Vincent Rivoirard 
  
Judith Rousseau 
  
Posterior concentration rates for infinite dimensional exponential families

Keywords: Bayesian non-parametric, rates of convergence, adaptive estimation, wavelets, Fourier Bases, Sobolev balls, Besov balls

In this paper we derive adaptive non-parametric rates of concentration of the posterior distributions for the density model on the class of Sobolev and Besov spaces. For this purpose, we build prior models based on wavelet or Fourier expansions of the logarithm of the density. The prior models are not necessarily Gaussian.

Introduction

Frequentist properties of Bayesian nonparametric procedures have been increasingly studied in the last decade, following the seminal papers of Barron et al. [START_REF] Barron | The consistency of posterior distributions in nonparametric problems[END_REF] and Ghosal et al. [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF] which established general conditions on the prior and on the true distribution to obtain posterior consistency for the former and posterior concentration rates for the latter. Consistency of the posterior distribution is admitted as a minimal requirement, both from a subjectivist and an objectivist view-point, see Diaconis and Freedman [START_REF] Diaconis | On the consistency of Bayes estimates[END_REF]. Studying posterior concentration rates allows for more refined results, in particular it helps in understanding some aspects of the prior and can be used to compare a Bayesian procedure with another Bayesian procedures together with frequentist procedures. In the frequentist nonparametric literature the usual optimality criterion that is considered is the minimaxity over a given functional class, typically indexed by a smoothness index, for instance a Sobolev or a Besov ball. However the smoothness is generally unknown a priori and it is important to construct estimators which adapt to these smoothness indexes, i.e. which do not depend on these indexes but which achieve the optimal rate within each class.

In this paper we derive posterior concentration rates for density estimation, when the prior is based on wavelet or Fourier expansions of the logarithm of the density. We consider X n = (X 1 , ..., X n ) which, given a distribution P with a compactly supported density f with respect to the Lebesgue measure, are independent and identically distributed according to P. Without loss of generality we assume that for any i, X i ∈ [0, 1] and we set

F = f : [0, 1] → R + s.t. 1 0 f (x)dx = 1 .
As already mentioned, we restrict our attention to families of priors on F built from Fourier and wavelet expansions of log f assumed to be squareintegrable. Wavelets are localized in both time and frequency whereas the standard Fourier basis is only localized in frequency. We recall that Fourier bases constitute unconditional bases of periodized Sobolev spaces W γ where γ is the smoothness parameter. Wavelet expansions of any periodized function h take the following form:

h(x) = θ -10 1l [0,1] (x) + +∞ j=0 2 j -1 k=0 θ jk ϕ jk (x), x ∈ [0, 1]
where θ -10 = 1 0 h(x)dx and θ jk = 1 0 h(x)ϕ jk (x)dx. We recall that the functions ϕ jk are obtained by periodizing dilations and translations of a mother wavelet ϕ that can be assumed to be compactly supported. Unlike the Fourier basis, under standard properties of ϕ involving its regularity and its vanishing moments, wavelet bases constitute unconditional bases of Besov spaces B γ p,q . We refer the reader to Härdle et al. [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF] for a good introduction to wavelets and to Section 5.2 for more details on Sobolev and Besov spaces. We just mention that the scale of Besov spaces includes Sobolev spaces:

W γ = B γ 2,2 .
In the sequel, to shorten notation, we use a unified framework including Fourier and wavelet bases. The considered orthonormal basis will be denoted Φ = (φ λ ) λ∈N , where φ 0 = 1l [0,1] and -for the Fourier basis, if λ ≥ 1,

φ 2λ-1 (x) = √ 2 sin(2πλx), φ 2λ (x) = √ 2 cos(2πλx),
-for the wavelet basis, if λ = 2 j + k, with j ∈ N and k ∈ {0, . . . , 2 j -1},

φ λ = ϕ jk .
Here and in the sequel, N denotes the set of non negative integers, and N * the set of positive integers. Now, the decomposition of each periodized function h ∈ L 2 [0, 1], the set of square-integrable functions on [0, 1] with respect to the Lebesgue measure, on (φ λ ) λ∈N is written as follows:

h(x) = λ∈N θ λ φ λ (x), x ∈ [0, 1],
where θ λ = 1 0 h(x)φ λ (x)dx. We use such expansions to build non-parametric priors on F in the following way: For any k ∈ N * , we set

F k = f θ = exp k λ=1 θ λ φ λ -c(θ) s.t. θ ∈ R k , where c(θ) = log 1 0 exp k λ=1 θ λ φ λ (x) dx . (1.1)
So, we define a prior π on the set F ∞ = ∪ k F k ⊂ F by defining a prior p on N * and then, once k is chosen, we fix a prior π k on F k . Such priors are often considered in the Bayesian non-parametric literature and our study can be strongly connected to the well-known papers by van der Vaart and van Zanten [START_REF] Van Der Vaart | Rates of contraction of posterior distributions based on Gaussian process priors[END_REF] (see Section 4 for a detailed comparison with our results) and by Shen and Wasserman [START_REF] Shen | Rates of convergence of posterior distributions[END_REF] who considered the problem of estimating a regression function decomposed on an orthonormal basis. The prior model proposed by Shen and Wasserman is a special case of the prior described in Section 2. However, they assume that all the functions of the basis are uniformly bounded by a constant. This is of course satisfied by the Fourier basis but not by wavelet bases. Furthermore, once the prior is fixed, depending on a hyperparameter p, rates are only achieved on Sobolev balls of regularity p. So, adaptation is not handled by Shen and Wasserman [START_REF] Shen | Rates of convergence of posterior distributions[END_REF]. See below for specific results we obtain in our paper. The family of priors defined in Section 2 has also been used in the infinite-means model (equivalently in the white noise model) by Zhao [START_REF] Zhao | Bayesian aspects of some nonparametric problems[END_REF] where minimax but non adaptive rates were obtained for the L 2 -risk (see for instance Theorem 6.1 of Zhao [START_REF] Zhao | Bayesian aspects of some nonparametric problems[END_REF]). We also mention the special case of log-spline priors studied by Ghosal et al. [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF] and the prior model based on Legendre polynomials considered by Verdinelli and Wasserman [START_REF] Verdinelli | Bayesian goodness-of-fit testing using infinite-dimensional exponential families[END_REF].

