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Abstract

This paper deals with the classical problem of density egtion on the real line. Most of the existing
papers devoted to minimax properties assume that the sugipibre underlying density is bounded and
known. But this assumption may be veryfiult to handle in practice. In this work, we show that, exactl
as a curse of dimensionality exists when the data liRinthere exists a curse of support as well when
the support of the density is infinite. As for the dimensidggiroblem where the rates of convergence
deteriorate when the dimension grows, the minimax rateon¥ergence may deteriorate as well when
the support becomes infinite. This problem is not purely tbgeal since the simulations show that the
support-dependent methods are realffieeted in practice by the size of the density support, or by the
weight of the density tail. We propose a method based on #hoigonal wavelet thresholding rule that is
adaptive with respect to the nature of the support and thdasty of the signal, but that is also robust in
practice to this curse of support. The threshold, that ippsed here, is very accurately calibrated so that
the gap between optimal theoretical and practical tunimgrpaters is almost filled.
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1. Introduction

This paper deals with the classical problem of density egtion for unidimensional data. Our aim is
to provide an adaptive method which requires as few assomgpts possible on the underlying density
in order to apply it in an exploratory way. In particular, we dot want to have any assumption on the
density support. Moreover this method should be quite easyplement and should have good theoretical
performance as well.

Density estimation is a task that lies at the core of many piggrocessing. From this point of view, no
assumption should be made on the underlying function tmes#i. At least in a first approach, histograms
or kernel methods are often used. These popular linear &stimdo not require any assumption on the
support and have good theoretical performance. The mailgnrois to choose the bandwidth, which is
usually performed by cross-validation (see the fundanigraper by Rudemo (1982)) or by other data-
driven methods (see Silverman (1986)). However, most dfithe, the bandwidth is selected uniformly in
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space, which dftiers several drawbacks due to the lack of spatial adaptitétymprove this point, Sain and
Scott (1996) have proposed a kernel procedure which makeshibice of the bandwidth more local, this
procedure being still based on intensive cross-validaiids worth noting that these kernel methods may
have a high computational cost, are often based on asymptgfuments and do not provide theoretical
guarantees from the adaptive minimax point of view.

One possible adaptive minimax approach is to consider namdettion. Following Akaike’s criterion
for histograms, Castellan (2000) has derived adaptivemawiprocedures for density estimation (see Mas-
sart (2007) for detailed proofs and Birgé and Rozenhol@§2@or a practical point of view). To remedy
the lack of smoothness of histograms, piecewise polynoesidnates can also be used (see for instance
Castellan (2003), Willett and Nowak (2007) or Keb al. (1999) for the spline basis). It is worth em-
phasizing that, basically, the necessary input of modelcsien methods is the support of the underlying
density, classically assumed to beID In practice, the data are usually rescaled by the smalfeslargest
observations before performing any of the previous algoré. This preprocessing has not been studied
theoretically. In particular, what happens if the denstiieéavy-tailed? Note thét-penalty methodologies
can also be used, providing oracle inequalities withoutsrpport assumption (see for instance Beetin
al. (2010)), but minimax properties have not been investigaieduch estimators.

Now let us turn to wavelet thresholding. Donoétoal. (1996) have first provided theoretical adaptive
minimax results in the density setting. This paper is a tbégoail benchmark but their threshold depends
on the extraknowledge of the infinite norm of the underlyirgsity. In practice, even if this quantity is
known, this choice is often too conservative. From a contral point of view, the DWT algorithm
combined with a keep or kill rule on each d¢beient makes these methods as one of the easiest adaptive
methods to implement, once the threshold is known. Heretiesundamental problem: after rescaling
and binning the data as in Antoniadisal.(1999) for instance, one can reasonably think that the nuntbe
observations in a “not too small” interval is Gaussian, updme eventual transformation. So basically the
thresholding rules adapted to the Gaussian regressiangssttould work here even if many assumptions
are required. Even if in Browet al. (2010) theoretical justifications are given, the metholll stlies
heavily on the precise knowledge of the support which isalliydinked to the size of the bins. In their
seminal work Herriclet al. (2001) have already observed that in practice the basicggauapproximation
for general wavelet bases is quite poor. This can be coddntedhe use of the Haar basis and accurate
thresholding rules but the reconstructions are consetyygirtewise constant. Note also that in this paper
no assumption was made on the support of the underlyingtgehdore recently, Juditsky and Lambert-
Lacroix (2004) have proposed an adaptive thresholdinggahoe on the whole real line. Their threshold
is not based on a direct Gaussian approximation. Indeedhthgen threshold depends randomly on the
localization in time and frequency of the dheient that has to be kept or killed. They derive adaptive
minimax results for Holderian spaces, exhibiting ratest #ire diferent from the bounded support case.
However there is a gap between their optimal theoreticalaadtical tuning parameters of the threshold.

If the main goal of this paper is to investigate assumpti@e-fvavelet thresholding methodologies as
explained in the first paragraph, we also aim at fulfillingthap by designing a new threshold depending
on a tuning parameter. the precise form of the threshold is closely related togkaponential inequalities
for iid variables, avoiding the use of Gaussian approxioratiUnlike methods of Juditsky and Lambert-
Lacroix (2004) and Herrickt al. (2001), all the cofficients (and in particular the coarsest ones) are likely
to be thresholded. Moreover, since our threshold is defieeglaccurately from a non asymptotic point of
view, we obtain sharp oracle inequalities for- 1. But we also prove that taking < 1 deteriorates the
theoretical properties of our estimator. Hence the remgigap between theoretical and practical thresh-
olds lies in a second order term (see Section 2 for more ditdihe construction of our estimators and the
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previous results are stated in Section 2. Next, in Sectioved|lustrate the impact of the bounded support
assumption by exhibiting minimax rates of convergence enithole class of Besov spaces extending for
thelL, loss the results of Juditsky and Lambert-Lacroix (2004)pdrticular, when the support is infinite,
our results reveal how minimax rates deteriorate accortinige sparsity of the density. We also show that
our estimator is adaptive minimax (up to a logarithmic teavgr Besov balls with respect to the regularity
but also with respect to the support (finite or not). In Settdo we investigate the curse of support for
the most well-known support-dependent methods and contipane with our method and with the cross-
validated kernel method. Our method, which is naturallftigfig adaptive, seems to be robust with respect
to the size of the support or the tail of the underlying densife also implement our method on real data,
revealing the potential impact of our methodology for pitaters. The appendices are dedicated to an
analytical description of the biorthogonal wavelet basisdso to the proofs of the main results.

2. Our method

Let us observe a-sample of densityf assumed to be ifip(R). We denote this sampl¥, ..., X,.
We estimatef via its codficients on a special biorthogonal wavelet basis, due to Cehah(1992). The
decomposition of on such a basis takes the following form:

f= Zﬂ—lklz—lk + Z Z,Bjkl,zjk, (2.1)

keZ j>0 kez

where for anyj > 0 and anyk € Z,

By = fR FOQUs()dx B = fR £ (91 ()dx

The most basic example of biorthogonal wavelet basis is tar Hasis where the father wavelets are given
by
VKeZ, Ytk =P-1k = Ljeken)

and the mother wavelets are given by
Vi=0 VKeZ, yYk=yj= 2j/2(]1[k2-i;(k+1/2)2-1) - ]l[(k+1/2)2-i;(k+1)2-i])~

The other examples we consider are more precisely desdribiggpbendix A. The essential feature is that

it is possible to use, on the one hand, decomposition waug|ethat are piecewise constants, and, on the
other hand, smooth reconstruction waveik,t(s In particular, except for the Haar basis, decompositiah an
reconstruction wavelets arefiirent. To shorten mathematical expressions, we set

A={(J.K: j=-1keZ) (2.2)

and (2.1) can be rewritten as

f= > Budx with ,Bjszlpjk(x)f(x)dx (2.3)

(J.K)eA

A classical unbiased estimator {8 is the empirical coicient
R 1<
Bic =~ Zl wi(X). (2.4)
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whose variance igj?k /nwhere

7 = [vhoateaax- [ w,-k(x)f(x)dx)z.

