Antonin Chambolle 
email: antonin.chambolle@polytechnique.fr
  
Antoine Lemenant 
email: lemenant@ann.jussieu.fr
  
  
  
THE STRESS INTENSITY FACTOR FOR NON-SMOOTH FRACTURES IN ANTIPLANE ELASTICITY

Keywords: 1991 Mathematics Subject Classification. Primary: 35J20 ; Secondary: 74R10 Elliptic problem in nonsmooth domain, blow-up limit, crack, singular set, brittle fracture

Motivated by some questions arising in the study of quasistatic growth in brittle fracture, we investigate the asymptotic behavior of the energy of the solution u of a Neumann problem near a crack in dimension 2. We consider non smooth cracks K that are merely closed and connected. At any point of density 1/2 in K, we show that the blow-up limit of u is the usual "cracktip" function √ r sin(θ/2), with a well-defined coefficient (the "stress intensity factor" or SIF). The method relies on Bonnet's monotonicity formula [2] together with Γ-convergence techniques.

Introduction

According to Griffith's theory, the propagation of a brittle fracture in an elastic body is governed by the competition between the energy spent to produce a crack, proportional to its length, and the corresponding release of bulk energy. An energetic formulation of this idea is the core of variational models for crack propagation, which were introduced by Francfort and Marigo in [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] and are based on a Mumford-Shah-type [START_REF] Mumford | Optimal approximation by piecewise smooth functions and associated variational problems[END_REF] functional.

In this work, we will restrict ourselves to the case of anti-plane shear, where the domain is a cylinder Ω × R, with Ω ⊂ R 2 , which is linearly elastic with Lamé coefficients λ and µ. Moreover we assume the crack to be vertically invariant, while the displacement is vertical only. Under those assumptions, the problem reduces to a purely 2D, scalar problem. Extending our result to (truely 2D) planar elasticity requires a finer knowledge of monotonicity formulas for the bilaplacian and is still out of reach, it is the subject of future study.

Given a loading process g : t → g(t) ∈ H 1 (Ω), and assuming that K(t) ⊂ Ω (a closed set) is the fracture at time t, the bulk energy at the time t 0 is given by where the minimum is taken among all functions u ∈ H 1 (Ω \ K(t 0 ), R) satisfying u = g(t 0 ) on ∂Ω \ K(t 0 ), and the surface energy, for any fracture K ⊇ K(t 0 ) is proportional to κH 1 (K), where H 1 denotes the one dimensional Hausdorff measure and κ is a constant which is known as the toughness of the material. Here the matrix A which appears in the integral in ( 1) is (µ/2)Id, however in the paper we will also address the case of more general matrices A(x), which will be assumed to be uniformly elliptic and spatially Hölder-continuous. The proof of existence for a crack K(t) satisfying the propagation criterions of brittle fracture as postulated by Francfort and Marigo in [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF], was first proved by Dal Maso and Toader [START_REF] Dal | A model for the quasi-static growth of brittle fractures: existence and approximation results[END_REF] in the simple 2D linearized anti-plane setting, then extended in various directions by other authors [START_REF] Chambolle | A density result in two-dimensional linearized elasticity, and applications[END_REF][START_REF] Dal Maso | Quasistatic crack growth in nonlinear elasticity[END_REF][START_REF] Francfort | Existence and convergence for quasi-static evolution in brittle fracture[END_REF][START_REF] Babadjian | Existence of strong solutions for quasistatic evolution in brittle fracture[END_REF].

In this paper we will freeze the "time" at a certain fixed value t 0 , and therefore do not really matter exactly which model of existence we use. We will only need to know that such fractures exist, as a main motivation for our results.

In the quasistatic model, the fracture K(t) is in equilibrium at any time, which means that the total energy cannot be improved at time t 0 by extending the crack. Precisely, for any closed set K ⊇ K(t 0 ) such that K(t 0 ) ∪ K is connected, and for any u ∈ H 1 (Ω \ (K(t 0 ) ∪ K)) satisfying u = g(t 0 ) on ∂Ω \ (K(t 0 ) ∪ K), one must have that

E(t 0 ) + κH 1 (K(t 0 )) ≤ Ω\(K(t0)∪K) (A∇u) • ∇u dx + κH 1 (K).
This implies that the propagation of the crack is totally dependent on the external force g, and a necessary condition for K to propagate is that of the first order limit of the bulk energy, namely [START_REF] Bonnet | On the regularity of the edge set of Mumford-Shah minimizers[END_REF] lim sup

h→0 + E(t 0 + h) -E(t 0 ) h ,
to be greater or equal to κ. The limit in (2) can be interpreted as an energy release rate along the growing crack, which is the central object of many recent works [START_REF] Chambolle | Crack initiation in brittle materials[END_REF][START_REF] Chambolle | Revisiting energy release rates in brittle fracture[END_REF][START_REF] Chambolle | When and how do cracks propagate?[END_REF][START_REF] Khludnev | On the topological derivative due to kink of a crack with non-penetration. Anti-plane model[END_REF][START_REF] Lazzaroni | Energy release rate and stress intensity factor in antiplane elasticity[END_REF]. In all the aforementioned papers, a strong regularity assumption is made on the fracture K(t): it is assumed to be a segment near the tip in [START_REF] Chambolle | Revisiting energy release rates in brittle fracture[END_REF][START_REF] Chambolle | When and how do cracks propagate?[END_REF][START_REF] Khludnev | On the topological derivative due to kink of a crack with non-penetration. Anti-plane model[END_REF]; to our knowledge the weakest assumption is the C 1,1 regularity in [START_REF] Lazzaroni | Energy release rate and stress intensity factor in antiplane elasticity[END_REF]. The main reason for this is the precise knowledge of the asymptotic development of the displacement u near the tip of the crack, when it is straight. Indeed the standard elliptic theory in polygonal domains (see e.g. Grisvard [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]) says that in a small ball B(0, ε) (we assume the crack tip is the origin), if u denotes the minimizer for the problem (1), then there exists ũ

∈ H 2 (B(0, ε) \ K(t 0 )) such that (3) u = C √ r sin(θ/2) + ũ,
(in polar coordinates, assuming the crack is {θ = ±π}). In fracture theory, the constant C in front of the sinus is usually referred as the stress intensity factor (SIF). In [START_REF] Lazzaroni | Energy release rate and stress intensity factor in antiplane elasticity[END_REF], G. Lazzaroni and R. Toader proved that (3) is still true if K(t 0 ) is a C 1,1 regular curve, up to a change of coordinates, and they base their study of the energy release rate upon this fact.

The main goal of this paper is to extend (3) to fractures that are merely closed and connected sets, and asymptotic to a half-line at small scales. (We will need the technical assumption that the Hausdorff density is 1/2 at the origin, that is, the length in small balls is roughly the radius -which basically means that K(t 0 ) admits a tangent, up to suitable rotations.) Our main result is as follows:

Theorem 1.1. Assume that K := K(t 0 ) ⊂ Ω ⊂ R 2 is closed and connected, and let u be a solution for the minimizing problem in (1) with some α-hölderian coefficients

A : Ω → S 2×2 . Assume that x 0 ∈ K ∩ Ω is a point of density 1/2, that is, lim sup r→0 H 1 (K ∩ B(x 0 , r)) 2r = 1 2
and that A(x 0 ) = Id. Then the limit

(4) lim r→0 1 r B(x0,r)\K (A∇u) • ∇u dx
exists and is finite. Moreover denoting C 0 the value of this limit, considering R r a suitable family of rotations, and taking

g(r, θ) := u(0) + 2C 0 π sin(θ/2), (r, θ) ∈ [0, 1] × [-π, π],
then the blow up sequence u r := r -1 2 u(rR r (x -x 0 )) converges to g and ∇u r converges to ∇g both strongly in L 2 (B(0, 1)) when r → 0.

