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Abstract

This paper deals with the classical problem of density estimation on the real line. Most of the existing

papers devoted to minimax properties assume that the support of the underlying density is bounded and

known. But this assumption may be very difficult to handle in practice. In this work, we show that, exactly

as a curse of dimensionality exists when the data lie inR
d, there exists a curse of support as well when

the support of the density is infinite. As for the dimensionality problem where the rates of convergence

deteriorate when the dimension grows, the minimax rates of convergence may deteriorate as well when

the support becomes infinite. This problem is not purely theoretical since the simulations show that the

support-dependent methods are really affected in practice by the size of the density support, or by the

weight of the density tail. We propose a method based on a biorthogonal wavelet thresholding rule that is

adaptive with respect to the nature of the support and the regularity of the signal, but that is also robust in

practice to this curse of support. The threshold, that is proposed here, is very accurately calibrated so that

the gap between optimal theoretical and practical tuning parameters is almost filled.
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1. Introduction

This paper deals with the classical problem of density estimation for unidimensional data. Our aim is

to provide an adaptive method which requires as few assumptions as possible on the underlying density

in order to apply it in an exploratory way. In particular, we do not want to have any assumption on the

density support. Moreover this method should be quite easy to implement and should have good theoretical

performance as well.

Density estimation is a task that lies at the core of many datapreprocessing. From this point of view, no

assumption should be made on the underlying function to estimate. At least in a first approach, histograms

or kernel methods are often used. These popular linear estimators do not require any assumption on the

support and have good theoretical performance. The main problem is to choose the bandwidth, which is

usually performed by cross-validation (see the fundamental paper by Rudemo (1982)) or by other data-

driven methods (see Silverman (1986)). However, most of thetime, the bandwidth is selected uniformly in
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space, which suffers several drawbacks due to the lack of spatial adaptivity.To improve this point, Sain and

Scott (1996) have proposed a kernel procedure which makes the choice of the bandwidth more local, this

procedure being still based on intensive cross-validation. It is worth noting that these kernel methods may

have a high computational cost, are often based on asymptotic arguments and do not provide theoretical

guarantees from the adaptive minimax point of view.

One possible adaptive minimax approach is to consider modelselection. Following Akaike’s criterion

for histograms, Castellan (2000) has derived adaptive minimax procedures for density estimation (see Mas-

sart (2007) for detailed proofs and Birgé and Rozenholc (2006) for a practical point of view). To remedy

the lack of smoothness of histograms, piecewise polynomialestimates can also be used (see for instance

Castellan (2003), Willett and Nowak (2007) or Kooet al. (1999) for the spline basis). It is worth em-

phasizing that, basically, the necessary input of model selection methods is the support of the underlying

density, classically assumed to be [0, 1]. In practice, the data are usually rescaled by the smallest and largest

observations before performing any of the previous algorithms. This preprocessing has not been studied

theoretically. In particular, what happens if the density is heavy-tailed? Note thatℓ1-penalty methodologies

can also be used, providing oracle inequalities without anysupport assumption (see for instance Bertinet

al. (2010)), but minimax properties have not been investigatedfor such estimators.

Now let us turn to wavelet thresholding. Donohoet al. (1996) have first provided theoretical adaptive

minimax results in the density setting. This paper is a theoretical benchmark but their threshold depends

on the extraknowledge of the infinite norm of the underlying density. In practice, even if this quantity is

known, this choice is often too conservative. From a computational point of view, the DWT algorithm

combined with a keep or kill rule on each coefficient makes these methods as one of the easiest adaptive

methods to implement, once the threshold is known. Here liesthe fundamental problem: after rescaling

and binning the data as in Antoniadiset al.(1999) for instance, one can reasonably think that the number of

observations in a “not too small” interval is Gaussian, up tosome eventual transformation. So basically the

thresholding rules adapted to the Gaussian regression setting should work here even if many assumptions

are required. Even if in Brownet al. (2010) theoretical justifications are given, the method still relies

heavily on the precise knowledge of the support which is directly linked to the size of the bins. In their

seminal work Herricket al.(2001) have already observed that in practice the basic Gaussian approximation

for general wavelet bases is quite poor. This can be corrected by the use of the Haar basis and accurate

thresholding rules but the reconstructions are consequently piecewise constant. Note also that in this paper

no assumption was made on the support of the underlying density. More recently, Juditsky and Lambert-

Lacroix (2004) have proposed an adaptive thresholding procedure on the whole real line. Their threshold

is not based on a direct Gaussian approximation. Indeed, thechosen threshold depends randomly on the

localization in time and frequency of the coefficient that has to be kept or killed. They derive adaptive

minimax results for Hölderian spaces, exhibiting rates that are different from the bounded support case.

However there is a gap between their optimal theoretical andpractical tuning parameters of the threshold.

If the main goal of this paper is to investigate assumption-free wavelet thresholding methodologies as

explained in the first paragraph, we also aim at fulfilling this gap by designing a new threshold depending

on a tuning parameterγ: the precise form of the threshold is closely related to sharp exponential inequalities

for iid variables, avoiding the use of Gaussian approximation. Unlike methods of Juditsky and Lambert-

Lacroix (2004) and Herricket al. (2001), all the coefficients (and in particular the coarsest ones) are likely

to be thresholded. Moreover, since our threshold is defined very accurately from a non asymptotic point of

view, we obtain sharp oracle inequalities forγ > 1. But we also prove that takingγ < 1 deteriorates the

theoretical properties of our estimator. Hence the remaining gap between theoretical and practical thresh-

olds lies in a second order term (see Section 2 for more details). The construction of our estimators and the
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previous results are stated in Section 2. Next, in Section 3,we illustrate the impact of the bounded support

assumption by exhibiting minimax rates of convergence on the whole class of Besov spaces extending for

theL2 loss the results of Juditsky and Lambert-Lacroix (2004). Inparticular, when the support is infinite,

our results reveal how minimax rates deteriorate accordingto the sparsity of the density. We also show that

our estimator is adaptive minimax (up to a logarithmic term)over Besov balls with respect to the regularity

but also with respect to the support (finite or not). In Section 4, we investigate the curse of support for

the most well-known support-dependent methods and comparethem with our method and with the cross-

validated kernel method. Our method, which is naturally spatially adaptive, seems to be robust with respect

to the size of the support or the tail of the underlying density. We also implement our method on real data,

revealing the potential impact of our methodology for practitioners. The appendices are dedicated to an

analytical description of the biorthogonal wavelet basis but also to the proofs of the main results.

2. Our method

Let us observe an-sample of densityf assumed to be inL2(R). We denote this sampleX1, . . . ,Xn.

We estimatef via its coefficients on a special biorthogonal wavelet basis, due to Cohenet al. (1992). The

decomposition off on such a basis takes the following form:

f =
∑

k∈Z
β−1kψ̃−1k +

∑

j≥0

∑

k∈Z
β jkψ̃ jk, (2.1)

where for anyj ≥ 0 and anyk ∈ Z,

β−1k =

∫

R

f (x)ψ−1k(x)dx, β jk =

∫

R

f (x)ψ jk(x)dx.

The most basic example of biorthogonal wavelet basis is the Haar basis where the father wavelets are given

by

∀k ∈ Z, ψ−1k = ψ̃−1k = 1[k;k+1]

and the mother wavelets are given by

∀ j ≥ 0, ∀k ∈ Z, ψ jk = ψ̃ jk = 2 j/2
(1[k2− j ;(k+1/2)2− j ) − 1[(k+1/2)2− j ;(k+1)2− j ]

)
.

The other examples we consider are more precisely describedin Appendix A. The essential feature is that

it is possible to use, on the one hand, decomposition waveletsψ jk that are piecewise constants, and, on the

other hand, smooth reconstruction waveletsψ̃ jk. In particular, except for the Haar basis, decomposition and

reconstruction wavelets are different. To shorten mathematical expressions, we set

Λ = {( j, k) : j ≥ −1, k ∈ Z} (2.2)

and (2.1) can be rewritten as

f =
∑

( j,k)∈Λ
β jkψ̃ jk with β jk =

∫
ψ jk(x) f (x)dx. (2.3)

A classical unbiased estimator forβ jk is the empirical coefficient

β̂ jk =
1
n

n∑

i=1

ψ jk(Xi), (2.4)
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whose variance isσ2
jk/n where

σ2
jk =

∫
ψ2

jk(x) f (x)dx−
(∫

ψ jk(x) f (x)dx

)2

.

Note thatσ2
jk is classically unbiasedly estimated byσ̂2

jk with

σ̂2
jk =

1
n(n− 1)

n∑

i=2

i−1∑

l=1

(ψ jk(Xi) − ψ jk(Xl))2.

Now, let us define our thresholding estimate off . In the sequel there are two different kinds of steps,

depending on whether the estimate is used for theoretical orpractical purposes. Both situations are respec-

tively denoted ’Th.’ and ’Prac’.

Step 0

Th. Choose a constantc ≥ 1, a real numberc′ and let j0 such thatj0 = ⌊log2([nc(logn)c′ ])⌋. Choose

also a positive constantγ.

Prac. Let j0 = ⌊log2(n)⌋.

Step 1 SetΓn = {( j, k) : −1 ≤ j ≤ j0, k ∈ Z} and compute for any (j, k) ∈ Γn, the non-zero empirical

coefficientsβ̂ jk (whose number is almost surely finite).

Step 2 Threshold the coefficients by setting̃β jk = β̂ jk1|β̂ jk |≥η jk
according to the following threshold choice.