Note thairf is classically unbiasedly estimated &, with

i-1

Tho= n(n ) Z (W k0O%G) = ¥ (X))

i=2 1=1

Now, let us define our thresholding estimatefof In the sequel there are twofflirent kinds of steps,
depending on whether the estimate is used for theoretiqakbatical purposes. Both situations are respec-
tively denoted Th. and 'Prac.

Step O

Th. Choose a constant> 1, a real number’ and letjo such thatip = |log,([n°(logn)°1) J. Choose
also a positive constamt

Prac. Let jo = [log,(n)].

Stepl Setlh = {(j,k) : -1 < j < jo, k € Z} and compute for anyj(k) € I';, the non-zero empirical
codﬁcientsﬁ,—k (whose number is almost surely finite).

Step 2 Threshold the cd@&cients by settingfi,—k = Bikllﬁ;k\zmk according to the following threshold choice.

Th. Overestimate slightly the varianoefk by using

Iog Iog n

T = T + 2l A[2755—— + Byl ——
and choose

_ Iogn 2l jklloylogn
Mk = Niky = \| 2T - J3n ~ (2.5)

Prac. Estimate unbiasedly the varianceﬁfﬁ and choose

logn 2 jll<logn
Prac _ 2 J
Mk =M = Z/O:jk — an . (2.6)
Step 3 Reconstruct the function by using tﬁﬁ’s and denote
Th.
foy= D B (2.7)
(j:K)€ln
Prac.
fyree = { > Bik@jk] (2.8)
(1.K)€ln

'
Note that this method can easily be implemented with a lowmaational cost. In particular, unlike

the DWT-based algorithms, our algorithm does not need nigaleapproximations, except &ep 3 for

the computations of th&jk (unless, we use the Haar basis). However, a preprocessiependent of the

algorithm, can be used to compute reconstruction waveteiayarequired precision. Both practical and
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theoretical thresholds are based on the following heusistietcy > 0. Define the heavy mass zone as the
set of indices |, k) € A such thatf (x) > ¢, for xin the support offjx and|ly ill2 = on(n(logn)~2). In this
heavy mass zone, the random term of (2.5) or (2.6) is the nreraad we asymptotically derive that with

large probability
—, logn logn
iy 2ya§k% and 7y~ \|252 g (2.9)

The shape of the right hand terms in (2.9) is classical in #resiy estimation framework (see Donoéto
al. (1996)). In fact, they look like the threshold proposed bgitiky and Lambert-Lacroix (2004) or the
universal thresholg” proposed by Donoho and Johnstone (1994) in the Gaussiagsgign framework.

Indeed, we recall that, in this set-up,
7Y = \J202logn,

whereo? (assumed to be known in the Gaussian framework) is the vaiaheach noisy wavelet cfie
cient. Actually, the deterministic term of (2.5) (or (2.@pnstitutes the main fierence with the threshold
proposed by Juditsky and Lambert-Lacroix (2004): it reptathe second keep or Kill rule applied by
Juditsky and Lambert-Lacroix on the empirical fic@ents. This additional term allows to control large
deviation terms for high resolution levels. It is directigked to Bernstein’s inequality (see the proofs
in Appendix B). The forthcoming oracle inequality (Theoré&holds with (2.5) for any > 1: this is
essential to fulfill the gap between theory and practiceeét] note that if one takes=y = 1 andc’ =0
then the main dference between (2.5) and (2.6) is a second order term in tinga¢i®n ofo-J?k by EJ?k. But
the main part is exactly the same: when thefioient lies in the heavy mass zone and whdends to 1,
Nk, tends to;PraC with high probability. Indeed, one can note that fora# 0 andy > 1,

n

2 iklloylogn
My MaC < ik < \/Zy(1+ s)AZ og |3+ 2(8+ 251)) Wjll-ylogn )
As often suggested in the literature, instead of estimafm@jk), we could have used the inequality

|If|Io<,

Var(B k) = -

and we could have replace“r’:fk with |||l in the definition of the threshold. But this requires a strong
assumptionf is bounded andf||.. is known. In our paper, Va8(x) is accurately estimated making these
conditions unnecessary. Theoretically, we slightly osémateo-fk to control large deviation terms and
this is the reason why we introdué”ék. Note that Reynaud-Bouret and Rivoirard (2010) have pregos
thresholding rules based on similar heuristic argumenrttsariPoisson intensity estimation framework. But
proofs and computations are more involved for density egton because sharp upper and lower bounds
for E]?k are more intricate.

For practical purposeyjc, (even withy = 1) slightly oversmooths the estimate with respeoﬂ(ﬁ‘c
From a simulation point of view, the linear terﬁhw in nprac with the precise constany2 seems to
be accurate.

The remaining part of this section is dedicated to a prediéce ofy, first from an oracle point of

view, next from a theoretical and practical study.

2.1. Oracle inequalities

Our main result is the following.



Theorem 1. Let us consider a biorthogonal wavelet basis satisfyingptlogerties described in Appendix
A.lfy > c, thenﬂw satisfies the following inequality: for n large enough

o2
Z min(ﬂ]?k,lognT'k]+ Z B

(1-K)€Tn (1-K)¢Tn

Czlogn
n

E[Iifny - fI3] < C1 + (2.10)

where G is a positive constant depending onlyprc and the choice of the wavelet basis and wherésC
also a positive constant dependinggre, ¢, |||l and the choice of the wavelet basis.

As claimed before, Theorem 1 holds with= 1 andy > 1. This result is also true providdde L,(R).
So, assumptions oh are very mild here. This is not the case for most of the redaiteon-parametric
estimation procedures where one assumeg|thiat < oo and thatf has a compact support. Furthermore,
note that this support arjf ||, are often known in the literature. On the contrary, in Theofe f and its
support can be unbounded. So, we make as few assumptionssibleoThis is allowed by considering
random thresholding with the data-driven thresholds ddfin€2.5).

This result is actually an oracle inequality from the thi@ding or the model selection point of view.
Indeed, if we consider for each deterministic subset ofdestin of I, the estimatoify, = Z(j’k)emﬁjklzl'k,
we easily see théd [|| frn— f||§] = Ry, (m) (see (A.1) in Appendix A for the precise multiplicative cants),

with
o2
2
Ré’z(m) = Z IBjk + Z T
(.K)gm (1:K)em
Hence the best possible set of indices correspondsaith -
2
O—jk

m = {(j, K) € I'y such thatg > T}

sincem minimizesm — R,,(m) and we have

o2
R,(M= > min[ﬂ?k, T’k] + > B
(i-K)eln (i-K)¢n
We can associate tm fhe oraclefs, which is not an estimator since it depends fonNevertheless, it
represents the benchmark in the family of estimators thep ke kill each cofficientBj. This is exactly
the oracle point of view introduced by Donoho and Johnstd884) adapted to the density setting. With
this approach, we see that Theorem 1 provides the best possHguality up to a logarithmic term and
a residual term. From a thresholding point of view, this kithanic term is unavoidable as it can be
seen when minimax rates are established on the maxisetseshthlding rules derived from such oracle
inequalities (See Reynaud-Bouret and Rivoirard (2010hé&Roisson setting for further details). It can
also be viewed as the price we pay for not having any inforonatin the cofficients to keep.
With the model selection approach proposed by Birgé ands&tag2007), we can see that Theorem 1
implies
E[Ifs, - 18] < Clog(y inf _inf E[if~ f1Z] + 229"

<L<+00 me M

whereC is a constant and, represents all the possible setin I', such thatf, has supportin{L, L]. So
Theorem 1 consists also in an oracle inequality for estinsatesuming that has a (known) finite support.
Finally let us remark that Theorem 1 also implies

~ 2 : : > Imllog(n) C,logn
E[||fn,y— f”g] <C inf inf { Z B + fufllm L

O<L<+00 meM 4
= (gm
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where|m| is the cardinal of the seh. Of course, this inequality makes sense onlifif., < c (see Birgé
(2008) for the capital role off||.. when oracle inequalities involve models dimension). Thiguality

is analogous to the oracle inequality proved by Birgé andgdda (2007) for complex families (such as
My) in the Gaussian setup. Birgé and Massart also proved ¢éhautch families the logarithmic term is
unavoidable.

