

4 Temporal decay estimates

This section is devoted to the proof of Proposition 1.4. Let us start with the following
lemma:

Lemma 4.1 Let u be a solution of (1.1), (1.2). If t > s ≥ 0, then

‖∇u(t)‖∞ ≤ C ‖u(s)‖2/p∞ (t− s)−1/p , (4.1)

‖∇u(t)‖∞ ≤ C‖u(s)‖1/q∞ (t− s)−1/q . (4.2)

Proof. We write

|∇u(t)| =
1

γ
u1−γ |∇uγ|

for γ = αp and γ = βp,q and use the estimates (1.6) and (1.7). �

Proof of Proposition 1.4. We first prove (1.16). Combining the Gagliardo-Nirenberg
inequality, the time monotonicity of ‖u‖1 and the previous lemma, we obtain

‖u(t)‖q∞ ≤ C ‖∇u(t)‖qN/(N+1)
∞ ‖u(t)‖

q/(N+1)
1

≤ C‖∇u(t)‖qN/(N+1)
∞ ‖u0‖

q/(N+1)
1

≤ C(t− s)−N/(N+1) ‖u(s)‖N/(N+1)
∞ ‖u0‖

q/(N+1)
1 .
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Integrating with respect to t over (s,∞), we obtain

τ(s) :=

∫ ∞

s

‖u(t)‖q∞
t

dt ≤ C ‖u(s)‖N/(N+1)
∞ ‖u0‖

q/(N+1)
1

∫ ∞

s

dt

(t− s)N/(N+1)t

≤ C s−N/(N+1) ‖u0‖
q/(N+1)
1 ‖u(s)‖N/(N+1)

∞ ,

whence
τ(s) ≤ C ‖u0‖

q/(N+1)
1 (−τ ′(s))

N/q(N+1)
s−(N(q−1))/q(N+1) .

Introducing τ̃ (s) = τ(s1/q) gives

dτ̃

ds
(s) + C ‖u0‖

−q2/N
1 τ̃ (s)q(N+1)/N ≤ 0 .

A direct computation shows that τ̃(s) ≤ C ‖u0‖
q2ξ
1 s−Nξ from which we deduce that

τ(s) ≤ C ‖u0‖
q2ξ
1 s−qNξ .

Now, using the time monotonicity of ‖u‖∞, we obtain

C s−qNξ ‖u0‖
q2ξ
1 ≥ τ(s) ≥

∫ 2s

s

‖u(t)‖q∞
t

dt ≥

∫ 2s

s

‖u(2s)‖q∞
t

dt = ln(2) ‖u(2s)‖q∞ ,

whence (1.16). The estimate (1.17) then readily follows from (1.16) by (4.2). A similar proof
relying on (4.1) gives the estimates (1.18) and (1.19). �

5 Limit values of ‖u(t)‖1

In this section we investigate the possible values of the limit as t → ∞ of the L1-norm
of non-negative solutions to (1.1), (1.2) and prove Proposition 1.5. We first show that, if
q is small enough, the dissipation mechanism induced by the nonlinear absorption term is
sufficiently strong to drive the L1-norm of u to zero in infinite time.

Proposition 5.1 If q ∈ (1, q∗] then

lim
t→∞

‖u(t)‖1 = 0 .

Proof. It first follows from the integration of (1.1) over (0, t)× R
N that

‖u(t)‖1 +

∫ t

0

‖∇u(s)‖qq ds = ‖u0‖1 , (5.1)

which readily implies that t 7−→ ‖∇u(t)‖qq belongs to L1(0,∞). Consequently,

ω(t) :=

∫ ∞

t

‖∇u(s)‖qq ds−→
t→∞

0 . (5.2)
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We next consider a C∞-smooth function ϑ in R
N such that 0 ≤ ϑ ≤ 1 and

ϑ(x) = 0 if |x| ≤ 1/2 and ϑ(x) = 1 if |x| ≥ 1 .