Our results are concerned with adaptation that has been partially studied in the literature. Let us cite Scricciolo [START_REF] Scricciolo | Convergence rates for Bayesian density estimation of infinite-dimensional exponential families[END_REF] who considers infinite dimensional exponential families and derives minimax and adaptive posterior concentration rates. Her results differ from ours in two main aspects. Firstly she restricts her attention to the case of Sobolev spaces and Fourier basis, whereas we consider Besov spaces and secondly she obtains adaptivity by putting a prior on the smoothness of the Sobolev class whereas we obtain adaptivity by constructing a prior on the size k of the parametric spaces, which to our opinion is a more natural approach. Moreover Scricciolo [START_REF] Scricciolo | Convergence rates for Bayesian density estimation of infinite-dimensional exponential families[END_REF] merely considers Gaussian priors. Also related to adaptation are the works of Huang [START_REF] Huang | Convergence rates for posterior distributions and adaptive estimation[END_REF] and Ghosal et al. [START_REF] Ghosal | Nonparametric Bayesian model selection and averaging[END_REF] who derive a general framework to obtain adaptive posterior concentration rates, the former applies her results to the Haar basis case. The limitation in her case, apart from the fact that she considers the Haar basis and no other wavelet basis is that she constraints the θ λ 's in each k-dimensional model to belong to a ball with fixed radius.

In this paper we give general conditions on families of priors briefly described previously to obtain adaptive minimax rates (up to a log n term) for the estimation of f . In the next section we introduce the prior model and Theorem 2.1 gives the posterior rates on Sobolev balls W γ (R) and Besov balls B γ p,q (R) p ≥ 2. Section 3 gives the proof of Theorem 2.1 and Section 4 contains conclusions we can draw from our results. We state in Appendix a result useful for establishing concentration rates. Appendix also contains the proof of a technical result and some recalls on Sobolev and Besov spaces.

Notation: In the sequel, we denote ℓ n (f ) the log-likelihood associated with the density f . The Kullback-Leibler divergence and the Hellinger distance between two positive densities f 1 and f 2 will be respectively denoted K(f 1 , f 2 ) and h(f 1 , f 2 ). We recall that

K(f 1 , f 2 ) = 1 0 f 1 (x) log f 1 (x) f 2 (x) dx (1.2)
and

h(f 1 , f 2 ) = f 1 (x) -f 2 (x) 2 dx 1/2 . (1.3)
In the sequel, we shall also use

V (f 1 , f 2 ) = 1 0 f 1 (x) log f 1 (x) f 2 (x) 2 dx.
(1.4)

Let P 0 be the true distribution of the observations X i whose density and cumulative distribution function are respectively denoted f 0 and F 0 . We denote ||.|| γ and ||.|| γ,p,q the norms associated with W γ and B γ p,q respectively. The integer r will denote the number of vanishing moments of the wavelet basis. When the Fourier basis is considered, we set r = +∞.

Prior models and concentration rates

Given β > 1/2, the prior p on k satisfies one of the following conditions: Conditionally on k the prior π k on F k is defined by

θ λ √ τ λ iid ∼ g, τ λ = τ 0 λ -2β 1 ≤ λ ≤ k,
where τ 0 is a positive constant and g is a continuous density on R such that for any x,

A * exp (-c * |x| p * ) ≤ g(x) ≤ B * exp (-c * |x| p * ) ,
where p * , A * , B * , c * and c * are positive constants.

Observe that the prior is not necessarily Gaussian since we allow for densities g to have different tails. In the Dirac case (D), the prior on k is non random. For the case (PH), L(x) = log(x) typically corresponds to a Poisson prior on k and the case L(x) = 1 typically corresponds to geometric priors. The density g can be for instance the Laplace or the Gaussian density.

Assume that f 0 is 1-periodic and f 0 ∈ F ∞ . Let Φ = (φ λ ) λ∈N be one of the bases introduced in Section 1, then there exists a sequence θ 0 = (θ 0λ ) λ∈N * such that

f 0 (x) = exp λ∈N * θ 0λ φ λ (x) -c(θ 0 ) .
We have the following result.

Theorem 2.1. We assume that || log(f 0 )|| ∞ < ∞ and log(f 0 ) ∈ B γ p,q (R) with p ≥ 2, 1 ≤ q ≤ ∞ and 1/2 < γ < r + 1 is such that β < 1/2 + γ if p * ≤ 2 and β < γ + 1/p * if p * > 2.
Then,

P π f θ s.t. h(f 0 , f θ ) ≤ log n L(n) ǫ n |X n = 1 + o P 0 (1), (2.1) 
and

P π f θ s.t. ||θ 0 -θ|| ℓ 2 ≤ log n log n L(n) ǫ n |X n = 1 + o P 0 (1), (2.2)
where in the case (PH),

ǫ n = ǫ 0 log n n γ 2γ+1 , in the case (D), L(n) = 1, ǫ n = ǫ 0 (log n)n -β 2β+1 , if γ ≥ β ǫ n = ǫ 0 n -γ 2β+1 , if γ < β
and ǫ 0 is a constant large enough.

If the density g only satisfies a tail condition of the form

g(x) ≤ C g |x| -p * ,
where C g is a constant and p * > 1, then, in the case (PH), if γ > 1, the rates defined by (2.1) and (2.2) remain valid.

