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P. Cerdá-Durán
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-st. 1, D-85741
Garching bei München, Germany

E-mail: cerda@mpa-garching.mpg.de

Abstract. We present an alternative method to estimate the numerical viscosity
in simulations of astrophysical objects, which is based in the damping of
fluid oscillations. We apply the method to general relativistic hydrodynamic
simulations using spherical coordinates. We perform 1D-spherical and 2D-
axisymmetric simulations of radial oscillations in spherical systems. We calibrate
first the method with simulations with physical bulk viscosity and study the
differences between several numerical schemes. We apply the method to radial
oscillations of neutron stars and we conclude that the main source of numerical
viscosity in this case is the surface of the star. We expect that this method could
be useful to compute the resolution requirements and limitations of the numerical
simulations in different astrophysical scenarios in the future.
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1. Introduction

There is a number of scenarios in theoretical astrophysics which need to be modelled
by means of numerical simulations. The complexity found in these scenarios does not
allow for a simple analytical study to explain the observations. In a subset of these
scenarios the effects of general relativity are important and a Newtonian description of
the system is not sufficient. Some examples of stellar size scenarios of this kind are: i)
the collapse of massive stellar cores to form a neutron star, which eventually can lead
to a supernova explosion, ii) for more massive stars, the collapse to a black hole and
possibly an accretion disk, which can power a long-duration gamma-ray burst (GRB)
according to the collapsar scenario (Woosley 1993) and could be related to the subclass
of broad-lined type Ic supernovae (Modjaz et al 2008), and iii) the cooling of a rapidly
rotating hot proto-neutron star (PNS) to form a magnetar (Thomson & Duncan
1993). All three previous examples have in common that are quasi-spherical scenarios.
Therefore it is natural to model them in numerical simulations using spherical polar
coordinates.

Those scenarios have some common points. The three scenarios include multi-
scale physics in which a broad range of length and time scales play an important
role. In the supernova core collapse case the length scales to cover range from

Confidential: not for distribution. Submitted to IOP Publishing for peer review  21 July 2010



Numerical viscosity in GR hydrodynamics 2

the size of the iron core (∼ 1000 km) to the size of the PNS (∼ 10 km). The
smaller length-scale process dominating the dynamics ranges from ∼ 1 km in the
case of convectively unstable PNS formed after the collapse of the most common slow
rotating progenitors (Müller & Janka 1997), to 1 cm - 1 m if the magneto-rotational
instability develops in the collapse of fast rotating progenitors (Cerdá-Durán et al
2007). Furthermore the mechanism for the explosion requires an appropriate modeling
of the neutrino transport. The energy deposited by neutrinos behind the shock and
the standing accretion-shock instability (SASI) probably are crucial for a successful
explosion (Marek & Janka 2009). In the collapsar scenario strong rotation is necessary
for the formation of a GRB. It allows the generation of an accretion disk around the
formed black hole with a low-density funnel along the rotation axis. The relativistic jet
which is responsible for the GRB is powered either by MHD processes or by the energy
deposition of annihilating neutrinos around the axis (see e.g. MacFadyen et al 2001).
In the first case, magneto-rotational instabilities and dynamo processes are most
probably responsible for the amplification of the magnetic field during the collapse.
The case of dynamo processes in rapidly rotating PNS resembles the modeling of the
sun. The cooling time-scale is of the order of seconds while the rotation period which
drives the dynamo processes can be as low as 1 ms reaching magnetic Reynolds number
of ∼ 1017 (Thompson & Duncan 1993). The numerical modeling of all scenarios
described above require very high resolution to resolve the MRI and the turbulence
amplifying the magnetic field, full three-dimensional simulations to correctly capture
the growth and saturation of the different types of instabilities (MRI, SASI, global
MHD instabilities), and a time evolution much larger than the characteristic dynamical
timescale of the system. Therefore the numerical methods intended to solve this
problem should be as less dissipative as possible in order to guarantee that the
numerical dissipation is smaller than the expected physical one or, in cases where
the computational requirements do not allow this, the global properties of the system
show convergence with increasing grid resolution. The numerical dissipation could be
a serious limitation for the successful modeling of objects mentioned above. It is hence
important to have the appropriate scaling with the resolution, which is a necessary
property to have scalable numerical codes which can run efficiently in massive parallel
computers.