For R > 0 and x ∈ R
N we put ϑR(x) = ϑ(x/R). We multiply (1.1) by ϑR(x) and integrate

over (t1, t2)× R
N to obtain

∫

RN

u(t2, x) ϑR(x) dx ≤

∫

RN

u(t1, x) ϑR(x) dx+
1

R

∫ t2

t1

|∇u(s, x)|p−2 ∇ϑ
( x

R

)

∇u(s, x) dxds ,

which, together with the properties of ϑ, gives

∫

{|x|≥2R}

u(t2, x) dx ≤

∫

{|x|≥R}

u(t1, x) dx+
1

R

∫ t2

t1

∫

RN

∣

∣

∣
∇ϑ
( x

R

)
∣

∣

∣
|∇u(s, x)|p−1 dxds . (5.3)

Case 1: q ∈ [p− 1, q∗]. By the Hölder inequality we have

1

R

∫ t2

t1

∫

RN

∣

∣

∣
∇ϑ
( x

R

)
∣

∣

∣
|∇u(s, x)|p−1 dxds

≤ R(N(q−p+1)−q)/q (t2 − t1)
(q−p+1)/q ‖∇ϑ‖(q−p+1)/q

(
∫ t2

t1

‖∇u(s)‖qq dxds

)(p−1)/q

≤ C R(N(q−p+1)−q)/q ω(t1)
(p−1)/q (t2 − t1)

(q−p+1)/q .

Combining the above inequality with (1.16), (5.3) and the time monotonicity of ‖u‖1 we
obtain

‖u(t2)‖1 =

∫

{|x|≤2R}

u(t2, x) dx+

∫

{|x|≥2R}

u(t2, x) dx

≤ C RN ‖u(t2)‖∞ +

∫

{|x|≥R}

u(t1, x) dx

+ C R(N(q−p+1)−q)/q ω(t1)
(p−1)/q (t2 − t1)

(q−p+1)/q

≤

∫

{|x|≥R}

u(t1, x) dx+ C RN (t2 − t1)
−Nξ

+ C R(N(q−p+1)−q)/q ω(t1)
(p−1)/q (t2 − t1)

(q−p+1)/q .

Choosing

R = R(t1, t2) := ω(t1)
(p−1)/(q+N(p−1)) (t2 − t1)

(qNξ+q−p+1)/(q+N(p−1))

we are led to

‖u(t2)‖1 ≤

∫

{|x|≥R(t1,t2)}

u(t1, x) dx

+ C ω(t1)
(N(p−1))/(q+N(p−1)) (t2 − t1)

−qNξ(N+1)(q∗−q)/(q+N(p−1)) .
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Since ξ > 0 and q∗ − q > 0 we may let t2 → ∞ in the previous inequality to conclude that

I1(∞) ≤ 0 if q ∈ [p− 1, q∗) ,

I1(∞) ≤ C ω(t1)
(N(p−1))/(q∗+N(p−1)) if q = q∗ .

We have used here that R(t1, t2) → ∞ as t2 → ∞ and that u(t1) ∈ L1(RN). Owing to the
non-negativity of I1(∞), we readily obtain that I1(∞) = 0 if q ∈ [p − 1, q∗). When q = q∗,
we let t1 → ∞ and use (5.2) to conclude that I1(∞) = 0 also in that case.
Case 2: q ∈ (1, p− 1). By (1.17) and (5.3) we have

∫

{|x|≥2R}

u(t2, x) dx ≤

∫

{|x|≥R}

u(t1, x) dx+
1

R
‖∇ϑ‖∞

∫ t2

t1

‖∇u(s)‖p−1−q
∞ ‖∇u(s)‖qq ds

≤

∫

{|x|≥R}

u(t1, x) dx+
C

R

∫ t2

t1

s−(p−1−q)(N+1)ξ ‖∇u(s)‖qq ds

≤

∫

{|x|≥R}

u(t1, x) dx+
C

R
t
−(p−1−q)(N+1)ξ
1 ω(t1) .

Taking t1 = 1 and noting that ω(t1) ≤ ω(0) ≤ ‖u0‖1, we end up with
∫

{|x|≥2R}

u(t2, x) dx ≤

∫

{|x|≥R}

u(1, x) dx+
C

R
, t2 ≥ 1 .