Note that in the case (PH) the posterior concentration rate is, up to a log n term, the minimax rate of convergence, whereas in the case (D) the minimax rate is achieved only when γ = β. The interpretation is the following: In the case (PH), k is random, which allows to determine the appropriate space F k by using the data, i.e. the Bayesian procedure automatically adapts to the unknown approximation space containing the unknown signal. In particular, if f 0 belongs to B γ p,q then the "optimal" approximation space F k correspond to k = O n 1/(2γ+1) . Roughly speaking, this optimal k is obtained by some trade-off between minimizing the kullback-Leibler divergence between f 0 and F k and maximizing the prior mass of neighbourhoods of f 0 in F k .

A glance at the proof of Theorem 2.1 allows to go further. We have the following result enhancing our results with respect to adaptation.

Corollary 2.1. Let p * > 0 and 1/2 < β ≤ (1/2 + 1/p * ) ∧ 1, then for all R 0 > 0 and γ 0 > 1/2, the posterior distribution associated to the prior (PH) achieves the adaptive minimax rate up to a logarithmic term on the whole class

C(γ 0 , R 0 ) = B γ p,q (R) : γ 0 ≤ γ < r + 1, p ≥ 2, 1 ≤ q ≤ ∞, 0 < R ≤ R 0 ,
meaning that there exists ǫ 0 > 0 such that

sup γ 0 ≤ γ < r + 1 0 < R ≤ R 0 sup p ≥ 2 q ≥ 1 sup f 0 ∈B γ p,q (R) E f 0 P π h(f 0 , f θ ) ≤ ǫ 0 log n L(n) log n n γ 2γ+1 |X n = o(1).
A similar result holds for the ℓ 2 -loss.

Proof of Theorem 2.1

In the sequel, C denotes a generic positive constant whose value is of no importance and may change from line to line. To simplify some expressions, we omit at some places the integer part ⌊•⌋. Remember that L(n) = 1 for any n in the case (D). To prove Theorem 2.1 it is enough to verify conditions (A), (B) and (C) of Theorem 5.1. We consider (Λ n ) n the increasing sequence of subsets of N * defined by Λ n = {1, 2, . . . , l n } with l n ∈ N * (defined below). For any n, we set:

F * n = f θ ∈ F ln s.t. f θ = exp λ∈Λn θ λ φ λ -c(θ) , ||θ|| ℓ 2 ≤ w n , with w n = exp(w 0 n ρ (log n) q ), ρ > 0, q ∈ R.
For l 0 a constant,

-ǫ n = ǫ 0 n -γ 2γ+1 (log n) γ 2γ+1 and we set l n = l 0 nǫ 2 n L(n) in the case (PH), -ǫ n = ǫ 0 (log n) 1 {γ≥β} n -β∧γ 2β+1 and we set l n = l 0 k * n = l 0 n 1 2β+1 in the case (D).
Condition (A). Since β > 1/2, λ τ λ < ∞ and for the sake of simplicity, without loss of generality, we assume that λ τ λ ≤ 1. Using the tail assumption on g,

π {F * n c } ≤ λ>ln p(λ) + P π λ≤ln θ 2 λ > w 2 n ≤ C exp (-c 2 l n L(l n )) + λ≤ln P π θ 2 λ τ λ > w 2 n ≤ C exp -c 2 l 0 nǫ 2 n + λ≤ln P π exp c * |θ λ | p * 2τ p * /2 λ > exp c * w p * n 2 ≤ C exp -c 2 l 0 nǫ 2 n + Cl n exp - c * w p * n 2 ≤ C exp -c 2 l 0 nǫ 2 n + C exp -n H
for any positive H > 0. For the second line, we have used

P π λ≤ln θ 2 λ > w 2 n ≤ P π λ≤ln θ 2 λ > λ≤ln τ λ w 2 n ≤ λ≤ln P π θ 2 λ > τ λ w 2 n
and for the forth line the Markov inequality combined with

θ λ √ τ λ iid ∼ g and g(x) ≤ B * exp (-c * |x| p * ) . Hence, π {F * n c } ≤ C exp -c 2 l 0 nǫ 2 n
and Condition (A) is proved for l 0 large enough.

Condition (B).

In the framework of Theorem 5.1, we bound H n,j for any j ≥ 1. Actually, since the Hellinger distance is uniformly bounded by √ 2, we can restrict our attention to the case j ≤ √ 2ǫ -1 n . For this purpose, we show that the Hellinger distance between two functions of F * n is related to the ℓ 2 -distance of the associated coefficients. Let

c1 = 1 4c 1,Φ ,
where c 1,Φ is defined in Lemma 5.1. We consider f θ and f θ ′ belonging to F * n with

f θ = exp λ∈Λn θ λ φ λ -c(θ) , f θ ′ = exp λ∈Λn θ ′ λ φ λ -c(θ ′ ) .
We show that for j ≤

√ 2ǫ -1 n , ||θ -θ ′ || ℓ 2 ≤ c1 jǫ n l -1/2 n ⇒ h(f θ , f θ ′ ) ≤ jǫ n 2 . ( 3.1) 
For this purpose, we apply Lemma 5.1 with

K n = Λ n and k n = l n and if ||θ ′ -θ|| ℓ 2 ≤ c1 jǫ n l -1/2 n , then, λ∈Λn (θ ′ λ -θ λ )φ λ ∞ ≤ c 1,Φ l n ||θ ′ -θ|| ℓ 2 ≤ c 1,Φ c1 jǫ n ≤ √ 2c 1,Φ c1 ≤ 1.
Now, straightforward computations lead to

|c(θ ′ ) -c(θ)| = log 1 0 f θ (x) exp λ∈Λn (θ ′ λ -θ λ )φ λ (x) dx ≤ log 1 0 f θ (x) exp λ∈Λn (θ ′ λ -θ λ )φ λ ∞ dx = λ∈Λn (θ ′ λ -θ λ )φ λ ∞ .
Then,