2.2. Calibration issues

We address the problem of choosing conveniently the tunargmetery from the theoretical point
of view. The aim and the proofs are inspired by Birgé and Mesg@007) who considered penalized
estimators and calibrated constants for penalties in askufamework. In particular, they showed that
if the penalty constant is smaller than 1, then the penakatichator behaves in a quite unsatisfactory way.
This study was used in practice to derive adequate datardpenalties by Lebarbier (2005).

According to Theorem 1, we notice that for any signal, taldrg 1 andc’ = 0, we achieve the oracle
performance up to a logarithmic term provided 1. So, our primary interest is to wonder what happens,
from the theoretical point of view, when< 1?

To handle this problem, we consider the simplest signal insetting and we compare the rates of
convergence whep > 1 andy < 1.

Theorem 2. Let f = 1p 1) and let us considefy, with the Haar basis, e 1and ¢ = 0.

e If y > 1then there exists a constant C depending only sach that

~ logn
E[lifoy - fI3] < =
e If y < 1, then there exist§ < 1 depending only o such that
~ 1
E[Ifo, - fI3] S5(1+0n(1)).

Theorem 2 establishes that, asymptoticaﬂw with v < 1 cannot estimate a very simple signél=£
1j0,17) at a convenient rate of convergence. This provides a lowand for the tuning parametgr we
have to takey > 1.

We reinforce these results by a simulation study. First weikite 1000 n-samples of density= 1jg 1.
We estimatef by ﬂfrac using the Haar basis, but to see the influence of the parametethe estimation,
we replaceyjﬁ’(rac (seeStep 2 (2.6)) by

— logn 2’}/“';0]1(”00'09”.

Nk = /2y ik 2n (2.12)

For anyy, we have computei S E,(y) i.e. the average over the 1000 simulationﬁffﬁ’raC — f|j5. Onthe
left part of Figure 1J), MIS E;(y) x nis plotted as a function of for different values of. Note that when

v > 1, MIS E,(y) is null meaning that our procedure selects just one waeekficient, the one associated
to y_10 = Ljo;; all others are equal to zero. This fact remains true for & l&nge range of values of
v. This plateau phenomenon has already been noticed in tissdPoiramework (see Reynaud-Bouret and
Rivoirard (2010)). However as soon as< 1, MIS E,(y) x n is positive and increases wherdecreases.

It also increases with tending to prove thaM 1S E,(y) >> 1/nfor y < 1. This is in complete adequation
with Theorem 2. Remark that, from a theoretical point of vigve proof of part 2 of Theorem 2 holds

for any choice of threshold that is asymptotically equinale IZyEJ?k'O% in the heavy mass zone and
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Figure 1:n x MIS Ey(y) for (U) f = 1o 1 (the Haar basis is used) G f is the Gaussian density with mean 0.5 and standard
deviation 0.25 (the Spline basis is used) { is the renormalized Bumps signal (the Spline basis is used)

in particular for the choice (2.11). From a numerical poihtiew, the left part of Figure 1) would
have been essentially the same wijh,, i.e. (2.5) instead of (2.11). The reason why we used (2slth)a
practical performance when the functiéris more irregular with respect to the chosen basis. Indeed we
consider two other density functioris The first one is the density of a Gaussian variable whosédtsesu
appear in the middle part of Figure GY and the second one is the renormalized Bumps siymddose
results appear in the right part of Figure B)( In both cases we computdd™° with the Spline basis: this
basis is a particular possible choice of the wavelet basisiwleads to smooth estimates. A description
is available in Figure 9 of Appendix A. We computed the assed¥|S E,(y) over 100 simulations. Note
that for the Bumps signal, there is no plateau phenomenothatthe best choice faris y = 0.5 as soon

as the highest level of resolutiofy(n) is high enough to capture the irregularity of the signaln i§ too
small, the best choice is to keep all the ffméents. As already noticed in Reynaud-Bouret and Rivoirard
(2010), there exists in fact two behaviors: either the @rdglis close tof and the best possible choice is
y =~ 1 with a plateau phenomenon, or the orafigis far from f and it is better to take a smallgr(for
instancey = 0.5). The Gaussian densit@] exhibits both behaviors. For large(n > 1024), there is

a plateau phenomenon aroupd= 1. But for smallem, the oraclefs is not accurate enough and taking
v = 0.5 is better. Note finally that the choige= 1, leading to our practical method, nameﬂyac, is the
more robust with respect to both situations.

1 The renormalized Bumps signal is a very irregular signd ithalassically used in wavelet analysis. It is here rendized so

4
X—Pj 1
that the integral equals 1 and it can be define{E 9; (1 + | pjl) ] 0.4 it
i

wj 0.284

p = [ 01 013 015 023 025 04 044 065 076 078 081 ]
g = [ 4 5 3 4 5 42 21 43 31 51 42 ]
w = [ 0005 0005 0006 001 001 003 001 001 0.005 0008 0.005
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3. Thecurse of support from a minimax point of view

The goal of this section is to derive the minimax rates on thele/class of Besov spaces. The subse-
guent results will constitute generalizations of the rssdérived in Juditsky and Lambert-Lacroix (2004)
who pointed out minimax rates for density estimation on thssof Holder spaces. For this purpose, we
consider the theoretical procedLﬁ@ defined with the choice’ = —c (seeStep 0) where the real number
cis chosen later. In some situations, it will be necessangrengthen our assumptions. More precisely,
sometimes, we assume thais bounded. So, for ani > 0, we consider the following set of functions:

L5(R) = {f is a density such thgtf ||, < Rand||f|l. < R}.

The Besov balls we consider are classical (see Appendix A fl&finition with respect to the biorthogonal
wavelet basis) and denoteétf ,(R). Let us just point out that no restriction is made on the suppf f
whenf belongs taBy ((R): this support is potentially the whole real line. Now, Iststate the upper bound
of theLp-risk of fy,.

Theorem 3. LetRR > 0,1 < p,q < o anda € R such thatmax(O,’—l) - %) <a<r+1 wherer>0
denotes the wavelet smoothness parameter introduced iendippA. Let & 1 such that

1 1 1

andy > c. Then, there exists a constant C depending’on,R, «, p and on the choice of the biorthogonal
wavelet basis such that for n large enough,

-ifp<2,
20
- logn) 2
sup E[ufm—fui]sCRﬁ( : ) , (3.2)
feB84(RN Lo (R) n
-ifp>2,
~ —1_ (logn\=3
sup  E[lf, - fI3] < CR™F (i) s (3.3)
feB8 4(RNL2(R) n

where herd.,(R') denote the set of densities such e < R.

First, let us briefly comment assumptions of these resultseg > 2, (3.1) is satisfied and the result is
true foranyc > 1 and O< a < r+ 1. Furthermore, we do not need to restrict ourselves to thef seunded
functions. Wherp < 2, the resultis true as soon @is large enough to satisfy (3.1) and we establish (3.2)
only for bounded functions. Actually, this assumption isome sense unavoidable as proved in Section
6.4 of Birgé (2008).

Furthermore, note that if we additionally assume tha bounded with a bounded support (sayl)
thenE [I|f~n,y - fllg] is always upper bounded by a constant tirfleg n/n)zs—t1 whateverp is, since, in this
case wherp > 2, the assumptiofi € By ,(R) implies f € 8; _(R) for Rlarge enough.

Now, combining upper bounds (3.2) and (3.3), under assamgtdf Theorem 3, we point out the
following rate for our procedure whehis bounded but without any assumption on the support farge
enough, .

sup  E[If, - fI3] < cRTD. ('Oﬂ)—(_”T .
feB3(RNL2(R) n
The following result derives lower bounds of the minimaxéhiowing that this rate is the optimal rate up
to a logarithmic term. So, the next result establishes thiengity properties ofan,y under the minimax

approach.
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Theorem 4. LetRR > 0,1 < p,q < o anda € R such thamax(0, £ - 3) < @ < r + 1. Then, there
exists a positive consta@t depending on Re, p and q such that
1

lim inf n=#(3). inf sup E[llfA— fllg] > CR27(379).

N+oo f feB3(RNLew(R)

bl

where the infimum is taken over all the possible density asirs{.
Furthermore, let ¢, p> 1 ande* > 0 such that

. 1 1 1

Then our procedurefn,y, constructed with this precise choice of ¢ and c, is adaptive minimax up to a
logarithmic term on

[Br RN Low(R): @ <a<r+1 p <p<+eo, 1< o).

