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Abstract

In this paper we derive adaptive non-parametric rates of concentration of
the posterior distributions for the density model on the class of Sobolev and
Besov spaces. For this purpose, we build prior models based on wavelet or
Fourier expansions of the logarithm of the density. The prior models are not
necessarily Gaussian.
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1. Introduction

Frequentist properties of Bayesian nonparametric procedures have been
increasingly studied in the last decade, following the seminal papers of Barron
et al. [1] and Ghosal et al. [8] which established general conditions on the
prior and on the true distribution to obtain posterior consistency for the
former and posterior concentration rates for the latter. Consistency of the
posterior distribution is admitted as a minimal requirement, both from a
subjectivist and an objectivist view-point, see Diaconis and Freedman [6].
Studying posterior concentration rates allows for more refined results, in
particular it helps in understanding some aspects of the prior and can be used
to compare a Bayesian procedure with another Bayesian procedures together
with frequentist procedures. In the frequentist nonparametric literature the
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usual optimality criterion that is considered is the minimaxity over a given
functional class, typically indexed by a smoothness index, for instance a
Sobolev or a Besov ball. However the smoothness is generally unknown
a priori and it is important to construct estimators which adapt to these
smoothness indexes, i.e. which do not depend on these indexes but which
achieve the optimal rate within each class.

In this paper we derive posterior concentration rates for density esti-
mation, when the prior is based on wavelet or Fourier expansions of the
logarithm of the density. We consider Xn = (X1, ..., Xn) which, given a
distribution P with a compactly supported density f with respect to the
Lebesgue measure, are independent and identically distributed according to
P. Without loss of generality we assume that for any i, Xi ∈ [0, 1] and we
set

F =

{

f : [0, 1] → R
+ s.t.

∫ 1

0

f(x)dx = 1

}

.

As already mentioned, we restrict our attention to families of priors on
F built from Fourier and wavelet expansions of log f assumed to be square-
integrable. Wavelets are localized in both time and frequency whereas the
standard Fourier basis is only localized in frequency. We recall that Fourier
bases constitute unconditional bases of periodized Sobolev spacesW γ where γ
is the smoothness parameter. Wavelet expansions of any periodized function
h take the following form:

h(x) = θ−101l[0,1](x) +
+∞
∑

j=0

2j−1
∑

k=0

θjkϕjk(x), x ∈ [0, 1]

where θ−10 =
∫ 1

0
h(x)dx and θjk =

∫ 1

0
h(x)ϕjk(x)dx. We recall that the func-

tions ϕjk are obtained by periodizing dilations and translations of a mother
wavelet ϕ that can be assumed to be compactly supported. Unlike the Fourier
basis, under standard properties of ϕ involving its regularity and its vanish-
ing moments, wavelet bases constitute unconditional bases of Besov spaces
Bγ
p,q. We refer the reader to Härdle et al. [10] for a good introduction to

wavelets and to Section 5.2 for more details on Sobolev and Besov spaces.
We just mention that the scale of Besov spaces includes Sobolev spaces:
W γ = Bγ

2,2. In the sequel, to shorten notation, we use a unified framework
including Fourier and wavelet bases. The considered orthonormal basis will
be denoted Φ = (φλ)λ∈N, where φ0 = 1l[0,1] and
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- for the Fourier basis, if λ ≥ 1,

φ2λ−1(x) =
√
2 sin(2πλx), φ2λ(x) =

√
2 cos(2πλx),

- for the wavelet basis, if λ = 2j + k, with j ∈ N and k ∈ {0, . . . , 2j − 1},

φλ = ϕjk.

Here and in the sequel, N denotes the set of non negative integers, and N
∗ the

set of positive integers. Now, the decomposition of each periodized function
h ∈ L2[0, 1], the set of square-integrable functions on [0, 1] with respect to
the Lebesgue measure, on (φλ)λ∈N is written as follows:

h(x) =
∑

λ∈N

θλφλ(x), x ∈ [0, 1],

where θλ =
∫ 1

0
h(x)φλ(x)dx.

We use such expansions to build non-parametric priors on F in the fol-
lowing way: For any k ∈ N

∗, we set

Fk =

{

fθ = exp

(

k
∑

λ=1

θλφλ − c(θ)

)

s.t. θ ∈ R
k

}

,

where

c(θ) = log

(

∫ 1

0

exp

(

k
∑

λ=1

θλφλ(x)

)

dx

)

. (1.1)

So, we define a prior π on the set F∞ = ∪kFk ⊂ F by defining a prior p on
N

∗ and then, once k is chosen, we fix a prior πk on Fk. Such priors are often
considered in the Bayesian non-parametric literature and our study can be
strongly connected to the well-known papers by van der Vaart and van Zanten
[21] (see Section 4 for a detailed comparison with our results) and by Shen
and Wasserman [19] who considered the problem of estimating a regression
function decomposed on an orthonormal basis. The prior model proposed
by Shen and Wasserman is a special case of the prior described in Section
2. However, they assume that all the functions of the basis are uniformly
bounded by a constant. This is of course satisfied by the Fourier basis but
not by wavelet bases. Furthermore, once the prior is fixed, depending on

3



a hyperparameter p, rates are only achieved on Sobolev balls of regularity
p. So, adaptation is not handled by Shen and Wasserman [19]. See below
for specific results we obtain in our paper. The family of priors defined in
Section 2 has also been used in the infinite-means model (equivalently in the
white noise model) by Zhao [24] where minimax but non adaptive rates were
obtained for the L2-risk (see for instance Theorem 6.1 of Zhao [24]). We also
mention the special case of log-spline priors studied by Ghosal et al. [8] and
the prior model based on Legendre polynomials considered by Verdinelli and
Wasserman [22].

Our results are concerned with adaptation that has been partially stud-
ied in the literature. Let us cite Scricciolo [18] who considers infinite di-
mensional exponential families and derives minimax and adaptive posterior
concentration rates. Her results differ from ours in two main aspects. Firstly
she restricts her attention to the case of Sobolev spaces and Fourier basis,
whereas we consider Besov spaces and secondly she obtains adaptivity by
putting a prior on the smoothness of the Sobolev class whereas we obtain
adaptivity by constructing a prior on the size k of the parametric spaces,
which to our opinion is a more natural approach. Moreover Scricciolo [18]
merely considers Gaussian priors. Also related to adaptation are the works
of Huang [11] and Ghosal et al. [9] who derive a general framework to obtain
adaptive posterior concentration rates, the former applies her results to the
Haar basis case. The limitation in her case, apart from the fact that she
considers the Haar basis and no other wavelet basis is that she constraints
the θλ’s in each k-dimensional model to belong to a ball with fixed radius.