Th. Overestimate slightly the varianceσ2
jk by using

σ̃2
jk = σ̂

2
jk + 2‖ψ jk‖∞

√
2γσ̂2

jk

logn
n
+ 8γ‖ψ jk‖2∞

logn
n

and choose

η jk = η jk,γ =

√
2γσ̃2

jk

logn
n
+

2‖ψ jk‖∞γlogn

3n
. (2.5)

Prac. Estimate unbiasedly the variance byσ̂2
jk and choose

η jk = η
Prac
jk =

√
2σ̂2

jk

logn
n
+

2‖ψ jk‖∞logn

3n
. (2.6)

Step 3 Reconstruct the function by using theβ̃ jk’s and denote

Th.

f̃n,γ =
∑

( j,k)∈Γn

β̃ jkψ̃ jk (2.7)

Prac.

f̃ Prac
n =


∑

( j,k)∈Γn

β̃ jkψ̃ jk


+

(2.8)

Note that this method can easily be implemented with a low computational cost. In particular, unlike

the DWT-based algorithms, our algorithm does not need numerical approximations, except atStep 3 for

the computations of thẽψ jk (unless, we use the Haar basis). However, a preprocessing, independent of the

algorithm, can be used to compute reconstruction wavelets at any required precision. Both practical and
4



theoretical thresholds are based on the following heuristics. Letc0 > 0. Define the heavy mass zone as the

set of indices (j, k) ∈ Λ such thatf (x) ≥ c0 for x in the support ofψ jk and‖ψ jk‖2∞ = on(n(logn)−1). In this

heavy mass zone, the random term of (2.5) or (2.6) is the main one and we asymptotically derive that with

large probability

η jk,γ ≈
√

2γσ̃2
jk

logn
n

and ηPrac
jk ≈

√
2σ̂2

jk

logn
n

. (2.9)

The shape of the right hand terms in (2.9) is classical in the density estimation framework (see Donohoet

al. (1996)). In fact, they look like the threshold proposed by Juditsky and Lambert-Lacroix (2004) or the

universal thresholdηU proposed by Donoho and Johnstone (1994) in the Gaussian regression framework.

Indeed, we recall that, in this set-up,

ηU =

√
2σ2 logn,

whereσ2 (assumed to be known in the Gaussian framework) is the variance of each noisy wavelet coeffi-

cient. Actually, the deterministic term of (2.5) (or (2.6))constitutes the main difference with the threshold

proposed by Juditsky and Lambert-Lacroix (2004): it replaces the second keep or kill rule applied by

Juditsky and Lambert-Lacroix on the empirical coefficients. This additional term allows to control large

deviation terms for high resolution levels. It is directly linked to Bernstein’s inequality (see the proofs

in Appendix B). The forthcoming oracle inequality (Theorem1) holds with (2.5) for anyγ > 1: this is

essential to fulfill the gap between theory and practice. Indeed, note that if one takesc = γ = 1 andc′ = 0

then the main difference between (2.5) and (2.6) is a second order term in the estimation ofσ2
jk by σ̃2

jk. But

the main part is exactly the same: when the coefficient lies in the heavy mass zone and whenγ tends to 1,

η jk,γ tends toηPrac
jk with high probability. Indeed, one can note that for allε > 0 andγ > 1,

ηPrac
jk ≤ η jk,γ ≤

√
2γ(1+ ε)σ̂2

jk

logn
n
+

(
2
3
+

√
2(8+ 2ε−1)

) ‖ψ jk‖∞γlogn

n
.

As often suggested in the literature, instead of estimatingVar(β̂ jk), we could have used the inequality

Var(β̂ jk) =
σ2

jk

n
≤ ‖ f ‖∞

n

and we could have replaced̃σ2
jk with ‖ f ‖∞ in the definition of the threshold. But this requires a strong

assumption:f is bounded and‖ f ‖∞ is known. In our paper, Var(β̂ jk) is accurately estimated making these

conditions unnecessary. Theoretically, we slightly overestimateσ2
jk to control large deviation terms and

this is the reason why we introducẽσ2
jk. Note that Reynaud-Bouret and Rivoirard (2010) have proposed

thresholding rules based on similar heuristic arguments inthe Poisson intensity estimation framework. But

proofs and computations are more involved for density estimation because sharp upper and lower bounds

for σ̂2
jk are more intricate.

For practical purpose,η jk,γ (even withγ = 1) slightly oversmooths the estimate with respect toηPrac
jk .

From a simulation point of view, the linear term2‖ψ jk‖∞ logn
3n in ηPrac

jk with the precise constant 2/3 seems to

be accurate.

The remaining part of this section is dedicated to a precise choice ofγ, first from an oracle point of

view, next from a theoretical and practical study.

2.1. Oracle inequalities

Our main result is the following.
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Theorem 1. Let us consider a biorthogonal wavelet basis satisfying theproperties described in Appendix

A. If γ > c, thenf̃n,γ satisfies the following inequality: for n large enough

E

[
‖ f̃n,γ − f ‖22

]
≤ C1


∑

( j,k)∈Γn

min

β2
jk, logn

σ2
jk

n

 +
∑

( j,k)<Γn

β2
jk

 +
C2 logn

n
(2.10)

where C1 is a positive constant depending only onγ, c and the choice of the wavelet basis and where C2 is

also a positive constant depending onγ, c, c′, ‖ f ‖2 and the choice of the wavelet basis.

As claimed before, Theorem 1 holds withc = 1 andγ > 1. This result is also true providedf ∈ L2(R).

So, assumptions onf are very mild here. This is not the case for most of the resultsfor non-parametric

estimation procedures where one assumes that‖ f ‖∞ < ∞ and thatf has a compact support. Furthermore,

note that this support and‖ f ‖∞ are often known in the literature. On the contrary, in Theorem 1, f and its

support can be unbounded. So, we make as few assumptions as possible. This is allowed by considering

random thresholding with the data-driven thresholds defined in (2.5).

This result is actually an oracle inequality from the thresholding or the model selection point of view.

Indeed, if we consider for each deterministic subset of indicesm of Γn, the estimatorf̂m =
∑

( j,k)∈m β̂ jkψ̃ jk,

we easily see thatE
[
‖ f̂m − f ‖22

]
≍ Rℓ2(m) (see (A.1) in Appendix A for the precise multiplicative constants),

with

Rℓ2(m) =
∑

( j,k)<m

β2
jk +

∑

( j,k)∈m

σ2
jk

n
.

Hence the best possible set of indices corresponds to ¯mwith

m̄=

( j, k) ∈ Γn such thatβ2
jk >

σ2
jk

n



sincem̄ minimizesm 7→ Rℓ2(m) and we have

Rℓ2(m̄) =
∑

( j,k)∈Γn

min

β2
jk,
σ2

jk

n

 +
∑

( j,k)<Γn

β2
jk.

We can associate to ¯m the oraclef̂m̄, which is not an estimator since it depends onf . Nevertheless, it

represents the benchmark in the family of estimators that keep or kill each coefficient β̂ jk. This is exactly

the oracle point of view introduced by Donoho and Johnstone (1994) adapted to the density setting. With

this approach, we see that Theorem 1 provides the best possible inequality up to a logarithmic term and

a residual term. From a thresholding point of view, this logarithmic term is unavoidable as it can be

seen when minimax rates are established on the maxisets of thresholding rules derived from such oracle

inequalities (See Reynaud-Bouret and Rivoirard (2010) in the Poisson setting for further details). It can

also be viewed as the price we pay for not having any information on the coefficients to keep.

With the model selection approach proposed by Birgé and Massart (2007), we can see that Theorem 1

implies

E

[
‖ f̃n,γ − f ‖22

]
≤ C log(n) inf

0<L≤+∞
inf

m∈ML

E

[
‖ f̂m − f ‖22

]
+

C2 logn
n

,

whereC is a constant andML represents all the possible setsm in Γn such thatf̂m has support in [−L, L]. So

Theorem 1 consists also in an oracle inequality for estimators assuming thatf has a (known) finite support.

Finally let us remark that Theorem 1 also implies

E

[
‖ f̃n,γ − f ‖22

]
≤ C inf

0<L≤+∞
inf

m∈ML


∑

( j,k)<m

β2
jk +
|m| log(n)

n
‖ f ‖∞


+

C2 logn
n

,
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where|m| is the cardinal of the setm. Of course, this inequality makes sense only if‖ f ‖∞ < ∞ (see Birgé

(2008) for the capital role of‖ f ‖∞ when oracle inequalities involve models dimension). This inequality

is analogous to the oracle inequality proved by Birgé and Massart (2007) for complex families (such as

ML) in the Gaussian setup. Birgé and Massart also proved that for such families the logarithmic term is

unavoidable.

2.2. Calibration issues

We address the problem of choosing conveniently the tuning parameterγ from the theoretical point

of view. The aim and the proofs are inspired by Birgé and Massart (2007) who considered penalized

estimators and calibrated constants for penalties in a Gaussian framework. In particular, they showed that

if the penalty constant is smaller than 1, then the penalizedestimator behaves in a quite unsatisfactory way.

This study was used in practice to derive adequate data-driven penalties by Lebarbier (2005).

According to Theorem 1, we notice that for any signal, takingc = 1 andc′ = 0, we achieve the oracle

performance up to a logarithmic term providedγ > 1. So, our primary interest is to wonder what happens,

from the theoretical point of view, whenγ ≤ 1?

To handle this problem, we consider the simplest signal in our setting and we compare the rates of

convergence whenγ > 1 andγ < 1.

Theorem 2. Let f = 1[0,1] and let us consider̃fn,γ with the Haar basis, c= 1 and c′ = 0.

• If γ > 1 then there exists a constant C depending only onγ such that

E

[
‖ f̃n,γ − f ‖22

]
≤ C

logn
n

.

• If γ < 1, then there existsδ < 1 depending only onγ such that

E

[
‖ f̃n,γ − f ‖22

]
≥ 1

nδ
(1+ on(1)).

Theorem 2 establishes that, asymptotically,f̃n,γ with γ < 1 cannot estimate a very simple signal (f =1[0,1]) at a convenient rate of convergence. This provides a lower bound for the tuning parameterγ: we

have to takeγ ≥ 1.

We reinforce these results by a simulation study. First we simulate 1000 n-samples of densityf = 1[0,1].

We estimatef by f̃ Prac
n using the Haar basis, but to see the influence of the parameterγ on the estimation,

we replaceηPrac
jk (seeStep 2 (2.6)) by

η jk =

√
2γσ̂2

jk

logn
n
+

2γ‖ψ jk‖∞logn

3n
. (2.11)

For anyγ, we have computedMIS En(γ) i.e. the average over the 1000 simulations of‖ f̃ Prac
n − f ‖22. On the

left part of Figure 1 (U), MIS En(γ)×n is plotted as a function ofγ for different values ofn. Note that when

γ > 1, MIS En(γ) is null meaning that our procedure selects just one waveletcoefficient, the one associated

to ψ−1,0 = 1[0,1]; all others are equal to zero. This fact remains true for a very large range of values of

γ. This plateau phenomenon has already been noticed in the Poisson framework (see Reynaud-Bouret and

Rivoirard (2010)). However as soon asγ < 1, MIS En(γ) × n is positive and increases whenγ decreases.