Whenp < 2, the lower bound for the minimax risk corresponds to thesital minimax rate for
estimating a compactly supported density (see Dorathal. (1996)). Furthermore, the proceduﬁgy
achieves this minimax rate up to a logarithmic term. Wpen2, the risk deteriorates, if no assumption on
the supportis made, whereas it remains the same when we@ddunded support assumption. Note that
whenp = oo, the exponent becomeg (1 + «): it was also derived in Juditsky and Lambert-Lacroix (2004
for estimation on balls aBg, .. We also mention that whem> 2, convenient non-adaptive linear estimates
achieve the optimal rate without logarithmic term. It is mgle consequence of technical arguments used
for proving Theorem 2 of Juditsky and Lambert-Lacroix (2004

To summarize, we gather in Table 1 the lower bounds for thémair rates obtained for each situation.
These bounds are adaptively achieved by our estimator w#hect top, @ and the compactness of the
support, up to a logarithmic term.

|1<p<2|2<p<w

20 20

compact support Nz n-2n

a
1

20 -
non compact suppoff n = n «s

Table 1: Minimax rates o}, N L2, (up to a logarithmic term) with & p,q < e, a > max(O, lp - %) under the| - |2-loss.

Our results show the role played by the support of the funstio be estimated on minimax rates. As
already observed, whem < 2, the support has no influence since the rate exponent reraathanged
whatever the size of the support (finite or not). Roughly kp&n it means that it is not harder to estimate
bounded non-compactly supported functions than boundexbaotly supported functions from the mini-
max point of view. It is not the case whgn> 2. Actually, we note an elbow phenomenorpat 2 and the
rate deteriorates whemincreases: this illustrates the curse of support from ammmi point of view. Let
us give an interpretation of this observation. Johnsto@84] showed that whep < 2, Besov spacesy
model sparse signals where at each level, a very few numilee efavelet cogicients are non-negligible.
But these cofficients can be very large. When> 2, 8] .-spaces typically model dense signals where the
wavelet coéficients are not large but most of them can be non-negligibkes &xplains why the size of

10



the support plays a role on minimax rates when 2: when the support is larger, the number of wavelet
codficients to be estimated increases dramatically.

Since arguments for proving Theorems 3 and 4 are similard@tguments used in Reynaud-Bouret
and Rivoirard (2010), proofs are omitted. We just menticat thheorem 3 is derived from the oracle
inequality established in Theorem 1.

Finally, a natural interesting extension of this work cobélto investigate rates fér -loss functions,

1 < p’ < 0. Note that the casp’ = « is very diferent in nature (see Giné and Nickl (2009) and Giné and
Nickl (2010)).

4. The curse of support from a practical point of view

Now let us turn to a practical point of view. Is there a curssugport too? First we provide a simulation
study illustrating the distortion of the most classic supdependent estimators when the support or the tail
is increasing. Next we provide an application of our mettmthinous real data sets, namely the Suicide
data and the Old Faithful geyser data.

4.1. Simulations

We compare our method to representative methods of eachtreaithin density estimation, namely
kernel, binning plus thresholding and model selection. ddresidered methods are the following. The first
one is the kernel method, denotid consisting in a basic cross-validation choice of a glotzeddwidth
with a Gaussian kernel. The second method requires a compprocessing of the data based on binning.
ObservationsXy, ..., X, are first rescaled and centered by diing transformation denoted such that
T(X1),..., T(Xpy) lie in [0, 1]. We denotefr the density of the data induced by the transformaliorwe
divide the interval [01] into 2™ small intervals of size 2, whereb, is an integer, and count the number
of observations in each interval. We apply the root tramafdue to Browret al. (2010) and the universal
hard individual thresholding rule on the dfieients computed with the DWT Caoiflet-basis filter. We finally
apply the unroot transform to obtain an estimatdiofind the final estimate of the density is obtained by
applying T~ combined with a spline interpolation. This method is ded@®&. The last method is also
support dependent. After rescaling as previously the adegagstimatefy by the algorithm of Willett and
Nowak (2007). It consists in a complex selection of a grid ahgdolynomials on that grid that minimizes
a penalized log-likelihood criterion. The final estimatetioé density is obtained by applyifg®. This
method is denote@N.

Our practical method is implemented in the Haar basis (nuethicand in the Spline basis (meth&l(see
Figure 9 in Appendix A for a complete description of this IshsMoreover we have also implemented the
choicey = 0.5 of (2.11) in the Spline basis (see Section 2). We denotanibihodS*.

The thresholding rule proposed in Juditsky and Lambertdia¢2004) has also been considered. For their
prescribed practical choice of the tuning parameters aa@&giine basis, the numerical performances are
similar to those of metho8. Since thresholding is not performed for the coarsest J¢lrelapproximation
term of the reconstruction is based on many non zero netgigiifficients for heavy-tailed signals: this
leads to obvious numericalfticulties without significant impact on the risk. So, numdriesults of the
thresholding rule proposed in Juditsky and Lambert-Lac{2004) are not given in the sequel.

We generaten-samples of two kinds of densitiefs with n = 1024. Both signals are supported by
the whole real line. We compute for each estimdtdhe ISE, i.e.fR(f - f)z which is approximated by
a trapezoidal method on a finite interval, adequately chesethat the remaining term is negligible with
respect to the ISE.

11



The first signalgq, consists in a mixture of two standard Gaussian densities:
1 1
Od = EN(O’ 1)+ EN(d’ 1),

whereN (u, o) represents the density of a Gaussian variable with naeamd standard deviatian. The
parameted varies in{10, 30, 50, 70} so that we can see the curse of support on the quality of estima

0.25 0.25 0.25

0.20

0.15

0.10

0.05

0.00

0.25

0.20

0.15

0.10

0.05

0.00

Figure 2: Reconstruction a@fy (true: dotted line, estimate: solid line) for the Gfdrent methods fod = 10

Figure 2 shows the reconstructions fbr= 10 and Figure 3 fod = 70. In the sequel, the method
RU is implemented witth, = 5, which is the best choice for the reconstruction wdtk= 10. All the
methods give satisfying results fdr= 10. Whend is large, the rescaling and binning preprocessing leads
to a poor regression signal which makes the regressionthigiag rules non convenient, as illustrated by
the methodRU with d = 70. Reconstructions fak, WN, S andS* seem satisfying but a study of the
ISE of each method (see Figure 4) reveals that both suppperndient methodfkU andWN) have a risk
that increases witld. On the contrary, method$§ andS are the best ones and more interestingly their
performance is remarkably stable (the boxsize is quite I3raadl the result does not vary with This
robustness is also true fef andS*. S* is a bit undersmoothing: this was already noticed in Figufé)
and this explains the variability of its ISE. Finally notathfor larged, H is even better thaRU despite
the inappropriate choice of the Haar basis.

The other signaly, is both heavy-tailed and irregular. It consists in a migtaf 4 Gaussian densities
and one Student density:

he = 0.45T (K) + 0.15N'(~1,0.05)+ 0.1 N(—0.7, 0.005)+ 0.25 (1, 0.025)+ 0.15 (2, 0.05),

whereT (k) denotes the density of a Student variable vkitthegrees of freedom. The parameéteraries
in {2,4,8,16}. The smallek, the heavier the tail is and this without changing the shdpkeomain part
that has to be estimated. Figure 5 shows the reconstructidn= 2. ClearlyRU does not detect the local

spikes at all. Indeed the maximal observation may be equbd@® and the binningfiect is disastrous.
12
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Figure 3: Reconstruction a@fy (true: dotted line, estimate: solid line) for the Gfdrent methods fod = 70

WN

Figure 4: Boxplots of the ISE fagy over 100 simulations for the 6 methods and theffledent values ofl. A column, delimited by
dashed lines, corresponds to one method (respectveWWN, RU, S, H, S*). Inside this column, from left to right, one can find for
the same method the boxplots of the ISE for respectidety10, 30, 50 and 70

The kernel metho& clearly sufers from a lack of spatial adaptivity, as expected. The feanaining
methods seem satisfying. In particular for this very irdagsgignal it is not clear that the Haar basis is a
bad choice. Note however that to represent reconstructiemsave focused on the area where the spikes
are located. In particular we emphasize that Figure 5 doeshmaw that the support dependent method
WN is non zero on a very large interval, which tends to detet#oita ISE. Indeed, Figure 6 shows that
the ISE of the support dependent methodt)(WN) increases when the tail becomes heavier, whereas
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the other methods have remarkable stable ISE. MetBad®lH are more robust and better thefN for
k = 2. The ISE may be improved for this irregular signal by takjng 0.5 (see metho&*) as already
noticed in Section 2 for irregular signals.