If A(x 0 ) = Id we obtain a similar statement by applying the change of variable x → A(x 0 )x (see Theorem 4.2). We also stress that a rigourous sense to the value of u(0) has to be given, and this will be done in Lemma 4.1. Besides, the exact definition of the rotations R r will be given in Remark 2.

Theorem 1.1 is a first step toward understanding the energy release rate for nonsmooth fractures, and study qualitative properties of the crack path. It provides also the existence of a generalized stress intensity factor, that we can define as being the limit in (4), and which always exists without any regularity assumptions on K(t 0 ) of that of being closed and connected (see Proposition 7).

Our main motivation is the study of brittle fracture, but of course Theorem 1.1 contains a general result about the regularity of solutions for a Neumann Problem in rough domains, that could be interesting for other purpose.

The proof of Theorem 1.1 will be done in two main steps, presented in Section 3 and Section 4, which will come just after some preliminaries (Section 2). The first step is to prove the existence of limit in [START_REF] Chambolle | A density result in two-dimensional linearized elasticity, and applications[END_REF]. For this we will use the monotonicity argument of Bonnet [START_REF] Bonnet | On the regularity of the edge set of Mumford-Shah minimizers[END_REF], which was used to prove existence of blow up limits for the minimizers of the Mumford-Shah functional. We will adapt here the argument to more general energies as the one with coefficient A(x), and also with a second member f . Notice that when f = 0 we need only K to be closed and connected, whereas when f = 0 we need furthermore that K is of finite length.

The second step is to prove the convergence strongly in L 2 of the blow-up limit u r := r -1 2 u(rR r (x -x 0 )) and its gradient, to the function √ r sin(θ/2). This is the purpose of Theorem 4.2, and the existence of limit in (4) is the first step, because it implies that ∇u r is bounded in L 2 (B(0, 1)) which helps us to extract subsequences. Notice that Bonnet [START_REF] Bonnet | On the regularity of the edge set of Mumford-Shah minimizers[END_REF] already had a kind of blow-up convergence for u r , analogue to ours in his paper on regularity for Mumford-Shah minimizers. The main difference with the result of Bonnet, is that here the set K is any given set whereas for Bonnet, K was a minimizer for the Mumford-Shah functional, which allowed him to modify it at his convenience to create competitors and prove some results on u. Here we cannot argue by the same way and this brings some interesting technical difficulties in the proof of convergence of u r .

Preliminaries

Let Ω ⊂ R 2 , K ⊂ Ω be a closed and connected set satisfying H 1 (K) < +∞ (here H 1 denotes the one dimensional Hausdorff measure), f ∈ L ∞ (Ω), λ ≥ 0 and g ∈ H 1 (Ω) ∩ L ∞ (Ω). If K and K ′ are two closed sets of R 2 we will denote the Hausdorff distance by

d H (K, K ′ ) := max sup x∈K dist(x, K ′ ), sup x∈K ′ dist(x, K) .
We also consider some α-Hölder regular coefficients A : x → A(x) ∈ S 2×2 , uniformly bounded and uniformly coercive (with constant γ). We will use the following series of notations

X A := t XAX = (AX) • X = √ AX Id = √ AX .
For simplicity we will assume without loss of generality that κ = 1. We consider a slight more general energy than the one in (1) with a second member f , namely

F (u) := Ω\K ∇u 2 A dx + 1 λ Ω |λu -f | 2 . (5) 
We will also allow the case λ = 0 and then we ask also f = 0 and F is simply

F (u) := Ω\K ∇u 2 A dx.
We consider a minimizer u for F among all functions v ∈ H 1 (Ω \ K) such that v = g on ∂Ω, i.e. u is a weak solution for the problem (6)

     λu -divA∇u = f in Ω \ K (A∇u) • ν = 0 on K u = g on ∂Ω
It is well known that such a minimizer exists and is unique (up to additional constant if necessary in connected components of Ω \ K when eventually f = 0), which provides a week solution for the problem [START_REF] Chambolle | Crack initiation in brittle materials[END_REF]. We begin with some elementary geometrical facts.

Proposition 1. Let K ⊂ R 2 be a closed and connected set such that

(7) lim sup r→0 H 1 (K ∩ B(x 0 , r)) 2r = 1 2 .
For all r > 0 small enough, let x r be any chosen point in K ∩ ∂B(x 0 , r). Then we have that

(8) lim r→0 1 r d H (K ∩ B(x 0 , r), [x r , x 0 ]) = 0.
Proof. Since K is closed, connected and not reduced to one point (because of ( 7)) we have that K ∩ ∂B(x 0 , r) is nonempty for all r small enough. Moreover since K is connected, there exists a simple connected curve Γ r ⊂ K that starts from x 0 and hits ∂B(x 0 , r) for the first time at some point y r ∈ K ∩ ∂B(x 0 , r). Since Γ r is connected we have that H 1 (Γ) ≥ H 1 ([y r , x 0 ]) = r and using [START_REF] Dal Maso | Quasistatic crack growth in nonlinear elasticity[END_REF] we get H 1 (Γ r ) ≤ r + o(r).

From the last two inequalities, since Γ r is a connected curve, it is then very classical using Pythagoras inequality to prove that

(9) d H (Γ r , [y r , x 0 ]) = o(r).
Indeed, let z be the point in Γ r of maximal distance to [y r , x 0 ], and let h be this distance. Now let w be a point at distance h to [y r , x 0 ], whose orthogonal projection onto [y r , x 0 ] is exactly the middle of [y r , x 0 ]. Then the triangle (y r , x 0 , w) is isocel, and in particular minimizes the perimeter among all triangle of same basis and same height. Therefore,

2 (r/2) 2 + h 2 = |w -x r | + |w -x 0 | ≤ |z -x r | + |z -x 0 | ≤ H 1 (Γ r ) ≤ r + o(r)
which implies that h = o(r) and proves [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF]. Now (7) also implies that

H 1 (K ∩ B(x 0 , r) \ Γ r ) = o(r),
from which we deduce that sup{dist(x, Γ);

x ∈ K ∩ B(x 0 , r)} = o(r)
which implies d H (K ∩ B(x 0 , r), [y r , x 0 ]) = o(r). Finally (8) follows from the fact that dist(x r , y r ) = o(r) for any other point x r ∈ K ∩ ∂B(x 0 , r).

Remark 1. The density condition [START_REF] Dal Maso | Quasistatic crack growth in nonlinear elasticity[END_REF] does not imply the existence of tangent at the origin. One of such example can be found in [5, Remark 2.7.], as being a curve with oscillating tangent at the origin: exp(-t 2 )(cos(t)e 1 + cos(t)e 2 ), t ∈ [0, +∞]. A further example is given by some infinite spirals, that turns infinitely many times around the origin but has finite length, and even density 1/2 at the origin (thus is arbitrary close to a segment). To construct such an example one can consider the curve γ : t → te iθ(t) where θ(t) ∈ R satisfies lim t→0 θ(t) = +∞ and lim t→0 tθ ′ (t) = 0 (uniformly) like for instance θ(t) = ln(-t). Then if K := γ([0, 1]) we have

H 1 (K ∩ B(0, r)) = r 0 |γ ′ (t)|dt = r 0 1 + t 2 θ ′ (t) 2 dt = r + o(r)
as desired.