h 2 (f θ , f θ ′ ) = 1 0 f θ (x) exp 1 2 λ∈Λn (θ ′ λ -θ λ )φ λ (x) + 1 2 (c(θ) -c(θ ′ )) -1 2 dx ≤ 1 0 f θ (x) exp || λ∈Λn (θ ′ λ -θ λ )φ λ || ∞ -1 2 dx ≤ 4|| λ∈Λn (θ λ -θ ′ λ )φ λ || 2 ∞ ≤ 4c 2 1,Φ l n ||θ -θ ′ || 2 ℓ 2 ≤ 4c 2 1,Φ c2 1 j 2 ǫ 2 n ≤ j 2 ǫ 2 n 4 , (3.2) 
where we have used the (rough) bound : exp(x) -1 ≤ 2x for any x ∈ [0, 1]. This proves (3.1). By identifying θ and f θ , it means that every covering of S n,j by ℓ 2 -balls of radius c1 jǫ n l -1/2 n provides a covering of S n,j by Hellinger-balls of radius jǫ n /2. Then, we use the following lemma proved in Section 5.3.

Lemma 3.1. We assume that log(f 0 ) ∈ B γ p,q (R) with p ≥ 2, 1 ≤ q ≤ ∞ and 1/2 < γ < r + 1. We set c 0 = inf x∈[0,1] f 0 (x) > 0.
There exists a positive constant c ≤ 1/2 depending on β, γ, R and Φ such that, for j ≥ 1, if

(j + 1) 2 ǫ 2 n l n ≤ c then for f θ ∈ S n,j ||θ 0 -θ|| 2 ℓ 2 ≤ 1 c (log n) 2 h 2 (f 0 , f θ ).
The lemma shows that if (j + 1) 2 ǫ 2 n l n ≤ c then, by identifying θ and f θ , S n,j is included into the ℓ 2 -ball centered at θ 0 with radius c -1/2 (j + 1)ǫ n log n. Therefore, in this case, combining (3.2) and Lemma 3.1, we obtain

H n,j ≤ log   C (j + 1)ǫ n log n jǫ n l -1/2 n ln   ≤ l n log n,
for n large enough. Then, we have H n,j ≤ Knj 2 ǫ 2 n as soon as j ≥ J 0,n = j 0 log nL(n) -1 , where j 0 is a constant and condition (B) is satisfied for such j's.

When (j + 1) 2 ǫ 2 n l n > c, then since for

f θ ∈ F * n , ||θ|| ℓ 2 ≤ w n , H n,j ≤ log   C w n jǫ n l -1/2 n ln   ≤ 2l n log(w n ) ≤ 2w 0 l n n ρ (log n) q ,
for n large enough. Choosing w 0 , q and ρ small enough such that

l 2 n (log n) q ≤ n 1-ρ , implies H n,j ≤ Knj 2 ǫ 2
n and condition (B) is satisfied for such j's.

Condition (C).

Let k n ∈ N * increasing to ∞ and K n = {1, ..., k n }, define

A(u n ) = θ s.t. θ λ = 0 for every λ / ∈ K n and λ∈Kn (θ 0λ -θ λ ) 2 ≤ u 2 n ,
where u n goes to 0 such that

k n u n → 0. ( 3.3) 
We define for any λ,

β λ (f 0 ) = 1 0 φ λ (x)f 0 (x)dx.
Denote

f 0Kn = exp λ∈Kn θ 0λ φ λ (x) -c(θ 0Kn ) , f 0 Kn = exp λ / ∈Kn θ 0λ φ λ (x) -c(θ 0 Kn ) .
We have

K(f 0 , f 0Kn ) = λ / ∈Kn θ 0λ β λ (f 0 ) + c(θ 0Kn ) -c(θ 0 ) = λ / ∈Kn θ 0λ β λ (f 0 ) + log 1 0 f 0 (x)e -λ / ∈Kn θ 0λ φ λ (x) dx .
Using inequality (5.4) of Lemma 5.1, we obtain

1 0 f 0 (x)e -λ / ∈Kn θ 0λ φ λ (x) dx = 1 - λ / ∈Kn θ 0λ β λ (f 0 ) + 1 2 1 0 f 0 (x) λ / ∈Kn θ 0λ φ λ (x) 2 dx × (1 + o(1)) .
We have

λ / ∈Kn θ 0λ β λ (f 0 ) ≤ f 0 2 λ / ∈Kn θ 2 0λ 1 2
and

1 0 f 0 (x) λ / ∈Kn θ 0λ φ λ (x) 2 dx ≤ f 0 ∞ λ / ∈Kn θ 2 0λ So, log 1 0 f 0 (x)e -λ / ∈Kn θ 0λ φ λ (x) dx = - λ / ∈Kn θ 0λ β λ (f 0 ) - 1 2 λ / ∈Kn θ 0λ β λ (f 0 ) 2 + 1 2 1 0 f 0 (x) λ / ∈Kn θ 0λ φ λ (x) 2 dx + o λ / ∈Kn θ 2 0λ , and 
K(f 0 , f 0Kn ) = 1 2 1 0 f 0 (x) λ / ∈Kn θ 0λ φ λ (x) 2 dx - 1 2 λ / ∈Kn θ 0λ β λ (f 0 ) 2 + o λ / ∈Kn θ 2 0λ
This implies that for n large enough,

K(f 0 , f 0Kn ) ≤ f 0 ∞ λ / ∈Kn θ 2 0λ ≤ Ck -2γ n . Now, if θ ∈ A(u n ) we have K(f 0 , f θ ) = K(f 0 , f 0Kn ) + λ∈Kn (θ 0λ -θ λ )β λ (f 0 ) -c(θ 0Kn ) + c(θ) ≤ Ck -2γ n + λ∈Kn (θ 0λ -θ λ )β λ (f 0 ) -c(θ 0Kn ) + c(θ).
We set for any x, T