9 9 9

8 8 8

. K . WN . RU

6 6 6

5 5 5

4 4 4

3 3 3

2 2 2

1 1 i 1

0 T 0 T T T 0 USSR T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 3 -2 -1 0 1 2 3
9 9 9

8 8 8

7 = 7 al 7 e

6 6 6

5 5 5

4 4 4

3 i 3 3

2 J 2 2

1 1 J 1

0 T 0 T i 0 T ’”f‘\

Figure 5: Reconstruction & (true: dotted line, estimate: solid line) for the @fdrent methods fok = 2

E T
1l B
éz;; ELLLEC

Figure 6: Boxplots of the ISE fdn over 100 simulations for the 6 methods and theffledent values ok. A column, delimited by
dashed lines, corresponds to one method (respect/eWWN, RU, S, H, S*). Inside this column, from left to right, one can find for
the same method the boxplots of the ISE for respectikety?2, 4, 8 and 16
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4.2. Onreal data

To illustrate and evaluate our procedure on real data, weidentwo real data sets named, respectively
in our study, “Old Faithful geyser” and “Suicide”. The “Oldakhful geyser” data are the duration, in
minutes, of 107 eruptions of Old Faithful geyser located elldivstone National Park, USA; they are
taken from Weisberg (1980). The “Suicide” data set is relatethe study of suicide risks. Indeed, each
of the 86 observations corresponds to the number of daysi@enpatonsidered as control in the study,
undergoes psychiatric treatment. The data are availab&opas and Fryer (1980). In both cases, we
consider that we have a samplerofeal observationX, ..., X, and we want to estimate the underlying
densityf. We mention that in the first situation, all the observatiarescontinuous whereas, in the second
one, the observations are discrete. These data are wellrkand have been widely studied elsewhere.
This allows to compare our procedure with other methods.

Figure 7: Histogram (solid line) and reconstruction §f42¢ (dashed line) for the "Old Faithful geyser” data set

To estimate the functiof, we applyf2® with the Spline basis (see Figure 9 in Appendix A) dpe- 7.

We plot, on the same graph the resulting estimate and thegnésh of the data. Figures 7 and 8 represent,
respectively, the results for the “Old Faithful geyser” aetl for the “Suicide” one. Note that concerning
the "Suicide” data set, there exists a problem of "scaleivéflook at the associated histogram, the scale of
the data seems to be approximately equal to 250, and not 1e 8ovide the data by 250 before performing
estimation.

Respectively two or three peaks are detected providingimadtal reconstructions. So, in comparison
with the ones performed in Silverman (1986) and Sain andt$t8986), our estimate detects significant
events and not artefacts. More interestingly, with few obestions, both estimates equal zero on an interval
located between the last two peaks. Even if it is hard to baiipbod estimate of the true density due to
the small number of the data, the advantage of having thie"h®to provide a good separation between
both modes. Note that a Gaussian kernel estimate, whichver meill, provides sharp mode localization
only when the bandwidth is small enough but in this case, #radl estimate becomes noisy for heavy
tailed data (see Silverman (1986) p.18). On the contrary&:n/\fﬁrac is null, this does not mean that the
true density is null but only negligible. If the practitianieeeps this fact in mind, theﬁf’raC provides a
good interpretation of real data even for small sample size.
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Figure 8: Histogram (solid line) and reconstruction \‘/Téac (dashed line) for the "Suicide” data set

A. Analytical tools

All along this paper, we have considered a particular cl&asgwelet bases that are described now. We
set

¢ =11

For anyr > 0, we can claim that there exist three functigng andy with the following properties:

1. ¢ andy are compactly supported,

. ¢ andy belong toC™!, whereC'*! denotes the Holder space of order 1,

. ¥ is compactly supported and is a piecewise constant function

. ¢ is orthogonal to polynomials of degree no larger than

(B ¥ k) j20kez5 (P ¥ k) jz0kez) IS @ biorthogonal family: for any, j* > 0, for anyk, K/,

a b~ W N

f Uik(N e (dx = f o) e (X)dx = 0,
R R

[ 00ex= 1 [ s 090X = Tk
R R
where for anyx € R, ‘
B(X) = p(x—K),  Yik(¥) = 2292 x - K)
and |
F(x) = Fx-K), T = 222 x - K).
This implies the following wavelet decomposition b Ly (R):
f= Zak&k + Z Zﬂjk@jk,
keZ j=0 keZ

where for anyj > 0 and anyk € Z,

ak=fRf(X)¢k(X)dX, ,Bjk=fRf(X)lﬁjk(X)dX

Such biorthogonal wavelet bases have been built by Cehah(1992) as a special case of spline systems

(see also the elegant equivalent construction of Donoh@4)lfdfom boxcar functions). The Haar basis can
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Figure 9: Biorthogonal wavelet basis with= 0.272 that is used in the Simulation study. First lindJeft) andy (right), second line
# (left) andy (right).

be viewed as a particular biorthogonal wavelet basis, ljngep = ¢ andy = ¢ = ]l[o’%) - ]l[%’l], with
r = 0 (even if Property 2 is not satisfied with such a choice). TharHbasis is an orthonormal basis, which
is not true for general biorthogonal wavelet bases. Howewehave the frame property: if we denote

D = (¢, ¢, 9,0}

there exist two constants(®) andc,(®) only depending o such that

Zaﬁ+ZZﬂi] <Ifif < Cz(@{Zaﬁ+ZZﬁ?k]- (A1)

kez j=0 keZ keZ j>0 keZ

c1(P)

For instance, when the Haar basis is considergd) = c,(®) = 1.

We emphasize the important feature of such bases: the dunsgtjx are piecewise constant functions.
For instance, Figure 9 shows an example which is the one #satéen implemented for numerical studies.
This allows to compute easily wavelet ¢heients without using the discrete wavelet transform. Farrth
more, there exists a constant > 0 such that

inf X)|>1 inf X)| >
L TCTES N SN G TR

where Suppf) = {xe R: (x) £ 0}.

This technical feature will be used through the proofs ofresults. To shorten mathematical expres-
sions, we have previously set for akg Z, J_1x = dx, ¥_1x = ¢ andB_wx = ax.

Now, let us give some properties of Besov spaces. Besov spaeroted3y , are classically defined
by using modulus of continuity (see DeVore and Lorentz ()@9®1 Hardleet al. (1998)). We just recall
here the sequential characterization of Besov spaces hy tls¢ biorthogonal wavelet basis (for further
details, see Delyon and Juditsky (1997)).

Letl< p,g<oandO<a <r+1,theBy -norm of f is equivalent to the norm

iqla+i-1 lja
I flla.pg = I adulle, + [2120 2l p)||(,3j,k)k||?p if q < oo,
o i 1_1 .
lI(@ille, + SUP 0 2" 2 21(Bj1klle, if g = oo.

We use this norm to define Besov balls with radius

Bpq(R) = {f € Lz(ﬁ)  Nfllapg < R



ForanyR>0,if0<a¢’' <a<r+1,1<p<p <o andl1l<g<q < oo, we obviously have
BpaR C Bh (R, B5(R) C BY((R).

Moreover 1 1
Bpo(R € B (R if - 5 >a - T2

The class of Besov spaces provides a useful tool to classifielst decomposed signals with respect to

their regularity and sparsity properties (see Johnsto@84)). Roughly speaking, regularity increases

whena increases whereas sparsity increases wheecreases.

B. Proofs

B.1. Proof of Theorem 1

Because of the frame property of the biorthogonal wavelsisb# is easy to see that

(DB - BIZ, < Ilfay = TIIZ < c2(D)IIB - BIE, (B.1)

Whereﬁ denotes the sequence of thresholdediodents Eik]].(j,k)ern)(j’k)gj\ andg denotes the true cée
cients Bjk)(.kea. Consequently, it is gticient to restrict ourselves to the study of e ,8||§2.