We then infer from (1.16) and the above inequality that, if t2 ≥ 1,

‖u(t2)‖1 ≤ C RN t−Nξ +

∫

{|x|≥R}

u(1, x) dx+
C

R

and the choice R = R(t2) = t
(Nξ)/(N+1)
2 gives

‖u(t2)‖1 ≤

∫

{|x|≥R(t2)}

u(1, x) dx+ C t
−(Nξ)/(N+1)
2 .

Since R(t2) → ∞ as t2 → ∞ and u(1) ∈ L1(RN) we may let t2 → ∞ in the above inequality
to establish that I1(∞) = 0, which completes the proof of Proposition 5.1. �

We next turn to higher values of q and adapt an argument of [5, Theorem 6] to show the
positivity of I1(∞).

Proposition 5.2 Assume that ‖u0‖1 > 0 and q > q∗. Then I1(∞) > 0.

Proof. Since u0 ∈ BC(RN) is not identically equal to zero there are x0 ∈ R
N and a radially

symmetric and non-increasing continuous function U0 6≡ 0 such that u0(x) ≥ U0(x − x0).
Denoting by U the solution to (1.1) with initial condition U0 it follows from the invariance
of (1.1) by translation and the comparison principle that

u(t, x) ≥ U(t, x− x0) , (t, x) ∈ [0,∞)× R
N . (5.4)
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Let τ > 0 and x ∈ R
N . Since

∇U(τ, x) =
p− 1

p− 2
U(τ, x)1/(p−1) ∇

(

U (p−2)/(p−1)
)

(τ, x)

and q > q∗ > p− 1, we infer from (1.11) and the time monotonicity of ‖u‖∞ that

|∇U(τ, x)|q ≤

(

p− 1

p− 2

)q

U(τ, x)q/(p−1)
∣

∣∇
(

U (p−2)/(p−1)
)

(τ, x)
∣

∣

q

≤ C U(τ, x) ‖U(τ)‖(q−p+1)/(p−1)
∞

∥

∥

∥
U
(τ

2

)
∥

∥

∥

q(p−2)/p(p−1)

∞
τ−q/p

≤ C U(τ, x)
∥

∥

∥
U
(τ

2

)
∥

∥

∥

(2q−p)/p

∞
τ−q/p ,

whence, by (1.18),
|∇U(τ, x)|q ≤ C U(τ, x) τ−η/ξ . (5.5)

Consider now s ∈ (0,∞) and t ∈ (s,∞). It follows from (1.1) and (5.5) that

‖U(t)‖1 = ‖U(s)‖1 −

∫ t

s

∫

RN

|∇U(τ, x)|q dxdτ

≥ ‖U(s)‖1 − C

∫ t

s

τ−η/ξ ‖U(τ)‖1 dτ .

Owing to the monotonicity of τ 7−→ ‖U(τ)‖1, we further obtain

‖U(t)‖1 ≥ ‖U(s)‖1

(

1− C

∫ t

s

τ−η/ξ dτ

)

.

Since q > q∗ we have η > ξ and the right-hand side of the above inequality has a finite limit
as t → ∞. We may then let t → ∞ to obtain

I1(∞) := lim
t→∞

‖U(t)‖1 ≥ ‖U(s)‖1
(

1− C s−(η−ξ)/ξ
)

, s > 0 .

Consequently, for s large enough, we have I1(∞) ≥ ‖U(s)‖1/2, while [1, Lemma 4.1] warrants
that ‖U(s)‖1 > 0 for each s ≥ 0 since U0 6≡ 0. Therefore, I1(∞) > 0. Recalling (5.4) we
realize that ‖u(t)‖1 ≥ ‖U(t)‖1 for each t ≥ 0 so that I1(∞) ≥ I1(∞) > 0. �

6 Compactly supported initial data

This section is devoted to the proofs of Theorem 1.6 and Corollary 1.7. Let u0 ∈ L1(RN) ∩
BC(RN) be a non-negative initial condition with compact support in the ball B(0, R0) for
some R0 > 0. Denoting by u the corresponding solution to (1.1), (1.2) and by v the corre-
sponding solution to the p-Laplacian equation