(x) = λ∈Kn (θ λ -θ 0λ )φ λ (x). Using (5.2), T ∞ ≤ C √ k n u n → 0. So, 1 0 f 0Kn (x) exp(T (x))dx = 1+ 1 0 f 0Kn (x)T (x)dx+ 1 0 f 0Kn (x)T 2 (x)v(n, x)dx,
where v is a bounded function. Since log(1 + u) ≤ u for any u > -1, for θ ∈ A(u n ) and n large enough,

-c(θ 0Kn ) + c(θ) = log 1 0 f 0Kn (x)e T (x) dx ≤ 1 0 f 0Kn (x)T (x)dx + 1 0 f 0Kn (x)T 2 (x)v(n, x)dx ≤ λ∈Kn (θ λ -θ 0λ )β λ (f 0Kn ) + Ck n u 2 n .
So,

K(f 0 , f θ ) ≤ Ck -2γ n + λ∈Kn (θ 0λ -θ λ ) (β λ (f 0 ) -β λ (f 0Kn )) ≤ Ck -2γ n + u n f 0 -f 0Kn 2 .
Besides, (5.4) implies

f 0 -f 0Kn 2 2 ≤ f 0 2 ∞ 1 0 1 -exp - λ / ∈Kn θ 0λ φ λ (x) -c(θ 0Kn ) + c(θ 0 )
and

|c(θ 0Kn ) -c(θ 0 )| ≤ || λ / ∈Kn θ 0λ φ λ || ∞ . Finally, f 0 -f 0Kn 2 ≤ C|| λ / ∈Kn θ 0λ φ λ || ∞ ≤ Ck 1 2 -γ n and K(f 0 , f θ ) ≤ Ck -2γ n + Cu n k 1 2 -γ n . (3.4) 
We now bound V (f 0 , f θ ). For this purpose, we refine the control of |c(θ 0Kn )c(θ 0 )|:

|c(θ 0Kn ) -c(θ 0 )| = log 1 0 f 0 (x) exp - λ / ∈Kn θ 0λ φ λ (x) dx = log 1 0 f 0 (x)   1 - λ / ∈Kn θ 0λ φ λ (x) + w(n, x) λ / ∈Kn θ 0λ φ λ (x) 2   dx ,
where w is a bounded function. So,

|c(θ 0Kn ) -c(θ 0 )| ≤ C   λ / ∈Kn |θ 0λ β λ (f 0 )| + 1 0 λ / ∈Kn θ 0λ φ λ (x) 2 dx   ≤ C λ / ∈Kn θ 2 0λ 1 2 ≤ Ck -γ n .
In addition,

|c(θ 0Kn ) -c(θ)| ≤ λ∈Kn |θ λ -θ 0λ | |β λ (f 0Kn )| + Ck n u 2 n ≤ u n (||f 0 -f 0Kn || 2 + ||f 0 || 2 ) + Ck n u 2 n ≤ Cu n + Ck n u 2 n .
Finally,

V (f 0 , f θ ) = 1 0 f 0 (x) λ∈Kn (θ 0λ -θ λ )φ λ (x) + λ / ∈Kn θ 0λ φ λ (x) + c(θ) -c(θ 0 ) 2 ≤ 2||f 0 || ∞ λ∈Kn (θ 0λ -θ λ ) 2 + λ / ∈Kn θ 2 0λ + 2(c(θ) -c(θ 0 )) 2 ≤ Cu 2 n + Ck -2γ n + Ck 2 n u 4 n . (3.5)
Now, let us consider the case (PH). We take k n and u n such that

k n = k 0 ǫ -1/γ n and u n = u 0 ǫ n k -1 2 n ,
where k 0 and u 0 are constants depending on ||f 0 || ∞ , γ, R and Φ. Note that (3.3) is then satisfied. If ǫ 0 is large enough and u 0 is small enough, then, by using (3.4) and (3.5),

K(f 0 , f θ ) ≤ ǫ 2 n and V (f 0 , f θ ) ≤ ǫ 2 n . So, Condition (C) is satisfied if P π {A(u n )} ≥ e -cnǫ 2 n .
We have:

P π {A(u n )} ≥ P π θ s.t. λ∈Kn (θ λ -θ 0λ ) 2 ≤ u 2 n k n × exp (-c 1 k n L(k n )) .
The prior on θ implies that, with

G λ = λ β θ λ τ -1/2 0 , P 1 := P π θ s.t. λ∈Kn (θ λ -θ 0λ ) 2 ≤ u 2 n k n ≥ P π θ s.t. λ∈Kn √ τ 0 λ -β G λ -θ 0λ ≤ u n k n = P π θ s.t. λ∈Kn λ -β G λ -τ -1 2 0 λ β θ 0λ ≤ τ -1 2 0 u n k n = ... 1 λ∈Kn λ -β x λ -τ -1 2 0 λ β θ 0λ ≤τ -1 2 0 un λ∈Kn g(x λ )dx λ ≥ ... 1 λ∈Kn λ -β |y λ |≤τ -1 2 0 un λ∈Kn g y λ + τ -1 2 0 λ β θ 0λ dy λ . 15 
When γ ≥ β, we have sup λ∈Kn τ

-1 2 0 λ β θ 0λ < ∞ and sup n τ -1 2 0 k β n u n < ∞.
Using assumptions on the prior, there exists a constant D such that

P 1 ≥ D kn ... 1 λ∈Kn λ -β |y λ |≤τ -1 2 0 un λ∈Kn dy λ ≥ exp (-Ck n log n) .
When γ < β, there exist a and b > 0 such that ∀|y| ≤ M for some positive constant M g(y + u) ≥ a exp(-b|u| p * ).

Using the above calculations we obtain if p * ≤ 2,

P 1 ≥ D kn exp{-C λ∈Kn λ p * β |θ 0λ | p * } ... 1 λ∈Kn λ -β |y λ |≤τ -1 2 0 un λ∈Kn dy λ ≥ exp -Ck 1-p * /2+p * (β-γ) n exp (-Ck n log n) ≥ exp (-Ck n log n) if β ≤ 1/2 + γ and if p * > 2, λ∈Kn λ p * β |θ 0λ | p * ≤ k p * β-p * γ n so that P 1 ≥ D kn exp{-C λ∈Kn λ p * β |θ 0λ | p * } exp (-Ck n log n) ≥ exp (-Ck n log n) if β ≤ γ + 1/p * .
Condition (C) is established by choosing k 0 small enough. Similar computations lead to the result in the case (D). The result for the norm ||θθ 0 || ℓ 2 is proved using (5.8).