Remark 2 (Definition of R r ). As noticed in the preceding remark, the existence of tangent, i.e. the existence of a limit for the sequence of rescaled set 1 r (K ∩B(x 0 , r)x 0 ), is not always guaranteed by the density condition. On the other hand if R r denotes for each r > 0, the rotation that maps x r on the negative part of the first axis, then R r ( 1 r (K ∩ B(x 0 , r) -x 0 )) converges to a segment. In the sequel, R r will always refer to this rotation.

Remark 3. There exists some connected sets such that 1 rn K ∩ B(0, r n ) converges to some radius in B(0, 1) for some sequence r n → 0, and such that 1 tn K ∩ B(0, t n ) converges to a diameter for another sequence t n → 0. Such a set can be constructed as follows. Take a sequence q n → 0 such that [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] q n+1 /q n -→ 0

The idea relies on the observation that thanks to [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF], while looking at the scale of size q n , that is, in the ball B(0, q n ), all the piece of set contained in B(0, q n+1 ) is negligible in terms of Hausdorff distance. Therefore we can build two subsequences, one at the scales q 2n , and the other one at the scales q 2n+1 , that will not be seen by each other.

K looks like a diameter K looks like a radius

6 ? Z 2n R -e 1 ? - A 2n+1 B(0, q N ), N even y B(0, q N ), N odd 9 6 
?

q 2n 4 3 q 2n+1 Figure 1. A

crack tip with two different limits along different subsequences

To do so, we consider the points A n := (0, 4 3 q n ) on the second axis of R 2 and we define K, as being R -× {0} union of all horizontal diameters of B(A 2n+1 , q 2n ), that are connected to the first axis by their left extremities. In other words, denoting e 1 = (1, 0) and e 2 = (0, 1) the two unit canonical vectors of R 2 ,

K := R -e 1 ∪ n∈N * (Re 1 + A 2n+1 ) ∩ B(A 2n+1 , q 2n )) ∪ n∈N * ([0, 4 3 q n+1 ]e 2 + Z 2n ),
where Z 2n is the left extremity point of the segment (Re 1 + A 2n+1 ) ∩ B(A 2n+1 , q 2n ) (which is actually the horizontal diameter of B(A 2n+1 , q 2n )), see Fig. 1.

Then it is easy to see that, in the Hausdorff distance,

1 q 2n K ∩ B(x, q 2n ) -→ Re 1 ∩ B(0, 1) and 1 q 2n+1 (K ∩ U (x, q 2n+1 ) -→ R -e 1 ∩ B(0, 1)
as desired.

Remark 4. Notice that a consequence of Theorem 1.1 for the example exhibited in Remark 3 is the following curious fact: even if 1 r K ∩ B(x, r) has no limit when r → 0, the limit of 1 r B(0,r) ∇u 2 as r → 0 exists thus has same value C 0 for any subsequences of r. Now, since K has density 1/2 along the odd subsequence r n = q 2n+1 , applying the proof of Theorem 1.1 for this subsequence we infer that the limit of the blow up sequence r -1/2 n u(r n x) converges to 2C 0 r/π sin(θ/2). But now regarding the limit in the even scales, r n = q 2n , as K is converging to a diameter, a similar proof as the one used to prove Theorem 1.1 would imply that the blow up sequence is converging to the solution of a Neumann problem in a domain which is a ball, cut into two pieces by a diameter. This implies C 0 = 0 (because of the decomposition of u in spherical harmonics), so that actually returning to the odd subsequence, for which K is converging to a radius, we can conclude that r -1/2 n u(r n x) must converge to 0 as well.

It is well known that any closed and connected set K is arcwise connected, namely for any x = y in K one can find an injective Lipschitz curve inside K going from x to y (see e.g. [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF]Proposition 30.14]). This allows us to talk about geodesic curve inside K, that connects x to y, which stands to be the curve with that property which support has minimal length. Definition 2.1. We say that K is locally-chord-arc at x 0 if there exists a constant C and a radius r 0 such that for every r ≤ r 0 and for any couple of points y and z lying on K ∩ ∂B(x 0 , r) the geodesic curve inside K connecting y and z has length less than Cr. Proposition 2. Let K ⊂ R 2 be a closed and connected set satisfying the density condition [START_REF] Francfort | Existence and convergence for quasi-static evolution in brittle fracture[END_REF] lim sup

r→0 1 2r H 1 (K ∩ B(x 0 , r)) = 1 2 .
Then K is locally-chord-arc at x 0 .

Proof. The density condition [START_REF] Francfort | Existence and convergence for quasi-static evolution in brittle fracture[END_REF] together with the fact that K is closed and connected guarantees that K is non reduced to one point, contains x 0 , and that ∂B(x 0 , r) ∩ K is nonempty for r small enough. Let r 0 > 0 be one of this radius small enough such that moreover

(12) H 1 (K ∩ B(x 0 , r)) ≤ (1 + 1 10
)r ∀r ≤ 3r 0 .

Let now y and z be two points in K ∩ ∂B(x 0 , r) for any r ≤ r 0 and let Γ ⊂ K be the geodesic curve connecting y and z. Then Γ is injective (by definition since it is a geodesic) and in addition we claim that Γ ⊂ B(x 0 , 3r). Indeed, otherwise there would be a point x ∈ Γ \ B(x 0 , 3r) which would imply H 1 (Γ ∩ B(x 0 , 3r)) ≥ 4r (because y and z are lying on ∂B(x 0 , r)) and this contradicts [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]. But now that Γ ⊂ B(x 0 , 3r), condition [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] again implies that H 1 (Γ) ≤ H 1 (K ∩ B(x 0 , 3r)) ≤ 4r which proves the proposition.

In the sequel we will need to know that a minimizer of F is bounded.

Proposition 3. Let K be closed and connected, u be a minimizer for the functional F defined in (5) with f ∈ L ∞ (Ω) and λ > 0. Then

u ∞ ≤ 1 min(1, λ) max( f ∞ , g ∞ ).
Proof. It suffice to fix M := (min(1, λ)) -1 max( f ∞ , g ∞ ) and notice that the function

w := max(-M, min(u, M ))
is a competitor for u and has less energy. By uniqueness of the minimizer we deduce that u = w.

Bonnet's monotonicity Lemma and variants

In this section we prove the existence of the limit

lim r→0 1 r √ A(0)B(x,r) ∇u 2 A dx,
for any x ∈ Ω when u is a minimizer of F . Of course when x ∈ Ω \ K this is clear by the interior regularity of solution for the Problem 6, and the value of the limit in this case is zero. Therefore it is enough to consider a point x ∈ K. The case of harmonic functions is slightly simpler than the general case, and need no further assumptions on K than being just closed and connected. This direclty comes from [START_REF] Bonnet | On the regularity of the edge set of Mumford-Shah minimizers[END_REF] and [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF] but we will recall the proof in Subsection 3.2, that follows a lot the approach of G. David [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF]Section 47]. Then we will consider the case of a non zero second member f but still with the classical Laplace operator, and finally in a third section we will adapt all the proofs to more general second order operator of divergence form.

We begin with some technical tools.