∂tv −∆pv = 0 , (t, x) ∈ Q∞ , (6.1)
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with initial condition v(0) = u0, the comparison principle ensures that

0 ≤ u(t, x) ≤ v(t, x) , (t, x) ∈ Q∞ . (6.2)

Since u0 is compactly supported, so is v(t) for each t ≥ 0 by [16, Lemma 8.1] and Supp v(t) ⊂
B(0, C1t

η). Consequently, u(t) is compactly supported for each t ≥ 0 with Supp u(t) ⊂
B(0, C1t

η). In particular, the support of u does not expand faster than that of v with time.
A natural question is then whether the damping term slows down this expansion and the
answer depends heavily on the value of q. We shall thus distinguish between three cases in
the proof of Theorem 1.6.

We first note that, since u0 is non-negative continuous and compactly supported, there
exists a non-negative continuous radially symmetric and non-increasing function U0 with
compact support such that 0 ≤ u0 ≤ U0. Denoting by U the corresponding solution to (1.1)
with initial condition U(0) = U0, the function x 7−→ U(t, x) is also radially symmetric and
non-increasing for each t ≥ 0 and we deduce from the comparison principle that

0 ≤ u(t, x) ≤ U(t, x) , (t, x) ∈ [0,∞)× R
N . (6.3)

Moreover, by comparison with the p-Laplacian equation, U(t) is also compactly supported
for each t ≥ 0 with Supp U(t) ⊂ B(0, σ(t)) for some σ(t) > 0. Clearly,

̺(t) ≤ σ(t) , t ≥ 0 , (6.4)

by (6.3).
It next follows from (1.1) that, if y is a non-negative function in C1([0,∞)), we have

d

dt

∫

{|x|≥y(t)}

U(t, x) dx =

∫

{|x|≥y(t)}

∂tU(t, x) dx− y′(t)

∫

{|x|=y(t)}

U(t, x) dx

≤

∫

{|x|≥y(t)}

div
(

|∇U |p−2 ∇U
)

(t, x) dx

− y′(t)

∫

{|x|=y(t)}

U(t, x) dx

≤ −

∫

{|x|=y(t)}

|∇U(t, x)|p−2 ∇U(t, x) ·
x

|x|
dx

− y′(t)

∫

{|x|=y(t)}

U(t, x) dx

≤

∫

{|x|=y(t)}

{

|∇U(t, x)|p−1 − y′(t) U(t, x)
}

dx ,

d

dt

∫

{|x|≥y(t)}

U(t, x) dx

≤

∫

{|x|=y(t)}

{

p− 1

p− 2

∣

∣∇
(

U (p−2)/(p−1)
)

(t, x)
∣

∣

p−1
− y′(t)

}

U(t, x) dx . (6.5)
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The next step is to use the gradient estimates established in Theorem 1.2 to find a suitable
function y for which the right-hand side of (6.5) is non-positive. The gradient estimates
depending on the value of q, we handle separately the cases q ∈ (1, p− 1] and q ∈ (p− 1, q∗).

Proof of Theorem 1.6: q ∈ (1, p− 1]. In that case we infer from (1.13) and (1.16) that

∣

∣∇
(

U (p−2)/(p−1)
)

(t, x)
∣

∣

p−1
≤ C

∥

∥

∥

∥

u

(

t

2

)
∥

∥

∥

∥

(p−1−q)/q

∞

t−(p−1)/q

≤ C t−ξ((p−1)(N+1)−N) ,

so that (6.5) becomes

d

dt

∫

{|x|≥y(t)}

U(t, x) dx ≤

∫

{|x|=y(t)}

{

C t−ξ((p−1)(N+1)−N) − y′(t)
}

U(t, x) dx

Choosing y′(t) := C t−ξ((p−1)(N+1)−N) for t ≥ 1 and y(1) = σ(1), we conclude that
∫

