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Adaptive Dantzig density estimationK. Bertin∗, E. Le Penne†, V. Rivoirard‡AbstratThis paper deals with the problem of density estimation. We aim at building an estimateof an unknown density as a linear ombination of funtions of a ditionary. Inspired byCandès and Tao's approah, we propose an ℓ1-minimization under an adaptive Dantzigonstraint oming from sharp onentration inequalities. This allows to onsider a widelass of ditionaries. Under loal or global oherene assumptions, orale inequalities arederived. These theoretial results are also proved to be valid for the natural Lasso estimateassoiated with our Dantzig proedure. Then, the issue of alibrating these proedures isstudied from both theoretial and pratial points of view. Finally, a numerial study showsthe signi�ant improvement obtained by our proedures when ompared with other lassialproedures.Keywords : Calibration, Conentration inequalities, Dantzig estimate, Density estimation,Ditionary, Lasso estimate, Orale inequalities, Sparsity.AMS subjet lassi�ation : 62G07, 62G05, 62G201 IntrodutionVarious estimation proedures based on l1 penalization (exempli�ed by the Dantzig proedure in[13℄ and the LASSO proedure in [28℄) have extensively been studied reently. These proeduresare omputationally e�ient as shown in [17, 24, 25℄, and thus are adapted to high-dimensionaldata. They have been widely used in regression models, but only the Lasso estimator has beenstudied in the density model (see [7, 10, 29℄). Although we will mostly onsider the Dantzigestimator in the density model for whih no result exists so far, we reall some of the lassialresults obtained in di�erent settings by proedures based on l1 penalization.The Dantzig seletor has been introdued by Candès and Tao [13℄ in the linear regressionmodel. More preisely, given
Y = Aλ0 + ε,where Y ∈ Rn, A is a n by M matrix, ε ∈ Rn is the noise vetor and λ0 ∈ RM is the unknownregression parameter to estimate, the Dantzig estimator is de�ned by

λ̂D = arg min
λ∈RM

||λ||ℓ1 subjet to ||AT (Aλ − Y )||ℓ∞ ≤ η,
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where || · ||ℓ∞ is the sup-norm in RM , || · ||ℓ1 is the ℓ1 norm in RM , and η is a regularizationparameter. A natural ompanion of this estimator is the Lasso proedure or more preisely itsrelaxed form
λ̂L = arg min

λ∈RM

{

1

2
||Aλ − Y ||2ℓ2 + η||λ||ℓ1

}

,where η plays exatly the exat same role as for the Dantzig estimator. This ℓ1 penalized methodis also alled basis pursuit in signal proessing (see [14, 15℄).Candès and Tao [13℄ have obtained a bound for the ℓ2 risk of the estimator λ̂D, with largeprobability, under a global ondition on the matrix A (the Restrited Isometry Property) and asparsity assumption on λ0, even for M ≥ n. Bikel et al. [3℄ have obtained orale inequalitiesand bounds of the ℓp loss for both estimators under weaker assumptions. Atually, Bikel et al.[3℄ deal with the non parametri regression framework in whih one observes
Yi = f(xi) + ei, i = 1, . . . , nwhere f is an unknown funtion while (xi)i=1,...,n are known design points and (ei)i=1,...,n is anoise vetor. There is no intrinsi matrix A in this problem but for any ditionary of funtions

Υ = (ϕm)m=1,...,M one an searh f as a weighted sum fλ of elements of Υ

fλ =
M
∑

m=1

λmϕmand introdue the matrix A = (ϕm(xi))i,m, whih summarizes the information on the ditionaryand on the design. Notie that if there exists λ0 suh that f = fλ0 then the model an berewritten exatly as the lassial linear model. However, if it is not the ase and if a model biasexists, the Dantzig and Lasso proedures an be after all applied under similar assumptions on
A. Orale inequalities are obtained for whih approximation theory plays an important role in[3, 8, 9, 29℄.Let us also mention that in various settings, under various assumptions on the matrix A(or more preisely on the assoiated Gram matrix G = AT A), properties of these estimatorshave been established for subset seletion (see [11, 20, 22, 23, 30, 31℄) and for predition (see[3, 19, 20, 23, 32℄).1.1 Our goals and resultsWe onsider in this paper the density estimation framework already studied for the Lasso estimateby Bunea et al [7, 10℄ and van de Geer [29℄. Namely, our goal is to estimate f0, an unknowndensity funtion, by using the observations of an n-sample of variables X1, . . . , Xn of density
f0 with respet to a known measure dx on R. As in the non parametri regression setting, weintrodue a ditionary of funtions Υ = (ϕm)m=1,...,M , and searh again estimates of f0 as linearombinations fλ of the ditionary funtions. We rely on the Gram matrix G assoiated with Υ,de�ned by Gm,m′ =

∫

ϕm(x)ϕm′ (x)dx, and on the empirial salar produts of f0 with ϕm

β̂m =
1

n

n
∑

i=1

ϕm(Xi).The Dantzig estimate f̂D is then obtained by minimizing ||λ||ℓ1 over the set of parameters λsatisfying the adaptive Dantzig onstraint:
∀m ∈ {1, . . . .M}, |(Gλ)m − β̂m| ≤ ηγ,m2



where for m ∈ {1, . . . , M}, (Gλ)m is the salar produt of fλ with ϕm,
ηγ,m =

√

2σ̃2
mγ log M

n
+

2||ϕm||∞γ log M

3n
,

σ̃2
m is a sharp estimate of the variane of β̂m and γ is a onstant to be hosen. Setion 2 givespreise de�nitions and heuristis for using this onstraint. We just mention here that ηγ,m omesfrom sharp onentration inequalities to give tight onstraints. Our idea is that if f0 an bedeomposed on Υ as

f0 =

M
∑

m=1

λ0,mϕm,then we fore the set of feasible parameters λ to ontain λ0 with large probability and to be assmall as possible. Signi�ant improvements in pratie are expeted.Our goals in this paper are mainly twofold. First, we aim at establishing sharp orale in-equalities under very mild assumptions on the ditionary. Our starting point is that most of thepapers in the literature assume that the funtions of the ditionary are bounded by a onstantindependent of M and n, whih onstitutes a strong limitation, in partiular for ditionariesbased on histograms or wavelets (see for instane [6℄, [7℄, [8℄, [9℄, [11℄ or [29℄). Suh assumptionson the funtions of Υ will not be onsidered in our paper. Likewise, our methodology does notrely on the knowledge of ||f0||∞ that an even be in�nite (as notied by Birgé [4℄ for the study ofthe integrated L2-risk, most of the papers in the literature typially assume that the sup-normof the unknown density is �nite with a known or estimated bound for this quantity). Finally, letus mention that, in ontrast with what Bunea et al [10℄ did, we obtain orale inequalities withleading onstant 1, and furthermore these are established under muh weaker assumptions onthe ditionary than in [10℄.The seond goal of this paper deals with the problem of alibrating the so-alled Dantzigonstant γ: how should this onstant be hosen to obtain good results in both theory andpratie? Most of the time, for Lasso-type estimators, the regularization parameter is of the form
a
√

log M
n with a a positive onstant (see [3℄, [7℄, [6℄, [9℄, [12℄, [20℄ or [23℄ for instane). Theseresults are obtained with large probability that depends on the tuning oe�ient a. In pratie, itis not simple to alibrate the onstant a. Unfortunately, most of the time, the theoretial hoieof the regularization parameter is not suitable for pratial issues. This fat is true for Lasso-typeestimates but also for many algorithms for whih the regularization parameter provided by thetheory is often too onservative for pratial purposes (see [18℄ who learly explains and illustratesthis point for their thresholding proedure). So, one of the main goals of this paper is to �ll thegap between the optimal parameter hoie provided by theoretial results on the one hand andby a simulation study on the other hand. Only a few papers are devoted to this problem. Inthe model seletion setting, the issue of alibration has been addressed by Birgé and Massart[5℄ who onsidered ℓ0-penalized estimators in a Gaussian homosedasti regression frameworkand showed that there exists a minimal penalty in the sense that taking smaller penalties leadsto inonsistent estimation proedures. Arlot and Massart [1℄ generalized these results for non-Gaussian or heterosedasti data and Reynaud-Bouret and Rivoirard [26℄ addressed this questionfor thresholding rules in the Poisson intensity framework.Now, let us desribe our results. By using the previous data-driven Dantzig onstraint, oraleinequalities are derived under loal onditions on the ditionary that are valid under lassialassumptions on the struture of the ditionary. We extensively disuss these assumptions andwe show their own interest in the ontext of the paper. Eah term of these orale inequalities is3



easily interpretable. Classial results are reovered when we further assume:
||ϕm||2∞ ≤ c1

(

n

log M

)

||f0||∞,where c1 is a onstant. This assumption is very mild and, unlike in lassial works, allows toonsider ditionaries based on wavelets. Then, relying on our Dantzig estimate, we build anadaptive Lasso proedure whose orale performanes are similar. This illustrates the losenessbetween Lasso and Dantzig-type estimates.Our results are proved for γ > 1. For the theoretial alibration issue, we study the perfor-mane of our proedure when γ < 1. We show that in a simple framework, estimation of thestraightforward signal f0 = 1[0,1] annot be performed at a onvenient rate of onvergene when
γ < 1. This result proves that the assumption γ > 1 is thus not too onservative.Finally, a simulation study illustrates how ditionary-based methods outperform lassialones. More preisely, we show that our Dantzig and Lasso proedures with γ > 1, but lose to 1,outperform lassial ones, suh as simple histogram proedures, wavelet thresholding or Dantzigproedures based on the knowledge of ||f0||∞ and less tight Dantzig onstraints.1.2 OutlinesSetion 2 introdues the density estimator of f0 whose theoretial performanes are studied inSetion 3. Setion 4 studies the Lasso estimate proposed in this paper. The alibration issue isstudied in Setion 5.1 and numerial experiments are performed in Setion 5.2. Finally, Setion6 is devoted to the proofs of our results.2 The Dantzig estimator of the density f0As said in Introdution, our goal is to build an estimate of the density f0 with respet to themeasure dx as a linear ombination of funtions of Υ = (ϕm)m=1,...,M , where we assume withoutany loss of generality that, for any m, ‖ϕm‖2 = 1:

fλ =

M
∑

m=1

λmϕm.For this purpose, we naturally rely on natural estimates of the L2-salar produts between f0and the ϕm's. So, for m ∈ {1, . . . , M}, we set
β0,m =