In this paper we give general conditions on families of priors briefly de-
scribed previously to obtain adaptive minimax rates (up to a log n term) for
the estimation of f . In the next section we introduce the prior model and
Theorem 2.1 gives the posterior rates on Sobolev balls W γ(R) and Besov
balls Bγ

p,q(R) p ≥ 2. Section 3 gives the proof of Theorem 2.1 and Section 4
contains conclusions we can draw from our results. We state in Appendix a
result useful for establishing concentration rates. Appendix also contains the
proof of a technical result and some recalls on Sobolev and Besov spaces.

Notation: In the sequel, we denote ℓn(f) the log-likelihood associated with
the density f . The Kullback-Leibler divergence and the Hellinger distance
between two positive densities f1 and f2 will be respectively denotedK(f1, f2)
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and h(f1, f2). We recall that

K(f1, f2) =

∫ 1

0

f1(x) log

(

f1(x)

f2(x)

)

dx (1.2)

and

h(f1, f2) =

[∫

(

√

f1(x)−
√

f2(x)
)2

dx

]1/2

. (1.3)

In the sequel, we shall also use

V (f1, f2) =

∫ 1

0

f1(x)

(

log

(

f1(x)

f2(x)

))2

dx. (1.4)

Let P0 be the true distribution of the observations Xi whose density and
cumulative distribution function are respectively denoted f0 and F0.

We denote ||.||γ and ||.||γ,p,q the norms associated with W γ and Bγ
p,q respec-

tively. The integer r will denote the number of vanishing moments of the
wavelet basis. When the Fourier basis is considered, we set r = +∞.

2. Prior models and concentration rates

Given β > 1/2, the prior p on k satisfies one of the following conditions:

[Case (PH)] There exist two positive constants c1 and c2 and s ∈ {0, 1}
such that for any k ∈ N

∗,

exp (−c1kL(k)) ≤ p(k) ≤ exp (−c2kL(k)) ,

where L(x) = (log x)s.

[Case (D)] If k∗
n = ⌊n1/(2β+1)⌋, i.e. the largest integer smaller than n1/(2β+1),

p(k) = δk∗n(k),

where δk∗n denotes the Dirac mass at the point k∗
n.

Conditionally on k the prior πk on Fk is defined by

θλ√
τλ

iid∼ g, τλ = τ0λ
−2β 1 ≤ λ ≤ k,
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where τ0 is a positive constant and g is a continuous density on R such that
for any x,

A∗ exp (−c̃∗|x|p∗) ≤ g(x) ≤ B∗ exp (−c∗|x|p∗) ,
where p∗, A∗, B∗, c̃∗ and c∗ are positive constants.

Observe that the prior is not necessarily Gaussian since we allow for
densities g to have different tails. In the Dirac case (D), the prior on k is non
random. For the case (PH), L(x) = log(x) typically corresponds to a Poisson
prior on k and the case L(x) = 1 typically corresponds to geometric priors.
The density g can be for instance the Laplace or the Gaussian density.

Assume that f0 is 1-periodic and f0 ∈ F∞. Let Φ = (φλ)λ∈N be one of
the bases introduced in Section 1, then there exists a sequence θ0 = (θ0λ)λ∈N∗

such that

f0(x) = exp

(

∑

λ∈N∗

θ0λφλ(x)− c(θ0)

)

.

We have the following result.

Theorem 2.1. We assume that || log(f0)||∞ < ∞ and log(f0) ∈ Bγ
p,q(R) with

p ≥ 2, 1 ≤ q ≤ ∞ and 1/2 < γ < r + 1 is such that

β < 1/2 + γ if p∗ ≤ 2 and β < γ + 1/p∗ if p∗ > 2.

Then,

P
π

{

fθ s.t. h(f0, fθ) ≤
√

log n

L(n)
ǫn|Xn

}

= 1 + oP0(1), (2.1)

and

P
π

{

fθ s.t. ||θ0 − θ||ℓ2 ≤ log n

√

log n

L(n)
ǫn|Xn

]

= 1 + oP0(1), (2.2)

where in the case (PH),

ǫn = ǫ0

(

log n

n

)
γ

2γ+1

,

in the case (D), L(n) = 1,

ǫn = ǫ0(log n)n
− β

2β+1 , if γ ≥ β
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ǫn = ǫ0n
− γ

2β+1 , if γ < β

and ǫ0 is a constant large enough.

If the density g only satisfies a tail condition of the form

g(x) ≤ Cg|x|−p∗ ,

where Cg is a constant and p∗ > 1, then, in the case (PH), if γ > 1, the rates
defined by (2.1) and (2.2) remain valid.

Note that in the case (PH) the posterior concentration rate is, up to a log n
term, the minimax rate of convergence, whereas in the case (D) the minimax
rate is achieved only when γ = β. The interpretation is the following: In the
case (PH), k is random, which allows to determine the appropriate space Fk

by using the data, i.e. the Bayesian procedure automatically adapts to the
unknown approximation space containing the unknown signal. In particular,
if f0 belongs to Bγ

p,q then the ”optimal” approximation space Fk correspond

to k = O
(

n1/(2γ+1)
)

. Roughly speaking, this optimal k is obtained by some
trade-off between minimizing the kullback-Leibler divergence between f0 and
Fk and maximizing the prior mass of neighbourhoods of f0 in Fk.

A glance at the proof of Theorem 2.1 allows to go further. We have the
following result enhancing our results with respect to adaptation.