Conclusions

This paper has investigated posterior concentration rates for Besov balls B γ p,q (R) in the case p ≥ 2. General prior models allow to obtain adaptive minimax rates up to logarthmic terms on the class

C(γ 0 , R 0 ) = B γ p,q (R) : γ 0 ≤ γ < r + 1, p ≥ 2, 1 ≤ q ≤ ∞, 0 < R ≤ R 0 ,
where R 0 > 0 and γ 0 > 1/2. When considering rates of convergence where the loss function is the ℓ 2 -norm or the Hellinger distance, Fourier and wavelets bases lead to the same results. But they can potentially differ if we consider different types of loss functions such as L s -norms, with s = 2. We mention that van der Vaart and van Zanten [START_REF] Van Der Vaart | Rates of contraction of posterior distributions based on Gaussian process priors[END_REF] studied Gaussian priors in a general setup including the density estimation problem described previously. In the wavelet framework, the (truncated) Gaussian prior in Section 4.5 of van der Vaart and van Zanten [START_REF] Van Der Vaart | Rates of contraction of posterior distributions based on Gaussian process priors[END_REF] is a special case of our prior model (D) and the rates obtained in Theorem 2.1 are similar to rates obtained in their Theorem 4.5 up to a logarithmic term. So, our results show that when truncated series are considered, the choice of the Gaussian prior is not critical. Also, randomizing as in the prior model (PH) leads to adaptation, which is not possible with purely Gaussian priors (see Theorem 1 of Castillo [START_REF] Castillo | Lower bounds for posterior rates with Gaussian process priors[END_REF]). Note also that non-Gaussian priors have been proved to be particularly useful in the context of sparsity: see for instance Dalalyan and Tsybakov [START_REF] Dalalyan | Aggregation by exponential weighting and sharp oracle inequalities[END_REF] who established sparse oracle inequalities for aggregation in the PAC-Bayesian setting, Rivoirard [START_REF] Rivoirard | Nonlinear estimation over weak Besov spaces and minimax Bayes method[END_REF] who studied minimax rates on maxisets of classical procedures and Park and Casella [START_REF] Park | The Bayesian Lasso[END_REF] who provided a Bayesian interpretation of the Lasso procedure.

Note that we have only focused on the case p ≥ 2. Indeed, Besov spaces B γ p,q with p < 2 model very different functions under the L 2 -loss, so the value p = 2 constitutes an elbow, that clearly appears in Inequality (5.1). Such phenomena have been investigated using various approaches: in the minimax approach by Donoho et al. [START_REF] Donoho | Wavelet shrinkage: asymptopia?[END_REF] or Reynaud-Bouret et al. [START_REF] Reynaud-Bouret | Adaptive density estimation: a curse of support?[END_REF] and in the Bayesian context where least favorable priors for such spaces are built (see Johnstone [START_REF] Johnstone | Minimax Bayes, asymptotic minimax and sparse wavelet priors[END_REF] or Rivoirard [START_REF] Rivoirard | Nonlinear estimation over weak Besov spaces and minimax Bayes method[END_REF]). From these studies, we can draw the following conclusions: when p < 2, Besov spaces B γ p,q model sparse signals where at each resolution level, a very few number of the wavelet coefficients are non-negligible. But these coefficients can be very large. When p ≥ 2, B γ p,q -spaces typically model dense signals where the wavelet coefficients are not large but most of them can be non-negligible. Of course, the study of posterior concentration rates in the case p < 2 is an exciting topic, we wish to investigate in future work.

Appendix

A result for convergence rates of posterior distributions

To prove Theorem 2.1, we use the following version of theorems on posterior convergence rates.

Theorem 5.1. Let f 0 be the true density and let π be a prior on F satisfying the following conditions: There exist (ǫ n ) n a positive sequence decreasing to zero with nǫ 2 n → +∞ and a constant c > 0 such that for any n, there exists

F * n ⊂ F satisfying -(A) P π {F * n c } = o(e -(c+2)nǫ 2 n ).
-(B) For any j ∈ N * , let

S n,j = {f ∈ F * n s.t. jǫ n < h(f 0 , f ) ≤ (j + 1)ǫ n },
and H n,j the Hellinger metric entropy of S n,j , i.e. the logarithm of the smallest number of balls of radius jǫ n /2 needed to cover S n,j . There exists J 0,n (that may depend on n) such that for all j ≥ J 0,n ,

H n,j ≤ Knj 2 ǫ 2 n ,
where K is an absolute constant.

-(C) If B n (ǫ n ) = {f ∈ F s.t. K(f 0 , f ) ≤ ǫ 2 n , V (f 0 , f ) ≤ ǫ 2 n }, we have P π {B n (ǫ n )} ≥ e -cnǫ 2 n .
Then, we have:

P π {f s.t. h(f 0 , f ) ≤ J 0,n ǫ n |X n } = 1 + o P 0 (1).
Proof. The proof of Theorem 5.1 is a slight modification of Theorem 2.4 of Ghosal et al. [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF]. We introduce G n = {f s.t. h(f 0 , f ) > J 0,n ǫ n }. So,

P π {f s.t. h(f 0 , f ) > J 0,n ǫ n |X n } ≤ P π [G n ∩ F * n |X n ] + P π {(F * n ) c |X n } ,
and using the same arguments as Ghosal et al. [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF], condition (C) combined with condition (A) implies that

P π {(F * n ) c |X n } = o P 0 (1)
.