3.1. Technical tools. We will need the following 2 versions of the Gauss-Green formula.

Lemma 3.1 (Integration by parts, first version). Let K be closed and connected, u be a minimizer for the functional F defined in [START_REF] Chambolle | Revisiting energy release rates in brittle fracture[END_REF]. Then for any x ∈ Ω and for a.e. r such that B(x, r) ⊂ Ω it holds

B(x,r)\K ∇u A dy = B(x,r)\K (f -λu)u dy + ∂B(x,r)\K u(A∇u) • ν dH 1 .
Proof. If u is a minimizer, then comparing the energy of u with the one of u + tϕ and using a standard variational argument yields that Applying [START_REF] Khludnev | On the topological derivative due to kink of a crack with non-penetration. Anti-plane model[END_REF] with ϕ = ψ ε u gives ( 14)

Ω\K (A∇u) • u∇ψ ε + Ω\K (A∇u) • ψ ε ∇u = Ω (λu -f )ψ ε u.
It is clear that ψ ε converges to 1 B(x,r) strongly in L 2 (Ω), which gives the desired convergence for the second term and last term in [START_REF] Lazzaroni | Energy release rate and stress intensity factor in antiplane elasticity[END_REF]. Now for the first term, we notice that ψ ε is Lipschitz and its derivative is equal a.e. to x 2ε x 1 B(x,r+ε)\B(x,(1-ε)r) so that

Ω\K (A∇u) • u∇ψ ε = 1 2ε (B(x,r+ε)\B(x,(1-ε)r))\K (A∇u) • u x x
which converges to ∂B(x,r)\K (A∇u)•u ν dH 1 for a.e. r by Lebesgue's differentiation theorem applied to the

L 1 function r → ∂B(x,r)\K (A∇u) • ν dH 1 .
The first part of the next Lemma comes from a topological argument in [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF] (see page 299). Lemma 3.2 (Integration by parts, second version). Let K ⊂ Ω be closed and connected, x ∈ K and r 0 > 0 be such that B(x, r 0 ) ⊂ Ω. For all r ∈ (0, r 0 ) we decompose ∂B(x, r) \ K = j∈J(r) I j (r) where I j (r) are disjoints arcs of circles. Then for each j ∈ J(r) there exists a connected component

U j (r) of Ω \ (I j (r) ∪ K) such that ∂U j (r) \ K = I j (r).
Moreover if u is a minimizer for the functional F defined in (5), then for a.e. r ∈ (0, r 0 ) and for every j ∈ I j (r) we have [START_REF] Lemenant | Energy improvement for energy minimizing functions in the complement of generalized Reifenberg-flat sets[END_REF] 

Ij (r) (A∇u) • ν dH 1 = Uj (λu -f )dx,
where ν is the inward normal vector in U j , i.e. pointing inside U j . Proof. By assumption K is closed, so that ∂B(0, r) \ K is a relatively open set in ∂B(0, r) which is one dimensional. Therefore we can decompose ∂B(0, r) \ K as a union of arc of circles as in the statement of the Lemma, namely

∂B(0, r) \ K = j∈J I j .
(we avoid the dependance in r to lighten the notations). Let us denote by U + j the connected component of Ω \ (K ∪ I j ) containing the points of B(0, r) \ K very close to I j , and similarly U - j is the one containing the points of Ω \ (K ∪ B(0, r)) very close to I j . Then there is one between U ± j , that we will denote by U j , which satisfies ( 16)

∂U j \ K = I j .
The proof of ( 16) relies on the connectedness of K (see [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF] page 299 and 300 for details: in our case the connectedness of K implies the topological assumption denoted by [START_REF] Dal | A model for the quasi-static growth of brittle fractures: existence and approximation results[END_REF] in [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF] that is used to prove (16) (which is actually [START_REF] Lazzaroni | Energy release rate and stress intensity factor in antiplane elasticity[END_REF] in [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF])).

Then we want to prove [START_REF] Lemenant | Energy improvement for energy minimizing functions in the complement of generalized Reifenberg-flat sets[END_REF] by an argument similar to Lemma 3.1 applied in U j . For this purpose we consider as before a radial function but we need to separate two cases: if U j ⊂ B(0, r) then we take the same function

ψ ε (x) = g ε ( x ) where g ε is equal to 1 on [0, (1 -ε)r], equal to 0 on [r + ε, +∞[ and linear on [(1 -ε)r, (1 + ε)r]. Now if U j ⊂ Ω \ B(0, r) we define ψ ε := 1 -ψ ε .
Then we take as a competitor for u the function ϕ = 1 Ûj ψ ε , where Ûj is the connected component of Ω \ K containing U j . Notice that this is an admissible choice, namely ϕ ∈ H 1 (Ω \ K) and ϕ = 0 on ∂Ω.

Applying (3.1) with ϕ = 1 Ûj ψ ε gives ( 17)

Ûj (A∇u) • ∇ψ ε = Ûj (λu -f )ψ ε .
As in the proof of Lemma 3.1, it is clear that ψ ε converges to 1 Uj strongly in L 2 (Ω), which gives the desired convergence for the right hand side term in (17). Now for the left hand side term, we use as before that ψ ε is Lipschitz and its derivative is equal a.e. to ± x 2ε x 1 B(x,r+ε)\B(x,(1-ε)r) (with the correct sign depending on which side of I j lies U j ) so that

Ω\K (A∇u) • ∇ψ ε = ± 1 2ε Ûj ∩(B(x,r+ε)\B(x,(1-ε)r)) (A∇u) • x x
which converges to Ij (A∇u) • νdH 1 for a.e. r by Lebesgue's differentiation theorem applied to the L 1 function r → ∂B(x,r)∩ Ûj (A∇u) • ν dH 1 .

3.2.

Monotonicity for harmonic functions. So we arrive now to the first monotonicity result. The following proposition is one of the key points in Bonnet's proof of the classification of global minimizers for the Mumford-Shah functional [START_REF] Bonnet | On the regularity of the edge set of Mumford-Shah minimizers[END_REF] (see also Section 47 of Guy David's book [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF] for a more detailled proof with slightly weaker assumptions than [START_REF] Bonnet | On the regularity of the edge set of Mumford-Shah minimizers[END_REF]). The same argument was also used in Lemma 2.2. of [START_REF] Lemenant | Energy improvement for energy minimizing functions in the complement of generalized Reifenberg-flat sets[END_REF] to prove a monotonicity result for the energy of a harmonic function in the complement of minimal cones in R 3 , but the rate of decay obtained by this method is sharp only in dimension 2. Notice also that a similar argument with the elastic energy (i.e. L 2 norm of the symmetric gradient) of a vectorial function u : Ω → R 2 seems not to be working. Notice that in [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF] the assumption H 1 (K) < ∞ is needed whereas K is not necessarily connected. Here we do not suppose H 1 (K) < ∞ but we ask K to be connected which is a stronger topological assumption but weaker regularity assumption than [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF].

Proposition 4 (Monotonicity of Energy, the harmonic case). [START_REF] Bonnet | On the regularity of the edge set of Mumford-Shah minimizers[END_REF][START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF] Let K be a closed and connected set and let u be a solution for the problem (6) with A = Id, f = 0 and λ = 0 (therefore u is harmonic in Ω \ K). For any point x 0 ∈ K we denote

E(r) := B(x0,r)\K ∇u 2 dx.
Then r → E(r)/r is an increasing function of r on (0, r 0 ). As a consequence, the limit lim r→0 E(r)/r exists and is finite.