It also increases withn tending to prove thatMIS En(γ) >> 1/n for γ < 1. This is in complete adequation

with Theorem 2. Remark that, from a theoretical point of view, the proof of part 2 of Theorem 2 holds

for any choice of threshold that is asymptotically equivalent to
√

2γσ̂2
jk

logn
n in the heavy mass zone and

7
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Figure 1: n × MIS En(γ) for (U) f = 1[0,1] (the Haar basis is used) ; (G) f is the Gaussian density with mean 0.5 and standard

deviation 0.25 (the Spline basis is used) ; (B) f is the renormalized Bumps signal (the Spline basis is used)

in particular for the choice (2.11). From a numerical point of view, the left part of Figure 1 (U) would

have been essentially the same withη jk,γ, i.e. (2.5) instead of (2.11). The reason why we used (2.11) is the

practical performance when the functionf is more irregular with respect to the chosen basis. Indeed we

consider two other density functionsf . The first one is the density of a Gaussian variable whose results

appear in the middle part of Figure 1 (G) and the second one is the renormalized Bumps signal1 whose

results appear in the right part of Figure 1 (B). In both cases we computed̃f Prac
n with the Spline basis: this

basis is a particular possible choice of the wavelet basis which leads to smooth estimates. A description

is available in Figure 9 of Appendix A. We computed the associateMIS En(γ) over 100 simulations. Note

that for the Bumps signal, there is no plateau phenomenon andthat the best choice forγ is γ = 0.5 as soon

as the highest level of resolution,j0(n) is high enough to capture the irregularity of the signal. Ifn is too

small, the best choice is to keep all the coefficients. As already noticed in Reynaud-Bouret and Rivoirard

(2010), there exists in fact two behaviors: either the oracle f̂m̄ is close tof and the best possible choice is

γ ≃ 1 with a plateau phenomenon, or the oraclef̂m̄ is far from f and it is better to take a smallerγ (for

instanceγ = 0.5). The Gaussian density (G) exhibits both behaviors. For largen (n ≥ 1024), there is

a plateau phenomenon aroundγ = 1. But for smallern, the oraclef̂m̄ is not accurate enough and taking

γ = 0.5 is better. Note finally that the choiceγ = 1, leading to our practical method, namelyf̃ Prac
n , is the

more robust with respect to both situations.

1 The renormalized Bumps signal is a very irregular signal that is classically used in wavelet analysis. It is here renormalized so

that the integral equals 1 and it can be defined by


∑

j

gj

(
1+
|x − pj |

wj

)−4


1[0,1]

0.284
with

p = [ 0.1 0.13 0.15 0.23 0.25 0.4 0.44 0.65 0.76 0.78 0.81 ]

g = [ 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2 ]

w = [ 0.005 0.005 0.006 0.01 0.01 0.03 0.01 0.01 0.005 0.008 0.005]
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3. The curse of support from a minimax point of view

The goal of this section is to derive the minimax rates on the whole class of Besov spaces. The subse-

quent results will constitute generalizations of the results derived in Juditsky and Lambert-Lacroix (2004)

who pointed out minimax rates for density estimation on the class of Hölder spaces. For this purpose, we

consider the theoretical proceduref̃n,γ defined with the choicec′ = −c (seeStep 0) where the real number

c is chosen later. In some situations, it will be necessary to strengthen our assumptions. More precisely,

sometimes, we assume thatf is bounded. So, for anyR> 0, we consider the following set of functions:

L2,∞(R) =
{
f is a density such that‖ f ‖2 ≤ R and‖ f ‖∞ ≤ R

}
.

The Besov balls we consider are classical (see Appendix A fora definition with respect to the biorthogonal

wavelet basis) and denotedBαp,q(R). Let us just point out that no restriction is made on the support of f

when f belongs toBαp,q(R): this support is potentially the whole real line. Now, let us state the upper bound

of theL2-risk of f̃n,γ.

Theorem 3. Let R,R′ > 0, 1 ≤ p, q ≤ ∞ andα ∈ R such thatmax
(
0, 1

p −
1
2

)
< α < r + 1, where r> 0

denotes the wavelet smoothness parameter introduced in Appendix A. Let c≥ 1 such that

α

(
1− 1

c(1+ 2α)

)
≥ 1

p
− 1

2
(3.1)

andγ > c. Then, there exists a constant C depending on R′, γ, c,α, p and on the choice of the biorthogonal

wavelet basis such that for n large enough,

- if p ≤ 2,

sup
f∈Bαp,q(R)∩L2,∞(R′)

E

[
‖ f̃n,γ − f ‖22

]
≤ CR

2
2α+1

(
logn

n

) 2α
2α+1

, (3.2)

- if p > 2,

sup
f∈Bαp,q(R)∩L2(R′)

E

[
‖ f̃n,γ − f ‖22

]
≤ CR

1
α+1− 1

p

(
logn

n

) α

α+1− 1
p
, (3.3)

where hereL2(R′) denote the set of densities such that‖ f ‖2 ≤ R′.

First, let us briefly comment assumptions of these results. Whenp > 2, (3.1) is satisfied and the result is

true for anyc ≥ 1 and 0< α < r+1. Furthermore, we do not need to restrict ourselves to the set of bounded

functions. Whenp ≤ 2, the result is true as soon asc is large enough to satisfy (3.1) and we establish (3.2)

only for bounded functions. Actually, this assumption is insome sense unavoidable as proved in Section

6.4 of Birgé (2008).

Furthermore, note that if we additionally assume thatf is bounded with a bounded support (say [0, 1])

thenE

[
‖ f̃n,γ − f ‖22

]
is always upper bounded by a constant times

(
logn/n

) 2α
2α+1 whateverp is, since, in this

case whenp > 2, the assumptionf ∈ Bαp,∞(R) implies f ∈ Bα2,∞(R̃) for R̃ large enough.

Now, combining upper bounds (3.2) and (3.3), under assumptions of Theorem 3, we point out the

following rate for our procedure whenf is bounded but without any assumption on the support: forn large

enough,

sup
f∈Bαp,q(R)∩L2,∞(R′)

E

[
‖ f̃n,γ − f ‖22

]
≤ CR

1

α+ 1
2+( 1

2−
1
p)+

(
logn

n

) α

α+ 1
2+( 1

2−
1
p)+

.

The following result derives lower bounds of the minimax risk showing that this rate is the optimal rate up

to a logarithmic term. So, the next result establishes the optimality properties off̃n,γ under the minimax

approach.
9



Theorem 4. Let R,R′ > 0, 1 ≤ p, q ≤ ∞ andα ∈ R such thatmax
(
0, 1

p −
1
2

)
< α < r + 1. Then, there

exists a positive constant̃C depending on R′, α, p and q such that

lim inf
n→+∞

n
α

α+ 1
2+( 1

2−
1
p)+ inf

f̂
sup

f∈Bαp,q(R)∩L2,∞(R′)
E

[
‖ f̂ − f ‖22

]
≥ C̃R

1

α+ 1
2+( 1

2−
1
p)+ ,

where the infimum is taken over all the possible density estimators f̂ .

Furthermore, let c, p∗ ≥ 1 andα∗ > 0 such that

α∗
(
1− 1

c(1+ 2α∗)

)
≥ 1

p∗
− 1

2
. (3.4)

Then our procedure,̃fn,γ, constructed with this precise choice of c andγ > c, is adaptive minimax up to a

logarithmic term on

{
Bαp,q(R) ∩ L2,∞(R′) : α∗ ≤ α < r + 1, p∗ ≤ p ≤ +∞, 1 ≤ q ≤ ∞

}
.

When p ≤ 2, the lower bound for the minimax risk corresponds to the classical minimax rate for

estimating a compactly supported density (see Donohoet al. (1996)). Furthermore, the proceduref̃n,γ
achieves this minimax rate up to a logarithmic term. Whenp > 2, the risk deteriorates, if no assumption on

the support is made, whereas it remains the same when we add the bounded support assumption. Note that

whenp = ∞, the exponent becomesα/(1+α): it was also derived in Juditsky and Lambert-Lacroix (2004)

for estimation on balls ofBα∞,∞. We also mention that whenp ≥ 2, convenient non-adaptive linear estimates

achieve the optimal rate without logarithmic term. It is a simple consequence of technical arguments used

for proving Theorem 2 of Juditsky and Lambert-Lacroix (2004).

To summarize, we gather in Table 1 the lower bounds for the minimax rates obtained for each situation.

These bounds are adaptively achieved by our estimator with respect top, α and the compactness of the

support, up to a logarithmic term.

1 ≤ p ≤ 2 2 ≤ p ≤ ∞

compact support n−
2α

2α+1 n−
2α

2α+1

non compact support n−
2α

2α+1 n
− α

α+1− 1
p

Table 1: Minimax rates onBαp,q ∩ L2,∞(up to a logarithmic term) with 1≤ p,q ≤ ∞, α > max
(
0, 1

p −
1
2

)
under the‖ · ‖22-loss.

Our results show the role played by the support of the functions to be estimated on minimax rates. As

already observed, whenp ≤ 2, the support has no influence since the rate exponent remains unchanged

whatever the size of the support (finite or not). Roughly speaking, it means that it is not harder to estimate

bounded non-compactly supported functions than bounded compactly supported functions from the mini-

max point of view. It is not the case whenp > 2. Actually, we note an elbow phenomenon atp = 2 and the

rate deteriorates whenp increases: this illustrates the curse of support from a minimax point of view. Let

us give an interpretation of this observation. Johnstone (1994) showed that whenp < 2, Besov spacesBαp,q
model sparse signals where at each level, a very few number ofthe wavelet coefficients are non-negligible.

But these coefficients can be very large. Whenp > 2,Bαp,q-spaces typically model dense signals where the

wavelet coefficients are not large but most of them can be non-negligible. This explains why the size of

10



the support plays a role on minimax rates whenp > 2: when the support is larger, the number of wavelet

coefficients to be estimated increases dramatically.

Since arguments for proving Theorems 3 and 4 are similar to the arguments used in Reynaud-Bouret

and Rivoirard (2010), proofs are omitted. We just mention that Theorem 3 is derived from the oracle

inequality established in Theorem 1.