∫

ϕm(x)f0(x)dx, (1)and we onsider its empirial ounterpart
β̂m =

1

n

n
∑

i=1

ϕm(Xi) (2)that is an unbiased estimate of β0,m. The variane of this estimate is Var(β̂m) =
σ2
0,m

n where
σ2

0,m =

∫

ϕ2
m(x)f0(x)dx − β2

0,m. (3)4



Note also that for any λ and any m, the L2-salar produt between fλ and ϕm an be easilyomputed:
∫

ϕm(x)fλ(x)dx =

M
∑

m′=1

λm′

∫

ϕm′(x)ϕm(x)dx = (Gλ)mwhere G is the Gram matrix assoiated to the ditionary Υ de�ned for any 1 ≤ m, m′ ≤ M by
Gm,m′ =

∫

ϕm(x)ϕm′ (x)dx.Any reasonable hoie of λ should ensure that the oe�ients (Gλ)m are lose to β̂m for all m.Therefore, using Candès and Tao's approah, we de�ne the Dantzig onstraint:
∀m ∈ {1, . . . .M}, |(Gλ)m − β̂m| ≤ ηγ,m (4)and the Dantzig estimate f̂D by f̂D = fλ̂D,γ with

λ̂D,γ = argminλ∈RM ||λ||ℓ1 suh that λ satis�es the Dantzig onstraint (4),where for γ > 0 and m ∈ {1, . . . , M},
ηγ,m =

√

2σ̃2
mγ log M

n
+

2||ϕm||∞γ log M

3n
, (5)with

σ̃2
m = σ̂2

m + 2||ϕm||∞
√

2σ̂2
mγ log M

n
+

8||ϕm||2∞γ log M

n
(6)and

σ̂2
m =

1

n(n − 1)

n
∑

i=2

i−1
∑

j=1

(ϕm(Xi) − ϕm(Xj))
2. (7)Note that ηγ,m depends on the data, so the onstraint (4) will be referred as the adaptive Dantzigonstraint in the sequel. We now justify the introdution of the density estimate f̂D.The de�nition of ηλ,γ is based on the following heuristis. Given m, when there exists a on-stant c0 > 0 suh that f0(x) ≥ c0 for x in the support of ϕm satisfying ‖ϕm‖2

∞ = on(n(log M)−1),then, with large probability, the deterministi term of (5), 2||ϕm||∞γ log M
3n , is negligible with re-spet to the random one, √ 2σ̃2

mγ log M
n . In this ase, the random term is the main one and weasymptotially derive

ηγ,m ≈
√

2γ logM
σ̃2

m

n
. (8)Having in mind that σ̃2

m/n is a onvenient estimate for Var(β̂m) (see the proof of Theorem 1),the shape of the right hand term of the formula (8) looks like the bound proposed by Candès andTao [13℄ to de�ne the Dantzig onstraint in the linear model. Atually, the deterministi termof (5) allows to get sharp onentration inequalities. As often done in the literature, instead ofestimating Var(β̂m), we ould use the inequality
Var(β̂m) =

σ2
0,m

n
≤ ||f0||∞

n5



and we ould replae σ̃2
m with ||f0||∞ in the de�nition of the ηγ,m. But this requires a strongassumption: f0 is bounded and ||f0||∞ is known. In our paper, Var(β̂m) is estimated, whih allowsnot to impose these onditions. More preisely, we slightly overestimate σ2

0,m to ontrol largedeviation terms and this is the reason why we introdue σ̃2
m instead of using σ̂2

m, an unbiasedestimate of σ2
0,m. Finally, γ is a onstant that has to be suitably alibrated and plays a apitalrole in pratie.The following result justi�es previous heuristis by showing that, if γ > 1, with high proba-bility, the quantity |β̂m − β0,m| is smaller than ηγ,m for all m. The parameter ηγ,m with γ loseto 1 an be viewed as the �smallest� quantity that ensures this property.Theorem 1. Let us assume that M satis�es

n ≤ M ≤ exp(nδ) (9)for δ < 1. Let γ > 1. Then, for any ε > 0, there exists a onstant C1(ε, δ, γ) depending on ε, δand γ suh that
P

(

∃m ∈ {1, . . . , M}, |β0,m − β̂m| ≥ ηγ,m

)

≤ C1(ε, δ, γ)M1− γ
1+ε .In addition, there exists a onstant C2(δ, γ) depending on δ and γ suh that

P

(

∀m ∈ {1, . . . , M}, η(−)
γ,m ≤ ηγ,m ≤ η(+)

γ,m

)

≥ 1 − C2(δ, γ)M1−γwhere, for m ∈ {1, . . . , M},
η(−)

γ,m = σ0,m

√

8γ log M

7n
+

2||ϕm||∞γ log M

3nand
η(+)

γ,m = σ0,m

√

16γ log M

n
+

10||ϕm||∞γ log M

n
.This result is proved in Setion 6.1. The �rst part is a sharp onentration inequality provedby using Bernstein type ontrols. The seond part of the theorem proves that, up to onstantsdepending on γ, ηγ,m is of order σ0,m

√

log M
n + ||ϕm||∞ log M

n with high probability. Note that theassumption γ > 1 is essential to obtain probabilities going to 0.Finally, let λ0 = (λ0,m)m=1,...,M ∈ RM suh that
PΥf0 =

M
∑

m=1

λ0,mϕmwhere PΥ is the projetion on the spae spanned by Υ. We have
(Gλ0)m =

∫

(PΥf0)ϕm =

∫

f0ϕm = β0,m.So, Theorem 1 proves that λ0 satis�es the adaptive Dantzig onstraint (4) with probability largerthan 1−C1(ε, δ, γ)M1− γ
1+ε for any ε > 0. Atually, we fore the set of parameters λ satisfying theadaptive Dantzig onstraint to ontain λ0 with large probability and to be as small as possible.Therefore, f̂D = fλ̂D,γ is a good andidate among sparse estimates linearly deomposed on Υfor estimating f0.We mention that Assumption (9) an be relaxed and we an take M < n provided thede�nition of ηγ,m is modi�ed. 6



3 Results for the Dantzig estimatorsIn the sequel, we will denote λ̂D = λ̂D,γ to simplify the notations, but the Dantzig estimator
f̂D still depends on γ. Moreover, we assume that (9) is true and we denote the vetor ηγ =
(ηγ,m)m=1,...,M onsidered with the Dantzig onstant γ > 1.3.1 The main result under loal assumptionsLet us state the main result of this paper. For any J ⊂ {1, . . . , M}, we set JC = {1, . . . , M}r Jand de�ne λJ the vetor whih has the same oordinates as λ on J and zero oordinates on JC .We introdue a loal assumption indexed by a subset J0.

• Loal Assumption Given J0 ⊂ {1, . . . , M}, for some onstants κJ0 > 0 and µJ0 ≥ 0depending on J0, we have for any λ,
||fλ||2 ≥ κJ0 ||λJ0 ||ℓ2 −

µJ0
√

|J0|

(

||λJC
0
||ℓ1 − ||λJ0 ||ℓ1

)

+
. (LA(J0, κJ0 , µJ0))We obtain the following orale type inequality without any assumption on f0.Theorem 2. With probability at least 1 − C1(ε, δ, γ)M1− γ

1+ε , for all J0 ⊂ {1, . . . , M} suh thatthere exist κJ0 > 0 and µJ0 ≥ 0 for whih (LA(J0, κJ0 , µJ0)) holds, we have, for any α > 0,
||f̂D − f0||22 ≤ inf

λ∈RM

{

||fλ − f0||22 + α

(

1 +
2µJ0

κJ0

)2
Λ(λ, Jc

0)2

|J0|
+ 16|J0|

(

1

α
+

1

κ2
J0

)

||ηγ ||2ℓ∞

}

,(10)with
Λ(λ, Jc

0) = ||λJC
0
||ℓ1 +

(

||λ̂D||ℓ1 − ||λ||ℓ1
)

+

2
.Let us omment eah term of the right hand side of (10). The �rst term is an approximationterm whih measures the loseness between f0 and fλ. This term an vanish if f0 an bedeomposed on the ditionary. The seond term, a bias term, is a prie to pay when either λis not supported by the subset J0 onsidered or it does not satisfy the ondition ||λ̂D||ℓ1 ≤ ||λ||ℓ1whih holds as soon as λ satis�es the adaptive Dantzig onstraint. Finally, the last term, whihdoes not depend on λ, an be viewed as a variane term orresponding to the estimation on thesubset J0. The parameter α alibrates the weights given for the bias and variane terms in theorale inequality. Conerning the last term, remember that ηγ,m relies on an estimate of thevariane of β̂m. Furthermore, we have with high probability:

||ηγ ||2ℓ∞ ≤ 2 sup
m

(

16σ2
0,mγ log M

n
+

(

10||ϕm||∞γ log M

n

)2
)