{|x|≥y(t)}

U(t, x) dx ≤

∫

{|x|≥σ(1)}

U(1, x) dx = 0

for t ≥ 1. Consequently, σ(t) ≤ y(t) for t ≥ 1 from which we deduce that ̺(t) ≤ y(t) for
t ≥ 1 by (6.3). Now, either q ∈ (1, p−1) and ξ((p−1)(N+1)−N) > 1. Therefore y(t) has a
finite limit as t → ∞ from which (1.22) readily follows. Or q = p−1 and y(t) = σ(1)+C ln t
which gives (1.23). �

We next consider the case q ∈ (p − 1, q∗) which turns out to be more complicated as
(1.13) is no longer available. We instead use (1.11) which somehow provides less information
and thus complicates the proof. We shall also need the following lemma which is an easy
consequence of the Poincaré and Hölder inequalities.

Lemma 6.1 There is a positive constant κ depending only on N and q such that, if R > 0
and w is a function in W 1,q

0 (B(0, R)) then

R−1/ξ ‖w‖qL1(B(0,R)) ≤ κ ‖∇w‖qLq(B(0,R)) . (6.6)

Proof of Theorem 1.6: q ∈ (p − 1, q∗). We fix t0 ≥ 0. It follows from (1.11) and (1.16)
that

p− 1

p− 2

∣

∣∇
(

U (p−2)/(p−1)
)

(t, x)
∣

∣

p−1
≤ C

∥

∥

∥

∥

u

(

t+ t0
2

)
∥

∥

∥

∥

(p−2)/p

∞

(t− t0)
−(p−1)/p

≤ C ‖u(t0)‖
qξ(p−2)/p
1 (t− t0)

−(p−1+Nξ(p−2))/p

for t ≥ t0. Since q > p− 1 > N(p− 1)/(N + 1), we have 1 −Nξ(p− 2) > 0 and we choose

y(t) = σ(t0)+pC ‖u(t0)‖
qξ(p−2)/p
1 (t−t0)

(1−Nξ(p−2))/p/(1−Nξ(p−2)) for t ≥ t0. The previous
inequality then reads

p− 1

p− 2

∣

∣∇
(

U (p−2)/(p−1)
)

(t, x)
∣

∣

p−1
≤ y′(t) , t ≥ t0 .
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Combining the latter estimate with (6.5) we realize that

d

dt

∫

{|x|≥y(t)}

U(t, x) dx ≤ 0 for t ≥ t0 ,

whence
∫

{|x|≥y(t)}

U(t, x) dx ≤

∫

{|x|≥σ(t0)}

U(t0, x) dx = 0 , t ≥ t0 .

We have thus established that σ(t) ≤ y(t) for t ≥ t0 from which we readily conclude that

σ(t) ≤ σ(t0) + C ‖U(t0)‖
qξ(p−2)/p
1 (t− t0)

(1−Nξ(p−2))/p , t ≥ t0 . (6.7)

We next integrate (1.1) over RN and obtain

d

dt
‖U(t)‖1 + ‖∇U(t)‖qq = 0 .

Since the support of U(t) is included in B(0, σ(t)), we infer from Lemma 6.1 that

‖∇U(t)‖qq =

∫

{|x|<σ(t)

|∇U(t, x)|q dx ≥
1

κ σ(t)1/ξ

(
∫

{|x|<σ(t)}

U(t, x) dx

)q

=
‖U(t)‖q1
κ σ(t)1/ξ

.

Inserting this lower bound in the previous diferential equality gives

d

dt
‖U(t)‖1 +

1

κ

‖U(t)‖q1
σ(t)1/ξ

≤ 0 . (6.8)

Before going on we introduce the following notations:

Σ(T ) := sup
t∈[1,T ]

{

t−A σ(t)
}

, A :=
q − p+ 1

2q − p
,

L(T ) := sup
t∈[1,T ]

{

tB ‖U(t)‖1
}

, B :=
(N + 1)(q∗ − q)

2q − p
,

for T ≥ 1 and notice that Σ(T ) and L(T ) are well-defined for each T ≥ 1 while A and B
satisfy