Corollary 2.1. Let p∗ > 0 and 1/2 < β ≤ (1/2 + 1/p∗) ∧ 1, then for all
R0 > 0 and γ0 > 1/2, the posterior distribution associated to the prior (PH)
achieves the adaptive minimax rate up to a logarithmic term on the whole
class

C(γ0, R0) =
{

Bγ
p,q(R) : γ0 ≤ γ < r + 1, p ≥ 2, 1 ≤ q ≤ ∞, 0 < R ≤ R0

}

,

meaning that there exists ǫ0 > 0 such that

sup
γ0 ≤ γ < r + 1
0 < R ≤ R0

sup
p ≥ 2
q ≥ 1

sup
f0∈B

γ
p,q(R)

Ef0

[

P
π

{

h(f0, fθ) ≤ ǫ0

√

log n

L(n)

(

log n

n

)
γ

2γ+1

|Xn

}]

= o(1).

A similar result holds for the ℓ2-loss.
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3. Proof of Theorem 2.1

In the sequel, C denotes a generic positive constant whose value is of no
importance and may change from line to line. To simplify some expressions,
we omit at some places the integer part ⌊·⌋. Remember that L(n) = 1 for
any n in the case (D). To prove Theorem 2.1 it is enough to verify conditions
(A), (B) and (C) of Theorem 5.1. We consider (Λn)n the increasing sequence
of subsets of N∗ defined by Λn = {1, 2, . . . , ln} with ln ∈ N

∗ (defined below).
For any n, we set:

F∗
n =

{

fθ ∈ Fln s.t. fθ = exp

(

∑

λ∈Λn

θλφλ − c(θ)

)

, ||θ||ℓ2 ≤ wn

}

,

with
wn = exp(w0n

ρ(log n)q), ρ > 0, q ∈ R.

For l0 a constant,

- ǫn = ǫ0n
− γ

2γ+1 (log n)
γ

2γ+1 and we set ln = l0nǫ2n
L(n)

in the case (PH),

- ǫn = ǫ0(log n)
1{γ≥β}n− β∧γ

2β+1 and we set ln = l0k
∗
n = l0n

1
2β+1 in the

case (D).

Condition (A). Since β > 1/2,
∑

λ τλ < ∞ and for the sake of simplic-
ity, without loss of generality, we assume that

∑

λ τλ ≤ 1. Using the tail
assumption on g,

π {F∗
n
c} ≤

∑

λ>ln

p(λ) + P
π

{

∑

λ≤ln

θ2λ > w2
n

}

≤ C exp (−c2lnL(ln)) +
∑

λ≤ln

P
π

{

θ2λ
τλ

> w2
n

}

≤ C exp
(

−c2l0nǫ
2
n

)

+
∑

λ≤ln

P
π

{

exp

(

c∗|θλ|p∗
2τ

p∗/2
λ

)

> exp

(

c∗w
p∗
n

2

)

}

≤ C exp
(

−c2l0nǫ
2
n

)

+ Cln exp

(

−c∗w
p∗
n

2

)

≤ C exp
(

−c2l0nǫ
2
n

)

+ C exp
(

−nH
)
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for any positive H > 0. For the second line, we have used

P
π

{

∑

λ≤ln

θ2λ > w2
n

}

≤ P
π

{

∑

λ≤ln

θ2λ >
∑

λ≤ln

τλw
2
n

}

≤
∑

λ≤ln

P
π
{

θ2λ > τλw
2
n

}

and for the forth line the Markov inequality combined with

θλ√
τλ

iid∼ g

and
g(x) ≤ B∗ exp (−c∗|x|p∗) .

Hence,
π {F∗

n
c} ≤ C exp

(

−c2l0nǫ
2
n

)

and Condition (A) is proved for l0 large enough.

Condition (B). In the framework of Theorem 5.1, we bound Hn,j for any
j ≥ 1. Actually, since the Hellinger distance is uniformly bounded by

√
2,

we can restrict our attention to the case j ≤
√
2ǫ−1

n . For this purpose, we
show that the Hellinger distance between two functions of F∗

n is related to
the ℓ2-distance of the associated coefficients. Let

c̃1 =
1

4c1,Φ
,

where c1,Φ is defined in Lemma 5.1. We consider fθ and fθ′ belonging to F∗
n

with

fθ = exp

(

∑

λ∈Λn

θλφλ − c(θ)

)

, fθ′ = exp

(

∑

λ∈Λn

θ′λφλ − c(θ′)

)

.

We show that for j ≤
√
2ǫ−1

n ,

||θ − θ′||ℓ2 ≤ c̃1jǫnl
−1/2
n ⇒ h(fθ, fθ′) ≤

jǫn
2

. (3.1)

For this purpose, we apply Lemma 5.1 with Kn = Λn and kn = ln and if
||θ′ − θ||ℓ2 ≤ c̃1jǫnl

−1/2
n , then,

∥

∥

∥

∥

∥

∑

λ∈Λn

(θ′λ − θλ)φλ

∥

∥

∥

∥

∥

∞

≤ c1,Φ
√

ln||θ′ − θ||ℓ2 ≤ c1,Φc̃1jǫn ≤
√
2c1,Φc̃1 ≤ 1.
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Now, straightforward computations lead to

|c(θ′)− c(θ)| =

∣

∣

∣

∣

∣

log

(

∫ 1

0

fθ(x) exp

(

∑

λ∈Λn

(θ′λ − θλ)φλ(x)

)

dx

)∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

log

(

∫ 1

0

fθ(x) exp

(

‖
∑

λ∈Λn

(θ′λ − θλ)φλ‖∞
)

dx

)∣

∣

∣

∣

∣

= ‖
∑

λ∈Λn

(θ′λ − θλ)φλ‖∞.

Then,

h2(fθ, fθ′) =

∫ 1

0

fθ(x)

(

exp

(

1

2

∑

λ∈Λn

(θ′λ − θλ)φλ(x) +
1

2
(c(θ)− c(θ′))

)

− 1

)2

dx

≤
∫ 1

0

fθ(x)

(

exp

(

||
∑

λ∈Λn

(θ′λ − θλ)φλ||∞
)

− 1

)2

dx

≤ 4||
∑

λ∈Λn

(θλ − θ′λ)φλ||2∞

≤ 4c21,Φln||θ − θ′||2ℓ2 ≤ 4c21,Φc̃
2
1j

2ǫ2n ≤ j2ǫ2n
4

, (3.2)

where we have used the (rough) bound : exp(x)− 1 ≤ 2x for any x ∈ [0, 1].
This proves (3.1). By identifying θ and fθ, it means that every covering of Sn,j

by ℓ2-balls of radius c̃1jǫnl
−1/2
n provides a covering of Sn,j by Hellinger-balls

of radius jǫn/2. Then, we use the following lemma proved in Section 5.3.