Most of the numerical codes performing simulations of these scenarios use Eulerian
grids, explicit numerical schemes, and a mesh adapted to the problem, mostly with
grids in spherical polar coordinates. Eulerian grid-based codes are better suited for
these scenarios than Lagrangian methods (e.g. smoothed particle hydrodynamics)
because they allow to use finite-volume conservative schemes. Eulerian methods allow
for the correct treatment of arbitrarily high discontinuities and shocks in general
relativity (Ibañez et al 2000, Dimmelmeier et al 2002, Duez et al 2003, Shibata 2007,
Baiotti et al 2007), even with magnetic fields (Gammie et al 2003, Komissarov et al
2005, Anninos et al 2005, Antón et al 2006). Explicit methods are better suited for
multidimensional simulations since they are computationally less expensive and easier
to parallelize, although they have time-step limitations given by the CFL condition
(Courant et al 1928, 1967). Spherical polar coordinates have several properties which
make them appropriate to model the objects described above: i) are well adapted
for quasi-spherical objects, ii) allow for accurate conservation of angular momentum,
which is not true, in general, for Eulerian grids (see e.g. Zink et al 2008 and Fragile
et al 2009), iii) axisymmetry and spherical symmetry can be easily enforced, and iv)
large radial domains can be covered using non equally spaced radial grids. These
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numerical methods have been successfully applied in 1D (spherical symmetry) and
2D (axisymmetry) simulations. However the extension to 3D in spherical coordinates
suffers from severe time-step restrictions which render simulations unaffordable unless
a special treatment of the central and polar regions is used (see. e.g Mller & Janka
1997)

Numerical dissipation effects are present in simulations using Eulerian grids due
to the discretization of the equations that are solved. There are several methods
to quantify the amount of numerical dissipation of a code based on the measure
of the energy losses of the system. This has been standard practice since the first
studies of hydrodynamic turbulence (e.g. Herring et al 1974) due to the necessity of
resolving the physical dissipation scales. There are also studies of the decay of waves in
hydrodynamics (Porter et al 1994) and MHD simulations (e.g. Simon & Hawley 2009).
More recently the numerical dissipation has been estimated measuring the angular
momentum transport by MHD turbulence (Fromang & Papaloizou 2007, Simon et al
2009). All these methods allow for a simplified numerical setup in where the local
dissipation properties of the numerical algorithms can accurately be estimated. We
propose an alternative approach to measure the numerical dissipation that is suitable
for global simulations of relativistic stars close to the equilibrium.

The aim of this paper is to study the effects of numerical viscosity in simulations
with spherical coordinates and study the influence of the grid resolution and the
numerical scheme. In section 2 we describe the hydrodynamics equations including
physical bulk viscosity in general relativity (GR), in section 3 we present a method to
estimate numerical dissipation effects in a simplified test case. We apply this method
in section 4 to estimate the numerical viscosity of oscillating neutron stars. We finish
the paper in section 5 discussing the implications of our numerical results. If is not
explicitly mentioned, we use units in which c = G = 1. Greek indices run from 0 to 3
and Latin indices from 1 to 3.

2. GR hydrodynamics with bulk viscosity

We use the 3+1 decomposition of the spacetime in which the metric reads

ds2 = gµνdxµdxν = −α2 dt2 + γij(dxi + βi dt)(dxj + βj dt), (1)

where α, βi and γij are the lapse function, the shift vector and the spatial 3-
metric respectively. In addition we consider the conformally flat condition (CFC)
approximation (Isenberg 2008, Wilson et al 1996) for the 3-metric γij = φ4fij , where
φ is the conformal factor and fij the flat 3-metric in spherical coordinates. This
approximation uses the maximal slicing condition and quasi-isotropic coordinates as
gauge conditions. Under this approximation the resulting system consist in a hierarchy
of elliptic equations (Cordero-Carrión et al 2009).

To be able to study numerical dissipation effects we need a physical counterpart
to calibrate our results. We use for this purpose the bulk viscosity of the fluid. The
energy momentum tensor of a fluid with bulk viscosity (Ehlers 1961) is

T µν = ρ(1 + ε)uµuν + (P − ζΘ)hµν , (2)

where ρ is the rest-mass density, ε is the specific internal energy, uµ is the 4-velocity
of the fluid, P is the pressure, ζ is the bulk viscosity, Θ ≡ uµ

;µ is the expansion of
the fluid and hµν ≡ gµν + uµuν . The bulk viscosity appears as an isotropic term in
the energy-momentum tensor in a very similar way to the pressure. Therefore we can
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define a modified pressure P̂ ≡ P − ζΘ such that the energy-momentum tensor has
the same form as a perfect fluid

T µν = ρĥuµuν + P̂ gµν , (3)

where ĥ ≡ h − ζΘ/ρ, being h ≡ 1 + ε + P/ρ the relativistic specific enthalpy. Using
this form of the energy-momentum tensor is easy to modify an existing hydrodynamics
code to include bulk viscosity, specially if the next assumptions are taken into account:
i) we approximate the expansion assuming a post-Newtonian expansion and small
perturbations,

Θ = ∇ · u + O(c−2) + O(v2), (4)

where O(c−2) corresponds to first post-Newtonian corrections. All the simulations
that we run with physical bulk viscosity in this work belong to this regimen. ii) The
bulk viscosity coefficient ζ is sufficiently small, such that P̂ > 0. And iii) we neglect
the contribution of the bulk viscosity in the computation of the sound speed needed
for our numerical scheme.