Proof. Let us rewrite here the proof contained in [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF] and [START_REF] Bonnet | On the regularity of the edge set of Mumford-Shah minimizers[END_REF] since we want to generalize it just after. We assume without loss of generality that x 0 is the origin. Firstly, it is easy to show that E admits a derivative a.e. and

(18) E ′ (r) := ∂B(0,r)\K ∇u 2 dx.

In addition E is absolutely continuous (see [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF]). Therefore, to prove the monotonicity of r → E(r)/r, it is enough to prove the inequality

(19) E(r) ≤ rE ′ (r)
for a.e. r ≤ r 0 , because this implies E(r)/r) ′ ≥ 0 a.e. We will need Wirtinger's inequality (see e.g. page 301 of [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF]), i.e. for any arc of circle I r ⊂ ∂B(0, r) and for g ∈ W 1,2 (I r ) we have (20)

Ir |g -m g | 2 dH 1 ≤ |I r | π 2 Ir |g ′ | 2 dH 1
where m g is the average of g on I r and g ′ is the tangential derivative on the circle. The constant here is optimal, and is achieved for the unit circle by the function sin(θ/2) on the arc of circle ] -π, π[. The first Gauss-Green formula (i.e. Lemma 3.1) applied in B(0, r) yields, for a.e. radius r, Now K is closed, so that ∂B(0, r) \ K is a relatively open set in ∂B(0, r) which is one dimensional. Therefore we can decompose ∂B(0, r) \ K as a union of arc of circles as in Lemma 3.2, namely

∂B(0, r) \ K = j∈J I j .
Next, we apply Lemma 3.2 to obtain for each of those arcs I j , Then by use of Cauchy-Schwarz inequality and ab ≤ 1 2ǫ a 2 + ǫ 2 b 2 we can write

Ij |u -m j | ∂u ∂ν dH 1 ≤ Ij |u -m j | 2 1 2

Ij

∂u ∂ν

2 1 2 ≤ 1 2ǫ Ij |u -m j | 2 + ǫ 2 Ij ∂u ∂ν 2 .
Using Wirtinger inequality and setting ǫ = 2r we deduce that

Ij |u -m j | ∂u ∂ν dH 1 ≤ 4r 2 2ǫ Ij ∂u ∂τ 2 + ǫ 2 Ij ∂u ∂ν 2 ≤ r Ij ∂u ∂τ 2 + r Ij ∂u ∂ν 2 = r Ij ∇u 2 . ( 25 
)
Finally summing over j, using ( 24) and (18) we get (19) and the proposition is proved.

3.3.

Monotonicity with a second member f . Now we start to prove some variants of Bonnet's monotonicity Lemma. If f is non zero, then we obtain a similar result but we need further assumptions on K to be of finite length and locally-chord-arc.

Proposition 5 (Monotonicity, with a second member). Let u be a solution for the problem (6) with A = Id, λ > 0 and f, g ∈ L ∞ , and assume that K is a closed and connected set of finite length. For any point x 0 ∈ K we denote

E(r) := B(x0,r)\K ∇u 2 dx,
and we denote by N (r) ∈ [0, +∞] the number of points of K ∩ ∂B(0, r). We assume in addition that K is locally-chord-arc at point x 0 . Then there exists a radius r 0 and a constant C depending only on f ∞ , g ∞ and the locally-chord-arc constant of K such that

r → E(r) r + CP (r)
is an increasing function of r on (0, r 0 ), where P (r) is a primitive of N (r). As a consequence, the limit lim r→0 E(r)/r exists and is finite.

Proof. The proof is similar to the one of Proposition 4. We want to prove that the second member f is just a perturbation under control which does not affect the limit of E(r)/r. Precisely, this time we will prove the inequality (26) E(r) ≤ rE ′ (r) + CN (r)r 2 for a.e. r ≤ r 0 , with N (r) ∈ L 1 ([0, r 0 ]). This implies that d dr (CP (r) + E(r)/r) ≥ 0 thus r → E(r)/r + CP (r) is increasing and this is enough to prove the Proposition because the limit of P (r) exists at 0. We assume x 0 = 0. Observe that since K has a finite length, we know that ♯K ∩ ∂B(0, r) is finite for a.e. r ∈ (0, r 0 ). Actually we will need to know a bit more. If N (r) denotes the number of points of K ∩ B(0, r), by [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF]Lemma 26.1.] we know that N is borel mesurable on (0, r 0 ) and that (27

) t 0 N (s)ds ≤ H 1 (K ∩ B(0, t)).
This will be needed later. For now, take a radius r a.e. in (0, r 0 ) such that N (r) < +∞ and decompose S r := ∂B(0, r) \ K into a finite number of arcs of circle denoted I j , for j = 1..N (r). Moreover since K is closed and connected, for each j there exists a geodesic curve F j ⊂ K connecting the two endpoints of I j . We denote D j the domain delimited by I j and F j . Since K is locally-chord-arc at the origin we infer that |D j | ≤ Cr 2 . Notice also that D j corresponds to the set U j of Lemma 3.2.

The Gauss-Green formula (Lemma 3.1) applied in B(0, r) yields ( 28)

B(0,r)\K ∇u 2 dx = B(0,r)\K (f -λu) u dx + N (r) i=1 Ij u ∂u ∂ν dH 1 ,
and applied in D j (Lemma 3.2) gives

Ij ∂u ∂ν dH 1 = ± Dj (f -λu)dx,
the sign depending on the relative position of D j with respect to ∂B(0, r). Denoting by m j the average of u on I j we deduce that (29)

Ij u ∂u ∂ν dH 1 = Ij (u -m j ) ∂u ∂ν dH 1 ± Dj m j (f -λu) dx.
Now since u is bounded it comes |m j | ≤ C, and we also have N (r) j=1 |D j | ≤ CN (r)r 2 . Moreover f is also bounded thus returning to (28) and plugging (29) we get (30)

B(0,r)\K ∇u 2 dx ≤ CN (r)r 2 + N (r) j=1 Ij |u -m j | ∂u ∂ν dH 1 .
Then the same computations as for proving (25) (i.e. using Cauchy-Schwarz inequality, ab ≤ 1 2ǫ a 2 + ǫ 2 b 2 and Wirtinger) we obtain

Ij |u -m j | ∂u ∂ν dH 1 ≤ r Ij ∇u 2 dx ,
and after summing over j, (26) is proved, as claimed.

3.4. The case of more a general operator. We consider now the general case with α-Hölder regular coefficients A : x → A(x) ∈ S 2×2 uniformly bounded and γ-coercive with γ > 0. For any x ∈ Ω and r > 0 we define the ellipsoid

B A (x, r) := A(x)(B(x, r)).
Proposition 6 (Change of variable). Let u be a solution for Problem 6 in Ω, that we assume to contain the origin, and fix

A 0 := A(0). Then u • √ A 0 is the solution of a similar problem in ( √ A 0 ) -1 (Ω\K) with coefficient à := ( √ A 0 ) -1 •A•( √ A 0 ) -1 instead of A. In particular Ã(0) = Id, and (31) 
B(0,r) ∇v 2 Ãdx = BA(0,r)) ∇u 2 A det ( A 0 ) -1 dx
Proof. Let u be a solution for Problem 6, and consider

v := u • ( √ A 0 ). Then since √ A 0 is symmetric we have ∇v(y) = ( √ A 0 )∇u(( √ A 0 )(y))
and

Ω ∇u 2 A dx = Ω √ A∇u 2 dx = √ A0 -1 (Ω) √ A∇u • A 0 2 det( A 0 )dx = √ A0 -1 (Ω) √ A A 0 -1 ∇v 2 det( A 0 )dx = √ A0 -1 (Ω) ∇v 2 à det( A 0 )dx (32) with à := ( √ A 0 ) -1 • A • ( √ A 0 ) -1 .
Therefore if u is a minimizer for the functional F defined in [START_REF] Chambolle | Revisiting energy release rates in brittle fracture[END_REF], then v must be a minimizer for the functional

(33) F (v) := Ω ∇v 2 Ãdx + 1 λ Ω |λv -f | 2 , with Ω := √ A 0 -1 (Ω \ K) and f := f • √ A 0 .
Finally, the same change of variable as the one used for (32) proves (31), which completes the proof of the proposition.