Lemma 3.1. We assume that log(f0) ∈ Bγ
p,q(R) with p ≥ 2, 1 ≤ q ≤ ∞ and

1/2 < γ < r + 1. We set c0 = infx∈[0,1] f0(x) > 0. There exists a positive
constant c ≤ 1/2 depending on β, γ, R and Φ such that, for j ≥ 1, if

(j + 1)2ǫ2nln ≤ c

then for fθ ∈ Sn,j

||θ0 − θ||2ℓ2 ≤
1

c
(log n)2h2(f0, fθ).
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The lemma shows that if (j + 1)2ǫ2nln ≤ c then, by identifying θ and fθ,
Sn,j is included into the ℓ2-ball centered at θ0 with radius c−1/2(j+1)ǫn log n.
Therefore, in this case, combining (3.2) and Lemma 3.1, we obtain

Hn,j ≤ log





(

C
(j + 1)ǫn log n

jǫnl
−1/2
n

)ln


 ≤ ln log n,

for n large enough. Then, we have Hn,j ≤ Knj2ǫ2n as soon as j ≥ J0,n =
√

j0 log nL(n)−1, where j0 is a constant and condition (B) is satisfied for
such j’s.

When (j + 1)2ǫ2nln > c, then since for fθ ∈ F∗
n, ||θ||ℓ2 ≤ wn,

Hn,j ≤ log





(

C
wn

jǫnl
−1/2
n

)ln


 ≤ 2ln log(wn) ≤ 2w0lnn
ρ(log n)q,

for n large enough. Choosing w0, q and ρ small enough such that l2n(log n)
q ≤

n1−ρ, implies Hn,j ≤ Knj2ǫ2n and condition (B) is satisfied for such j’s.

Condition (C). Let kn ∈ N
∗ increasing to ∞ and Kn = {1, ..., kn}, define

A(un) =

{

θ s.t. θλ = 0 for every λ /∈ Kn and
∑

λ∈Kn

(θ0λ − θλ)
2 ≤ u2

n

}

,

where un goes to 0 such that

√

knun → 0. (3.3)

We define for any λ,

βλ(f0) =

∫ 1

0

φλ(x)f0(x)dx.

Denote

f0Kn = exp

(

∑

λ∈Kn

θ0λφλ(x)− c(θ0Kn)

)

, f0K̄n
= exp

(

∑

λ/∈Kn

θ0λφλ(x)− c(θ0K̄n
)

)

.
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We have

K(f0, f0Kn) =
∑

λ/∈Kn

θ0λβλ(f0) + c(θ0Kn)− c(θ0)

=
∑

λ/∈Kn

θ0λβλ(f0) + log

(∫ 1

0

f0(x)e
−

∑

λ/∈Kn
θ0λφλ(x)dx

)

.

Using inequality (5.4) of Lemma 5.1, we obtain

∫ 1

0

f0(x)e
−

∑

λ/∈Kn
θ0λφλ(x)dx

= 1−
∑

λ/∈Kn

θ0λβλ(f0) +
1

2

∫ 1

0

f0(x)

(

∑

λ/∈Kn

θ0λφλ(x)

)2

dx× (1 + o(1)) .

We have

∣

∣

∣

∣

∣

∑

λ/∈Kn

θ0λβλ(f0)

∣

∣

∣

∣

∣

≤ ‖f0‖2
(

∑

λ/∈Kn

θ20λ

) 1
2

and

∫ 1

0

f0(x)

(

∑

λ/∈Kn

θ0λφλ(x)

)2

dx ≤ ‖f0‖∞
∑

λ/∈Kn

θ20λ

So,

log

(∫ 1

0

f0(x)e
−

∑

λ/∈Kn
θ0λφλ(x)dx

)

= −
∑

λ/∈Kn

θ0λβλ(f0)−
1

2

(

∑

λ/∈Kn

θ0λβλ(f0)

)2

+
1

2

∫ 1

0

f0(x)

(

∑

λ/∈Kn

θ0λφλ(x)

)2

dx+ o

(

∑

λ/∈Kn

θ20λ

)

,

and

K(f0, f0Kn) =
1

2

∫ 1

0

f0(x)

(

∑

λ/∈Kn

θ0λφλ(x)

)2

dx− 1

2

(

∑

λ/∈Kn

θ0λβλ(f0)

)2

+ o

(

∑

λ/∈Kn

θ20λ

)

.
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This implies that for n large enough,

K(f0, f0Kn) ≤ ‖f0‖∞
∑

λ/∈Kn

θ20λ ≤ Ck−2γ
n .

Now, if θ ∈ A(un) we have

K(f0, fθ) = K(f0, f0Kn) +
∑

λ∈Kn

(θ0λ − θλ)βλ(f0)− c(θ0Kn) + c(θ)

≤ Ck−2γ
n +

∑

λ∈Kn

(θ0λ − θλ)βλ(f0)− c(θ0Kn) + c(θ).

We set for any x, T (x) =
∑

λ∈Kn
(θλ − θ0λ)φλ(x). Using (5.2), ‖T‖∞ ≤

C
√
knun → 0. So,

∫ 1

0

f0Kn(x) exp(T (x))dx = 1+

∫ 1

0

f0Kn(x)T (x)dx+

∫ 1

0

f0Kn(x)T
2(x)v(n, x)dx,

where v is a bounded function. Since log(1 + u) ≤ u for any u > −1, for
θ ∈ A(un) and n large enough,

−c(θ0Kn) + c(θ) = log

(∫ 1

0

f0Kn(x)e
T (x)dx

)

≤
∫ 1

0

f0Kn(x)T (x)dx+

∫ 1

0

f0Kn(x)T
2(x)v(n, x)dx

≤
∑

λ∈Kn

(θλ − θ0λ)βλ(f0Kn) + Cknu
2
n.

So,

K(f0, fθ) ≤ Ck−2γ
n +

∑

λ∈Kn

(θ0λ − θλ) (βλ(f0)− βλ(f0Kn))

≤ Ck−2γ
n + un‖f0 − f0Kn‖2.