Finally, a natural interesting extension of this work couldbe to investigate rates forLp′ -loss functions,

1 ≤ p′ < ∞. Note that the casep′ = ∞ is very different in nature (see Giné and Nickl (2009) and Giné and

Nickl (2010)).

4. The curse of support from a practical point of view

Now let us turn to a practical point of view. Is there a curse ofsupport too? First we provide a simulation

study illustrating the distortion of the most classic support dependent estimators when the support or the tail

is increasing. Next we provide an application of our method to famous real data sets, namely the Suicide

data and the Old Faithful geyser data.

4.1. Simulations

We compare our method to representative methods of each maintrend in density estimation, namely

kernel, binning plus thresholding and model selection. Theconsidered methods are the following. The first

one is the kernel method, denotedK, consisting in a basic cross-validation choice of a global bandwidth

with a Gaussian kernel. The second method requires a complexpreprocessing of the data based on binning.

ObservationsX1, . . . ,Xn are first rescaled and centered by an affine transformation denotedT such that

T(X1), . . . ,T(Xn) lie in [0, 1]. We denotefT the density of the data induced by the transformationT. We

divide the interval [0, 1] into 2bn small intervals of size 2−bn, wherebn is an integer, and count the number

of observations in each interval. We apply the root transform due to Brownet al. (2010) and the universal

hard individual thresholding rule on the coefficients computed with the DWT Coiflet-basis filter. We finally

apply the unroot transform to obtain an estimate offT and the final estimate of the density is obtained by

applyingT−1 combined with a spline interpolation. This method is denoted RU. The last method is also

support dependent. After rescaling as previously the data,we estimatefT by the algorithm of Willett and

Nowak (2007). It consists in a complex selection of a grid andof polynomials on that grid that minimizes

a penalized log-likelihood criterion. The final estimate ofthe density is obtained by applyingT−1. This

method is denotedWN.

Our practical method is implemented in the Haar basis (method H) and in the Spline basis (methodS) (see

Figure 9 in Appendix A for a complete description of this basis). Moreover we have also implemented the

choiceγ = 0.5 of (2.11) in the Spline basis (see Section 2). We denote thismethodS*.

The thresholding rule proposed in Juditsky and Lambert-Lacroix (2004) has also been considered. For their

prescribed practical choice of the tuning parameters and the Spline basis, the numerical performances are

similar to those of methodS. Since thresholding is not performed for the coarsest level, the approximation

term of the reconstruction is based on many non zero negligible coefficients for heavy-tailed signals: this

leads to obvious numerical difficulties without significant impact on the risk. So, numerical results of the

thresholding rule proposed in Juditsky and Lambert-Lacroix (2004) are not given in the sequel.

We generaten-samples of two kinds of densitiesf , with n = 1024. Both signals are supported by

the whole real line. We compute for each estimatorf̂ the ISE, i.e.
∫
R
( f − f̂ )2 which is approximated by

a trapezoidal method on a finite interval, adequately chosenso that the remaining term is negligible with

respect to the ISE.
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The first signal,gd, consists in a mixture of two standard Gaussian densities:

gd =
1
2
N(0, 1)+

1
2
N(d, 1),

whereN(µ, σ) represents the density of a Gaussian variable with meanµ and standard deviationσ. The

parameterd varies in{10, 30, 50, 70} so that we can see the curse of support on the quality of estimation.
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Figure 2: Reconstruction ofgd (true: dotted line, estimate: solid line) for the 6 different methods ford = 10

Figure 2 shows the reconstructions ford = 10 and Figure 3 ford = 70. In the sequel, the method

RU is implemented withbn = 5, which is the best choice for the reconstruction withd = 10. All the

methods give satisfying results ford = 10. Whend is large, the rescaling and binning preprocessing leads

to a poor regression signal which makes the regression thresholding rules non convenient, as illustrated by

the methodRU with d = 70. Reconstructions forK, WN, S andS* seem satisfying but a study of the

ISE of each method (see Figure 4) reveals that both support dependent methods (RU andWN) have a risk

that increases withd. On the contrary, methodsK andS are the best ones and more interestingly their

performance is remarkably stable (the boxsize is quite small) and the result does not vary withd. This

robustness is also true forH andS*. S* is a bit undersmoothing: this was already noticed in Figure 1(G)

and this explains the variability of its ISE. Finally note that, for larged, H is even better thanRU despite

the inappropriate choice of the Haar basis.

The other signal,hk, is both heavy-tailed and irregular. It consists in a mixture of 4 Gaussian densities

and one Student density:

hk = 0.45T(k) + 0.15N(−1, 0.05)+ 0.1N(−0.7, 0.005)+ 0.25N(1, 0.025)+ 0.15N(2, 0.05),

whereT(k) denotes the density of a Student variable withk degrees of freedom. The parameterk varies

in {2, 4, 8, 16}. The smallerk, the heavier the tail is and this without changing the shape of the main part

that has to be estimated. Figure 5 shows the reconstruction for k = 2. ClearlyRU does not detect the local

spikes at all. Indeed the maximal observation may be equal to1000 and the binning effect is disastrous.
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Figure 3: Reconstruction ofgd (true: dotted line, estimate: solid line) for the 6 different methods ford = 70
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Figure 4: Boxplots of the ISE forgd over 100 simulations for the 6 methods and the 4 different values ofd. A column, delimited by

dashed lines, corresponds to one method (respectivelyK, WN, RU, S, H, S*). Inside this column, from left to right, one can find for

the same method the boxplots of the ISE for respectivelyd = 10, 30, 50 and 70.

The kernel methodK clearly suffers from a lack of spatial adaptivity, as expected. The four remaining

methods seem satisfying. In particular for this very irregular signal it is not clear that the Haar basis is a

bad choice. Note however that to represent reconstructions, we have focused on the area where the spikes

are located. In particular we emphasize that Figure 5 does not show that the support dependent method

WN is non zero on a very large interval, which tends to deteriorate its ISE. Indeed, Figure 6 shows that

the ISE of the support dependent methods (RU, WN) increases when the tail becomes heavier, whereas
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the other methods have remarkable stable ISE. MethodsS andH are more robust and better thanWN for

k = 2. The ISE may be improved for this irregular signal by takingγ = 0.5 (see methodS*) as already

noticed in Section 2 for irregular signals.

K

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

WN

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

RU

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

S

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

H

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

S*

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

Figure 5: Reconstruction ofhk (true: dotted line, estimate: solid line) for the 6 different methods fork = 2
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Figure 6: Boxplots of the ISE forhk over 100 simulations for the 6 methods and the 4 different values ofk. A column, delimited by

dashed lines, corresponds to one method (respectivelyK, WN, RU, S, H, S*). Inside this column, from left to right, one can find for

the same method the boxplots of the ISE for respectivelyk = 2,4, 8 and 16.
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4.2. On real data

To illustrate and evaluate our procedure on real data, we consider two real data sets named, respectively

in our study, “Old Faithful geyser” and “Suicide”. The “Old Faithful geyser” data are the duration, in

minutes, of 107 eruptions of Old Faithful geyser located in Yellowstone National Park, USA; they are

taken from Weisberg (1980). The “Suicide” data set is related to the study of suicide risks. Indeed, each

of the 86 observations corresponds to the number of days a patient, considered as control in the study,

undergoes psychiatric treatment. The data are available inCopas and Fryer (1980). In both cases, we

consider that we have a sample ofn real observationsX1, . . . ,Xn and we want to estimate the underlying

density f . We mention that in the first situation, all the observationsare continuous whereas, in the second

one, the observations are discrete. These data are well known and have been widely studied elsewhere.

This allows to compare our procedure with other methods.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 7: Histogram (solid line) and reconstruction viaf̃ Prac
n (dashed line) for the ”Old Faithful geyser” data set

To estimate the functionf , we apply f̃ Prac
n , with the Spline basis (see Figure 9 in Appendix A) andj0 = 7.

We plot, on the same graph the resulting estimate and the histogram of the data. Figures 7 and 8 represent,

respectively, the results for the “Old Faithful geyser” setand for the “Suicide” one. Note that concerning

the ”Suicide” data set, there exists a problem of ”scale”: ifwe look at the associated histogram, the scale of

the data seems to be approximately equal to 250, and not 1. So we divide the data by 250 before performing

estimation.

Respectively two or three peaks are detected providing multimodal reconstructions. So, in comparison

with the ones performed in Silverman (1986) and Sain and Scott (1996), our estimate detects significant

events and not artefacts. More interestingly, with few observations, both estimates equal zero on an interval

located between the last two peaks. Even if it is hard to builda good estimate of the true density due to

the small number of the data, the advantage of having this “hole” is to provide a good separation between

both modes. Note that a Gaussian kernel estimate, which is never null, provides sharp mode localization

only when the bandwidth is small enough but in this case, the kernel estimate becomes noisy for heavy

tailed data (see Silverman (1986) p.18). On the contrary, when f̃ Prac
n is null, this does not mean that the

true density is null but only negligible. If the practitioner keeps this fact in mind, theñf Prac
n provides a

good interpretation of real data even for small sample size.
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Figure 8: Histogram (solid line) and reconstruction viaf̃ Prac
n (dashed line) for the ”Suicide” data set

A. Analytical tools

All along this paper, we have considered a particular class of wavelet bases that are described now. We

set

φ = 1[0,1].

For anyr > 0, we can claim that there exist three functionsψ, φ̃ andψ̃ with the following properties:

1. φ̃ andψ̃ are compactly supported,

2. φ̃ andψ̃ belong toCr+1, whereCr+1 denotes the Hölder space of orderr + 1,

3. ψ is compactly supported and is a piecewise constant function,

4. ψ is orthogonal to polynomials of degree no larger thanr,

5. {(φk, ψ jk) j≥0,k∈Z, (φ̃k, ψ̃ jk) j≥0,k∈Z} is a biorthogonal family: for anyj, j′ ≥ 0, for anyk, k′,

∫

R

ψ jk(x)φ̃k′(x)dx=
∫

R

φk(x)ψ̃ j′k′(x)dx= 0,

∫

R

φk(x)φ̃k′(x)dx= 1k=k′ ,

∫

R

ψ jk(x)ψ̃ j′k′ (x)dx= 1 j= j′,k=k′ ,

where for anyx ∈ R,

φk(x) = φ(x− k), ψ jk(x) = 2
j
2ψ(2 j x− k)

and

φ̃k(x) = φ̃(x− k), ψ̃ jk(x) = 2
j
2 ψ̃(2 j x− k).