The hydrodynamics equations with bulk viscosity can be cast as a system of
conservation laws (cf. Ibañez et al 2000)

∂t (
√

γD) + ∂i

[√
γDv∗i

]
= 0, (5)

∂t (
√

γSj) + ∂i

[√
γ

(
Sjv

∗i + δi
jαP̂

)]
=

1
2
α
√

γT µν ∂jgµν , (6)

∂t (
√

γτ) + ∂i

[√
γ

[
τv∗i + αP̂ vi

)]
= α2√γ

(
T µ0∂µ(ln α) − T µνΓ0

µν

)
(7)

where D ≡ ρW , Sj ≡ ρĥW 2vj , τ ≡ ρĥW 2 − P̂ − D are the conserved variables,
v∗i ≡ dxi/dt is the coordinate 3-velocity, vi = (v∗i−βi)/α is the 3-velocity as measured
by an Eulerian observer, and W = 1/

√
1 − γijvivj the Lorentz factor. In the non-

relativistic limit the equations for a classical viscous fluid can be recovered (Landau
& Lifschitz 1987) which for constant ζ result in the Navier-Stokes equations.

We solve the coupled system of CFC spacetime evolution and GR hydrodynamics
equations using the numerical code COCONUT (Dimmelmeier et al 2002, 2005).
The numerical code uses standard high-resolution shock-capturing schemes for the
hydrodynamics evolution in spherical polar coordinates, and spectral methods for the
spacetime evolution.

3. Estimating numerical viscosity

To estimate the numerical viscosity of our code we have designed a simple spherical
test. We consider a spherical fluid system of radius R and constant density in a static
Minkowski spacetime. This system allow for discrete modes of radial oscillations (see
appendix A). Since the eigenfunctions of the modes are known it is possible to excite
very accurately single modes of the system and follow their evolution. We evolve the
system using a polytropic equation of state, therefore, since the system is adiabatic,
there are no possible energy losses and the oscillations should keep constant amplitude
as long as non-linear effects does not appear. Hence, any damping observed in the
numerical simulation has to be caused by numerical dissipation effects.

We have chosen a system with R = 1 and initial density ρ0 = 1. The equation
of state is a polytrope of the form P = KρΓ with Γ = 4/3 and K = 1/3 × 10−3.
We use a perturbation A(r) (see appendix A) of the velocity with an amplitude of
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Figure 1. Time evolution of the first oscillation mode in the spherical test system.
All evolutions shown are computed using the Marquina flux formula. Left panel
shows the evolution of the perturbation a normalized to its initial value a0 for a
radial resolution nr = 80 and different reconstruction procedures: constant (black
line), minmod (blue line) and MC (red line). The right panel shows the evolution
of the amplitude of the perturbation ∆a normalized to its initial value ∆a0 using
minmod reconstruction and different resolutions: 10 (black), 20 (blue), 40 (red),
80 (green) and 160 (cyan). We also plot the fit of the lowest resolution simulation
to an exponential decay (black line).

v′0 = 10−5 corresponding to the lowest frequency mode, ω = 0.094. This amplitude
is sufficiently small for the oscillations to be considered linear. We have used second
order Runge-Kutta method for the time evolution in all cases and two different flux
formulae, Marquina (Donat el al 1998) and HLL (Harten & van Leer 1983). We have
computed all models using different reconstruction techniques (constant and linear
with minmod or MC slope limiters) and different resolutions (nr = 10, 20, 40, 80 and
160). We have also computed the models without physical bulk viscosity (ζ = 0) and
with non-zero values (ζ = 10−4, 10−5 and 10−6). We have evolved the system for
2700 ω−1. To follow the evolution of the oscillations we computed the quantity

a(t) =
∫

dx3A(r)vr(r, t). (8)

Left panel of figure 1 shows the time evolution of a/a0 for different reconstruction
procedures, a0 being the initial value of a. The oscillation frequency coincides with the
predicted by the linear analysis within 0.1% for nr = 80 . It can be seen that the order
of the reconstruction has a strong influence in the numerical damping of the system,
being much stronger for first order reconstruction (constant) than for second order
(minmod or MC). In order to quantify this effect we estimate the damping time for
each simulation as it is described next. In every case, we first compute the amplitude
of a as the difference between two consecutive oscillations, ∆a. In the right panel of
figure 1 we plot the evolution of the amplitude for the minmod reconstruction case for
five different resolutions. For very low resolution, the amplitude of the perturbation
falls bellow the round-off error of the code within the duration of the simulation and
it saturates. We fit next the the amplitude of the oscillations to an exponential decay
∆a(t) = ∆a(0) e−2t/τ for each model. This procedure allow us to compute the value
of the damping time of the amplitude, τ/2. Since the energy of the perturbations
scales quadratically with the velocity, the damping time of the energy is τ . Finally,
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Figure 2. Dependence of the numerical viscosity ζ with the resolution in the case
of the test sphere. The left panel shows the case without physical bulk viscosity
for different flux formulae, Marquina (filled circles) and HLL (open circles), and
different reconstruction schemes, constant (back), minmod (red) and MC (green).
The right panel shows the case with Marquina flux formula and MC reconstruction
for different values of the physical viscosity ζ = 10−4 (red) 10−5 (green), 10−6