Consequently the proof of Theorem 1 relies on the followieguit (see Theorem 7 of Section 4.1 in
Reynaud-Bouret and Rivoirard (2010)).

Theorem 5. Let A be a set of indices. To estimate a countable fapilty (8.1).ea Such thatlsll, < oo,
we assume that a family of gieient estimatori,él)ler, whererl is a known deterministic subset &f
and a family of possibly random thresholfig),.r are available and we consider the thresholding rule
B = (,BAIL&!‘Z,“ Taer)aen- Lete > 0 be fixed. Assume that there exist a deterministic fa¢fily,r and three
constants € [0, 1], w € [0, 1] andu > O (that may depend osnbut not on1) with the following properties.

(A1) ForallaeT,
P(B1 - Bal > k12) < w.

(A2) There exisl < p, q < co with % + é = 1 and a constant B 0 such that for alll T,
. 1 1,
(E@Ba - 8,27 < Rmax(F . Fle?).
(A3) There exists a constamsuch that for alll € I satisfying R < 6¢
P(IB) — Bal > kna s 1Bal > n1) < Fap.

Then the estimatgs satisfies

1-k%_ ~ 5 . 1+ k2 , 1-#? A 2 5
1+K2Elw—ﬁllgzSEr@‘r{l_Kz;nﬁﬁ 5 D2 Bi=B)+ ) nip+LD ) F

Aem Aem Ael’

with

LD = K—Rz ((1+67Y9) M+ (1+ 6499 H).
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To prove Theorem 1, we use Theorem 5 witk (j, k), 31 = B defined in (2.4)p = nj., defined in
(2.5) and
F=Th={(jkeA: -1<j< jo} with 2lc <n°(logn)® < 2o*2,

Fik = f f(x)dx
Supp{j)

We set

Hence we have:

Fi = f f(X)dx < f(x)dxsu 1
Z K Z xeSuppg i) () () p{ Z Z SRty

e “1<j<jo K xR | _15<jo K

< (Jjo+2)m,, (B.2)

wherem, is a finite constant depending only on the compactly supddutectiony. Finally, 3’ er, Fjk
is bounded by log{) up to a constant that only depends gnc’ and the functiony. Now, we give a
fundamental lemma to derive Assumption (A1) of Theorem 5.

Lemma 1. Foranyy > 1 and anys’ > Othere exists a constant M dependinggandy such that
P(0% 2> (1+&)55) < Mn™.
Proof. We have:

T = e 1)2(‘/’1k(x') UrOA)

= on iZl:(wik(xi) =B+ 5 ;:(wjk(xo - Bi)?

__2 Z W k(%) = Bi) W@k (%) = Bik)

n(n-1) i=2 1=1
2
= ST n(n—1) " (®:3)
with ) o
$= %Z(w;k(xi)—ﬂ,-kf and Uy = > > Wik(X) = Br) W k(X) — B).
i=1 i=2 1=1

Using the Bernstein inequality (see section 2.2.3 in M&$2807)) applied to the variablés with
- Wik(X) -Bi)> 4

Yi = <K
n n

ofu
P|of = s+ 4J2vju + e el

>

one obtains for any > 0,

with 1 5
Vi = EE[(O—JZk — Wk(X) = Bi)?) ]
We have
Vi = % (e + E [ (X) = Bi)] = 205 E [ (wi(%) = B3)?))
= % (B[00 - Bi)*| - o)
O'Zk 2
< Tj (Il jklleo + 1B])
452
< L.
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Finally

2
[2u U _
P( Tk 2 S+ 2kl jk e ?) <e (B.4)

Now, we deal with the degenerate U-statistigs We use Theorem 3.1 of Houdré and Reynaud-Bouret
(2003) combined with the appropriate choice of constantiveie by Klein and Rio (2005): for any > 0
and anyr > 0,

P(un >

Note that similar results with unknown constants have besived in the seminal work by Ginét al.
(2000). Here we use a sharper bound.

Now we need to define and control the 5 quantifieB, C, D andF. For this purpose, let us set for ary
andy,

(\/§(3+Tl)+ )|3u3/2 3+TT_1Au2)s3e‘“. (B.5)

gik(%y) = Wk(¥) = Bi) W ik(y) — Bik)-
We have:
A= lgille < 4l k12

Furthermore,
n i-1
nn-1
E(gjzk(xi,xo)_ (2 ) j‘k

i=2 I=1

The nextterm is

n -1
D = sup E {Z gik(Xi, X)ai(Xi)by (XI)]
EXa?(6)<L EXb?(x)<l \i=2 1=
n i-1
= sup Z E (%) = Bi)a (X)) E ((w k(%) - Bi)bi(X))
Eya@(X)<l, EX b2(X)<1 =3
n i-1
< sup \/a,?kE(ay?(xi» JIRERR(X)).
E ¥ a(X)<L, E Y bA(X)<1=2 =1
So, we have

D < o4 sup w/E(aj(x. Z]E(b2(x.))«/|—1

E 3 a2(%)<1, EzbZ(x.)<1 )

0% sup JZE(@Z(xo)JZ (i-1)

Eyai(x)<l \i= i=2

nin-1)
< O—JZk T

IA

Still using Theorem 3.1 of Houdré and Reynaud-Bouret (2008 have:

n-1

supZ E(( x(®) - B1)*(Wik(X) = B)?)

BZ

IA

a0 - Diyl2
< A= D)yl

20

A



Finally

-1

Z Yik(®) = Bi) W k(X)) — Bijk)

1 |

T
I

E{sup ]
it

2l iklloo [SUD

IA

Z('ij(xl) Bik)

To control this term, we set
i-1
Z = Z(‘/’jk(xl) - Bik)-
1=1
Using Doob’s inequality on the martingalg );, we obtain

E(sup|Zi) < _[E(supZ?) < 2sup/E(Z?) = 20 Vn- 1.

Hence

F <4lyjlloojc VN -1

u ]ku
S(u) = 2l jkllee i ‘lzn 3y

-1
U(u) = (1+7)C V2u + 2Du + %Fu+(\/§(3+7—1)+ g) B2 + 3+37 AL

Now, for anyu > 0, let us set

and

Inequalities (B.4) and (B.5) give

P|o% = 05 + S(U) + (n Tha )) = P(O—J?k Z 5+ S+ o= 1)( OF un))
< P(0% 2 s+ S(U)) + P(un > U(W)
< de

Let us takeu = ylognandr = 1. Then, there exist some constaandb depending ory such that

2 o lo gn Iog , (logn %2
S0+ ;U0 < 27l 2120 + a0 0+ il (250
So,
2 =2 ogn » logn 2 Iogn 32 -
P Tk > Tk + 20'jk||¢jk||oc 27_ aO'Jk + b”'ﬁ]k” n <4n™
and "
logn logn logn
P( (1 a%) ZUjklllﬁjkIIOOﬂZy% —0']k bl k[, ( 9 ) > O] <4n™.
Now, we set
_ logn . logn
61 = (1 a— ), 02 = I jklloo 4/ 2y =
and 2
- logn
03 = 72 + bl Il (%)
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with 61, 62, 63 > 0 for n large enough depending only gnWe study the polynomial
p(O’) = 910’2 — 20,0 — 03.
Then, sincer > 0, p(o) > 0 means that

()>_(0 +1'9 +00)
2 b}
9 2 103

which is equivalent to

1
o> ? (292 + 0103 + 20, 1[9% + 9193).
1
Hence
1
]P( T2 (292 + 60103 + 20, \[62 + 9193)] <4n7.
1
So,

03 20,63 465
b1 6Vo 05
So, there exist absolute constafitg, andr’ depending only oty so that fom large enough,

logn logn logn logn\“*
P[ 52 (1022 (14420 2o 255280 g 20 (14 ¢ (227 )| <

Hence, with

)<4n7

Iog

_ » Iogn
TG = 05 + 2kl A 255 K + 8yl iz, ——

for all ¢ > 0 there existdM such that

P(o > (1+&)55) < Mn™.