This implies the following wavelet decomposition off ∈ L2(R):

f =
∑

k∈Z
αkφ̃k +

∑

j≥0

∑

k∈Z
β jkψ̃ jk,

where for anyj ≥ 0 and anyk ∈ Z,

αk =

∫

R

f (x)φk(x)dx, β jk =

∫

R

f (x)ψ jk(x)dx.

Such biorthogonal wavelet bases have been built by Cohenet al. (1992) as a special case of spline systems

(see also the elegant equivalent construction of Donoho (1994) from boxcar functions). The Haar basis can
16



−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−3 −2 −1 0 1 2 3 4
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 9: Biorthogonal wavelet basis withr = 0.272 that is used in the Simulation study. First line,φ (left) andψ (right), second line

φ̃ (left) andψ̃ (right).

be viewed as a particular biorthogonal wavelet basis, by setting φ̃ = φ andψ̃ = ψ = 1[0, 1
2 ) − 1[ 1

2 ,1], with

r = 0 (even if Property 2 is not satisfied with such a choice). The Haar basis is an orthonormal basis, which

is not true for general biorthogonal wavelet bases. However, we have the frame property: if we denote

Φ = {φ, ψ, φ̃, ψ̃}

there exist two constantsc1(Φ) andc2(Φ) only depending onΦ such that

c1(Φ)


∑

k∈Z
α2

k +
∑

j≥0

∑

k∈Z
β2

jk

 ≤ ‖ f ‖
2
2 ≤ c2(Φ)


∑

k∈Z
α2

k +
∑

j≥0

∑

k∈Z
β2

jk

 . (A.1)

For instance, when the Haar basis is considered,c1(Φ) = c2(Φ) = 1.

We emphasize the important feature of such bases: the functionsψ jk are piecewise constant functions.

For instance, Figure 9 shows an example which is the one that has been implemented for numerical studies.

This allows to compute easily wavelet coefficients without using the discrete wavelet transform. Further-

more, there exists a constantµψ > 0 such that

inf
x∈[0,1]

|φ(x)| ≥ 1, inf
x∈Supp(ψ)

|ψ(x)| ≥ µψ,

where Supp(ψ) = {x ∈ R : ψ(x) , 0}.
This technical feature will be used through the proofs of ourresults. To shorten mathematical expres-

sions, we have previously set for anyk ∈ Z, ψ̃−1k = φ̃k, ψ−1k = φk andβ−1k = αk.

Now, let us give some properties of Besov spaces. Besov spaces, denotedBαp,q, are classically defined

by using modulus of continuity (see DeVore and Lorentz (1993) and Härdleet al. (1998)). We just recall

here the sequential characterization of Besov spaces by using the biorthogonal wavelet basis (for further

details, see Delyon and Juditsky (1997)).

Let 1≤ p, q ≤ ∞ and 0< α < r + 1, theBαp,q-norm of f is equivalent to the norm

‖ f ‖α,p,q =


‖(αk)k‖ℓp +

[∑
j≥0 2 jq(α+ 1

2−
1
p )‖(β j,k)k‖qℓp

]1/q
if q < ∞,

‖(αk)k‖ℓp + supj≥0 2 j(α+ 1
2−

1
p )‖(β j,k)k‖ℓp if q = ∞.

We use this norm to define Besov balls with radiusR

Bαp,q(R) = { f ∈ L2(R) : ‖ f ‖α,p,q ≤ R}.
17



For anyR> 0, if 0 < α′ ≤ α < r + 1, 1≤ p ≤ p′ ≤ ∞ and 1≤ q ≤ q′ ≤ ∞, we obviously have

Bαp,q(R) ⊂ Bαp,q′ (R), Bαp,q(R) ⊂ Bα′p,q(R).

Moreover

Bαp,q(R) ⊂ Bα′p′,q(R) if α − 1
p
≥ α′ − 1

p′
.

The class of Besov spaces provides a useful tool to classify wavelet decomposed signals with respect to

their regularity and sparsity properties (see Johnstone (1994)). Roughly speaking, regularity increases

whenα increases whereas sparsity increases whenp decreases.

B. Proofs

B.1. Proof of Theorem 1

Because of the frame property of the biorthogonal wavelet basis, it is easy to see that

c1(Φ)‖β̃ − β‖2ℓ2
≤ ‖ f̃n,γ − f ‖22 ≤ c2(Φ)‖β̃ − β‖2ℓ2

, (B.1)

whereβ̃ denotes the sequence of thresholded coefficients (̃β jk1( j,k)∈Γn)( j,k)∈Λ andβ denotes the true coeffi-

cients (β jk)( j,k)∈Λ. Consequently, it is sufficient to restrict ourselves to the study of the‖β̃ − β‖2
ℓ2

.

Consequently the proof of Theorem 1 relies on the following result (see Theorem 7 of Section 4.1 in

Reynaud-Bouret and Rivoirard (2010)).

Theorem 5. LetΛ be a set of indices. To estimate a countable familyβ = (βλ)λ∈Λ such that‖β‖ℓ2 < ∞,

we assume that a family of coefficient estimators(β̂λ)λ∈Γ, whereΓ is a known deterministic subset ofΛ,

and a family of possibly random thresholds(ηλ)λ∈Γ are available and we consider the thresholding rule

β̃ = (β̂λ1|β̂λ|≥ηλ1λ∈Γ)λ∈Λ. Letε > 0 be fixed. Assume that there exist a deterministic family(Fλ)λ∈Γ and three

constantsκ ∈ [0, 1[,ω ∈ [0, 1] andµ > 0 (that may depend onε but not onλ) with the following properties.

(A1) For all λ ∈ Γ,
P(|β̂λ − βλ| > κηλ) ≤ ω.

(A2) There exist1 < p, q < ∞ with 1
p +

1
q = 1 and a constant R> 0 such that for allλ ∈ Γ,

(
E(|β̂λ − βλ|2p)

) 1
p ≤ Rmax(Fλ, F

1
p

λ
ε

1
q ).

(A3) There exists a constantθ such that for allλ ∈ Γ satisfying Fλ < θε

P(|β̂λ − βλ| > κηλ , |β̂λ| > ηλ) ≤ Fλµ.

Then the estimator̃β satisfies

1− κ2

1+ κ2
E‖β̃ − β‖2ℓ2

≤ E inf
m⊂Γ


1+ κ2

1− κ2

∑

λ<m

β2
λ +

1− κ2

κ2

∑

λ∈m
(β̂λ − βλ)2 +

∑

λ∈m
η2
λ

 + LD
∑

λ∈Γ
Fλ

with

LD =
R
κ2

((
1+ θ−1/q

)
ω1/q + (1+ θ1/q)ε1/qµ1/q

)
.
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To prove Theorem 1, we use Theorem 5 withλ = ( j, k), β̂λ = β̂ jk defined in (2.4),η jk = η jk,γ defined in

(2.5) and

Γ = Γn = {( j, k) ∈ Λ : −1 ≤ j ≤ j0} with 2 j0 ≤ nc(logn)c′ < 2 j0+1.

We set

F jk =

∫

Supp(ψ jk)
f (x)dx.

Hence we have:

∑

( j,k)∈Γn

F jk =
∑

−1≤ j≤ j0

∑

k

∫

x∈Supp(ψ jk)
f (x)dx≤

∫
f (x)dxsup

x∈R


∑

−1≤ j≤ j0

∑

k

1x∈Supp(ψ jk)

 ≤ ( j0 + 2)mψ, (B.2)

wheremψ is a finite constant depending only on the compactly supported functionψ. Finally,
∑

( j,k)∈Γn
F jk

is bounded by log(n) up to a constant that only depends onc, c′ and the functionψ. Now, we give a

fundamental lemma to derive Assumption (A1) of Theorem 5.

Lemma 1. For anyγ > 1 and anyε′ > 0 there exists a constant M depending onε′ andγ such that

P

(
σ2

jk ≥ (1+ ε′)σ̃2
jk

)
≤ Mn−γ.

Proof. We have:

σ̂2
jk =

1
2n(n− 1)

∑

i,l

(ψ jk(Xi) − ψ jk(Xl))2

=
1
2n

n∑

i=1

(ψ jk(Xi) − β jk)2 +
1
2n

n∑

l=1

(ψ jk(Xl) − β jk)2

− 2
n(n− 1)

n∑

i=2

i−1∑

l=1

(ψ jk(Xi) − β jk)(ψ jk(Xl) − β jk)

= sn −
2

n(n− 1)
un (B.3)

with

sn =
1
n

n∑

i=1

(ψ jk(Xi) − β jk)2 and un =

n∑

i=2

i−1∑

l=1

(ψ jk(Xi) − β jk)(ψ jk(Xl) − β jk).

Using the Bernstein inequality (see section 2.2.3 in Massart (2007)) applied to the variablesYi with

Yi =
σ2

jk − (ψ jk(Xi) − β jk)2

n
≤
σ2

jk

n
,

one obtains for anyu > 0,

P

σ2
jk ≥ sn +

√
2v jku+

σ2
jku

3n

 ≤ e−u

with

v jk =
1
n

E

[(
σ2

jk − (ψ jk(Xi) − β jk)2
)2
]
.

We have

v jk =
1
n

(
σ4

jk + E

[
(ψ jk(Xi) − β jk)4

]
− 2σ2

jkE
[
(ψ jk(Xi) − β jk)2

])

=
1
n

(
E

[
(ψ jk(Xi) − β jk)4

]
− σ4

jk

)

≤
σ2

jk

n

(
‖ψ jk‖∞ + |β jk |

)2

≤
4σ2

jk

n
‖ψ jk‖2∞.