A+
qξ(p− 2)

p
B =

1−Nξ(p− 2)

p
and 1−

A

ξ
= (q − 1) B . (6.9)

Fix T ≥ 1. We infer from (6.8) that, if t ∈ [1, T ],

d

dt
‖U(t)‖1 +

t−A/ξ

κ

‖U(t)‖q1
t−A/ξ σ(t)1/ξ

≤ 0

d

dt
‖U(t)‖1 +

1

κ Σ(T )1/ξ
‖U(t)‖q1
tA/ξ

≤ 0 ,
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which gives

‖U(t)‖1 ≤ C Σ(T )1/((q−1)ξ)
(

t(q−1)B − 1
)−1/(q−1)

, t ∈ [1, T ] , (6.10)

after integration. Consider next t ∈ [1, T ]. Either t ≤ 4 and it follows from (6.7) with t0 = 1
that

t−A σ(t) ≤ t−A σ(1) + C ‖U(1)‖
qξ(p−2)/p
1 (t− 1)(1−Nξ(p−2))/p t−A ≤ C .

Or t ≥ 4 and we infer from (6.7) with t0 = t/2 ≥ 2, (6.9) and (6.10) that

t−A σ(t) ≤ t−A σ

(

t

2

)

+ C

∥

∥

∥

∥

U

(

t

2

)
∥

∥

∥

∥

qξ(p−2)/p

1

tqξ(p−2)B/p

≤ 2−A Σ(T ) + C Σ(T )(q(p−2))/(p(q−1)) .

Consequently,

t−A σ(t) ≤ 2−A Σ(T ) + C
(

1 + Σ(T )(q(p−2))/(p(q−1))
)

, t ∈ [1, T ] ,

from which we conclude that

Σ(T ) ≤ 2−A Σ(T ) + C
(

1 + Σ(T )(q(p−2))/(p(q−1))
)

.

Since A > 0 and q(p − 2) < p(q − 1) the above inequality entails that Σ(T ) ≤ C for each
T ≥ 1, the constant C being independent of T . Recalling (6.4) we have thus proved that
̺(t) ≤ σ(t) ≤ C tA for t ≥ 1, hence (1.24).

Furthermore the boundedness of Σ(T ) and (6.10) ensure that ‖U(t)‖1 ≤ C (t− 1)−B for
t ≥ 1 which, together with (6.3), implies that

‖u(t)‖1 ≤ C t−B , t ≥ 2 . (6.11)

We have thus also established the assertion (iii) of Corollary 1.7. �

Proof of Corollary 1.7. Assume first that q ∈ (1, p−1). Then, on the one hand, it follows
from (1.22) that there is ̺∞ > 0 such that ̺(t) ≤ ̺∞ for t ≥ 1. On the other hand, we may
proceed as in the proof of (6.8) to establish that

d

dt
‖u(t)‖1 +

1

κ

‖u(t)‖q1
̺(t)1/ξ

≤ 0 . (6.12)

Therefore,
d

dt
‖u(t)‖1 +

1

κ

‖u(t)‖q1

̺
1/ξ
∞

≤ 0 , t ≥ 1 ,

from which (1.26) readily follows.
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Similarly, if q = p− 1, we infer from (1.23) and (6.12) that, for t ≥ 2,

‖u(t)‖1 ≤ C

(
∫ t

1

(1 + ln s)−1/ξ ds

)−1/(q−1)

≤ C

(
∫ ln t

0

(1 + s)−1/ξ es ds

)−1/(q−1)

≤ C
(

(1 + ln t)−1/ξ (t− 1)
)−1/(q−1)

,

which gives (1.27).