Besides, (5.4) implies

‖f0 − f0Kn‖22 ≤ ‖f0‖2∞
∫ 1

0

(

1− exp

(

−
∑

λ/∈Kn

θ0λφλ(x)− c(θ0Kn) + c(θ0)

))2

dx

13



and

|c(θ0Kn)− c(θ0)| ≤ ||
∑

λ/∈Kn

θ0λφλ||∞.

Finally,

‖f0 − f0Kn‖2 ≤ C||
∑

λ/∈Kn

θ0λφλ||∞ ≤ Ck
1
2
−γ

n

and
K(f0, fθ) ≤ Ck−2γ

n + Cunk
1
2
−γ

n . (3.4)

We now bound V (f0, fθ). For this purpose, we refine the control of |c(θ0Kn)− c(θ0)|:

|c(θ0Kn)− c(θ0)| =
∣

∣

∣

∣

∣

log

(

∫ 1

0

f0(x) exp

(

−
∑

λ/∈Kn

θ0λφλ(x)

)

dx

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

log

∫ 1

0

f0(x)



1−
∑

λ/∈Kn

θ0λφλ(x) + w(n, x)

(

∑

λ/∈Kn

θ0λφλ(x)

)2


 dx

∣

∣

∣

∣

∣

∣

,

where w is a bounded function. So,

|c(θ0Kn)− c(θ0)| ≤ C





∑

λ/∈Kn

|θ0λβλ(f0)|+
∫ 1

0

(

∑

λ/∈Kn

θ0λφλ(x)

)2

dx





≤ C

(

∑

λ/∈Kn

θ20λ

) 1
2

≤ Ck−γ
n .

In addition,

|c(θ0Kn)− c(θ)| ≤
∑

λ∈Kn

|θλ − θ0λ| |βλ(f0Kn)|+ Cknu
2
n

≤ un (||f0 − f0Kn ||2 + ||f0||2) + Cknu
2
n

≤ Cun + Cknu
2
n.
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Finally,

V (f0, fθ) =

∫ 1

0

f0(x)

(

∑

λ∈Kn

(θ0λ − θλ)φλ(x) +
∑

λ/∈Kn

θ0λφλ(x) + c(θ)− c(θ0)

)2

≤ 2||f0||∞
(

∑

λ∈Kn

(θ0λ − θλ)
2 +

∑

λ/∈Kn

θ20λ

)

+ 2(c(θ)− c(θ0))
2

≤ Cu2
n + Ck−2γ

n + Ck2
nu

4
n. (3.5)

Now, let us consider the case (PH). We take kn and un such that

kn = k0ǫ
−1/γ
n and un = u0ǫnk

− 1
2

n ,

where k0 and u0 are constants depending on ||f0||∞, γ, R and Φ. Note that
(3.3) is then satisfied. If ǫ0 is large enough and u0 is small enough, then, by
using (3.4) and (3.5),

K(f0, fθ) ≤ ǫ2n and V (f0, fθ) ≤ ǫ2n.

So, Condition (C) is satisfied if

P
π {A(un)} ≥ e−cnǫ2n .

We have:

P
π {A(un)} ≥ P

π

{

θ s.t.
∑

λ∈Kn

(θλ − θ0λ)
2 ≤ u2

n

∣

∣

∣

∣

∣

kn

}

× exp (−c1knL(kn)) .

The prior on θ implies that, with Gλ = λβθλτ
−1/2
0 ,

P1 := P
π

{

θ s.t.
∑

λ∈Kn

(θλ − θ0λ)
2 ≤ u2

n

∣

∣

∣

∣

∣

kn

}

≥ P
π

{

θ s.t.
∑

λ∈Kn

∣

∣

√
τ0λ

−βGλ − θ0λ
∣

∣ ≤ un

∣

∣

∣

∣

∣

kn

}

= P
π

{

θ s.t.
∑

λ∈Kn

λ−β
∣

∣

∣
Gλ − τ

− 1
2

0 λβθ0λ

∣

∣

∣
≤ τ

− 1
2

0 un

∣

∣

∣

∣

∣

kn

}

=

∫

...

∫

1{
∑

λ∈Kn
λ−β

∣

∣

∣

∣

xλ−τ
− 1

2
0 λβθ0λ

∣

∣

∣

∣

≤τ
− 1

2
0 un

}

∏

λ∈Kn

g(xλ)dxλ

≥
∫

...

∫

1{
∑

λ∈Kn
λ−β |yλ|≤τ

− 1
2

0 un

}

∏

λ∈Kn

g
(

yλ + τ
− 1

2
0 λβθ0λ

)

dyλ.
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When γ ≥ β, we have supλ∈Kn

∣

∣

∣τ
− 1

2
0 λβθ0λ

∣

∣

∣
< ∞ and supn

{

τ
− 1

2
0 kβ

nun

}

< ∞.

Using assumptions on the prior, there exists a constant D such that

P1 ≥ Dkn

∫

...

∫

1{
∑

λ∈Kn
λ−β |yλ|≤τ

− 1
2

0 un

}

∏

λ∈Kn

dyλ

≥ exp (−Ckn log n) .

When γ < β, there exist a and b > 0 such that ∀|y| ≤ M for some positive
constant M

g(y + u) ≥ a exp(−b|u|p∗).
Using the above calculations we obtain if p∗ ≤ 2,

P1 ≥ Dkn exp{−C
∑

λ∈Kn

λp∗β|θ0λ|p∗}
∫

...

∫

1{
∑

λ∈Kn
λ−β |yλ|≤τ

− 1
2

0 un

}

∏

λ∈Kn

dyλ

≥ exp
[

−Ck1−p∗/2+p∗(β−γ)
n

]

exp (−Ckn log n)

≥ exp (−Ckn log n) if β ≤ 1/2 + γ

and if p∗ > 2,
∑

λ∈Kn
λp∗β|θ0λ|p∗ ≤ kp∗β−p∗γ

n so that

P1 ≥ Dkn exp{−C
∑

λ∈Kn

λp∗β|θ0λ|p∗} exp (−Ckn log n)

≥ exp (−Ckn log n) if β ≤ γ + 1/p∗.