.So, if f0 is bounded then, σ2
0,m ≤ ||f0||∞ and if there exists a onstant c1 suh that for any m,

||ϕm||2∞ ≤ c1

(

n

log M

)

||f0||∞, (11)(whih is true for instane for a bounded ditionary), then
||ηγ ||2ℓ∞ ≤ C||f0||∞

log M

n
,7



(where C is a onstant depending on γ and c1) and tends to 0 when n goes to ∞. We obtainthus the following result.Corollary 1. With probability at least 1 − C1(ε, δ, γ)M1− γ
1+ε , if (11) is satis�ed, then, for all

J0 ⊂ {1, . . . , M} suh that there exist κJ0 > 0 and µJ0 ≥ 0 for whih (LA(J0, κJ0 , µJ0)) holds,we have, for any α > 0 and for any λ that satis�es the adaptive Dantzig onstraint,
||f̂D − f0||22 ≤ ||fλ − f0||22 + αc2(1 + κ−2

J0
µ2

J0
)
||λJC

0
||2ℓ1

|J0|
+ c3(α

−1 + κ−2
J0

)|J0|||f0||∞
log M

n
, (12)where c2 is an absolute onstant and c3 depends on c1 and γ.If f0 = fλ0 and if (LA(J0, κJ0 , µJ0)) holds with J0 the support of λ0 then, under (11), withprobability at least 1 − C1(ε, δ, γ)M1− γ

1+ε , we have
||f̂D − f0||22 ≤ C′|J0|||f0||∞

log M

n
,where C′ = c3κ

−2
J0

.Note that the seond part of Corollary 1 is, stritly speaking, not a onsequene of Theorem 2but only of its proof.Assumption (LA(J0, κJ0 , µJ0)) is loal, in the sense that the onstants κJ0 and µJ0 (or theirmere existene) may highly depend on the subset J0. For a given λ, the best hoie for J0in Inequalities (10) and (12) depends thus on the interation between these onstants and thevalue of λ itself. Note that the assumptions of Theorem 2 are reasonable as the next setiongives onditions for whih Assumption (LA(J0, κJ0 , µJ0)) holds simultaneously with the sameonstant κ and µ for all subsets J0 of the same size.3.2 Results under global assumptionsAs usual, when M > n, properties of the Dantzig estimate an be derived from assumptions onthe struture of the ditionary Υ. For l ∈ N, we denote
φmin(l) = min

|J|≤l
min

λ∈R
M

λJ 6=0

||fλJ ||22
||λJ ||2ℓ2

and φmax(l) = max
|J|≤l

max
λ∈R

M

λJ 6=0

||fλJ ||22
||λJ ||2ℓ2

.These quantities orrespond to the �restrited� eigenvalues of the Gram matrix G. Assumingthat φmin(l) and φmax(l) are lose to 1 means that every set of olumns of G with ardinalityless than l behaves like an orthonormal system. We also onsider the restrited orrelations
θl,l′ = max

|J|≤l
|J′|≤l′

J∩J′=∅

max
λ,λ′∈R

M

λJ 6=0,λ′

J′ 6=0

〈fλJ , fλ′

J′
〉

||λJ ||ℓ2 ||λ′
J′ ||ℓ2

.Small values of θl,l′ mean that two disjoint sets of olumns of G with ardinality less than l and
l′ span nearly orthogonal spaes. We will use one of the following assumptions onsidered in [3℄.

• Assumption 1 For some integer 1 ≤ s ≤ M/2, we have
φmin(2s) > θs,2s. (A1(s))Orale inequalities of the Dantzig seletor were established under this assumption in theparametri linear model by Candès and Tao in [13℄. It was also onsidered by Bikel et al [3℄for non-parametri regression and for the Lasso estimate. The next assumption, proposedin [3℄, onstitutes an alternative to Assumption 1.8



• Assumption 2 For some integers s and l suh that
1 ≤ s ≤ M

2
, l ≥ s and s + l ≤ M, (13)we have

lφmin(s + l) > sφmax(l). (A2(s,l))If Assumption 2 holds for s and l suh that l ≫ s, then Assumption 2 means that φmin(l)annot derease at a rate faster than l−1 and this ondition is related to the �in;oherentdesigns� ondition stated in [23℄.In the sequel, we set, under Assumption 1,
κ1,s =

√

φmin(2s)

(

1 − θs,2s

φmin(2s)

)

> 0, µ1,s =
θs,2s

√

φmin(2s)and under Assumption 2,
κ2,s,l =

√

φmin(s + l)

(

1 −
√

φmax(l)

φmin(s + l)

√

s

l

)

> 0, µ2,s,l =
√

φmax(l)

√

s

l
.Now, to apply Theorem 2, we need to hek (LA(J0, κJ0 , µJ0)) for some some subset J0 of

{1, . . . , M}. Either Assumption 1 or Assumption 2 implies this assumption. Indeed, we have thefollowing result.Proposition 1. Let s and l two integers satisfying (13). We suppose that (A1(s)) or (A2(s,l))holds. Let J0 ⊂ {1, . . . , M} of size |J0| = s and λ ∈ RM , then Assumption LA(J0, κs,l, µs,l),namely,
||fλ||2 ≥ κs,l||λJ0 ||ℓ2 −

µs,l√
s

(

||λJC
0
||ℓ1 − ||λJ0 ||ℓ1

)

+
,holds with κs,l = κ1,s and µs,l = µ1,s under (A1(s)) (respetively κs,l = κ2,s,l and µs,l = µ2,s,lunder (A2(s,l)). If (A1(s)) and (A2(s,l)) are both satis�ed, κs,l = max(κ1,s, κ2,s,l) and µs,l =

min(µ1,s, µ2,s,l).Proposition 1 proves that Theorem 2 an be applied under Assumptions 1 or 2. In addition,the onstants κs,l and µs,l are the same for all subset J0 of size |J0| = s. From Theorem 2, wededue the following result.Theorem 3. With probability at least 1 − C1(ε, δ, γ)M1− γ
1+ε , for any two integers s and l sat-isfying (13) suh that (A1(s)) or (A2(s,l)) holds, we have for any α > 0,

||f̂D−f0||22 ≤ inf
λ∈RM

inf
J0⊂{1,...,M}

|J0|=s

{

||fλ − f0||22 + α

(

1 +
2µs,l

κs,l

)2
Λ(λ, Jc

0)2

s
+ 16s

(

1

α
+

1

κ2
s,l

)

||ηγ ||2ℓ∞

}where
Λ(λ, Jc

0) = ||λJC
0
||ℓ1 +

(

||λ̂D||ℓ1 − ||λ||ℓ1
)

+

2
,and κs,l and µs,l are de�ned as in Proposition 1.9



Remark that the best subset J0 of ardinal s in Theorem 3 an be easily hosen for a given
λ: it is given by the set of the s largest oordinates of λ. This was not neessarily the ase inTheorem 2 for whih a di�erent subset may give a better loal ondition and then may provide asmaller bound. If we further assume the mild assumption (11) on the sup norm of the ditionaryintrodued in the previous setion, we dedue the following result.Corollary 2. With probability at least 1−C1(ε, δ, γ)M1− γ

1+ε , if (11) is satis�ed, for any integers
s and l satisfying (13) suh that (A1(s)) or (A2(s,l)) holds, we have for any α > 0, any λ thatsatis�es the adaptive Dantzig onstraint, and for the best subset J0 of ardinal s (that orrespondsto the s largest oordinates of λ in absolute value),

||f̂D − f0||22 ≤ ||fλ − f0||22 + αc2(1 + κ−2
s,l µ

2
s,l)

||λJC
0
||2ℓ1

s
+ c3(α

−1 + κ−2
s,l )s||f0||∞

log M

n
, (14)where c2 is an absolute onstant, c3 depends on c1 and γ, and κs,l and µs,l are de�ned as inProposition 1.Note that, when λ is s-sparse so that λJC

0
= 0, the orale inequality (14) orresponds to thelassial orale inequality obtained in parametri frameworks (see [12℄ or [13℄ for instane) or innon-parametri settings. See, for instane [6℄, [7℄, [8℄, [9℄, [11℄ or [29℄ but in these works, thefuntions of the ditionary are assumed to be bounded by a onstant independent of M and n.So, the adaptive Dantzig estimate requires weaker onditions sine under (11), ||ϕm||∞ an go to

∞ when n grows. This point is apital for pratial purposes, in partiular when wavelet basesare onsidered.4 Connetions between the Dantzig and Lasso estimatesWe show in this setion the strong onnetions between Lasso and Dantzig estimates, whih hasalready been illustrated in [3℄ for non-parametri regression models. By hoosing onvenientrandom weights depending on ηγ for ℓ1-minimization, the Lasso estimate satis�es the adaptiveDantzig onstraint. More preisely, we onsider the Lasso estimator given by the solution of thefollowing minimization problem
λ̂L,γ = argminλ∈RM

{

1

2
R(λ) +

M
∑

m=1

ηγ,m|λm|
}

, (15)where
R(λ) = ||fλ||22 −

2

n

n
∑

i=1

fλ(Xi).Note that R(·) is the quantity minimized in unbiased estimation of the risk. For simpli�ations,we write λ̂L = λ̂L,γ . We denote f̂L = fλ̂L . As said in Introdution, lassial Lasso estimates arede�ned as the minimizer of expressions of the form
{

1

2
R(λ) + η

M
∑

m=1

|λm|
}

,where η is proportional to √ log M
n . So, λ̂L appears as a data-driven version of lassial Lassoestimates. 10