Letk < 1. Applying the previous lemma gives

. . _ Iogn 2kylog Nl ikl
P(Bj = Bikl > xnjky) - < ]P’[LBjk ~Bil 2 |2y T = 3n J
. [ logn 2xylogniy i =
< ]P’[LBjk - Bikl = 2K2)/O']2k —+ 3n =, O'JZk >(1+e¢ )0']2k
. [, _, logn 2«cylogniyjclle N
+P (|,3jk - Bikl = 2K2’)/O']2k - + 3N =, O'IZk <(Q+e )O'IZk
< P(ok = (1+&)75)

logn 2K7|09 N koo
n 3n '

+P(|ﬂ1k—,31k| = \/ZK2 1+e&) lo'lk

Using again the Bernstein inequality, we have for any0,

~ 2uof  2ulyll
P -—->\/ K )= < 2e,
Bk — Bikl = P < 2e

So, withe” = 1 — «, there exists a constaht, depending only or andy such that

P(lﬁjk - Bl > KT]jk,y) < MKn_'sz/(Z—K)‘
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So, for any value of € (0, 1[, Assumption (A1) is true withyjx = 77jk., if we takew = M, n*"/@),
Now, to prove (A2), we use the Rosenthal inequality. Theiiste» constant(p) only depending orp
such that

n 2p
- 1
E(Bj - Bil®) = o ; Yi(%) — E(wi(X))) }
C ¢ n P
< o |2 Eflweo - menonf] [Zl Varwfjk(xi))] ]
A C n . n p
E(Bj - Bil*?) < % (2|I!,01k||oo)2p “Var( (%)) + (Z Var(lﬂjk(xi))) )
i=1 i=1
C _
< n(z? (1) o + PP
C(p)
—o ((@wadle) ™ nF g+ Pl 2FF ).
Finally,
R 1 AC(p) ¥ [l el 2 :
(5 -pre)f = SR ong  ppy
4C(p)? 2° max(lI2; w12 )(n_-Fp E )
hi} n ]k .
So, Assumption (A2) is satisfied with= Fl] and
= BC(p)? 2 max(gli; IW12)
n
Finally, to prove Assumption (A3), we use the following lemm
Lemma 2. We set
: 14y 14
Nijk = Z Iixesuppgy)  and  C = Ty =3
i=1

There exists an absolute const@nt 6 < 1 such that if nf < ¢’C’logn and(1 - ¢")logn > % then,
P(Njx — nFjx > (1-6)C’logn) < Fyn™.
Proof. One take®’ € [0, 1] such that

(1-¢)? . 4
0 +1) 7
We use the Bernstein inequality that yields
((1-@)C’logn)? _xa)?
P(Nyx —nFy > (1-6¢)C’l < - < @)
(N =Py = (1-6C Og”)—eXp( 2Fy + (L-0)Clogn3)) ="

If nFj > 771, since?’géj;"l/;z > 2y + 2, the result is true. IhFj < n™~1, using properties of Binomial

random variables (see page 482 of Shorack and Wellner (L986h > 2,

P(Njx — nFjx > (1-6)C’logn) < P(Nj > (1-¢')C’logn) < P(Nj > 2)
(1- Fp)C2F2 (1 - Fjon2
= 1-31(n+ DFy
- 2(1— 2’1nij)
< (nFj)?
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and the result is true. |
Now, observe that i3jx| > 17, then
Njk > C’logn.

Indeed)Bi| > 1., implies

C’logn 14 jilloo Nijk
2P el < Byl < =,

So, if n satisfies (- ¢')logn > 2, we setd = ¢’C’log (n) andu = n”. In this case, Assumption (A3) is
fulfilled since ifnFj < &C’logn

P(Bik — Bikl > Kniky» IBikl > iky) < P(Nj — nFj > (1 - ¢)C’logn) < Fjn™.

Finally, if n satisfies (1 ¢')logn > 2, we can apply Theorem 5 and we have:

_7,

1-k2_ . — K2 ~
1B A < inf {1 S B TS Y BBk Y, E(n,?k,ﬂ}

(J-Kem (J-Kem (J-Kem

+ LD Z Fik. (B.6)
(i%9<T

Furthermore, there exists a constatdepending om, v, «, ¢, ¢ and ony such that

sz
LD Z Fix < Ky(log(n))®+*n®azn 2, (B.7)
(J.K)ern

Sincey > ¢, one takes & x < 1 andg > 1 such that < and as required by Theorem 1, the last term

Q(Z K)
satisfies K
2
LD Z Fie< =,
(J.K)eln

wherekK; is a constant. Now we can derive the oracle inequality. Reéwaluating the first term of (B.6),
let us state the following lemma.

Lemma 3. We set for anyj, k) € A
Dik = ft/f,?k(x)f(X)dx,

Sy =max sup [¢(X)l, sup [¥(X)}
XESUppE) XeSupp()
and

ly = min{xesigf o0 |¢(X)I,Xegﬂf (ﬁ)la/f(X)I}.

Using Appendix A, we defireg, = —. For all (j,k) € A, we have the following result.

S'\-‘lem

- If Fik < ®¢_Iogn(n)’ then,BJ?k < @iDjk _Iogn(n).

I F > 0,90 then|y |, 200 < /2xlo9@

Proof. We assume thgt> 0 (arguments are similar fgr= —1).
If Fix < @LP%, we have

i i — [log(n) 1+ [— [Dilog(n) Dlog (n)
Iﬁjk| < SwzéFJk < SL/,Zé \/ij @L/, n 2S4S¢,|¢l @w ]T < @w ]T,




sinceDjx > 152/F . For the second point, observe that

/ jklog (n)

log (n i  log(n log (n
22 w\/®w% = Zésw% > 1 jklloo gn( ).
|
Now, for anys > 0,
logn_ B 0
E0r,) < 1+ 0) 20298 @) + (146 1)( rlogn ) ..
Moreover,
E(@}) ||w 18
< (1+6) o (1+ 671)8ylogn—
So,
Dik 0
B ) < (1+ 8 2ylogn-X A(a)(y gn ) ma ©.5)

with A(6) a constant depending only enNow, we apply (B.6) with
:{(j,k)el"n: ,BJk>G)2 Iogn}

so using Lemma 3, we can claim that for anykj e m, Fx > ©, log @ Finally, since®, > 1,
g ) ] [/ v

P, 2 2 2
(i-K)eln (i.K)¢n
logn logn 2 Ka
+K —Dj + v s T —
%MH[ o0+ (%87) ez toan oo, ) T
Dk Ka
< (ﬂz + 2logn—%1 D )+ B+ —=
jk 2 @2 2 .02 Zik jk
(j,kz)ell"n {ﬁ <@jlogn } n {.Bjk>®w|°gn n } (j%?;l"n n
. Dk K
< 2K3 Z mm(ﬁjzk,@ilog nT) Z Bi|+
(i-K)eln (i-K)¢n
where the constark; depends ory andc andK, depends ow, ¢, ¢’ and ony. Finally, since
Dk = o + B
®2logn ol ®2Iogn K
> . v ik 4
ElIB-BlI7, < 2Ks Z mln(,BJZk + Tﬂi,@ilog n—=+ ,Bjk] + Z Bl + -
(J:K)eTn (i-K)¢n
2 2
o ®;logn K
il 2 @2 jk Y 2 4
< 2Ks Z mln(ﬁjk,®¢lognT] + Z - B + Z ,BJk + r
(1:K)eln (i-K)eln (1:K)¢ln
2
0 lo n K
. ik g N4
< 2K30j Z mln(,BJ?k,IognT] Z B | + 2KaOF1Blle, —— =
(1:K)eln (i-K)¢n

Theorem 1 is proved by using properties of the biorthogoraakelet basis.
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B.2. Proof of Theorem 2

The first part is a direct application of Theorem 1. Now letws to the second part. We recall that we
considerf = 1o 15, the Haar basis and fgr> 0 andk € Z, we have:

— - lo lo
T = T+ 2l | 25550 + Byl 2

So, forany O< e < 22 < 1,
75 < (L+ )75 + 2y||¢,,-k||§c'°$ (6t +4).
Now,
—5 Iogn 2|l jklloylogn
My = YT n 3n
< \/2 logn ((1 + 8) "+ 2/l —— gn ely 4)) + —ZHMH;)/IOgn

IA

2/l iklloy!
J2r(as o3, 200, A 7°gn(§+ Vi)

n

Furthermore, using (B.3)
2
-2 _
Tk= ST Rnon

logn logn 2 2y iklloylogn (1~ ——
Miky < 211+ &) ==+ \/27(1+s) n X amoptl n 3t Varet).