19



Finally

P

σ2
jk ≥ sn + 2‖ψ jk‖∞σ jk

√
2u
n
+
σ2

jku

3n

 ≤ e−u. (B.4)

Now, we deal with the degenerate U-statisticsun. We use Theorem 3.1 of Houdré and Reynaud-Bouret

(2003) combined with the appropriate choice of constants derived by Klein and Rio (2005): for anyu > 0

and anyτ > 0,

P

(
un ≥ (1+ τ)C

√
2u+ 2Du+

1+ τ
3

Fu+

(√
2(3+ τ−1) +

2
3

)
Bu3/2 +

3+ τ−1

3
Au2

)
≤ 3e−u. (B.5)

Note that similar results with unknown constants have been derived in the seminal work by Ginéet al.

(2000). Here we use a sharper bound.

Now we need to define and control the 5 quantitiesA, B,C,D andF. For this purpose, let us set for anyx

andy,

g jk(x, y) = (ψ jk(x) − β jk)(ψ jk(y) − β jk).

We have:

A = ‖g jk‖∞ ≤ 4‖ψ jk‖2∞.

Furthermore,

C2 =

n∑

i=2

i−1∑

l=1

E(g2
jk(Xi ,Xl)) =

n(n− 1)
2

σ4
jk.

The next term is

D = sup
E

∑
a2

i (Xi )≤1, E
∑

b2
l (Xl )≤1

E


n∑

i=2

i−1∑

l=1

g jk(Xi ,Xl)ai(Xi)bl(Xl)



= sup
E

∑
a2

i (Xi )≤1, E
∑

b2
l (Xl )≤1

n∑

i=2

i−1∑

l=1

E

(
(ψ jk(Xi) − β jk)ai(Xi)

)
E

(
(ψ jk(Xl) − β jk)bl(Xl)

)

≤ sup
E

∑
a2

i (Xi )≤1, E
∑

b2
l (Xl )≤1

n∑

i=2

i−1∑

l=1

√
σ2

jkE(a2
i (Xi))

√
σ2

jkE(b2
l (Xl)).

So, we have

D ≤ σ2
jk sup

E
∑

a2
i (Xi )≤1, E

∑
b2

l (Xl )≤1

n∑

i=2

√
E(a2

i (Xi))

√√√
i−1∑

l=1

E(b2
l (Xl))

√
i − 1

≤ σ2
jk sup

E
∑

a2
i (Xi )≤1

√√
n∑

i=2

E(a2
i (Xi))

√√
n∑

i=2

(i − 1)

≤ σ2
jk

√
n(n− 1)

2
.

Still using Theorem 3.1 of Houdré and Reynaud-Bouret (2003), we have:

B2 = sup
t

n−1∑

l=1

E((ψ jk(t) − β jk)2(ψ jk(Xl) − β jk)2)

≤ 4(n− 1)‖ψ jk‖2∞σ2
jk

≤ 4(n− 1)‖ψ jk‖4∞
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Finally

F = E

sup
i,t

∣∣∣∣∣∣
i−1∑

l=1

(ψ jk(t) − β jk)(ψ jk(Xl) − β jk)

∣∣∣∣∣∣



≤ 2‖ψ jk‖∞E

sup
i

∣∣∣∣∣∣
i−1∑

l=1

(ψ jk(Xl) − β jk)

∣∣∣∣∣∣

 .

To control this term, we set

Zi =

i−1∑

l=1

(ψ jk(Xl) − β jk).

Using Doob’s inequality on the martingale (Zi)i , we obtain

E(sup
i
|Zi |) ≤

√
E(sup

i
Z2

i ) ≤ 2 sup
i

√
E(Z2

i ) = 2σ jk

√
n− 1.

Hence

F ≤ 4‖ψ jk‖∞σ jk

√
n− 1.

Now, for anyu > 0, let us set

S(u) = 2‖ψ jk‖∞σ jk

√
2

u
n
+
σ2

jku

3n

and

U(u) = (1+ τ)C
√

2u+ 2Du+
1+ τ

3
Fu+

(√
2(3+ τ−1) +

2
3

)
Bu3/2 +

3+ τ−1

3
Au2.

Inequalities (B.4) and (B.5) give

P

(
σ2

jk ≥ σ̂2
jk + S(u) +

2
n(n− 1)

U(u)

)
= P

(
σ2

jk ≥ sn + S(u) +
2

n(n− 1)
(U(u) − un)

)

≤ P

(
σ2

jk ≥ sn + S(u)
)
+ P(un ≥ U(u))

≤ 4e−u.

Let us takeu = γlogn andτ = 1. Then, there exist some constantsa andb depending onγ such that

S(u) +
2

n(n− 1)
U(u) ≤ 2σ jk‖ψ jk‖∞

√
2γ

logn
n
+ aσ2

jk

logn
n
+ b‖ψ jk‖2∞

(
logn

n

)3/2

.

So,

P

σ2
jk ≥ σ̂2

jk + 2σ jk‖ψ jk‖∞
√

2γ
logn

n
+ aσ2

jk

logn
n
+ b‖ψ jk‖2∞

(
logn

n

)3/2 ≤ 4n−γ

and

P

σ2
jk

(
1− a

logn
n

)
− 2σ jk‖ψ jk‖∞

√
2γ

logn
n
− σ̂2

jk − b‖ψ jk‖2∞
(
logn

n

)3/2

≥ 0

 ≤ 4n−γ.

Now, we set

θ1 =

(
1− a

logn
n

)
, θ2 = ‖ψ jk‖∞

√
2γ

logn
n

and

θ3 = σ̂
2
jk + b‖ψ jk‖2∞

(
logn

n

)3/2
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with θ1, θ2, θ3 > 0 for n large enough depending only onγ. We study the polynomial

p(σ) = θ1σ
2 − 2θ2σ − θ3.

Then, sinceσ ≥ 0, p(σ) ≥ 0 means that

σ ≥ 1
θ1

(
θ2 +

√
θ2

2 + θ1θ3

)
,

which is equivalent to

σ2 ≥ 1

θ2
1

(
2θ2

2 + θ1θ3 + 2θ2

√
θ2

2 + θ1θ3

)
.

Hence

P

σ2
jk ≥

1

θ2
1

(
2θ2

2 + θ1θ3 + 2θ2

√
θ2

2 + θ1θ3

) ≤ 4n−γ.

So,

P

σ2
jk ≥

θ3

θ1
+

2θ2
√
θ3

θ1
√
θ1
+

4θ2
2

θ2
1

 ≤ 4n−γ.

So, there exist absolute constantsδ, η, andτ′ depending only onγ so that forn large enough,

P

σ2
jk ≥ σ̂2

jk

(
1+ δ

logn
n

)
+

(
1+ η

logn
n

)
2‖ψ jk‖∞

√
2γσ̂2

jk

logn
n
+ 8γ‖ψ jk‖2∞

logn
n

1+ τ′
(
logn

n

)1/4
 ≤ 4n−γ.

Hence, with

σ̃2
jk = σ̂

2
jk + 2‖ψ jk‖∞

√
2γσ̂2

jk

logn
n
+ 8γ‖ψ jk‖2∞

logn
n

,

for all ε′ > 0 there existsM such that

P(σ2
jk ≥ (1+ ε′)σ̃2

jk) ≤ Mn−γ.

�

Let κ < 1. Applying the previous lemma gives

P(|β̂ jk − β jk | > κη jk,γ) ≤ P

|β̂ jk − β jk | ≥
√

2κ2γσ̃2
jk

logn
n
+

2κγlogn‖ψ jk‖∞
3n



≤ P

|β̂ jk − β jk | ≥
√

2κ2γσ̃2
jk

logn
n
+

2κγlogn‖ψ jk‖∞
3n

, σ2
jk ≥ (1+ ε′)σ̃2

jk



+P

|β̂ jk − β jk | ≥
√

2κ2γσ̃2
jk

logn
n
+

2κγlogn‖ψ jk‖∞
3n

, σ2
jk < (1+ ε′)σ̃2

jk



≤ P

(
σ2

jk ≥ (1+ ε′)σ̃2
jk

)

+P

|β̂ jk − β jk | ≥
√

2κ2γ(1+ ε′)−1σ2
jk

logn
n
+

2κγlogn‖ψ jk‖∞
3n

 .

Using again the Bernstein inequality, we have for anyu > 0,

P

|β̂ jk − β jk | ≥

√
2uσ2

jk

n
+

2u‖ψ jk‖∞
3n

 ≤ 2e−u.

So, withε′ = 1− κ, there exists a constantMκ depending only onκ andγ such that

P(|β̂ jk − β jk | > κη jk,γ) ≤ Mκn
−γκ2/(2−κ).
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So, for any value ofκ ∈ (0, 1[, Assumption (A1) is true withη jk = η jk,γ if we takeω = Mκn−γκ
2/(2−κ).

Now, to prove (A2), we use the Rosenthal inequality. There exists a constantC(p) only depending onp

such that

E(|β̂ jk − β jk |2p) =
1

n2p
E



∣∣∣∣∣∣∣

n∑

i=1

(
ψ jk(Xi) − E(ψ jk(Xi))

)
∣∣∣∣∣∣∣

2p

≤ C(p)
n2p


n∑

i=1

E

[∣∣∣ψ jk(Xi) − E(ψ jk(Xi))
∣∣∣2p

]
+


n∑

i=1

Var(ψ jk(Xi))


p

E(|β̂ jk − β jk |2p) ≤ C(p)
n2p


n∑

i=1

(
2‖ψ jk‖∞

)2p−2
Var(ψ jk(Xi)) +


n∑

i=1

Var(ψ jk(Xi))


p

≤ C(p)
n2p

((
2‖ψ jk‖∞

)2p−2
nσ2

jk + npσ
2p
jk

)

≤ C(p)
n2p

((
2‖ψ jk‖∞

)2p
nF jk + np‖ψ jk‖2p

∞ Fp
jk

)
.

Finally,

(
E(|β̂ jk − β jk |2p)

) 1
p ≤

4C(p)
1
p ‖ψ jk‖2∞
n

(
n1−pF jk + Fp

jk

) 1
p

≤ 4C(p)
1
p 2 j0 max(‖φ‖2∞; ‖ψ‖2∞)

n

(
n−

1
q F

1
p

jk + F jk

)
.

So, Assumption (A2) is satisfied withε = 1
n and

R=
8C(p)

1
p 2 j0 max(‖φ‖2∞; ‖ψ‖2∞)

n
.

Finally, to prove Assumption (A3), we use the following lemma.

Lemma 2. We set

N jk =

n∑

i=1

1{Xi∈Supp(ψ jk)} and C′ =
14γ
3
≥ 14

3
.