The �rst order ondition for the minimization of the expression given in (15) orrespondsexatly to the adaptive Dantzig onstraint and thus Theorem 3 always applies to λ̂L. Workingalong the lines of the proof of Theorem 3 (Replae fλ by f̂D and f̂D by f̂L in (26) and (27)),one an prove a slightly stronger result.Theorem 4. With probability at least 1−C1(ε, δ, γ)M1− γ
1+ε , for any integers s and l satisfying(13) suh that (A1(s)) or (A2(s,l)) holds, we have, for any J0 of size s and for any α > 0,

∣

∣

∣||f̂D − f0||22 − ||f̂L − f0||22
∣

∣

∣ ≤ α

(

1 +
2µs,l

κs,l

)2 ||λ̂L
JC
0
||2ℓ1

s
+ 16s

(

1

α
+

1

κ2
s,l

)

||ηγ ||2ℓ∞where κs,l and µs,l are de�ned as in Proposition 1.To extend this theoretial result, numerial performanes of the Dantzig and Lasso estimateswill be ompared in Setion 5.2.5 Calibration and numerial experiments5.1 The alibration issueIn this setion, we onsider the problem of alibrating previous estimates. In partiular, we provethat the su�ient ondition γ > 1 is �almost� a neessary ondition sine we derive a speial andvery simple framework in whih Lasso and Dantzig estimates annot ahieve the optimal rateif γ < 1 (�almost� means that the ase γ = 1 remains an open question). Let us desribe thissimple framework. The ditionary Υ onsidered in this setion is the orthonormal Haar system:
Υ =

{

φjk : −1 ≤ j ≤ j0, 0 ≤ k < 2j
}

,with φ−10 = 1[0,1], 2j0+1 = n, and for 0 ≤ j ≤ j0, 0 ≤ k ≤ 2j − 1,
φjk = 2j/2

(

1[k/2j ,(k+0.5)/2j ] − 1[(k+0.5)/2j ,(k+1)/2j ]

)

.In this ase, M = n. In this setting, sine funtions of Υ are orthonormal, the Gram matrix Gis the identity. Thus, the Lasso and Dantzig estimates both orrespond to the soft thresholdingrule:
f̂D = f̂L =

M
∑

m=1

sign(β̂m)
(

|β̂m| − ηγ,m

)

1{|β̂m|>ηγ,m}ϕm.Now, our goal is to estimate f0 = φ−10 = 1[0,1] by using f̂D depending on γ and to showthe in�uene of this onstant. Unlike previous results stated in probability, we onsider theexpetation of the L2-risk:Theorem 5. On the one hand, if γ > 1, there exists a onstant C suh that
E||f̂D − f0||22 ≤ C log n

n
. (16)On the other hand, if γ < 1, there exist a onstant c and δ < 1 suh that

E||f̂D − f0||22 ≥ c

nδ
. (17)11
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Figure 1: Graphs of γ 7→ log2(Rn(γ)) for n = 2J with, from top to bottom, J = 4, 5, 6, . . . , 13This result shows that hoosing γ < 1 is a bad hoie in our setting. Indeed, in this ase, theLasso and Dantzig estimates annot estimate a very simple signal (f0 = 1[0,1]) at a onvenientrate of onvergene.A small simulation study is arried out to strengthen this theoretial asymptoti result.Performing our estimation proedure 100 times, we ompute the average risk Rn(γ) for severalvalues of the Dantzig onstant γ and several values of n. This omputation is summarized inFigure 1 whih displays the logarithm of Rn(γ) for n = 2J with, from top to bottom, J =
4, 5, 6, . . . , 13 on a grid of γ's around 1. To disuss our results, we denote by γmin(n) the best
γ: γmin(n) = argminγ>0Rn(γ). We note that 1/2 ≤ γmin(n) ≤ 1 for all values of n, with γmin(n)getting loser to 1 as n inreases. Taking γ too small strongly deteriorates the performane whilea value lose to 1 ensures a risk withing a fator 2 of the optimal risk. The assumption γ > 1giving a theoretial ontrol on the quadrati error is thus not too onservative. Following theseresults, we set γ = 1.01 in our numerial experiments in the next subsetion.5.2 Numerial experimentsIn this setion, we present our numerial experiments with the Dantzig density estimator andtheir results. We test our estimator with a olletion of 6 ditionaries, 4 densities desribedbelow and for 2 sample sizes. We ompare our proedure with the adaptive Lasso introdued inSetion 4 and with a non adaptive Dantzig estimator. We also onsider a two-step estimationproedure, proposed by Candès and Tao [13℄, whih improves the numerial results.The numerial sheme for a given ditionary Υ = (ϕm)m=1,...,M and a sample (Xi)i=1,...,n isthe following.1. Compute β̂m for all m,2. Compute σ̂2

m,3. Compute ηγ,m as de�ned in (5) by
ηγ,m =

√

2σ̃2
mγ log M

n
+

2||ϕm||∞γ log M

3n
,12



with
σ̃2

m = σ̂2
m + 2||ϕm||∞

√

2σ̂2
mγ log M

n
+

8||ϕm||2∞γ log M

nand γ = 1.01.4. Compute the oe�ients λ̂D,γ of the Dantzig estimate, λ̂D,γ = argminλ∈RM ||λ||ℓ1 suh that
λ satis�es the Dantzig onstraint (4)

∀m ∈ {1, . . . .M}, |(Gλ)m − β̂m| ≤ ηγ,mwith the homotopy-path-following method proposed by Asif and Romberg [2℄,5. Compute the Dantzig estimate f̂D,γ =
∑M

m=1 λ̂D,γ
m φm.Note that we have impliitly assumed that the Gram matrix G used in the de�nition of theDantzig onstraint has been preomputed.For the Lasso estimator, the Dantzig minimization of step 4 is replaed by the Lasso mini-mization (15)

λ̂L,γ = argminλ∈RM

{

1

2
R(λ) +

M
∑

m=1

ηγ,m|λm|
}

,whih is solved using the LARS algorithm. The non adaptive Dantzig estimate is obtained byreplaing σ̃2
m in step 3 by ‖f0‖∞. The two-step proedure of Candès and Tao adds a least-squarestep between step 4 and step 5. More preisely, let ĴD,γ be the support of the estimate λ̂D,γ .This de�nes a subset of the ditionary on whih the density is regressed

(

λ̂D+LS,γ
)

ĴD,γ
= G−1

ĴD,γ
(β̂m)ĴD,γwhere GĴD,γ is the submatrix of G orresponding to the subset hosen. The values of λ̂D+LS,γoutside ĴD,γ are set to 0 and f̂D+LS,γ is set aordingly.We desribe now the ditionaries we onsider. We fous numerially on densities de�ned onthe interval [0, 1] so we use ditionaries adapted to this setting. The �rst four are orthonormalsystems, whih are used as a benhmark, while the last two are �real� ditionaries. More preisely,our ditionaries are

• the Fourier basis with M = n + 1 elements (denoted �Fou�),
• the histogram olletion with the lassial number √n/2 ≤ M = 2j0 <

√
n of bins (denoted�Hist�),

• the Haar wavelet basis with maximal resolution n/2 < M = 2j1 < n and thus M = 2j1elements (denoted �Haar�),
• the more regular Daubehies 6 wavelet basis with maximal resolution n/2 ≤ M = 2j1 < nand thus M = 2j1 elements (denoted �Wav�),
• the ditionary made of the union of the Fourier basis and the histogram olletion and thusomprising M = n + 1 + 2j0 elements. (denoted �Mix�),
• the ditionary whih is the union of the Fourier basis, the histogram olletion and theHaar wavelets of resolution greater than 2j0 omprising M = n+1+2j1 elements (denoted�Mix2�). 13



The orthonormal families we have hosen are often used by pratitioners. Our ditionariesombine very di�erent orthonormal families, sine and osine with bins or Haar wavelets, whihensures a su�iently inoherent design.We test the estimators of the following 4 funtions shown in Figure 2 (with their Dantzig andDantzig+Least Square estimates with the �Mix2� ditionary):
• a very spiky density

f1(t) = .47 × (4t × 1t≤.5 + 4(1 − t) × 1t>.5) + .53 ×
(

75 × 1.5≤t≤.5+ 1
75

)

,

• a mix of Gaussian and Laplaian type densities
f2(t) = .45 ×

(

e−(t−.45)2/(2(.125)2)

∫ 1

0 e−(u−.45)2/(2(.125)2)du

)

+ .55 ×
(

e20|t−.67|
∫ 1

0 e20|u−.67|du

)

,

• a mix of uniform densities on subintervals
f3(t) = .25 ×

(

1

.14
1.33≤t≤.47

)

+ .75 ×
(

1

.16
1.64≤t≤.80

)

,

• a mix of a density easily desribed in the Fourier domain and a uniform density on asubinterval
f4(t) = .45 × (1 + .9 cos(2πt)) + .55 ×

(

1

.16
1.64≤t≤.80

)

.Boxplots of Figures 3 and 4 summarize our numerial experiments for n = 500 and n = 2000and 100 repetitions of the proedures. The left olumn deals with the omparison betweenDantzig and Lasso, the enter olumn shows the e�etiveness of our data driven onstraint andthe right olumn illustrates the improvement of the two-step method. As expeted, Dantzigand Lasso estimators are stritly equivalent when the ditionary is orthonormal and very loseotherwise. For both algorithms and most of the densities, the best solution appears to be the�Mix2� ditionary, exept for the density f1 where the Haar wavelets are better for n = 500.This shows that the ditionary approah yields an improvement over the lassial basis approah.One observes also that the �Mix� ditionary is better than the best of its onstituent, namely theFourier basis and the histogram family, whih orroborates our theoretial results. The adaptiveonstraints are muh tighter than their non adaptive ounterparts and yield to muh betternumerial results. Our last series of experiments shows the signi�ant improvement obtainedwith the least square step. As hinted by Candès and Tao [13℄, this an be explained by thebias ommon to ℓ1 methods whih is partially removed by this �nal least square adjustment.Studying diretly the performane of this estimator is a hallenging task.6 Proofs6.1 Proof of Theorem 1To prove the �rst part of Theorem 1, we �x m ∈ {1, . . . , M} and we set for any i ∈ {1, . . . , n},
Wi =