Using (B.5), with probability larger than-4 6n72,

and

lunl < U(2logn),

and, sincef = 11, we havaa-lzk <1land

2 logn > (logn
mU(Zlogn) < C1—+C2||W1k|| ( n ) s

whereC; andC, are universal constants. Finally, with probability largean 1— 6n=2

5
logn 2 logn logn\*
\/2y(1+ )20 x il < VBT eICia + VBT Gl (2

So, sincey < 1, there existsv(g), only depending os such that with probability larger than-16n=2

logn logn
Nky < 2¥(1+8) 2 S+ W(S)Ill//jkllm%.
Sincellyjll. = 2//2, we set
_ logn 23 logn
Niky = 1/ 2¥(1+ &)sn - + W(e) -
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andnjx, < nj, with probability larger than + 6n2. Then, sincef = 14, Bjx = 0 for j > 0 and

1 n
S = ﬁizl:(wjk(xi)—ﬂjk)z

2 & 2
= 5 (lxie[kz-i,(k+0.5)2'i[ - lxie[(k+0.5)2'i,(k+l)2'i[)
i-1

j
= SNy,

with

n n
Nik = ), Ixekeikos)2is N = Z T e[(k+0.5)2-3 (ke 1)271] -
i=1 i=1

We considerj such that

n i o 2n 1
(logn)* ~ (logn)*” '
In particular, we have
| @ .
@ <n27) < (logn)®.
Now, v
R 22 )
P =~ i;l//jk(xi) = — (Nj = Njp)-
Hence,
~ 2J71 ~
E(ifay — 1122 > E(BiLs,e,,)
k=0
2i-1 R
2 E (ﬁ,zk L3, >, Liunl<U(2log n))
k=0
2i-1

2i
SE

g

i
o

+ _ N-)2 )
(N~ NR e st

2-1 5
2]
> —E[(Ni - N)?1 | _ o <u
é n2 ( ik jk %‘NE‘NJ}'Z ’—27(1+s)%(NﬁK+N;k)b%+w(g)@ lunl<U(2logn)
2i-1 2]
hl T N2
2 - n E((le NJk) ]1|Nj*k—Njk21[2y(1+g)(Nj*k+Njk)Iogn+w(g)Iogn]lU”SU(Zlogn))

2]

il T _ND)?
2 an((Nll Ni1) HN;INj-lz,/2y(1+a)(Nj+1+Nj-l)|ogn+w(a)|ogn1'“"'SU(2'°g“))‘

Now, we consider a bounded sequeneg){ such that for any, w, > w(e) and such tha{‘@ is an integer

with

wny = (AL ey 090 + W og(0))
andyin; is the largest integer smaller or equah® -1, We have
Vnj ~ 4y(1+ &)finjlogn
and

(logn)”
>

logn)® ; i
( i) ~1<n2 1<y <n2it <
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So, if L L
Nju =i+ 5 VW N =i = 5 V¥

then
Nij +Njp = 2nj, Njj = Njp = Wiy = \/2)/(1+ £) (Nj+l + Nj]) logn + w, logn.
Finally,
foy — fII3 2 f = it i 2 2l
E(l ny — ||2) 2 Fvnjp le = HUnj + 5 VVhis le = Hnj — 2 VWnj,  lunl < U(2logn)
> Vpj(logn)=
s~ 1 .1
X |B{Nj1 = finj + 5 WWnj:  Njy = finj = 5 \¥Vnj| = P (jun| > U(2logn))
_ n! Ini+m, (.. . 6
> Vhi(logn)—2* i+ (1 _ o -lnmyy) _ 2
= I"IJ( g ) |:|nj|n}1]|(n_|nj_rmj)' p] ( pJ) nz s
with
- 1 - 1
Inj = finj + 5 VWnis  Mhj = finj = 5 \Vnj,
and
pj = fll[kz 1 k+05)25[ () F()dx = f]l[(k+0.5)21,(k+1)21[(x)f(X)dX: 27
So,
E(lfn, — flI2) > vai(logn)=2 x n nJ(1 2p;)" %0 — il
ny 2 = nj |nj|rn’lj|(n_ 2# J)| j n2 .

Now, let us study each term:

7™ = exp(2/in;log(p;))
= exp(2fin; log(2 1Y),
(1-2p)™ % = exp((n- 2finj) log(1-2p;))

exp(—(n = 2iinj) (27 + 0n(27%)))
exp(—nZ’j) (1 + on(1)),

n = n"e"V2zn (1+ on(1)),

(= 2in))" 20

exp

2jinj) 10 (n - 2/in)

= exp N — 2fin; (Iogn+|og(

<)
2fin; (n -

((n-
= exp{ 2,unJ logn — %ﬁm)] (1 + 0n(1))
(

= exp(nlogn — 2fin; - 2finjlogn) (L + 0n(1)).
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Then,

n—! 2finj AN=2idnj e n" 2finj \N—2fin
T G (= 272~ P (1= 2p)™ (1 + on(1))
_ ~ exp(nlogn) lin o,
= P X g g X P (L 2R (L)
3 exp(nlogn + 2/, log(27171) — 27
= exp(~2finj) % ( - )(1+on(1))

exp(n logn — 2finj — 2finjlog n)
exp(2finj logn + 2/in; 10g(2 1) = n27) (1 + 0s(1)).

It remains to evaluatk;! x my;!

Inj! ><mnj!

[ (™ oo

exp(lnj loglnj + Myjlogm,; — Zﬁnj) X 271finj(1 + on(1)).

If we set N
_ NVnj _
I Zﬂnj - n(l),
then
Inj = fnj + Tm = finj(1 + Xnj),
- nj .
Mnj = Unj — 2 =#nj(1— an)’
and using that
Xﬁj Xﬁj X4
(1+ Xnj) l0g(X+ Xaj)) = (L + Xnj) [ Xnj— > + 3 +0(Xy))
] n
= an—7+?1+xﬁj—7j+o(x?”)
X2 3
j % - ?J + O(Xﬁj)
lnjloglnj = finj(1+ X)) 10g (finj(1 + Xa}))
= finj(1+ %) 10g(L+ Xq}) + finj(1 + Xaj) 109 (fin)
2 X3-
~ n n ~ ~
= finj [xn,- + 71 - ?J + O(X‘n‘j)] + finj(1 + Xnj) 10g (finj) -
Similarly,
~ n ~ ~
myjlogmy; = ,Unj[—xnj + 71 + ?J + O(Xﬁj)) + finj(1 = Xnj) |09(#nj)~
So,

Injloglnj + myjlogmy;

A

finj (03] + O(X4)) + fin; 10 (finj)
ﬁnjxﬁj + 2finjlog(n2717%) + O(ﬁnjxﬁj)-
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Since
finp2i =~ _ y(1+ &) logn
NJ%nj 4/:1nj >
for nlarge enough,

finjXG; + O(itn %) < (v + 2¢) logn

and
Injloglnj + Myjlogmy < (v + 26) logn + 2/in; log(n27/7%).

Finally,

Injt x Mot = exp(ln; 10gn; + M l0g My} — 2/in;) 27finj(1 + 0n(1))
exp((y + 2¢) logn + 2finjlog(n21-1) — Zﬂnj) 27finj(1 + On(1)).

IA

we derive that

3 2 . —2a n' 2fin \N—2fn 6
Bl = )2 vloon) ™ e 2 -
exp(2fn; logn + 2fn; log(2-1-1) — n27
> vn,-(logmm[ P loan -2 0@ 1 )12 )) sy
exp((y + 2¢) logn + 2fin; l0g(2711) = 2fin ) X 2nfin; 1
> an(logn)—2<r[exp(_(7+2‘9) IOgn_Z) _ 6 (1+0n(1))

2nfinj 2
So there exist€; andC, two positive constants such that, fofarge enough

C,h

~ 2 g *()/JrZE) 6
(I, - fI2) > Cy(logn) Tog ﬁ] .

As 0 < y + 2¢ < 1, there exists a positive constant 1 such that
~ 5 1
E(” fn,y - f”z) 2 E(l + On(l))-

This concludes the proof of Theorem 2.
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