There exists an absolute constant0 < θ′ < 1 such that if nFjk ≤ θ′C′logn and(1− θ′)logn ≥ 3
7 then,

P(N jk − nF jk ≥ (1− θ′)C′logn) ≤ F jkn−γ.

Proof. One takesθ′ ∈ [0, 1] such that
(1− θ′)2

(2θ′ + 1)
≥ 4

7
.

We use the Bernstein inequality that yields

P(N jk − nF jk ≥ (1− θ′)C′logn) ≤ exp

(
− ((1− θ′)C′logn)2

2(nF jk + (1− θ′)C′logn/3)

)
≤ n−

3C′ (1−θ′)2
2(2θ′+1) .

If nF jk ≥ n−γ−1, since3C′(1−θ′)2

2(2θ′+1) ≥ 2γ + 2, the result is true. IfnF jk ≤ n−γ−1, using properties of Binomial

random variables (see page 482 of Shorack and Wellner (1986)), for n ≥ 2,

P(N jk − nF jk ≥ (1− θ′)C′logn) ≤ P(N jk > (1− θ′)C′logn) ≤ P(N jk ≥ 2)

≤
(1− F jk)C2

nF2
jk(1− F jk)n−2

1− 3−1(n+ 1)F jk

≤
n2F2

jk

2(1− 2−1nF jk)

≤ (nF jk)2
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and the result is true. �

Now, observe that if|β̂ jk| > η jk,γ then

N jk ≥ C′logn.

Indeed,|β̂ jk | > η jk,γ implies
C′logn

n
‖ψ jk‖∞ ≤ |β̂ jk | ≤

‖ψ jk‖∞N jk

n
.

So, if n satisfies (1− θ′)logn ≥ 3
7, we setθ = θ′C′log (n) andµ = n−γ. In this case, Assumption (A3) is

fulfilled since if nF jk ≤ θ′C′logn

P(|β̂ jk − β jk | > κη jk,γ, |β̂ jk| > η jk,γ) ≤ P(N jk − nF jk ≥ (1− θ′)C′logn) ≤ F jkn−γ.

Finally, if n satisfies (1− θ′)logn ≥ 3
7, we can apply Theorem 5 and we have:

1− κ2

1+ κ2
E‖β̃ − β‖2ℓ2

≤ inf
m⊂Γn


1+ κ2

1− κ2

∑

( j,k)<m

β2
jk +

1− κ2

κ2

∑

( j,k)∈m
E(β̂ jk − β jk)2 +

∑

( j,k)∈m
E(η2

jk,γ)



+ LD
∑

( j,k)∈Γn

F jk. (B.6)

Furthermore, there exists a constantK1 depending onp, γ, κ, c, c′ and onψ such that

LD
∑

( j,k)∈Γn

F jk ≤ K1(log(n))c′+1nc− κ2γ
q(2−κ)−1

. (B.7)

Sinceγ > c, one takes 0< κ < 1 andq > 1 such thatc < κ2γ

q(2−κ) and as required by Theorem 1, the last term

satisfies

LD
∑

( j,k)∈Γn

F jk ≤
K2

n
,

whereK2 is a constant. Now we can derive the oracle inequality. Before evaluating the first term of (B.6),

let us state the following lemma.

Lemma 3. We set for any( j, k) ∈ Λ
D jk =

∫
ψ2

jk(x) f (x)dx,

Sψ = max{ sup
x∈Supp(φ)

|φ(x)|, sup
x∈Supp(ψ)

|ψ(x)|}

and

Iψ = min{ inf
x∈Supp(φ)

|φ(x)|, inf
x∈Supp(ψ)

|ψ(x)|}.

Using Appendix A, we defineΘψ =
S2
ψ

I2
ψ

. For all ( j, k) ∈ Λ, we have the following result.

- If F jk ≤ Θψ log (n)
n , thenβ2

jk ≤ Θ2
ψD jk

log (n)
n .

- If F jk > Θψ
log (n)

n , then‖ψ jk‖∞ log (n)
n ≤

√
D jk log (n)

n .

Proof. We assume thatj ≥ 0 (arguments are similar forj = −1).

If F jk ≤ Θψ log (n)
n , we have

|β jk| ≤ Sψ2
j
2 F jk ≤ Sψ2

j
2
√

F jk

√
Θψ

√
log (n)

n
≤ SψI−1

ψ

√
Θψ

√
D jklog (n)

n
≤ Θψ

√
D jklog (n)

n
,
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sinceD jk ≥ I2
ψ2 jF jk. For the second point, observe that

√
D jklog (n)

n
≥ 2

j
2 Iψ

√
Θψ

log (n)
n
= 2

j
2 Sψ

log (n)
n
≥ ‖ψ jk‖∞

log (n)
n

.

�

Now, for anyδ > 0,

E(η2
jk,γ) ≤ (1+ δ)

2γlogn
n

E(σ̃2
jk) + (1+ δ−1)

(
2γlogn

3n

)2

‖ψ jk‖2∞.

Moreover,
E(σ̃2

jk)

n
≤ (1+ δ)

D jk

n
+ (1+ δ−1)8γlogn

‖ψ jk‖2∞
n2

.

So,

E(η2
jk,γ) ≤ (1+ δ)22γlogn

D jk

n
+ ∆(δ)

(
γlogn

n

)2

‖ψ jk‖2∞, (B.8)

with ∆(δ) a constant depending only onδ. Now, we apply (B.6) with

m=

{
( j, k) ∈ Γn : β2

jk > Θ
2
ψ

D jk

n
logn

}
,

so using Lemma 3, we can claim that for any (j, k) ∈ m, F jk > Θψ
log (n)

n . Finally, sinceΘψ ≥ 1,

E‖β̃ − β‖2ℓ2
≤ K3


∑

( j,k)∈Γn

β2
jk1{β2

jk≤Θ
2
ψ

D jk
n logn} +

∑

( j,k)<Γn

β2
jk



+K3

∑

( j,k)∈Γn


logn

n
D jk +

(
logn

n

)2

‖ψ jk‖2∞

1{
β2

jk>Θ
2
ψ

D jk
n logn, F jk>Θψ

log (n)
n

} +
K4

n

≤ K3


∑

( j,k)∈Γn

(
β2

jk1{
β2

jk≤Θ
2
ψlogn

D jk
n

} + 2logn
D jk

n
1{

β2
jk>Θ

2
ψ logn

D jk
n

}
)
+

∑

( j,k)<Γn

β2
jk

 +
K4

n

≤ 2K3


∑

( j,k)∈Γn

min

(
β2

jk,Θ
2
ψlogn

D jk

n

)
+

∑

( j,k)<Γn

β2
jk

 +
K4

n
,

where the constantK3 depends onγ andc andK4 depends onγ, c, c′ and onψ. Finally, since

D jk = σ
2
jk + β

2
jk,

E‖β̃ − β‖2ℓ2
≤ 2K3


∑

( j,k)∈Γn

min

β2
jk +
Θ2
ψlogn

n
β2

jk,Θ
2
ψlogn

σ2
jk

n
+
Θ2
ψlogn

n
β2

jk

 +
∑

( j,k)<Γn

β2
jk

 +
K4

n

≤ 2K3


∑

( j,k)∈Γn

min

β2
jk,Θ

2
ψlogn

σ2
jk

n

 +
∑

( j,k)∈Γn

Θ2
ψlogn

n
β2

jk +
∑

( j,k)<Γn

β2
jk

 +
K4

n

≤ 2K3Θ
2
ψ


∑

( j,k)∈Γn

min

β2
jk, logn

σ2
jk

n

 +
∑

( j,k)<Γn

β2
jk

 + 2K3Θ
2
ψ‖β‖ℓ2

logn
n
+

K4

n
.

Theorem 1 is proved by using properties of the biorthogonal wavelet basis.
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B.2. Proof of Theorem 2

The first part is a direct application of Theorem 1. Now let us turn to the second part. We recall that we

considerf = 1[0,1], the Haar basis and forj ≥ 0 andk ∈ Z, we have:

σ̃2
jk = σ̂

2
jk + 2‖ψ jk‖∞

√
2γσ̂2

jk

logn
n
+ 8γ‖ψ jk‖2∞

logn
n

.

So, for any 0< ε < 1−γ
2 < 1

2,

σ̃2
jk ≤ (1+ ε)σ̂2

jk + 2γ‖ψ jk‖2∞
logn

n

(
ε−1 + 4

)
.

Now,

η jk,γ =

√
2γσ̃2

jk

logn
n
+

2‖ψ jk‖∞γlogn

3n

≤

√
2γ

logn
n

(
(1+ ε)σ̂2

jk + 2γ‖ψ jk‖2∞
logn

n
(
ε−1 + 4

))
+

2‖ψ jk‖∞γlogn

3n

≤
√

2γ(1+ ε)σ̂2
jk

logn
n
+

2‖ψ jk‖∞γlogn

n

(
1
3
+
√

4+ ε−1

)
.

Furthermore, using (B.3)

σ̂2
jk = sn −

2
n(n− 1)

un,

and

η jk,γ ≤
√

2γ(1+ ε)
logn

n
sn +

√
2γ(1+ ε)

logn
n
× 2

n(n− 1)
|un| +

2‖ψ jk‖∞γlogn

n

(
1
3
+
√

4+ ε−1

)
.

Using (B.5), with probability larger than 1− 6n−2,

|un| ≤ U(2logn),

and, sincef = 1[0,1], we haveσ2
jk ≤ 1 and

2
n(n− 1)

U(2logn) ≤ C1
logn

n
+C2‖ψ jk‖2∞

(
logn

n

) 3
2

,

whereC1 andC2 are universal constants. Finally, with probability largerthan 1− 6n−2,

√
2γ(1+ ε)

logn
n
× 2

n(n− 1)
|un| ≤

√
2γ(1+ ε)C1

logn
n
+

√
2γ(1+ ε)C2‖ψ jk‖∞

(
logn

n

) 5
4

.

So, sinceγ < 1, there existsw(ε), only depending onε such that with probability larger than 1− 6n−2,

η jk,γ ≤
√

2γ(1+ ε)
logn

n
sn + w(ε)‖ψ jk‖∞

logn
n

.