1

n
(ϕm(Xi) − β0,m)14
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Figure 2: The di�erent densities and their �Mix2� estimates. Densities are plotted in blue whiletheir estimates are plotted in blak. The full line orresponds to the adaptive Dantzig studiedin this paper while the dotted line orresponds to its least square variant.
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Figure 3: Boxplots for n = 500. Left olumn: Dantzig and Lasso estimates. Center olumn:Dantzig estimates assoiated with adaptive and non-adaptive onstraints. Right olumn: Ourestimate and the two-step estimate.
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Figure 4: Boxplots for n = 2000. Left olumn: Dantzig and Lasso estimates. Center olumn:Dantzig estimates assoiated with adaptive and non-adaptive onstraints. Right olumn: Ourestimate and the two-step estimate.
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that satis�es almost surely
|Wi| ≤

2||ϕm||∞
n

.Then, we apply Bernstein's Inequality (see [21℄ on pages 24 and 26) with the variables Wi and
−Wi: for any u > 0,

P



|β̂m − β0,m| ≥

√

2σ2
0,mu

n
+

2u||ϕm||∞
3n



 ≤ 2e−u. (18)Now, let us deompose σ̂2
m in two terms:

σ̂2
m =

1

2n(n − 1)

∑

i6=j

(ϕm(Xi) − ϕm(Xj))
2

=
1

2n

n
∑

i=1

(ϕm(Xi) − β0,m)2 +
1

2n

n
∑

j=1

(ϕm(Xj) − β0,m)2

− 2

n(n − 1)

n
∑

i=2

i−1
∑

j=1

(ϕm(Xi) − β0,m)(ϕm(Xj) − β0,m)

= sn − 2

n(n − 1)
unwith

sn =
1

n

n
∑

i=1

(ϕm(Xi) − β0,m)2 and un =

n
∑

i=2

i−1
∑

j=1

(ϕm(Xi) − β0,m)(ϕm(Xj) − β0,m). (19)Let us �rst fous on sn that is the main term of σ̂2
m by applying again Bernstein's Inequalitywith

Yi =
σ2

0,m − (ϕm(Xi) − β0,m)2

nwhih satis�es
Yi ≤

σ2
0,m

n
.One has that for any u > 0

P

(

σ2
0,m ≥ sn +

√
2vmu +

σ2
0,mu

3n

)

≤ e−uwith
vm =

1

n
E

(

[

σ2
0,m − (ϕm(Xi) − β0,m)2

]2
)

.But we have
vm =

1

n

(

σ4
0,m + E

[

(ϕm(Xi) − β0,m)4
]

− 2σ2
0,mE

[

(ϕm(Xi) − β0,m)2
])

=
1

n

(

E
[

(ϕm(Xi) − β0,m)4
]

− σ4
0,m

)

≤
σ2

0,m

n
(||ϕm||∞ + |β0,m|)2

≤
4σ2

0,m

n
||ϕm||2∞. 18



Finally, with for any u > 0

S(u) = 2
√

2σ0,m||ϕm||∞
√

u

n
+

σ2
0,mu

3n
,we have

P(σ2
0,m ≥ sn + S(u)) ≤ e−u. (20)The term un is a degenerate U-statistis that satis�es for any u > 0

P(|un| ≥ U(u)) ≤ 6e−u, (21)with for any u > 0

U(u) =
4

3
Au2 +

(

4
√

2 +
2

3

)

Bu
3
2 +

(

2D +
2

3
F

)

u + 2
√

2C
√

u,where A, B, C, D and F are onstants not depending on u that satisfy
A ≤ 4||ϕm||2∞,

B ≤ 2
√

n − 1||ϕm||2∞,

C ≤
√

n(n − 1)

2
σ2

0,m,

D ≤
√

n(n − 1)

2
σ2

0,m,and
F ≤ 2

√
2||ϕm||2∞

√

(n − 1) log(2n)(see [27℄). Then, we have for any u > 0,
2

n(n − 1)
U(u) ≤ 32

3

||ϕm||2∞
n(n − 1)

u2 +

(

16
√

2 +
8

3

) ||ϕm||2∞
n
√

n − 1
u

3
2

+

(

2
√

2
σ2

0,m
√

n(n − 1)
+

8
√

2

3

√

log(2n)||ϕm||2∞
n
√

n − 1

)

u +
4σ2

0,m
√

n(n − 1)

√
u.Now, we take u that satis�es

u = o(n) (22)and
√

log(2n) ≤
√

2u. (23)Therefore, for any ε1 > 0, we have for n large enough,
2

n(n − 1)
U(u) ≤ ε1σ

2
0,m +

(

16
√

2 + 8
) ||ϕm||2∞

n
√

n − 1
u

3
2 +

32

3

||ϕm||2∞
n(n − 1)

u2.So, for n large enough,
2

n(n − 1)
U(u) ≤ ε1σ

2
0,m + C1||ϕm||2∞

(u

n

)
3
2

, (24)19



where C1 = 16
√

2 + 19. Using Inequalities (20) and (21), we obtain
P

(

σ2
0,m ≥ σ̂2

m + S(u) +
2

n(n − 1)
U(u)

)

= P

(

σ2
0,m ≥ sn − 2

n(n − 1)
un + S(u) +

2

n(n − 1)
U(u)

)

≤ P
(

σ2
0,m ≥ sn + S(u)

)

+ P (un ≥ U(u))

≤ 7e−u.Now, using (24), for any 0 < ε2 < 1, we have for n large enough,
σ̂2

m + S(u) +
2

n(n − 1)
U(u) = σ̂2

m + 2
√

2σ0,m||ϕm||∞
√

u

n
+

σ2
0,mu

3n
+

2

n(n − 1)
U(u)

≤ σ̂2
m + 2

√
2σ0,m||ϕm||∞

√

u

n
+

σ2
0,mu

3n
+ ε1σ

2
0,m + C1||ϕm||2∞

(u

n

)
3
2

≤ σ̂2
m + 2

√
2σ0,m||ϕm||∞

√

u

n
+ ε2σ

2
0,m + C1||ϕm||2∞

(u

n

)
3
2

.Therefore,
P

(

(1 − ε2)σ
2
0,m ≥ σ̂2

m + 2
√

2σ0,m||ϕm||∞
√

u

n
+ C1||ϕm||2∞

(u

n

)
3
2

)

≤ 7e−u. (25)Now, let us set
a = 1 − ε2, b =

√
2||ϕm||∞

√

u

n
, c = σ̂2

m + C1||ϕm||2∞
(u

n

)
3
2and onsider the polynomial

P (x) = ax2 − 2bx − c,with roots b±
√

b2+ac
a . So, we have

P (σ0,m) ≥ 0 ⇐⇒ σ0,m ≥ b +
√

b2 + ac

a

⇐⇒ σ2
0,m ≥ c

a
+

2b2

a2
+

2b
√

b2 + ac

a2
.It yields

P

(

σ2
0,m ≥ c

a
+

2b2

a2
+

2b
√

b2 + ac

a2

)

≤ 7e−u,so,
P

(

σ2
0,m ≥ c

a
+

4b2

a2
+

2b
√

c

a
√

a

)

≤ 7e−u,whih means that for any 0 < ε3 < 1, we have for n large enough,
P

(

σ2
0,m ≥ (1 + ε3)

(

σ̂2
m + C1||ϕm||2∞

(u

n

)
3
2

+ 8||ϕm||2∞
u

n
+ 2

√
2||ϕm||∞

√

u

n

√

σ̂2
m + C1||ϕm||2∞

(u

n

)
3
2

))

≤ 7e−u.20



Finally, we an laim that for any 0 < ε4 < 1, we have for n large enough,
P

(

σ2
0,m ≥ (1 + ε4)

(

σ̂2
m + 8||ϕm||2∞

u

n
+ 2||ϕm||∞

√

2σ̂2
m

u

n

))

≤ 7e−u.Now, we take u = γ log M . Under Assumptions of Theorem 1, Conditions (22) and (23) aresatis�ed. The previous onentration inequality means that
P
(

σ2
0,m ≥ (1 + ε4)σ̃

2
m

)

≤ 7M−γ.Now, using (18), we have for n large enough,
P

(

|β0,m − β̂m| ≥ ηγ,m

)

= P

(

|β0,m − β̂m| ≥
√

2σ̃2
mγ log M

n
+

2||ϕm||∞γ log M

3n
, σ2

0,m < (1 + ε4)σ̃
2
m

)

+ P

(

|β0,m − β̂m| ≥ ηγ,m, σ2
0,m ≥ (1 + ε4)σ̃

2
m

)

≤ P



|β0,m − β̂m| ≥

√

2σ2
0,mγ(1 + ε4)−1 log M

n
+

2||ϕm||∞γ(1 + ε4)
−1 log M

3n





+ P
(

σ2
0,m ≥ (1 + ε4)σ̃

2
)

≤ 2M−γ(1+ε4)
−1

+ 7M−γ .Then, the �rst part of Theorem 1 is proved: for any ε > 0,
P

(

|β0,m − β̂m| ≥ ηγ,m

)