We now study

P π {G n ∩ F * n |X n } = Gn∩F * n e ℓn(f )-ℓn(f 0 ) dπ(f ) F e ℓn(f )-ℓn(f 0 ) dπ(f ) := N n D n .
From the proof of Theorem 2.4 of Ghosal et al. [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF], we obtain that

D n ≥ e -(c+2)nǫ 2 n
with P 0 -probability going to 1. We set L n,j = exp(H n,j ). Let us a consider a set of densities (f l ) 1≤l≤L n,j such that ∪ 1≤l≤L n,j B h (f l , jǫ n /2), the union of the balls of center f l and radius jǫ n /2 for the Hellinger distance, constitutes a covering of S n,j . Following Section 7 of Ghosal et al. [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF], for any l, there exists a test φ (l) such that

E f 0 [φ (l) ] ≤ e -8Knh 2 (f 0 ,f l ) , sup f : h(f,f l )≤h(f 0 ,f l )/2 E f [1 -φ (l) ] ≤ e -8Knh 2 (f 0 ,f l ) ,
where K is an absolute constant. For any f ∈ S n,j , there exists l such that

h(f l , f ) ≤ jǫ n /2 ≤ h(f 0 , f )/2. Let φ n = max j≥J 0,n max 1≤l≤L n,j φ (l) .
By definition of H n,j , for any l, B h (f l , jǫ n /2) ∩ S n,j = ∅. So, there exists fl such that fl ∈ B h (f l , jǫ n /2) ∩ S n,j and

h(f 0 , f l ) ≥ h(f 0 , fl ) -h(f l , fl ) ≥ jǫ n -jǫ n /2 = jǫ n /2.
We obtain

E f 0 [φ n ] ≤ j≥J 0,n exp(H n,j )e -2Kj 2 nǫ 2 n ≤ j≥J 0,n e -Kj 2 nǫ 2 n = o(1)
and sup

f ∈S n,j E f [1 -φ n ] ≤ e -2Kj 2 nǫ 2 n .
Therefore,

E f 0 [N n (1 -φ n )] ≤ dπ(f ) j≥J 0,n 1 {f ∈S n,j } E f [1 -φ n ] ≤ j≥J 0,n e -2Kj 2 nǫ 2 n .
Finally, by taking

J 0,n > c + 2 2K ,
we have:

E f 0 [P π {G n ∩ F * n |X n }] ≤ P 0 D n < e -(c+2)nǫ 2 n + E f 0 [φ n ] + E f 0 N n D n (1 -φ n )1 {Dn≥e -(c+2)nǫ 2 n } ≤ P 0 D n < e -(c+2)nǫ 2 n + E f 0 [φ n ] + j≥J 0,n e -(2Kj 2 -c-2)nǫ 2 n = o(1),
which ends the proof of Theorem 5.1.

Function approximation spaces

This section is devoted to function approximation spaces and to a technical lemma useful to establish our main result.

We first give a brief description of Sobolev and Besov spaces. We recall that a function h ∈ L 2 belongs to the Sobolev space W γ (γ ∈ N * ) if it is γ-times weakly differentiable and if h (j) ∈ L 2 , j = 1, . . . , γ. The parameter γ measures the smoothness of underlying functions and higher γ, smoother the functions. Periodized Sobolev spaces are characterized by Fourier and wavelet bases and using notations of Introduction, we have

h := λ∈N θ λ φ λ ∈ W γ ⇐⇒ λ∈N |λ| 2γ θ 2 λ < ∞,
which allows to extend the definition of periodized Sobolev spaces to the case γ ∈ R * + . See Bergh and Löfström [START_REF] Bergh | Interpolation spaces. An introduction[END_REF], DeVore and Lorentz [START_REF] Devore | Grundlehren der Mathematischen Wissenschaften[END_REF] or Tsybakov [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF] for more details.

Besov spaces are classically defined by using modulus of continuity (see Definition 9.2 of Härdle et al. [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF]). In the framework introduced in Introduction, periodized Besov spaces, denoted B γ p,q , have the following characterization. We assume that the wavelet basis has standard regularity properties and r vanishing moments (see Härdle et al. [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF] for more details). Let 1 ≤ p, q ≤ ∞ and 0 < γ < r + 1, the B γ p,q -norm of h is equivalent to the norm

||h|| γ,p,q =    |θ -10 | + j≥0 2 jq(γ+ 1 2 -1 p ) ||(θ jk ) k || q ℓp 1/q if q < ∞, |θ -10 | + sup j≥0 2 j(γ+ 1 2 -1 p ) ||(θ jk ) k || ℓp if q = ∞.
Using || • || γ,p,q , we say that h belongs to the Besov ball with radius R > 0 if ||h|| γ,p,q ≤ R. For any R > 0, if 0 < γ ′ ≤ γ < r + 1, 1 ≤ p ≤ p ′ ≤ ∞ and 1 ≤ q ≤ q ′ ≤ ∞, we obviously have

B γ p,q (R) ⊂ B γ p,q ′ (R), B γ p,q (R) ⊂ B γ ′ p,q (R). Moreover B γ p,q (R) ⊂ B γ ′ p ′ ,q (R) if γ - 1 p ≥ γ ′ - 1 p ′ .
Finally, using the Cauchy-Schwarz inequality when p ≥ 2 and the inequality ||(θ jk ) k || ℓ 2 ≤ ||(θ jk ) k || ℓp when p < 2, we have for any j ≥ 0,

2 jγ ||(θ jk ) k || ℓ 2 ≤ 2 j( 1 p -1 2 ) + × 2 j(γ+ 1 2 -1 p ) ||(θ jk ) k || ℓp , (5.1) 
which proves that for p ≥ 2,

B γ p,q (R) ⊂ B γ 2,q (R).
The class of Besov spaces provides a useful tool to classify wavelet decomposed signals with respect to their regularity and sparsity properties (see Johnstone [START_REF] Johnstone | Minimax Bayes, asymptotic minimax and sparse wavelet priors[END_REF]). Roughly speaking, regularity increases when γ increases whereas sparsity increases when p decreases. We finally recall that the scale of Besov spaces includes the class of the Sobolev spaces since we have B γ 2,2 = W γ . Now, we prove the following result. γ > 0, p = q = 2 when Φ is the Fourier basis -0 < γ < r + 1, 2 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ when Φ is the wavelet basis with r vanishing moments.