Since‖ψ jk‖∞ = 2 j/2, we set

η̃ jk,γ =

√
2γ(1+ ε)sn

logn
n
+ w(ε)

2
j
2 logn

n
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andη jk,γ ≤ η̃ jk,γ with probability larger than 1− 6n−2. Then, sincef = 1[0,1], β jk = 0 for j ≥ 0 and

sn =
1
n

n∑

i=1

(
ψ jk(Xi) − β jk

)2

=
2 j

n

n∑

i=1

(1Xi∈[k2− j ,(k+0.5)2− j [ − 1Xi∈[(k+0.5)2− j ,(k+1)2− j [

)2

=
2 j

n

(
N+jk + N−jk

)
,

with

N+jk =
n∑

i=1

1Xi∈[k2− j ,(k+0.5)2− j [ , N−jk =
n∑

i=1

1Xi∈[(k+0.5)2− j ,(k+1)2− j [ .

We considerj such that
n

(logn)α
≤ 2 j <

2n
(logn)α

, α > 1.

In particular, we have
(logn)α

2
< n2− j ≤ (logn)α.

Now,

β̂ jk =
1
n

n∑

i=1

ψ jk(Xi) =
2

j
2

n
(N+jk − N−jk).

Hence,

E(‖ f̃n,γ − f ‖22) ≥
2j−1∑

k=0

E

(
β̂2

jk1|β̂ jk |≥η jk,γ

)

≥
2j−1∑

k=0

E

(
β̂2

jk1|β̂ jk |≥η̃ jk,γ
1|un|≤U(2logn)

)

≥
2j−1∑

k=0

2 j

n2
E

(
(N+jk − N−jk)21

|β̂ jk |≥
√

2γ(1+ε)sn
logn

n +w(ε) 2 j/2 logn
n

1|un|≤U(2logn)

)
.

≥
2j−1∑

k=0

2 j

n2
E

(N+jk − N−jk)21
2

j
2
n |N+jk−N−jk |≥

√
2γ(1+ε) 2 j

n

(
N+jk+N−jk

)
logn

n +w(ε) 2 j/2 logn
n

1|un|≤U(2logn)



≥
2j−1∑

k=0

2 j

n2
E

(
(N+jk − N−jk)21

|N+jk−N−jk |≥
√

2γ(1+ε)
(
N+jk+N−jk

)
logn+w(ε) logn

1|un|≤U(2logn)

)

≥ 22 j

n2
E

(
(N+j1 − N−j1)21

|N+j1−N−j1|≥
√

2γ(1+ε)
(
N+j1+N−j1

)
logn+w(ε) logn

1|un|≤U(2logn)

)
.

Now, we consider a bounded sequence (wn)n such that for anyn, wn ≥ w(ε) and such that
√

vn j

2 is an integer

with

vn j =

(√
4γ(1+ ε)µ̃n j log(n) + wn log(n)

)2

andµ̃n j is the largest integer smaller or equal ton2− j−1. We have

vn j ∼ 4γ(1+ ε)µ̃n j logn

and
(logn)α

4
− 1 < n2− j−1 − 1 < µ̃n j ≤ n2− j−1 ≤ (logn)α

2
.
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So, if

N+j1 = µ̃n j +
1
2
√

vn j, N−j1 = µ̃n j −
1
2
√

vn j,

then

N+j1 + N−j1 = 2µ̃n j, N+j1 − N−j1 =
√

vn j =

√
2γ(1+ ε)

(
N+j1 + N−j1

)
logn+ wn logn.

Finally,

E(‖ f̃n,γ − f ‖22) ≥ 22 j

n2
vn jP

(
N+j1 = µ̃n j +

1
2
√

vn j, N−j1 = µ̃n j −
1
2
√

vn j, |un| ≤ U(2logn)

)

≥ vn j(logn)−2α

×
[
P

(
N+j1 = µ̃n j +

1
2
√

vn j, N−j1 = µ̃n j −
1
2
√

vn j

)
− P

(|un| > U(2logn)
)]

≥ vn j(logn)−2α

[
n!

ln j!mn j!(n− ln j −mn j)!
p

ln j+mn j

j (1− 2p j)n−(ln j+mn j) − 6
n2

]
,

with

ln j = µ̃n j +
1
2
√

vn j, mn j = µ̃n j −
1
2
√

vn j,

and

p j =

∫ 1[k2− j ,(k+0.5)2− j [(x) f (x)dx=
∫ 1[(k+0.5)2− j ,(k+1)2− j [(x) f (x)dx= 2− j−1.

So,

E(‖ f̃n,γ − f ‖22) ≥ vn j(logn)−2α ×
[

n!
ln j!mn j!(n− 2µ̃n j)!

p
2µ̃n j

j (1− 2p j)n−2µ̃n j − 6
n2

]
.

Now, let us study each term:

p
2µ̃n j

j = exp
(
2µ̃n j log(p j)

)

= exp
(
2µ̃n j log(2− j−1)

)
,

(1− 2p j)n−2µ̃n j = exp
(
(n− 2µ̃n j) log(1− 2p j)

)

= exp
(
−(n− 2µ̃n j)

(
2− j +On(2−2 j)

))

= exp
(
−n2− j

)
(1+ on(1)),

n! = nne−n
√

2πn (1+ on(1)),

(n− 2µ̃n j)
n−2µ̃n j = exp

((
n− 2µ̃n j

)
log

(
n− 2µ̃n j

))

= exp

((
n− 2µ̃n j

) (
logn+ log

(
1−

2µ̃n j

n

)))

= exp


(
n− 2µ̃n j

)
logn−

2µ̃n j

(
n− 2µ̃n j

)

n

 (1+ on(1))

= exp
(
n logn− 2µ̃n j − 2µ̃n j logn

)
(1+ on(1)).
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Then,

n!
(n− 2µ̃n j)!

p
2µ̃n j

j (1− 2p j)n−2µ̃n j =
en−2µ̃n j

en
× nn

(n− 2µ̃n j)n−2µ̃n j
× p

2µ̃n j

j (1− 2p j)n−2µ̃n j(1+ on(1))

= exp
(
−2µ̃n j

)
× exp

(
n logn

)

(n− 2µ̃n j)n−2µ̃n j
× p

2µ̃n j

j (1− 2p j)n−2µ̃n j (1+ on(1))

= exp
(
−2µ̃n j

)
×

exp
(
n logn+ 2µ̃n j log(2− j−1) − n2− j

)

exp
(
n logn− 2µ̃n j − 2µ̃n j logn

) (1+ on(1))

= exp
(
2µ̃n j logn+ 2µ̃n j log(2− j−1) − n2− j

)
(1+ on(1)).

It remains to evaluateln j! ×mn j!

ln j! ×mn j! =

(
ln j

e

)ln j (mn j

e

)mn j
√

2πln j

√
2πmn j(1+ on(1))

= exp
(
ln j log ln j +mn j logmn j − 2µ̃n j

)
× 2πµ̃n j(1+ on(1)).

If we set

xn j =

√
vn j

2µ̃n j
= on(1),

then

ln j = µ̃n j +

√
vn j

2
= µ̃n j(1+ xn j),

mn j = µ̃n j −
√

vn j

2
= µ̃n j(1− xn j),

and using that

(1+ xn j) log(1+ xn j) = (1+ xn j)

xn j −
x2

n j

2
+

x3
n j

3
+O(x4

n j)



= xn j −
x2

n j

2
+

x3
n j

3
+ x2

n j −
x3

n j

2
+O(x4

n j)

= xn j +
x2

n j

2
−

x3
n j

6
+O(x4

n j)

ln j log ln j = µ̃n j(1+ xn j) log
(
µ̃n j(1+ xn j)

)

= µ̃n j(1+ xn j) log(1+ xn j) + µ̃n j(1+ xn j) log
(
µ̃n j

)

= µ̃n j

xn j +
x2

n j

2
−

x3
n j

6
+O(x4

n j)

 + µ̃n j(1+ xn j) log
(
µ̃n j

)
.

Similarly,

mn j logmn j = µ̃n j

−xn j +
x2

n j

2
+

x3
n j

6
+O(x4

n j)

 + µ̃n j(1− xn j) log
(
µ̃n j

)
.

So,

ln j log ln j +mn j logmn j = µ̃n j

(
x2

n j +O(x4
n j)

)
+ 2µ̃n j log

(
µ̃n j

)

≤ µ̃n jx
2
n j + 2µ̃n j log(n2− j−1) +O(µ̃n jx

4
n j).
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Since

µ̃n jx
2
n j =

vn j

4µ̃n j
∼ γ(1+ ε) logn,

for n large enough,

µ̃n jx
2
n j +O(µ̃n jx

4
n j) ≤ (γ + 2ε) logn

and

ln j log ln j +mn j logmn j ≤ (γ + 2ε) logn+ 2µ̃n j log(n2− j−1).

Finally,

ln j! ×mn j! = exp
(
ln j log ln j +mn j logmn j − 2µ̃n j

)
2πµ̃n j(1+ on(1))

≤ exp
(
(γ + 2ε) logn+ 2µ̃n j log(n2− j−1) − 2µ̃n j

)
2πµ̃n j(1+ on(1)).

we derive that

E(‖ f̃n,γ − f ‖22) ≥ vn j(logn)−2α

[
n!

ln j!mn j!(n− 2µ̃n j)!
p

2µ̃n j

j (1− 2p j)
n−2µ̃n j − 6

n2

]

≥ vn j(logn)−2α


exp

(
2µ̃n j logn+ 2µ̃n j log(2− j−1) − n2− j

)

exp
(
(γ + 2ε) logn+ 2µ̃n j log(n2− j−1) − 2µ̃n j

)
× 2πµ̃n j

− 6
n2

 (1+ on(1))

≥ vn j(logn)−2α

[
exp

(−(γ + 2ε) logn− 2
)

2πµ̃n j
− 6

n2

]
(1+ on(1))

So there existsC1 andC2 two positive constants such that, forn large enough

E(‖ f̃n,γ − f ‖22) ≥ C1(logn)1−α
[
C2

n−(γ+2ε)

(logn)α
− 6

n2

]
.

As 0< γ + 2ε < 1, there exists a positive constantδ < 1 such that

E(‖ f̃n,γ − f ‖22) ≥ 1
nδ

(1+ on(1)).

This concludes the proof of Theorem 2.
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