≤ C(ε, δ, γ)M− γ
1+ε ,where C(ε, δ, γ) is a onstant that depends on ε, δ and γ.For the seond part of the result, we apply again Bernstein's Inequality with

Zi =
(ϕm(Xi) − β0,m)2 − σ2

0,m

nwhih satis�es
Zi ≤

(ϕm(Xi) − β0,m)2

n
≤ 4||ϕm||2∞

n
.One has that for any u > 0

P

(

sn ≥ σ2
0,m +

√
2vmu +

4||ϕm||2∞u

3n

)

≤ e−uwith
vm =

1

n
E

(

[

σ2
0,m − (ϕm(Xi) − β0,m)2

]2
)

≤
4σ2

0,m

n
||ϕm||2∞.So, for any u > 0,

P

(

sn ≥ σ2
0,m + 2

√
2σ0,m||ϕm||∞

√

u

n
+

4||ϕm||2∞u

3n

)

≤ e−u.Now, for any ε5 > 0, for any u > 0,
P

(

sn ≥ (1 + ε5)σ
2
0,m +

||ϕm||2∞u

n

(

4

3
+

2

ε5

))

≤ e−u.21



Using (21), with
S̃(u) =

||ϕm||2∞u

n

(

4

3
+

2

ε5

)

,

P

(

σ̂2
m ≥ (1 + ε5)σ

2
0,m + S̃(u) +

2

n(n − 1)
U(u)

)

= P

(

sn − 2

n(n − 1)
un ≥ (1 + ε5)σ

2
0,m + S̃(u) +

2

n(n − 1)
U(u)

)

≤ P

(

sn ≥ (1 + ε5)σ
2
0,m + S̃(u)

)

+ P (−un ≥ U(u))

≤ e−u + 6e−u = 7e−u.Using (24),
P

(

σ̂2
m ≥ (1 + ε1 + ε5)σ

2
0,m + S̃(u) + C1||ϕm||2∞

(u

n

)
3
2

)

≤ 7e−u.Sine
ηγ,m =

√

2σ̃2
mγ log M

n
+

2||ϕm||∞γ log M

3n
,with

σ̃2
m = σ̂2

m + 2||ϕm||∞
√

2σ̂2
mγ log M

n
+

8||ϕm||2∞γ log M

n
,we have for any ε6 > 0,

η2
γ,m ≤ (1 + ε6)

(

2σ̃2
mγ log M

n

)

+ (1 + ε−1
6 )

(

4||ϕm||2∞(γ log M)2

9n2

)

≤ (1 + ε6)

(

2γ log M

n

)

(

σ̂2
m + 2||ϕm||∞

√

2σ̂2
mγ log M

n
+

8||ϕm||2∞γ log M

n

)

+
4

9
(1 + ε−1

6 )

( ||ϕm||∞γ log M

n

)2

≤ (1 + ε6)
2σ̂2

m

(

2γ log M

n

)

+ 4ε−1
6 (1 + ε6)

( ||ϕm||∞γ log M

n

)2

+ 16(1 + ε6)

( ||ϕm||∞γ log M

n

)2

+
4(1 + ε−1

6 )

9

( ||ϕm||∞γ log M

n

)2

.Finally, with u = γ log M , with probability larger than 1 − 7M−γ,
σ̂2

m < (1 + ε1 + ε5)σ
2
0,m + S̃(γ log M) + C1||ϕm||2∞

(

γ log M

n

)
3
2

,and
η2

γ,m < (1 + ε6)
2(1 + ε5 + ε1)σ

2
0,m

(

2γ log M

n

)

+ (1 + ε6)
2

(

γ log M

n

)2

||ϕm||2∞
(

8

3
+

4

ε5

)

+ 2C1(1 + ε6)
2||ϕm||2∞

(

γ log M

n

)
5
2

+ ||ϕm||2∞
(

γ log M

n

)2(

4ε−1
6 (1 + ε6) + 16(1 + ε6) +

4(1 + ε−1
6 )

9

)

.22



Finally, with ε6 = 1, ε1 = ε5 = 1
2 , for n large enough,

P

(

ηγ,m ≥ 4σ0,m

√

γ log M

n
+

10||ϕm||∞γ log M

n

)

≤ 7M−γ .Note that √32/3 + 32 + 8 + 32 + 8/9 = 9.1409.For the last part, starting from (25) with u = γ log M and ε2 = 1
7 , we have for n large enoughand with probability larger than 1 − 7M−γ ,

6

7
σ2

0,m ≤ σ̂2
m + 2

√
2σ0,m||ϕm||∞

√

γ log M

n
+ C1||ϕm||2∞

(

γ log M

n

)
3
2

≤ σ̂2
m +

2

7
σ2

0,m + 7||ϕm||2∞
γ log M

n
+ C1||ϕm||2∞

(

γ log M

n

)
3
2

.So, for n large enough,
4

7
σ2

0,m ≤ σ̂2
m + 8||ϕm||2∞

γ log M

n
≤ σ̃2

mand
ηγ,m > σ0,m

√

8γ log M

7n
+

2||ϕm||∞γ log M

3n
.6.2 Proof of Theorem 2Let λ = (λm)m=1,...,M and set ∆ = λ − λ̂D. We have

||fλ − f0||22 = ||f̂D − f0||22 + ||fλ − f̂D||22 + 2

∫

(f̂D(x) − f0(x))(fλ(x) − f̂D(x))dx. (26)We have ||fλ − f̂D||22 = ||f∆||22. Moreover, with probability at least 1−C1(ε, δ, γ)M1− γ
1+ε , we have

∣

∣

∣

∣

∫

(f̂D(x) − f0(x))(fλ(x) − f̂D(x))dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M
∑

m=1

(λm − λ̂D
m)
[

(Gλ̂D)m − β0,m

]

∣

∣

∣

∣

∣

(27)
≤||∆||ℓ12||ηγ ||ℓ∞ ,where the last line is a onsequene of the de�nition of the Dantzig estimator and of Theorem1. Then, we have

||f̂D − f0||22 ≤ ||fλ − f0||22 + 4||ηγ ||ℓ∞ ||∆||ℓ1 − ||f∆||22.We use then the following Lemma:Lemma 1. Let J ⊂ {1, . . . , M}. For any λ ∈ RM

||∆JC ||ℓ1 ≤ ||∆J ||ℓ1 + 2||λJC ||ℓ1 +
(

||λ̂D||ℓ1 − ||λ||ℓ1
)

+
,where ∆ = λ − λ̂D.Proof.[Proof of Lemma 1℄ This lemma is based on the fat that

||λ̂D||ℓ1 ≤ ||λ||ℓ1 +
(

||λ̂D||ℓ1 − ||λ||ℓ1
)

+
,23



whih implies that
||∆J − λJ ||ℓ1 + ||∆JC − λJC ||ℓ1 ≤ ||λJ ||ℓ1 + ||λJC ||ℓ1 +

(

||λ̂D||ℓ1 − ||λ||ℓ1
)

+
,and thus

||λJ ||ℓ1 − ||∆J ||ℓ1 + ||∆JC ||ℓ1 − ||λJC ||ℓ1 ≤ ||λJ ||ℓ1 + ||λJC ||ℓ1 +
(

||λ̂D||ℓ1 − ||λ||ℓ1
)

+
.

�Using the previous lemma, we have:
(

||∆JC
0
||ℓ1 − ||∆J0 ||ℓ1

)

+
≤ 2||λJC

0
||ℓ1 +

(

||λ̂D||ℓ1 − ||λ||ℓ1
)

+
.We de�ne Λ(λ, Jc

0) = ||λJC
0
||ℓ1 +

(||λ̂D||ℓ1−||λ||ℓ1)+

2 (note that Λ(λ, Jc
0) = ||λJC

0
||ℓ1 as soon as λsatis�es the Dantzig ondition). We obtain then

||f∆||2 ≥ κJ0 ||∆J0 ||ℓ2 −
µJ0
√

|J0|

(

||∆JC
0
||ℓ1 − ||∆J0 ||ℓ1

)

+

≥ κJ0 ||∆J0 ||ℓ2 − 2
µJ0
√

|J0|
Λ(λ, Jc

0)and thus
||∆J0 ||ℓ2 ≤ 1

κJ0

||f∆||2 + 2
µJ0

√

|J0|κJ0

Λ(λ, Jc
0 ).We dedue thus

||∆||ℓ1 ≤ 2||∆J0 ||ℓ1 + 2Λ(λ, Jc
0)

≤ 2
√

|J0|||∆J0 ||ℓ2 + 2Λ(λ, Jc
0)

≤ 2
√

|J0|
κJ0

||f∆||2 + 2Λ(λ, Jc
0)

(

1 +
2µJ0

κJ0

)and then sine
4||ηγ ||ℓ∞

2
√

|J0|
κJ0

||f∆||2 ≤
16|J0|||ηγ ||2ℓ∞

κ2
J0

+ ||f∆||22we have
4||ηγ ||ℓ∞ ||∆||ℓ1 − ||f∆||22 ≤

16|J0|||ηγ ||2ℓ∞
κ2

J0

+ 8||ηγ ||ℓ∞Λ(λ, Jc
0)

(

1 +
2µJ0

κJ0

)

≤ 16|J0|
(

1

α
+

1

κ2
J0

)

||ηγ ||2ℓ∞ + α
Λ(λ, Jc

0)2

|J0|

(

1 +
2µJ0

κJ0

)2

,whih is the result of the theorem.
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6.3 Consequenes of Assumptions 1 and 2To prove Proposition 1, we establish Lemmas 2 and 3. In the sequel, we onsider two integers
s and l suh that 1 ≤ s ≤ M/2, l ≥ s and s + l ≤ M . We �rst reall Assumptions 1 and2. Assumption 1 is stated in a more general form, whih allows to unify the statement of thesubsequent results.