Condition (C) is established by choosing k0 small enough. Similar computa-
tions lead to the result in the case (D). The result for the norm ||θ − θ0||ℓ2 is
proved using (5.8).

4. Conclusions

This paper has investigated posterior concentration rates for Besov balls
Bγ
p,q(R) in the case p ≥ 2. General prior models allow to obtain adaptive

minimax rates up to logarthmic terms on the class

C(γ0, R0) =
{

Bγ
p,q(R) : γ0 ≤ γ < r + 1, p ≥ 2, 1 ≤ q ≤ ∞, 0 < R ≤ R0

}

,

where R0 > 0 and γ0 > 1/2. When considering rates of convergence where
the loss function is the ℓ2-norm or the Hellinger distance, Fourier and wavelets
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bases lead to the same results. But they can potentially differ if we consider
different types of loss functions such as Ls-norms, with s 6= 2.

We mention that van der Vaart and van Zanten [21] studied Gaussian
priors in a general setup including the density estimation problem described
previously. In the wavelet framework, the (truncated) Gaussian prior in
Section 4.5 of van der Vaart and van Zanten [21] is a special case of our
prior model (D) and the rates obtained in Theorem 2.1 are similar to rates
obtained in their Theorem 4.5 up to a logarithmic term. So, our results
show that when truncated series are considered, the choice of the Gaussian
prior is not critical. Also, randomizing as in the prior model (PH) leads to
adaptation, which is not possible with purely Gaussian priors (see Theorem 1
of Castillo [3]). Note also that non-Gaussian priors have been proved to be
particularly useful in the context of sparsity: see for instance Dalalyan and
Tsybakov [4] who established sparse oracle inequalities for aggregation in the
PAC-Bayesian setting, Rivoirard [17] who studied minimax rates on maxisets
of classical procedures and Park and Casella [15] who provided a Bayesian
interpretation of the Lasso procedure.

Note that we have only focused on the case p ≥ 2. Indeed, Besov spaces
Bγ
p,q with p < 2 model very different functions under the L2-loss, so the

value p = 2 constitutes an elbow, that clearly appears in Inequality (5.1).
Such phenomena have been investigated using various approaches: in the
minimax approach by Donoho et al. [7] or Reynaud-Bouret et al. [16] and in
the Bayesian context where least favorable priors for such spaces are built
(see Johnstone [12] or Rivoirard [17]). From these studies, we can draw the
following conclusions: when p < 2, Besov spaces Bγ

p,q model sparse signals
where at each resolution level, a very few number of the wavelet coefficients
are non-negligible. But these coefficients can be very large. When p ≥ 2,
Bγ
p,q-spaces typically model dense signals where the wavelet coefficients are

not large but most of them can be non-negligible. Of course, the study of
posterior concentration rates in the case p < 2 is an exciting topic, we wish
to investigate in future work.

5. Appendix

5.1. A result for convergence rates of posterior distributions

To prove Theorem 2.1, we use the following version of theorems on pos-
terior convergence rates.
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Theorem 5.1. Let f0 be the true density and let π be a prior on F satisfying
the following conditions: There exist (ǫn)n a positive sequence decreasing to
zero with nǫ2n → +∞ and a constant c > 0 such that for any n, there exists
F∗

n ⊂ F satisfying

- (A)

P
π {F∗

n
c} = o(e−(c+2)nǫ2n).

- (B) For any j ∈ N
∗, let

Sn,j = {f ∈ F∗
n s.t. jǫn < h(f0, f) ≤ (j + 1)ǫn},

and Hn,j the Hellinger metric entropy of Sn,j, i.e. the logarithm of the
smallest number of balls of radius jǫn/2 needed to cover Sn,j. There
exists J0,n (that may depend on n) such that for all j ≥ J0,n,

Hn,j ≤ Knj2ǫ2n,

where K is an absolute constant.

- (C) If Bn(ǫn) = {f ∈ F s.t. K(f0, f) ≤ ǫ2n, V (f0, f) ≤ ǫ2n}, we have
P
π {Bn(ǫn)} ≥ e−cnǫ2n .

Then, we have:

P
π {f s.t. h(f0, f) ≤ J0,nǫn|Xn} = 1 + oP0(1).

Proof. The proof of Theorem 5.1 is a slight modification of Theorem 2.4 of
Ghosal et al. [8]. We introduce Gn = {f s.t. h(f0, f) > J0,nǫn}. So,

P
π {f s.t. h(f0, f) > J0,nǫn|Xn} ≤ P

π [Gn ∩ F∗
n|Xn] + P

π {(F∗
n)

c|Xn} ,

and using the same arguments as Ghosal et al. [8], condition (C) combined
with condition (A) implies that

P
π {(F∗

n)
c|Xn} = oP0(1).

We now study

P
π {Gn ∩ F∗

n|Xn} =

∫

Gn∩F∗
n
eℓn(f)−ℓn(f0)dπ(f)

∫

F
eℓn(f)−ℓn(f0)dπ(f)

:=
Nn

Dn

.
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From the proof of Theorem 2.4 of Ghosal et al. [8], we obtain that

Dn ≥ e−(c+2)nǫ2n

with P0-probability going to 1. We set Ln,j = exp(Hn,j). Let us a consider
a set of densities (fl)1≤l≤Ln,j

such that ∪1≤l≤Ln,j
Bh(fl, jǫn/2), the union of

the balls of center fl and radius jǫn/2 for the Hellinger distance, constitutes
a covering of Sn,j. Following Section 7 of Ghosal et al. [8], for any l, there
exists a test φ(l) such that

Ef0 [φ(l)] ≤ e−8Knh2(f0,fl), sup
f :h(f,fl)≤h(f0,fl)/2

Ef [1− φ(l)] ≤ e−8Knh2(f0,fl),

where K is an absolute constant. For any f ∈ Sn,j, there exists l such that
h(fl, f) ≤ jǫn/2 ≤ h(f0, f)/2. Let

φn = max
j≥J0,n

max
1≤l≤Ln,j

φ(l).