Here is now the analogue of Proposition 4.

Proposition 7 (Monotonicity of energy for general coefficients). Assume that K is a closed and connected set. Let u be a solution for the problem (6) with some α-Hölder regular coefficients A, and with λ = 0 and f = 0. For any point

x 0 ∈ K we denote E(r) := BA(x0,r)\K ∇u 2 A dx.
Then the function

r → E(r) r (1 + Cr α 2 ) 2 α
is nondecreasing. As a consequence, the limit lim r→0 (E(r)/r) exists and is finite.

Proof. We will use a third time a variation of Bonnet's monotonicity Lemma, i.e. we will follow again the proof of Proposition 4. Let us assume without loss of generality that x 0 is the origin. First of all, up to the change of coordinates x → A(0)x and thank to Proposition 6 we can assume without loss of generality that A(0) = Id.

In this case B A (x, r) = B Id (x, r) = B(x, r).

The Gauss-Green formula (Lemma 3.1) applied in B(0, r) yields (34)

B(0,r)\K ∇u 2 A dx = j Ij u(A∇u) • ν dH 1 ,
where ∂B(0, r) \ K = ∪ j I j . On the other hand Lemma 3.2 gives for each j,

Ij (A∇u) • ν dx = 0.
Denoting by m j the average of u on I j we deduce that

(35) Ij u(A∇u) • ν dH 1 = Ij (u -m j )(A∇u) • ν dH 1 .

Thus (36)

B(0,r)\K

∇u 2 A dx ≤ N j=1 Ij |u -m j ||(A∇u) • ν| dH 1 .
Then by use of Cauchy-Schwarz inequality, ab ≤ 1 4r a 2 + rb 2 , and Wirtinger we can write

Ij |u -m j ||(A∇u) • ν|dH 1 ≤ Ij |u -m j | 2 1 2 Ij |(A∇u) • ν| 2 1 2 ≤ 1 4r Ij |u -m j | 2 + r Ij |(A∇u) • ν| 2 ≤ r Ij |∇u • τ | 2 + r Ij |(A∇u) • ν| 2 . ( 37 
)
Now we want to recover the full norm ∇u A from the partial norms |∇u • τ | and |(A∇u) • ν|. For this purpose we write

|∇u • τ | 2 = |(A∇u) • τ | 2 + |(Id -A)∇u • τ | 2 + [2(A∇u) • τ ][((Id -A)∇u) • τ ],
and we notice that, by Hölder regularity of A and γ-coerciveness we have (the constant C can vary from line to line)

|(Id -A)∇u • τ | 2 ≤ (Id -A)∇u 2 ≤ Id -A 2 L(R 2 ,R 2 ) ∇u 2 ≤ Cr 2α ∇u 2 ≤ γCr 2α ∇u 2 A , (38) and 2|A∇u 
• τ (Id -A)∇u • τ | = 2|A∇u • τ ||(Id -A)∇u • τ | ≤ 2 A∇u Cr α ∇u A ≤ Cr α A ∞ ∇u 2 A .
Therefore summing over j and putting all the estimates together we have proved that for r small enough,

B(0,r)\K ∇u 2 A dx ≤ r ∂B(0,r) (|A∇u • τ | 2 + Cr α ∇u 2 A ) + r ∂B(0,r) |(A∇u) • ν| 2 = r ∂B(0,r) A∇u 2 + Cr 1+α ∂B(0,r) ∇u 2 A . (39) 
By Hölder regularity of A we infer that

√ A 2 L(R 2 ,R 2 ) ≤ 1 + Cr α/2 , which implies ∂B(0,r) A∇u 2 ≤ ∂B(0,r) √ A 2 √ A∇u 2 ≤ (1 + Cr α/2 ) ∂B(0,r) √ A∇u 2 = (1 + Cr α/2 ) ∂B(0,r) ∇u 2 A .
Therefore, since E ′ (r) = ∂B(0,r) ∇u 2 A we have proved for r small enough,

E(r) ≤ (r + Cr 1+α/2 )E ′ (r),
and we conclude with Lemma 3.3 below, applied with the exponent α/2 ∈ (0, 1).

Lemma 3.3 (Gronwall type, version 1).

Assume that E(r) admits a derivative a.e. on [0, r 0 ], is absolutely continuous, and satisfies the following inequality for some α ∈ (0, 1)

(40) E(r) ≤ (r + Cr 1+α )E ′ (r), ∀r ∈ [0, r 0 ].
Then the function

r → E(r) r (1 + Cr α ) 1 α
is nondecreasing. As a consequence, the limit lim r→0 (E(r)/r) exists and is finite.

Proof. Observe that a primitive of 1/(r + Cr 1+α ) is (41) 1 r + Cr 1+α dr = ln r (Cr α + 1)

1 α =: h(r).
Hence (40) yields that E(r)e -h(r) ′ = (-h ′ (r)E(r) + E ′ (r))e -h(r) ≥ 0 , in other words,

r → E(r) r (1 + Cr α )
1 α is nondecreasing. Therefore the limit of E(r)(1 + Cr α ) 1 α /r exists when r goes to zero, and since (1 + Cr α ) 1 α converges to 1, we obtain the existence of limit also for E(r)/r. Now by monotonicity, this limit is necessarily finite since less than

E(r0) r0 (1 + Cr α 0 )
1 α which is finite for some r 0 fixed.

We also have an analogue of Proposition 5 in the context of general coefficients which is the proposition below.

Proposition 8 (Energy estimate for general coefficients and second member). Let u be a solution for the problem (6) with α-Hölderian coefficients A, λ > 0 and f, g ∈ L ∞ , and assume that K is a closed and connected set of finite length. For any point x 0 ∈ K we denote

E(r) := BA(x0,r)\K ∇u 2 A dx.
We assume in addition that K is locally-chord-arc at point x 0 . Then the limit lim r→0 (E(r)/r) exists and is finite.

Proof. We follow the proof of Proposition 5, with the changes already used in the proof of Proposition 7. The main difference with the preceding propositions is that we arrive now to the inequality

E(r) ≤ (r + Cr 1+α/2 )E ′ (r) + CN (r)r 2 .
then we conclude with the Lemma 3.4 below.

Lemma 3.4 (Gronwall type, version 2). Assume that E(r) admits a derivative a.e. on [0, r 0 ], is absolutely continuous, and satisfies the following inequality for some α ∈ (0, 1)

(42) E(r) ≤ (r + Cr 1+α )E ′ (r) + CN (r)r 2 , ∀r ∈ [0, r 0 ],
with N integrable on (0, r 0 ). Then the limit lim r→0 E(r)/r exists and is finite.