Since the case q ∈ (p−1, q∗) has already been handled in the proof of Theorem 1.6 (recall
(6.11)) we are left with the case q = q∗. In that particular case, ξ = η and we infer from
(1.25) and (6.12) that

d

dt
‖u(t)‖1 +

C

t
‖u(t)‖q1 ≤ 0 , t ≥ 1 ,

which gives (1.29) by integration. �

7 Persistence of dead cores

Proof of Proposition 1.8. We first study the one-dimensional case N = 1. We consider
a non-negative function y ∈ C1([0,∞)) to be specified later and proceed as in the proof of
Theorem 1.6 to deduce from (1.1) that

d

dt

∫ y(t)

−y(t)

u(t, x) dx =

[(

p− 1

p− 2

∣

∣∂x
(

u(p−2)/(p−1)
)

(t, x)
∣

∣

p−1
+ y′(t)

)

u(t, x)

]x=y(t)

x=−y(t)

(7.13)

On the one hand we infer from (1.6) that

p− 1

p− 2

∣

∣∂x
(

u(p−2)/(p−1)
)

(t, x)
∣

∣

p−1
≤

p− 1

p− 2
C(p, 1)p−1 ‖u0‖

(p−2)/p
∞ t−(p−1)/p

≤ c1 ‖u0‖
(p−2)/p
∞ t−(p−1)/p .

On the other hand, since p− 1 > q, we have βp,q = αp = (p− 2)/(p− 1) and it follows from
(1.7) that

p− 1

p− 2

∣

∣∂x
(

u(p−2)/(p−1)
)

(t, x)
∣

∣

p−1
≤

p− 1

p− 2
C(p, q, 1)p−1 ‖u0‖

(p−1−q)/q
∞ t−(p−1)/q

≤ c2 ‖u0‖
(p−1−q)/q
∞ t−(p−1)/q .

Consequently, choosing










y′(t) = −min
{

c1 ‖u0‖
p−2
∞ t−(p−1)/p, c2 ‖u0‖

(p−1−q)/q
∞ t−(p−1)/q

}

,

y(0) = R0 ,

(7.14)
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we have
p− 1

p− 2

∣

∣∂x
(

u(p−2)/(p−1)
)

(t, x)
∣

∣

p−1
≤ −y′(t) . (7.15)

We then deduce from (7.13) and (7.15) that

d

dt

∫ y(t)

−y(t)

u(t, x) dx ≤ 0 ,

whence
∫ y(t)

−y(t)

u(t, x) dx ≤

∫ R0

−R0

u0(x) dx = 0 for t ≥ 0 .

Now it is actually possible to compute the function y defined by (7.14) and to see that

y(t) ≥ y∞ := lim
s→∞

y(s) = R0 − δ0 ‖u0‖
(p−1−q)/(p−q)
∞

for some δ0 depending only on c1, c2, p, and q. Then u(t, x) = 0 for x ∈ [−y∞, y∞] and t ≥ 0,
and y∞ > 0 under the assumptions of Proposition 1.8.

In several space dimensions N ≥ 2, consider ε ∈ (0, R0/2) and put

uε
0(x1) :=



























‖u0‖∞ if |x1| ≥ R0 ,

‖u0‖∞
ε

(|x1| − R0 + ε) if R0 − ε ≤ |x1| ≤ R0 ,

0 if |x1| ≤ R0 − ε ,

Clearly, u0 ≤ uε
0 in R

N and the comparison principle entails that u(t, x1, x2, . . . , xN ) ≤
uε(t, x1) for (t, x) ∈ [0,∞)×R

N , where uε denotes the solution to (1.1) with initial condition
uε
0 and N = 1. Choosing ε appropriately small provides the expected result in the x1-

direction. We proceed analogously in every direction to complete the proof of Proposition 1.8.
�

A Proof of Lemma 2.1

Since ∂tu = ϕ′(v) ∂tv and ∇u = ϕ′(v) ∇v we deduce from (2.1) that

∂tv − a ∆v − a
ϕ′′

ϕ′
w − 2 a′ ϕ′ ϕ′′w2 − 2 a′ ϕ′2 (∇v)tD2v∇v +

b′

ϕ′
= 0.