• Assumption 1
φmin(s + l) > θl,s+l.

• Assumption 2
lφmin(s + l) > sφmax(l).In the sequel, we assume that Assumptions 1 and 2 are both true.Lemma 2. Let J0 ⊂ {1, . . . , M} with ardinality |J0| = s and ∆ ∈ RM . We denote by J1 thesubset of {1, . . . , M} orresponding to the l largest oordinates of ∆ (in absolute value) outside

J0 and we set J01 = J0 ∪ J1. We denote by PJ01 the projetor on the linear spae spanned by
(ϕm)m∈J01 . We have:

||PJ01f∆||2 ≥
√

φmin(s + l)||∆J01 ||ℓ2 −
min (µ1,s,l, µ2,s,l)√

s
||∆JC

0
||ℓ1 ,with

µ1,s,l =
θl,s+l

√

φmin(s + l)

√

s

l
and µ2,s,l =

√

φmax(l)

√

s

l
.Proof. For k > 1, we denote by Jk the indies orresponding to the oordinates of ∆ outside

J0 whose absolute values are between the ((k − 1) × l + 1)�th and the (k × l)�th largest ones(in absolute value). Note that this de�nition is onsistent with the de�nition of J1. Using thisnotation, we have
||PJ01f∆||2 ≥ ||PJ01f∆J01

||2 − ||
∑

k≥2

PJ01f∆Jk
||2

≥ ||f∆J01
||2 −

∑

k≥2

||PJ01f∆Jk
||2.Sine J01 has s + l elements, we have

||f∆J01
||2 ≥

√

φmin(s + l)||∆J01 ||ℓ2 .Note that PJ01f∆Jk
= fCJ01

for some vetor C ∈ RM . Sine,
〈PJ01f∆Jk

− f∆Jk
, PJ01f∆Jk

〉 = 0,one obtains that
||PJ01f∆Jk

||22 = 〈f∆Jk
, fCJ01

〉and thus
||PJ01f∆Jk

||22 ≤ θl,s+l||∆Jk
||ℓ2 ||CJ01 ||ℓ2 ≤ θl,s+l||∆Jk

||ℓ2
||fCJ01

||2
√

φmin(s + l)

≤ θl,s+l
√

φmin(s + l)
||∆Jk

||ℓ2 ||PJ01f∆Jk
||2.25



This implies that
||PJ01f∆Jk

||2 ≤ θl,s+l
√

φmin(s + l)
||∆Jk

||ℓ2 = µ1,s,l

√

l

s
||∆Jk

||ℓ2 .Moreover, using that Jk has less than l elements, we obtain that
||PJ01f∆Jk

||2 ≤ ||f∆Jk
||2 ≤

√

φmax(l)||∆Jk
||ℓ2 = µ2,s,l

√

l

s
||∆Jk

||ℓ2 .Now using that ||∆Jk+1
||ℓ2 ≤ ||∆Jk

||ℓ1/
√

l, we obtain
∑

k≥2

||PJ01f∆Jk
||2 ≤ min (µ1,s,l, µ2,s,l)√

s
||∆JC

0
||ℓ1and �nally

||PJ01f∆||2 ≥
√

φmin(s + l)||∆J01 ||ℓ2 −
min (µ1,s,l, µ2,s,l)√

s
||∆JC

0
||ℓ1 .

�Lemma 3. We use the same notations as in Lemma 2. For c ≥ 0, assume that
||∆JC

0
||ℓ1 ≤ ||∆J0 ||ℓ1 + c. (28)Then we have

||PJ01f∆||2 ≥ max (κ1,s,l, κ2,s,l) ||∆J01 ||ℓ2 −
min (µ1,s,l, µ2,s,l)√

s
c,with

κ1,s,l =
√

φmin(s + l)

(

1 − θl,s+l

φmin(s + l)

√

s

l

) and κ2,s,l =
√

φmin(s + l)

(

1 −
√

sφmax(l)

lφmin(s + l)

)

.Proof. Using Lemma 2 and (28), we obtain that
||PJ01f∆||2 ≥

√

φmin(s + l)||∆J01 ||ℓ2 −
min (µ1,s,l, µ2,s,l)√

s
(||∆J0 ||ℓ1 + c).Using ||∆J0 ||ℓ1 ≤ √

s||∆J0 ||ℓ2 , we dedue that
||PJ01f∆||2 ≥

(

√

φmin(s + l) − min (µ1,s,l, µ2,s,l)
)

||∆J01 ||ℓ2 − c
min (µ1,s,l, µ2,s,l)√

s

≥ max (κ1,s,l, κ2,s,l) ||∆J01 ||ℓ2 − c
min (µ1,s,l, µ2,s,l)√

s
.

�26



6.4 Proof of Theorem 5The ditionary onsidered here is the Haar ditionary (φjk)j,k and is double-indexed. As aonsequene, in the following, the quantity β0,jk, β̂jk, σ2
0,jk ηγ,jk, σ̃2

jk and σ̂2
jk are de�ned as in(1), (2), (3), (5), (6) and (7) where ϕm is replaed by φjk. Note that, sine f0 = 1[0,1], we have,for j 6= −1, β0,jk = 0 and for any j, σ2

0,jk = 1 if k ∈ {0, . . . , 2j − 1} and 0 otherwise.The proof of (16) is provided by using the orale inequality satis�ed by hard thresholdinggiven by Theorem 1 of [27℄ and the rough ontrol of the soft thresholding estimate by the hardone: ∣

∣

∣|β̂jk| − ηγ,jk

∣

∣

∣ 1{|β̂jk|≥ηγ,jk} ≤ 2|β̂jk|1{|β̂jk|≥ηγ,jk}.An alternative is diretly obtained by adapting the orale results derived for soft thresholdingrules in the regression model onsidered by Donoho and Johnstone [16℄.To prove (17), we establish the following lemma.Lemma 4. Let γ < 1. We onsider j ∈ N suh that
n

(log n)α
≤ 2j <

2n

(log n)α
, (29)for some α > 1. Then for all ε > 0 suh that γ + 2ε < 1,

2j−1
∑

k=0

E

(

β̂2
jk1|β̂jk|≥ηγ,jk

)

≥ 2γ(1 + ε)e−2

π
(log n)1−2αn−(γ+2ε)(1 + on(1)).Then, we use the following inequality. For j that satis�es (29), we have for r > 0,

E(||f̂D − f0||22) ≥
2j−1
∑

k=0

E

(

(

|β̂jk| − ηγ,jk

)2

1|β̂jk|≥ηγ,jk

)

≥
2j−1
∑

k=0

E

(

(

|β̂jk| − ηγ,jk

)2

1|β̂jk|≥(1+r)ηγ,jk

)

≥
(

r

r + 1

)2 2j−1
∑

k=0

E

(

β̂2
jk1|β̂jk|≥(1+r)ηγ,jk

)

≥
(

r

r + 1

)2 2j−1
∑

k=0

E

(

β̂2
jk1|β̂jk|≥ηjk,(1+r)2γ

)

.So, if r and ε are suh that (1+ r)2γ +2ε < 1, then applying Lemma 4, Inequality (17) is provedfor any δ suh that (1 + r)2γ + 2ε < δ < 1.Proof. [Proof of Lemma 4℄ Let j that satis�es (29) and 0 ≤ k ≤ 2j − 1. We have
σ̃2

jk = σ̂2
jk + 2||φj,k||∞

√

2γσ̂2
jk

logn

n
+ 8γ||φj,k||2∞

logn

n
.So, for any 0 < ε < 1−γ

2 < 1
2 ,

σ̃2
jk ≤ (1 + ε)σ̂2

jk + 2γ||φj,k||2∞
logn

n

(

ε−1 + 4
)
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Now,
ηγ,jk =

√

2γσ̃2
jk

logn

n
+

2||φj,k||∞γlogn

3n

≤
√

2γ
logn

n

(

(1 + ε)σ̂2
jk + 2γ||φj,k||2∞

logn

n
(ε−1 + 4)

)

+
2||φj,k||∞γlogn

3n

≤
√

2γ(1 + ε)σ̂2
jk

logn

n
+

2||φj,k||∞γlogn

n

(

1

3
+
√

4 + ε−1

)

.Furthermore, we have
σ̂2

jk = snjk − 2

n(n − 1)
unjk,where snjk and unjk are de�ned as in (19) with ϕm replaed by φjk. This implies that

ηγ,jk ≤
√

2γ(1 + ε)
logn

n
snjk+

√

2γ(1 + ε)
logn

n
× 2

n(n − 1)
|unjk|+

2||φj,k||∞γlogn

n

(

1

3
+
√

4 + ε−1

)

.Using (21), with probability larger than 1 − 6n−2, we have
|unjk| ≤ U(2logn),and, sine σ2

0,jk = 1

2

n(n − 1)
U(2logn) ≤ c1

n

√

log n +
c2

n
log n + c3||φj,k||2∞

(

log n

n

)
3
2

+ c4||φj,k||2∞
(

log n

n

)2

≤ C1
log n

n
+ C2||φj,k||2∞

(

log n

n

)
3
2

,where c1, c2, c3, c4, C1 and C2 are universal onstants. Finally, with probability larger than
1 − 6n−2, we obtain that
√

2γ(1 + ε)
logn

n
× 2

n(n − 1)
|unjk| ≤

√

2γ(1 + ε)C1
logn

n
+
√

2γ(1 + ε)C2||φj,k||∞
(

logn

n

)
5
4

.So, sine γ < 1, there exists w(ε), only depending on ε suh that with probability larger than
1 − 6n−2,