Proof. Let us first find a particular solution of the inhomogeneous equation ( 43)

G(r) = (r + Cr 1+α )G ′ (r) + CN (r)r 2 .
For this purpose, recall (see Lemma 3.3) that the solutions of the homogeneous first order linear equation f ′ (r) = 1 r + Cr 1+α f (r) are given by f (r) = λ r (Cr α + 1) 1/α , λ ∈ R. Then from the method of "variation of the constant" we deduce that a particular solution for equation (43) is

G(r) = λ(r) r (Cr α + 1) 1/α , with λ(r) = -C r 0 N (t)(Ct α + 1) 1-α α dt (notice that N (t)(Ct α + 1) 1-α α is integrable because N is). In particular we have (44) lim r→0 G(r) r = 0.
Now let us return to E(r), which is assumed to satisfy (42). If we subtract G(r) in the equation (42) we get

H(r) ≤ (r + Cr 1+α )H ′ (r) ,
where H(r) = E(r) -G(r). Therefore we can apply Lemma 3.3 to H which gives the existence of the limit lim r→0 H(r) r < +∞, and we conclude using (44).

Blow up

Here we prove the second part of Theorem 1.1 concerning the blow up sequence. Before going on with blow up limits at the origin, we start with a rigorous definition of u(0). Indeed, let u be a solution for the problem (6) with g ∈ L ∞ , (λ = f = 0) or (f ∈ L ∞ and λ > 0). We suppose that K is a closed and connected set satisfying the density condition (7) at 0. Let R r the family of rotations given by remark 2 so that r -1 R r (K ∩ B(0, r)) converges to the segment [-1, 0] × {0} when r goes to 0. For any r small enough we define A r := R -1 r (B((r/2, 0), r/4)) and

m r := 1 |A r | Ar u(x)dx.
Lemma 4.1 (Definition of u(0)). The sequence m r converges to some finite number that we will denote by u(0).

Proof. We begin with a discrete sequence r n := 2 -n r 0 for some r 0 small, n ∈ N. In particular we assume r 0 small enough to have

(45) 1 r n B(0,rn) ∇u 2 dx ≤ C ∀n ∈ N,
for some constant C that surely exists thank to Section 3. Since r -1 R r (K ∩ B(0, r)) converges to the segment [-1, 0] × {0}, we are sure that for r 0 small enough and for every n, the ball B n := R -1 rn (B(r n /2, 0), 3r n /8) does not meet K and contains both A rn and A rn+1 . We denote by m n the average of u on B n . Applying Poincaré inequality in B n yields

|m rn -m n | = 1 |A rn | Ar n (u -m n )dx ≤ 1 |A rn | Bn |u -m n | ≤ C 1 r n Bn ∇u dx
and the same for m rn+1 so that at the end

(46) |m rn -m rn+1 | ≤ C 1 r n Bn ∇u dx ≤ C Bn ∇u 2 dx 1 2
≤ Cr 1/2 n because of (45). In particular this implies that m rn is a Cauchy sequence, thus converges to some limit ℓ ∈ R. Now if r k is any other sequence converging to zero, we claim that the limit of m r k is still equal to ℓ. To see this it suffice to find a subsequence r n k of r n such that r n k /2 ≤ r k ≤ r n k and compare m r k with m rn k by the same way as we obtained (46) and conclude that they must have same limit.

Remark 5. In the future it will be convenient to introduce another type of averages on circles, namely mr := 1 Ãr Ãr u dH 1 , with Ãr := B((r, 0), r 4 ) ∩ ∂B(0, r)

It is easily checked that the sequence of mr are aslo converging to u(0), i.e. has same limit as m r .

We are now ready to prove the last part of Theorem 1.1.

Theorem 4.2 (Convergence of the blow-up sequence). Let u be a solution for the problem (6) with g ∈ L ∞ , (λ = f = 0) or (f ∈ L ∞ and λ > 0). We suppose that K is a closed and connected set satisfying the density condition (7) at the origin. We denote by u(0) the real number given by Lemma (4.1). Let R r the family of rotations given by Remark 2 so that r -1 R r (K ∩B(0, r)) converges to some segment Σ 0 when r goes to 0. If (r, θ) are the polar coordinates such that ( A(0)) -1 (Σ 0 ) = (R -× {π}) we denote by v 0 the function defined in polar coordinates by

v 0 (r, θ) := 2C 0 r π sin(θ/2). Then u r := r -1 2 (u(rR -1 r x) -u(0)) -→ r→0 v 0 • A(0),
where the constant C 0 is given by

C 0 = lim r→0 1 det( A(0))r BA(0,r)\K ∇u 2 A dx ,
and the convergence holds strongly in L 2 (B(0, 1)) for both u r and ∇u r .

Proof. We know that K r := 1 r R r (K) converges to the half-line R -× {0} locally in R 2 for the Hausdorff distance. To simplify the notations and without loss of generality, in the sequel we will identify u with u • R -1 r , and K with R r (K) so that we can assume that R r = Id for all r. We can also assume that u(0) = 0 and as before, it is enough to consider the case when A(0) = Id because the general case follows using the change of variable of Proposition 6.

As in the proof of Lemma 4.1, for any r we denote by m r the average of u on the ball B((r/2, 0), r/4). Then we consider the function u r (x) := r -1 2 (u(rx) -m r ) defined in 1 r (Ω\K). The domain 1 r (Ω\K) converges to R 2 \K 0 with K 0 := R -×{0}. We will prove that u r converges, in some sense that will be given later, to function in R 2 \ K 0 that satisfies a certain Neumann problem. In the sequel we will work up to subsequences, but this will not be restrictive in the end by uniqueness of the limit.

The starting point is that ∇u r is uniformly bounded in L 2 (B(0, 2)) (we start working in B(0, 2) for security but the real interesting ball will be B(0, 1)). Indeed, ∇u r (x) = √ r∇u(rx), B(0,2)\Kr ∇u r 2 dx = B(0,2)\Kr r ∇u(rx) 2 dx = 1 r B(0,2r)\K ∇u(x) 2 dx.

From Proposition 4, we know that 1 r B(0,r) ∇u(x) 2 A dx converges to C 0 and we deduce (using the coerciveness of A), that ∇u r is uniformly bounded in L 2 (B(0, 2)).

Therefore we can extract a subsequence such that ∇u r converges to some h, weakly in L 2 (B(0, 2)), and Finally all that we did in B(0, 1) could be done in any B(0, R) for R as large as we want, which gives a definition of u 0 in R 2 \ K 0 . Moreover u 0 is of constant normalized energy. In other words we claim that s → 1 s B(0,s) ∇u 0 2 is constant in s, identically equal to C 0 . Indeed, by the strong convergence in L 2 of ∇u r , the value of 1 s B(0,s) ∇u 0 2 is given by lim The first term in (52) converges to sC 0 and the second term converges to zero because less than Id -A L ∞ (B(0,r)) times something bounded.

The latter implies that u 0 is the cracktip function. More precisely, we claim now that (53) u 0 = 2C 0 r π sin(θ/2).

We shall give two different arguments for (53). The first one is very nice and due to Bonnet: returning to the proof of the monotonicity Lemma applied to u 0 , which says that s → 1 s B(0,s) ∇u 0 2 must be increasing (Proposition 4), since s → 1 s B(0,s) ∇u 0 2 is actually constant in s, all the inequalities in the proof are equalities. In particular u 0 must be the optimal function in Wirtinger inequality, thus it is the famous C √ r sin(θ/2) function. The second argument is to decompose u 0 in spherical harmonics, i.e. as a sum of homogeneous harmonic functions in the complement of the half line K 0 , which Neumann boundary conditions on K 0 . Now using that s → 1 s B(0,s) ∇u 0 2 is constant we can kill all the terms of degree different from 1/2 by taking blow-up and blow-in limits. This implies that u 0 must be homogeneous of degree 1/2, and from this information it is not difficult to deduce (53) by looking at u 0 on the unit circle.