Then the following results hold.

-There exists a constant c 1,Φ depending only on Φ such that for any θ

= (θ λ ) λ ∈ R kn , λ∈Kn θ λ φ λ ∞ ≤ c 1,Φ k n ||θ|| ℓ 2 .
(5.2)

-If log(f 0 ) ∈ B γ p,q (R), then there exists c 2,γ depending on γ only such that

λ / ∈Kn θ 2 0λ ≤ c 2,γ R 2 k -2γ n . (5.3) -If log(f 0 ) ∈ B γ p,q (R) with γ > 1 2
, then there exists c 3,Φ,γ depending on Φ and γ only such that:

λ / ∈Kn θ 0λ φ λ ∞ ≤ c 3,Φ,γ R k 1 2 -γ n .
(5.4)

Proof. Let us first consider the Fourier basis. We have: . Now, we consider the wavelet basis. Without loss of generality, we assume that log 2 (k n + 1) ∈ N * . We have for any x, , with ϕ -10 = 1l [0,1] . Since, for some constant A > 0, ϕ(x) = 0 for x / ∈ [-A, A], for j ≥ 0, card k ∈ {0, . . . , 2 j -1} s.t. ϕ jk (x) = 0 ≤ 3(2A + 1).

λ∈Kn θ λ φ λ ∞ ≤ λ∈Kn |θ λ | × ||φ λ || ∞ ≤ √ 2 
(see Mallat [START_REF] Mallat | A wavelet tour of signal processing[END_REF], p. 282 or Meyer [START_REF] Meyer | Wavelets and operators[END_REF], p. 112). So, there exists c ϕ depending only on ϕ such that , which proves (5.2). For the second point, we just use the inclusion B γ p,q (R) ⊂ B γ 2,∞ (R) and λ / ∈Kn θ 2 0λ = j>log 2 (kn)

2 j -1 k=0 θ 2 0 jk ≤ R 2 j>log 2 (kn) 2 -2jγ ≤ R 2 1 -2 -2γ k -2γ n .
Finally, for the last point, we have for any x: 

Proof of Lemma 3.1

This section is devoted to the proof of Lemma 3.1. We use definitions recalled in (1.2), (1.3) and (1.4). Using Theorem 5 of Wong and Shen [START_REF] Wong | Probability inequalities for likelihood ratios and convergence rates of sieve mles[END_REF],

with

M 1 = 1 0 f 2 0 (x) f θ (x) dx 1 2 , if h 2 (f 0 , f θ ) ≤ 1 2 (1 -e -1 ) 2 ,
we have Finally, since f θ ∈ S n,j for j ≥ 1, 

V (f 0 , f θ ) ≤ 5h 2 (f 0 , f θ ) (| log M 1 | -log(h(f 0 , f θ ))) 2 . ( 5 
V (f 0 , f θ ) ≤ 5h 2 (f 0 , f θ ) 2c

[

  Case (PH)]There exist two positive constants c 1 and c 2 and s ∈ {0, 1} such that for any k∈ N * , exp (-c 1 kL(k)) ≤ p(k) ≤ exp (-c 2 kL(k)) , where L(x) = (log x) s . [Case (D)] If k * n = ⌊n 1/(2β+1) ⌋, i.e. the largest integer smaller than n 1/(2β+1) , p(k) = δ k * n (k), where δ k * n denotes the Dirac mass at the point k * n .

Lemma 5 . 1 .

 51 Set K n = {1, 2, . . . , k n } with k n ∈ N * . Assume one of the following two cases:

  λ∈Kn |θ λ |, which proves (5.2). Inequality (5.3) follows from the definition of B γ 2,2 = W γ . To prove (5.4), we use the following inequality: for any x, λ / ∈Kn θ 0λ φ λ (x)

λ∈Kn θ λ φ λ (

  

  λ∈Kn θ λ φ λ (x) ≤ ||θ|| ℓ 2

1 2 c ϕ ( 1 -2 1 2

 111 -γ ) -1 .

1 0f 0 ≤M 1 ≥

 101 θ λ )φ λ (x) + λ / ∈Λn θ 0λ φ λ (x)c(θ 0 ) + c(θ) dx and log (x) exp λ∈Λn (θ λθ 0λ )φ λ (x)λ / ∈Λn θ 0λ φ λ (x) dx = c(θ)-c(θ 0 ). So, |c(θ)c(θ 0 )| ≤ log λθ 0λ )φ λexp 2c 1,Φ l n ||θ 0 -θ|| ℓ 2 + 2c 3,Φ,γ Rl 1 2 -γ n by using (5.2) and (5.4). Similarly, exp -2c 1,Φ l n ||θ 0 -θ|| ℓ 2 -2c 3,Φ,γ Rl log M 1 | ≤ 2c 1,Φ l n ||θ 0 -θ|| ℓ 2 + 2c 3,Φ,γ Rl 1 2 -γ n .

  1,Φ l n ||θ 0 -θ|| ℓ 2 + 2c 3,Φ,γ Rl

	1 2 -γ n	-log(ǫ n )

2 ≤ Ch 2 (f 0 , f θ ) l n ||θ 0 -θ|| 2 ℓ 2 + (log n) 2 ,

(5.6)
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where C depends on Φ, R, β and γ. Since f 0 (x) ≥ c 0 for any x and 1 0 φ λ (x)dx = 0 for any λ ∈ Λ n , we have by straightforward computations,

(5.7)

Combining (5.6) and (5.7), we conclude that

2 (1e -1 ) 2 .