By definition of Hn,j, for any l, Bh(fl, jǫn/2) ∩ Sn,j 6= ∅. So, there exists f̃l
such that f̃l ∈ Bh(fl, jǫn/2) ∩ Sn,j and

h(f0, fl) ≥ h(f0, f̃l)− h(fl, f̃l) ≥ jǫn − jǫn/2 = jǫn/2.

We obtain

Ef0 [φn] ≤
∑

j≥J0,n

exp(Hn,j)e
−2Kj2nǫ2n ≤

∑

j≥J0,n

e−Kj2nǫ2n = o(1)

and
sup

f∈Sn,j

Ef [1− φn] ≤ e−2Kj2nǫ2n .

Therefore,

Ef0 [Nn(1− φn)] ≤
∫

dπ(f)
∑

j≥J0,n

1{f∈Sn,j}Ef [1− φn]

≤
∑

j≥J0,n

e−2Kj2nǫ2n .

Finally, by taking

J0,n >

√

c+ 2

2K
,
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we have:

Ef0 [P
π {Gn ∩ F∗

n|Xn}]

≤ P0

{

Dn < e−(c+2)nǫ2n

}

+ Ef0 [φn] + Ef0

[

Nn

Dn

(1− φn)1{Dn≥e−(c+2)nǫ2n}

]

≤ P0

{

Dn < e−(c+2)nǫ2n

}

+ Ef0 [φn] +
∑

j≥J0,n

e−(2Kj2−c−2)nǫ2n = o(1),

which ends the proof of Theorem 5.1. �

5.2. Function approximation spaces

This section is devoted to function approximation spaces and to a tech-
nical lemma useful to establish our main result.

We first give a brief description of Sobolev and Besov spaces. We recall
that a function h ∈ L2 belongs to the Sobolev space W γ (γ ∈ N

∗) if it is
γ-times weakly differentiable and if h(j) ∈ L2, j = 1, . . . , γ. The parameter
γ measures the smoothness of underlying functions and higher γ, smoother
the functions. Periodized Sobolev spaces are characterized by Fourier and
wavelet bases and using notations of Introduction, we have

h :=
∑

λ∈N

θλφλ ∈ W γ ⇐⇒
∑

λ∈N

|λ|2γθ2λ < ∞,

which allows to extend the definition of periodized Sobolev spaces to the case
γ ∈ R

∗
+. See Bergh and Löfström [2], DeVore and Lorentz [5] or Tsybakov

[20] for more details.
Besov spaces are classically defined by using modulus of continuity (see

Definition 9.2 of Härdle et al. [10]). In the framework introduced in Intro-
duction, periodized Besov spaces, denoted Bγ

p,q, have the following character-
ization. We assume that the wavelet basis has standard regularity proper-
ties and r vanishing moments (see Härdle et al. [10] for more details). Let
1 ≤ p, q ≤ ∞ and 0 < γ < r+1, the Bγ

p,q-norm of h is equivalent to the norm

||h||γ,p,q =







|θ−10|+
[

∑

j≥0 2
jq(γ+ 1

2
− 1

p
)||(θjk)k||qℓp

]1/q

if q < ∞,

|θ−10|+ supj≥0 2
j(γ+ 1

2
− 1

p
)||(θjk)k||ℓp if q = ∞.
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Using || · ||γ,p,q, we say that h belongs to the Besov ball with radius R > 0 if
||h||γ,p,q ≤ R. For any R > 0, if 0 < γ′ ≤ γ < r + 1, 1 ≤ p ≤ p′ ≤ ∞ and
1 ≤ q ≤ q′ ≤ ∞, we obviously have

Bγ
p,q(R) ⊂ Bγ

p,q′(R), Bγ
p,q(R) ⊂ Bγ′

p,q(R).

Moreover

Bγ
p,q(R) ⊂ Bγ′

p′,q(R) if γ − 1

p
≥ γ′ − 1

p′
.

Finally, using the Cauchy-Schwarz inequality when p ≥ 2 and the inequality
||(θjk)k||ℓ2 ≤ ||(θjk)k||ℓp when p < 2, we have for any j ≥ 0,

2jγ||(θjk)k||ℓ2 ≤ 2j(
1
p
− 1

2
)+ × 2j(γ+

1
2
− 1

p
)||(θjk)k||ℓp , (5.1)

which proves that for p ≥ 2,

Bγ
p,q(R) ⊂ Bγ

2,q(R).

The class of Besov spaces provides a useful tool to classify wavelet de-
composed signals with respect to their regularity and sparsity properties
(see Johnstone [12]). Roughly speaking, regularity increases when γ in-
creases whereas sparsity increases when p decreases. We finally recall that
the scale of Besov spaces includes the class of the Sobolev spaces since we
have Bγ

2,2 = W γ.
Now, we prove the following result.

Lemma 5.1. Set Kn = {1, 2, . . . , kn} with kn ∈ N
∗. Assume one of the

following two cases:

- γ > 0, p = q = 2 when Φ is the Fourier basis

- 0 < γ < r+1, 2 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ when Φ is the wavelet basis with
r vanishing moments.

Then the following results hold.

- There exists a constant c1,Φ depending only on Φ such that for any
θ = (θλ)λ ∈ R

kn,
∥

∥

∥

∥

∥

∑

λ∈Kn

θλφλ

∥

∥

∥

∥

∥

∞

≤ c1,Φ
√

kn||θ||ℓ2 . (5.2)
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- If log(f0) ∈ Bγ
p,q(R), then there exists c2,γ depending on γ only such

that
∑

λ/∈Kn

θ20λ ≤ c2,γ R2k−2γ
n . (5.3)

- If log(f0) ∈ Bγ
p,q(R) with γ > 1

2
, then there exists c3,Φ,γ depending on Φ

and γ only such that:

∥

∥

∥

∥

∥

∑

λ/∈Kn

θ0λφλ

∥

∥

∥

∥

∥

∞

≤ c3,Φ,γ R k
1
2
−γ

n . (5.4)

Proof. Let us first consider the Fourier basis. We have:
∥

∥

∥

∥

∥

∑

λ∈Kn

θλφλ

∥

∥

∥

∥

∥

∞

≤
∑

λ∈Kn

|θλ| × ||φλ||∞

≤
√
2
∑

λ∈Kn

|θλ|,

which proves (5.2). Inequality (5.3) follows from the definition of Bγ
2,2 = W γ.