Then, the exact constant C := 2C0 π in front of the sinus can be easily computed by hand with the formulas Finally, originally u r was converging to 2C0 π sin(θ/2) up to subsequences, but by uniqueness of the limit we conclude that the whole sequence converges to this function and this achieves the proof.

( 13 )

 13 Ω\K (A∇u) • ∇ϕ dx = Ω (λu -f )ϕ dx must hold for any function ϕ ∈ H 1 (Ω \ K) compactly supported inside Ω. Let us choose ϕ to be equal to ψ ε u(x), where ψ ε (x) = g ε ( x ) is radial, and g ε is equal to 1 on [0, (1 -ε)r], equal to 0 on [r + ε, +∞[ and linear on [(1 -ε)r, (1 + ε)r].

1

 1 by m j the average of u on I j we deduce that Returning to (21) and plugging (23) we get (24) B(0,r)\K ∇u 2 dx ≤ j∈J Ij |u -m j | ∂u ∂ν dH 1 .

  (47)B(0,1) h 2 ≤ lim inf r→0 B(0,1) ∇u r 2 dx ≤ C.

∇u r 2 ,

 2 which we actually claim to be equal to C 0 : a change of variable gives B(0,s) 0,rs) (Id -A)∇u, ∇u . (52)

4

 4 drdθ = C 2 R π 2 thus C = 2C0 π .

Next we want to prove that in compact sets of B(0, 2) \ K 0 , the convergence is much better. For this purpose we introduce for any a > 0 U (a) := {x ∈ B(0, 2); d(x, K 0 ) > a}.

The sequence u r is uniformly bounded in H 1 (U (a)) for any a. Therefore taking a sequence a n → 0, extracting some subsequence of u r and using a diagonal argument we can find a subsequence of u r , not relabeled, that converges weakly in H 1 and strongly in L 2 in any of the domains U (a). In other words, this subsequence u r converges weakly in H 1 loc (B(0, 2) \ K 0 ) and strongly in L 2 loc (B(0, 2), \K 0 ) to some function u 0 ∈ H 1 loc (B(0, 2) \ K 0 ). By uniqueness of the limit we must have that ∇u 0 = h a.e. in B(0, 2) and therefore (47) reads ( 48)

Now we want to prove that u 0 is a minimizer for the Dirichlet energy, and at the same time prove that the convergence hold strongly in L 2 (B(0, 1)) both for u r and ∇u r . To do this we consider any function v ∈ H 1 (B(0, 1) \ K 0 ) with v ≡ u 0 in B(0, 1) \ B(0, 1 -δ) and v ≡ 0 in B(0, η), for some small δ > 0. The family of all such functions v is dense in the space of functions of H 1 (B(0, 1) \ K 0 ) with trace equal to u 0 on ∂B(0, 1) \ K 0 and therefore to prove that u 0 is a minimizer, it is enough to prove that B(0,1)

∇v 2 dx for all such functions v. We denote by N r (s) the number of points of K r ∩ ∂B(0, s). As already used before, since by assumption H 1 (K r ∩ B(0, 1)) converges to 1 and

we can extract a subsequence such that N r (s) → 1 a.e. Then Fatou's lemma yields (49)

where C 1 is closely related to C 0 . This will allows us later to find a good radius s for which both N (s) = 1 and ∂Bs ∇u r 2 dH 1 is uniformly bounded.

At this stage we only know that ∇u r converges weakly in L 2 to ∇u 0 . On the other hand, up to a further subsequence, we can find a measure µ such that |∇u r | 2 dx weakly-⋆ converges to µ. Let x ∈ B(0, 2), ρ > 0 such that B(x, ρ) ⊂ B(0, 2) \ K 0 . Let ψ be a smooth cutoff, with support in B(x, ρ), and equal to 1 in B(x, ρ/2). Then we can write that (50)

where A r (x) = A(rx), f r (x) = f (rx) -λm r , and (taking the limit in the "first" u r while freezing the test function (u r -u 0 )ψ, and using the weak convergence in

Taking the difference of ( 50) and (51), and using the fact that u r → u 0 strongly in L 2 (B r ), ∇u r is uniformly bounded in L 2 (B r ) 2 , and A r → Id uniformly, we obtain that lim r→0 B(x,ρ/2) ∇u r -∇u 0 2 dx = 0 so that clearly, µ (B(0, 2) \ K 0 ) = ∇u 0 2 dx: if µ has a singular part it must be concentrated on K 0 . Moreover, we have µ({(-s, 0)}) = 0 for all s ∈ [0, 2) but a countable number. (Observe that using any other test function in (50) and passing to the limit, we easily deduce that u 0 is harmonic in B(0, 2) \ K 0 , but this will also be a consequence of the minimality of the Dirichlet energy which will soon be shown). Now from (49) we may choose s, 1 -δ < s < 1, so that µ({-s, 0}) = 0, N r (s) = 1 for all r large enough, and lim inf r ∂Bs ∇u r 2 dH 1 < +∞ In particular, upon extracting a further subsequence, we may assume that sup r ∂Bs ∇u r 2 dH 1 < +∞.

Then, by Sobolev's embedding, and using the fact that the averages mr are uniformly bounded (see Remark ( 5)), we deduce that there exists C > 0 such that u r L ∞ (∂Bs) ≤ C.

We now consider any constant M > C and define

we have that u M r → u M 0 in L 2 loc (B(0, 1) \ K 0 ), where u M 0 is naturally defined as being u M 0 := (-M ∨ (u 0 ∧ M )). Up to a subsequence the convergence holds almost everywhere. But now, since the functions are uniformly bounded, it converges also strongly in L 2 (B(0, 1) \ K 0 ). Now, from the original function v ∈ H 1 (B(0, 1) \ K 0 ), we want to construct a function v r ∈ H 1 (B(0, 1) \ K r ) not much different from v. We denote by C ± r the connected components of (B(0, 1) \ K r ) ∩ {x ≤ 0} containing (-1/2, ±1/2) and we define v r (x, y) as follows. In B(0, 1) ∩ {x > 0} we set v r (x, y) = v(x, y).

And finally v r = 0 everywhere else (i.e. in B(0, 1)

. Then it is easy to see that v r ∈ H 1 (B(0, 1) \ K r ), converges strongly to v in L 2 and 1 B(0,1)\Kr ∇v r converges strongly to 1 B(0,1)\K0 ∇v in L 2 (B(0, 1)). However, by this procedure the trace on ∂B(0, 1) is not necessarily preserved.

To get rid of that we let ε < s-(1-δ), we pick a smooth cut-off ψ ε with compact support in B s , 0 ≤ ψ ε ≤ 1 and ψ ε ≡ 1 in B s-ε , and we let

Recall that |f r | ≤ C and |u r | ≤ C/ √ r (by definition) so that 2r 3/2 f r u r o(r), and we also easily check that

hence we focus on the other terms: we write for δ > 0 small,

Then sending r → 0 we obtain

finaly letting ε → 0, then η → 0, and adding the integral over B(0, 1) \ B(0, s) on both sides (where v and u 0 actually coincide) we get the desired inequality, namely ∇u 0 2 dx and this toghether with (48), implies the convergence of norms, which by the weak convergence yields the strong convergence in L 2 for the gradients, as desired.