ηγ,jk ≤
√

2γ(1 + ε)
logn

n
snjk + w(ε)||φjk ||∞

logn

n
.We set

η̃γ,jk =

√

2γ(1 + ε)snjk
log n

n
+ w(ε)

2
j
2 log n

nso ηγ,jk ≤ η̃γ,jk. Then, we have
snjk =

1

n

n
∑

i=1

(φjk(Xi) − β0,jk)
2

=
2j

n

n
∑

i=1

(

1Xi∈[k2−j ,(k+0.5)2−j [ − 1Xi∈[(k+0.5)2−j ,(k+1)2−j [

)2

=
2j

n

(

N+
jk + N−

jk

)
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with
N+

jk =
n
∑

i=1

1Xi∈[k2−j ,(k+0.5)2−j [, N−
jk =

n
∑

i=1

1Xi∈[(k+0.5)2−j ,(k+1)2−j [.We onsider j suh that
n

(log n)α
≤ 2j <

2n

(log n)α
, α > 1.In partiular, we have

(log n)α

2
< n2−j ≤ (log n)α.Now, we an write

β̂jk =
1

n

n
∑

i=1

φjk(Xi) =
2

j
2

n
(N+

jk − N−
jk),that implies that

2j−1
∑

k=0

E

(

β̂2
jk1|β̂jk|≥ηγ,jk

)

≥
2j−1
∑

k=0

E

(

β̂2
jk1|β̂jk|≥η̃γ,jk

1|unjk|≤U(2logn)

)

≥
2j−1
∑

k=0

2j

n2
E

(

(N+
jk − N−

jk)21
|β̂jk|≥

√
2γ(1+ε)snjk

log n
n +w(ε) 2j/2 log n

n

1|unjk|≤U(2logn)

)

.

≥
2j−1
∑

k=0

2j

n2
E

(

(N+
jk − N−

jk)21
2

j
2

n |N+
jk−N−

jk|≥
q

2γ(1+ε) 2j

n (N+
jk+N−

jk)
log n

n +w(ε) 2j/2 log n
n

1|unjk|≤U(2logn)

)

≥
2j−1
∑

k=0

2j

n2
E

(

(N+
jk − N−

jk)21|N+
jk

−N−

jk
|≥

q

2γ(1+ε)(N+
jk

+N−

jk) log n+w(ε) log n
1|unjk|≤U(2logn)

)

≥ 22j

n2
E

(

(N+
j1 − N−

j1)
2
1|N+

j1−N−

j1|≥
q

2γ(1+ε)(N+
j1+N−

j1) log n+w(ε) log n
1|unjk|≤U(2logn)

)

.Now, we onsider a bounded sequene (wn)n suh that for any n, wn ≥ w(ε) and suh that √
vnj

2is an integer with
vnj =

(

√

4γ(1 + ε)µ̃nj log(n) + wn log(n)

)2and µ̃nj is the largest integer smaller or equal to n2−j−1. We have
vnj ∼ 4γ(1 + ε)µ̃nj log nsine

(log n)α

4
− 1 < n2−j−1 − 1 < µ̃nj ≤ n2−j−1 ≤ (log n)α

2
.Now, set

lnj = µ̃nj +
1

2

√
vnj , mnj = µ̃nj −

1

2

√
vnj ,29



that are positive for n large enough. If N+
j1 = lnj and N−

j1 = mnj then we have N+
j1−N−

j1 =
√

vnj .Finally, we obtain that
2j−1
∑

k=0

E

(

β̂2
jk1|β̂jk|≥ηγ,jk

)

≥ 22j

n2
vnjP

(

N+
j1 = lnj , N−

j1 = mnj , |unjk| ≤ U(2logn)
)

≥ vnj(log n)−2α
[

P
(

N+
j1 = lnj , N−

j1 = mnj

)

− P (|unjk| > U(2logn))
]

≥ vnj(log n)−2α

[

n!

lnj !mnj !(n − lnj − mnj)!
p

lnj+mnj

j (1 − 2pj)
n−(lnj+mnj) − 6

n2

]

≥ vnj(log n)−2α ×
[

n!

lnj!mnj !(n − 2µ̃nj)!
p
2µ̃nj

j (1 − 2pj)
n−2µ̃nj − 6

n2

]

, (30)where
pj =

∫

1[2−j,(1+0.5)2−j [(x)f0(x)dx =

∫

1[(1+0.5)2−j ,2−j+1[(x)f0(x)dx = 2−j−1.Now, let us study eah term of (30). We have
p
2µ̃nj

j = exp (2µ̃nj log(pj))

= exp
(

2µ̃nj log(2−j−1)
)

,

(1 − 2pj)
n−2µ̃nj = exp ((n − 2µ̃nj) log(1 − 2pj))

= exp
(

−(n − 2µ̃nj)2
−j + on(1)

)

= exp
(

−n2−j
)

(1 + on(1)),and
(n − 2µ̃nj)

n−2µ̃nj = exp ((n − 2µ̃nj) log (n − 2µ̃nj))

= exp

(

(n − 2µ̃nj)

(

log n + log

(

1 − 2µ̃nj

n

)))

= exp

(

(n − 2µ̃nj) log n − 2µ̃nj (n − 2µ̃nj)

n

)

(1 + on(1))

= exp (n log n − 2µ̃nj − 2µ̃nj log n) (1 + on(1)).Then, using the Stirling relation, n! = nne−n
√

2πn(1 + on(1)), we dedue that
n!

(n − 2µ̃nj)!
p
2µ̃nj

j (1 − 2pj)
n−2µ̃nj =

en−2µ̃nj

en
× nn

(n − 2µ̃nj)n−2µ̃nj
× p

2µ̃nj

j (1 − 2pj)
n−2µ̃nj × (1 + on(1))

= exp (−2µ̃nj) ×
exp (n logn)

(n − 2µ̃nj)n−2µ̃nj
× p

2µ̃nj

j (1 − 2pj)
n−2µ̃nj × (1 + on(1))

= exp (−2µ̃nj) ×
exp

(

n logn + 2µ̃nj log(2−j−1) − n2−j
)

exp (n log n − 2µ̃nj − 2µ̃nj log n)
(1 + on(1))

= exp
(

2µ̃nj log n + 2µ̃nj log(2−j−1) − n2−j
)

(1 + on(1)).30



It remains to evaluate lnj ! × mnj!:
lnj ! × mnj ! =

(

lnj

e

)lnj (mnj

e

)mnj √

2πlnj

√

2πmnj(1 + on(1))

= exp (lnj log lnj + mnj log mnj − 2µ̃nj) × 2πµ̃nj(1 + on(1)).If we set
xnj =

√
vnj

2µ̃nj
= on(1),then

lnj = µ̃nj +

√
vnj

2
= µ̃nj(1 + xnj),

mnj = µ̃nj −
√

vnj

2
= µ̃nj(1 − xnj),and using that

(1 + xnj) log(1 + xnj) = (1 + xnj)

(

xnj −
x2

nj

2
+

x3
nj

3
+ O(x4

nj)

)

= xnj −
x2

nj

2
+

x3
nj

3
+ x2

nj −
x3

nj

2
+ O(x4

nj)

= xnj +
x2

nj

2
−

x3
nj

6
+ O(x4

nj),we obtain that
lnj log lnj = µ̃nj(1 + xnj) log (µ̃nj(1 + xnj))

= µ̃nj(1 + xnj) log(1 + xnj) + µ̃nj(1 + xnj) log (µ̃nj)

= µ̃nj

(

xnj +
x2

nj

2
−

x3
nj

6
+ O(x4

nj)

)

+ µ̃nj(1 + xnj) log (µ̃nj) .Similarly, we obtain that
mnj log mnj = µ̃nj

(

−xnj +
x2

nj

2
+

x3
nj

6
+ O(x4

nj)

)

+ µ̃nj(1 − xnj) log (µ̃nj) ,that implies that
lnj log lnj + mnj log mnj = µ̃nj

(

x2
nj + O(x4

nj)
)

+ 2µ̃nj log (µ̃nj)

≤ µ̃njx
2
nj + 2µ̃nj log(n2−j−1) + O(µ̃njx

4
nj).Sine

µ̃njx
2
nj =

vnj

4µ̃nj
∼ γ(1 + ε) logn,we have, for n large enough,

µ̃njx
2
nj + O(µ̃njx

4
nj) ≤ (γ + 2ε) lognand

lnj log lnj + mnj log mnj ≤ (γ + 2ε) logn + 2µ̃nj log(n2−j−1).31



Finally, we have
lnj ! × mnj ! = exp (lnj log lnj + mnj log mnj − 2µ̃nj) × 2πµ̃nj(1 + on(1))

≤ exp
(

(γ + 2ε) log n + 2µ̃nj log(n2−j−1) − 2µ̃nj

)

× 2πµ̃nj(1 + on(1)).Sine 0 < ε < 1−γ
2 < 1

2 , we onlude that there exists δ < 1 suh that
2j−1
∑

k=0

E

(

β̂2
jk1|β̂jk|≥ηγ,jk

)

≥ vnj(log n)−2α

[

exp
(

2µ̃nj log n + 2µ̃nj log(2−j−1) − n2−j
)

exp ((γ + 2ε) log n + 2µ̃nj log(n2−j−1) − 2µ̃nj) × 2πµ̃nj
− 6

n2

]

(1 + on(1))

≥ vnj(log n)−2α

2πµ̃nj

[

exp (−(γ + 2ε) log n − 2) − 6

n2

]

(1 + on(1))

≥ 2γ(1 + ε)e−2

π
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