To prove (5.4), we use the following inequality: for any x,

∣

∣

∣

∣

∣

∑

λ/∈Kn

θ0λφλ(x)

∣

∣

∣

∣

∣

≤
√
2
∑

λ/∈Kn

|θ0λ|

≤
√
2

(

∑

λ/∈Kn

|λ|2γθ20λ

) 1
2
(

∑

λ/∈Kn

|λ|−2γ

) 1
2

.

Now, we consider the wavelet basis. Without loss of generality, we assume
that log2(kn + 1) ∈ N

∗. We have for any x,

∣

∣

∣

∣

∣

∑

λ∈Kn

θλφλ(x)

∣

∣

∣

∣

∣

≤
(

∑

λ∈Kn

θ2λ

) 1
2
(

∑

λ∈Kn

φ2
λ(x)

) 1
2

≤ ||θ||ℓ2





∑

−1≤j≤log2(kn)

∑

k<2j

ϕ2
jk(x)





1
2

,
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with ϕ−10 = 1l[0,1]. Since, for some constant A > 0, ϕ(x) = 0 for x /∈ [−A,A],
for j ≥ 0,

card
{

k ∈ {0, . . . , 2j − 1} s.t. ϕjk(x) 6= 0
}

≤ 3(2A+ 1).

(see Mallat [13], p. 282 or Meyer [14], p. 112). So, there exists cϕ depending
only on ϕ such that

∣

∣

∣

∣

∣

∑

λ∈Kn

θλφλ(x)

∣

∣

∣

∣

∣

≤ ||θ||ℓ2





∑

0≤j≤log2(kn)

3(2A+ 1)2jc2ϕ





1
2

,

which proves (5.2). For the second point, we just use the inclusion Bγ
p,q(R) ⊂

Bγ
2,∞(R) and

∑

λ/∈Kn

θ20λ =
∑

j>log2(kn)

2j−1
∑

k=0

θ20jk ≤ R2
∑

j>log2(kn)

2−2jγ ≤ R2

1− 2−2γ
k−2γ
n .

Finally, for the last point, we have for any x:

∣

∣

∣

∣

∣

∑

λ/∈Kn

θ0λφλ(x)

∣

∣

∣

∣

∣

≤
∑

j>log2(kn)





2j−1
∑

k=0

θ20jk





1
2




2j−1
∑

k=0

ϕ2
jk(x)





1
2

≤ Ck
1
2
−γ

n ,

where C ≤ R(3(2A+ 1))
1
2 cϕ(1− 2

1
2
−γ)−1. �

5.3. Proof of Lemma 3.1

This section is devoted to the proof of Lemma 3.1. We use definitions
recalled in (1.2), (1.3) and (1.4). Using Theorem 5 of Wong and Shen [23],

with M1 =
(

∫ 1

0

f2
0 (x)

fθ(x)
dx
) 1

2
, if

h2(f0, fθ) ≤
1

2
(1− e−1)2,

we have

V (f0, fθ) ≤ 5h2(f0, fθ) (| logM1| − log(h(f0, fθ)))
2 . (5.5)
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But

M1 =

∫ 1

0

f0(x) exp

(

∑

λ∈Λn

(θ0λ − θλ)φλ(x) +
∑

λ/∈Λn

θ0λφλ(x)− c(θ0) + c(θ)

)

dx

and

log

(

∫ 1

0

f0(x) exp

(

∑

λ∈Λn

(θλ − θ0λ)φλ(x)−
∑

λ/∈Λn

θ0λφλ(x)

)

dx

)

= c(θ)−c(θ0).

So,

|c(θ)− c(θ0)| ≤ log





∫ 1

0

f0(x) exp





∥

∥

∥

∥

∥

∑

λ∈Λn

(θλ − θ0λ)φλ −
∑

λ/∈Λn

θ0λφλ

∥

∥

∥

∥

∥

∞



 dx





≤
∥

∥

∥

∥

∥

∑

λ∈Λn

(θλ − θ0λ)φλ −
∑

λ/∈Λn

θ0λφλ

∥

∥

∥

∥

∥

∞

and

M1 ≤
∫ 1

0

f0(x) exp



2

∥

∥

∥

∥

∥

∑

λ∈Λn

(θλ − θ0λ)φλ −
∑

λ/∈Λn

θ0λφλ

∥

∥

∥

∥

∥

∞



 dx

≤ exp



2

∥

∥

∥

∥

∥

∑

λ∈Λn

(θλ − θ0λ)φλ −
∑

λ/∈Λn

θ0λφλ

∥

∥

∥

∥

∥

∞





≤ exp
(

2c1,Φ
√

ln||θ0 − θ||ℓ2 + 2c3,Φ,γRl
1
2
−γ

n

)

by using (5.2) and (5.4). Similarly,

M1 ≥ exp
(

−2c1,Φ
√

ln||θ0 − θ||ℓ2 − 2c3,Φ,γRl
1
2
−γ

n

)

.

So,

| logM1| ≤ 2c1,Φ
√

ln||θ0 − θ||ℓ2 + 2c3,Φ,γRl
1
2
−γ

n .

Finally, since fθ ∈ Sn,j for j ≥ 1,

V (f0, fθ) ≤ 5h2(f0, fθ)
(

2c1,Φ
√

ln||θ0 − θ||ℓ2 + 2c3,Φ,γRl
1
2
−γ

n − log(ǫn)
)2

≤ C̃h2(f0, fθ)
(

ln||θ0 − θ||2ℓ2 + (log n)2
)

, (5.6)
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where C̃ depends on Φ, R, β and γ. Since f0(x) ≥ c0 for any x and
∫ 1

0
φλ(x)dx = 0 for any λ ∈ Λn, we have by straightforward computations,

V (f0, fθ) ≥ c0||θ0 − θ||2ℓ2 . (5.7)

Combining (5.6) and (5.7), we conclude that

||θ0 − θ||2ℓ2 ≤ 2C̃c−1
0 (log n)2h2(f0, fθ), (5.8)

if h2(f0, fθ)ln ≤ (j + 1)2ǫ2nln ≤ c0/(2C̃). Lemma 3.1 is proved by taking

c = min
(

c0
2C̃

, 1
2
(1− e−1)2

)

.
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