Observing that

(∇v)tD2v∇v =
1

2
∇v · ∇w and ∆w = 2 ∇v · ∇∆v + 2

∑

i,j

|∂i∂jv|
2 ,
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elementary, but laborious calculation shows that

∂tw −Aw + 2 a
∑

i,j

|∂i∂jv|
2 + 2 a′ ϕ′ ϕ′′ w ∇v · ∇w − V · ∇w + 2 S1 w2 + 2 R2 w = 0

with

S1 := −a

(

ϕ′′

ϕ′

)′

− 2 a′ ϕ′ ϕ′′ ∆v − 4 a′′ (ϕ′ϕ′′)
2
w2 − 2 a′ w

(

2ϕ′′2 + ϕ′ϕ′′′
)

, (A.1)

and

V := 2

[

a
ϕ′′

ϕ′
+ a′ ϕ′2

(

∆v +
2ϕ′′

ϕ′
w

)]

∇v

+ 4 ϕ′ ϕ′′
[(

a′′ ϕ′2 w + 3 a′
)

+ a′′ ϕ′2 w
]

w ∇v

+ 2
[

a′′ ϕ′4 ∇v · ∇w − b′ ϕ′
]

∇v + a′ ϕ′2 ∇w . (A.2)

In order to handle the term involving ∆v in S1 we proceed as in [10]: more precisely we
have

2 a
∑

i,j

|∂i∂jv|
2 + 2 a′ ϕ′ ϕ′′ w ∇v · ∇w − 4 a′ ϕ′ ϕ′′ ∆v w2

= 4 a′ ϕ′ ϕ′′ w

(

1

2
∇v · ∇w − w ∆v

)

+ 2 a
∑

i,j

|∂i∂jv|
2

= 4 a′ ϕ′ ϕ′′ w

(

∑

i,j

∂i∂jv ∂iv ∂jv − w
∑

i

∂2
i v

)

+ 2 a
∑

i,j

|∂i∂jv|
2

=
∑

i

{

2 a
∣

∣∂2
i v
∣

∣

2
+ 4 a′ ϕ′ ϕ′′ w

(

|∂iv|
2 − w

)

∂2
i v
}

+
∑

i 6=j

{

2 a |∂i∂jv|
2 + 4 a′ ϕ′ ϕ′′ w∂i∂jv ∂iv ∂jv

}

= 2 a
∑

i

{

∂2
i v +

a′

a
ϕ′ ϕ′′ w

(

|∂iv|
2 − w

)

}2

− 2
∑

i

a′2

a
(ϕ′ϕ′′)

2
w2

(

|∂iv|
2 − w

)2

+ 2 a
∑

i 6=j

{

∂i∂jv +
a′

a
ϕ′ ϕ′′ w ∂iv ∂jv

}2

− 2
∑

i 6=j

a′2

a
(ϕ′ϕ′′)

2
w2 |∂iv|

2 |∂jv|
2

≥ −2 (N − 1)
a′2

a
(ϕ′ϕ′′)

2
w2 .
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Consequently,

2 a
∑

i,j

|∂i∂jv|
2 + 2 a′ ϕ′ ϕ′′ w ∇v · ∇w + 2 S1 w2 ≥ 2 R1 w2 ,

which completes the proof of the first assertion of Lemma 2.1.

In the case where x 7−→ u(t, x) is radially symmetric and non-increasing for each t ≥ 0, we
have u(t, x) = U(t, |x|) for (t, x) ∈ [0,∞)×R

N and ∂rU(t, r) ≤ 0 for (t, r) ∈ [0,∞)× [0,∞).
Introducing V = ϕ−1(U) we have v(t, x) = V (t, |x|) and the monotonicity of ϕ warrants that
∂rV (t, r) ≤ 0. In addition, owing to the non-negativity of a′, ϕ′ and ϕ′′, we have

2 a′ ϕ′ ϕ′′ w ∇v · ∇w − 4 a′ ϕ′ ϕ′′ w2 ∆v

= 2 a′ ϕ′ ϕ′′ w

[

2 |∂rV |2 ∂2
rV − 2 |∂rV |2

(

∂2
rV +

N − 1

r
∂rV

)]

≥ 0 ,

from which we deduce that

2 a′ ϕ′ ϕ′′ w ∇v · ∇w + 2 S1 w2 ≥ 2 Rr
1 w2 ,

and end the proof of Lemma 2.1. �
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