(blue) and 0 (black). Dashed lines of the same color correspond to the value of
the physical viscosity in each case.

using (B.9) it is possible to compute the physical bulk viscosity from the value of τ as

ζ =
ζdyn

ω τ
, (9)

where ζdyn ≡ 2ρ0c
2
s/ω and cs is the sound speed. The left panel of figure 2 shows

the behavior of the numerical viscosity with the radial resolution for the different
numerical schemes tested in simulations without physical bulk viscosity (ζ = 0). To
check the scaling with resolution we fit the viscosity values to a power law

ζ

ζdyn
= S

(
∆x

λ

)p

, (10)

where λ = 2πcsω
−1 is the wavelength of the oscillation mode, being cs the speed

of sound. The results of the fitted parameters S and p for the different numerical
methods are shown in table 1. In all cases S is of order one, although in general the
Marquina flux formula provides about 30% less bulk viscosity than the same simulation
with HLL. The scaling does not change substantially with the flux formula but only
with the reconstruction scheme: for constant reconstruction we recover first order
convergence and for linear reconstruction (minmod and MC) second order. These fits
allow us to compute the numerical bulk viscosity of different numerical schemes.

In the right panel of figure 2 we consider the simulations with physical bulk
viscosity (ζ 6= 0). In this case the viscosity of the code decreases with resolution
with a similar scaling as in the case without physical viscosity. For sufficiently high
resolution, the viscosity converges to the value of the added physical viscosity. Our
method to estimate the bulk viscosity overestimates, in the convergent regime, the real
physical viscosity by ∼ 25%. We have checked that the damping time and therefore
the viscosity is not affected for a wide range of amplitudes of the perturbation (0.1-
10−7) and hence we can conclude that non-linear effects does not play any role in
the damping observed during this test. We have also checked that the results are
independent of the CFL factor used for the time-step, by changing its value between
0.8 and 10−3. Since our final aim is to perform multidimensional simulations we have
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Table 1. Coefficients S and p of the fitted numerical viscosity in radial oscillations
of a test fluid sphere, for different flux formulae and reconstruction schemes.

Flux formula reconstruc. p S

Marq. constant 0.97 0.74
HLL constant 0.98 1.06
Marq. minmod 2.01 1.91
HLL minmod 2.03 2.66
Marq. MC 2.23 0.96
HLL MC 2.23 1.28

also performed some axisymmetric 2D models of this spherical system. We have chosen
two representative radial resolutions nr = 20 and 80 and varied the angular resolution
nθ = 8, 16 and 32. In all cases the results are indistinguishable from the 1D spherical
simulations with the same number of radial points.

4. Numerical damping of neutron stars

We apply our method to estimate viscosity in the case of radial oscillations of non-
rotating neutron stars. Our initial model is a non-rotating relativistic equilibrium
configuration (Tolman 1939, Oppenheimer & Volkoff 1939). We use a polytropic
equation of state P = KρΓ with adiabatic index Γ = 2 and polytropic constant
K = 100 (units of G = c = M� = 1). We choose central rest mass density to
be ρc = 7.9 × 1014 g cm−3 and gravitational mass Mg = 1.4M�. The resulting
circumferential radius is RC = 14.16 km, and the isotropic radial coordinate at the
surface of the star is R = 12.0 km. We evolve the system in dynamic spacetime
adding an initial perturbation of the radial velocity corresponding to the fundamental
radial oscillation mode with an amplitude of 10−3. To compute the eigenfunction
of the fundamental mode necessary for the perturbation, we use the eigenfunction
recycling technique described in Dimmelmeier et al 2006. We perform 1D spherical
simulations with different radial resolutions of the fluid grid, nr = 80, 160, 320 and
640, which is equally spaced from the center to 14.4 km. The time-step is computed
using the CFL condition for the eigenvalues of the hydrodynamics system, resulting
in ∆t = 1.13 × 10−3 ms for a grid with nr = 80 and a CFL factor 0.8. We use
an artificial atmosphere to treat the vacuum surrounding the star as described in
Dimmelmeier et al 2002. The treatment consists of resetting all numerical cells with
ρ bellow a certain threshold to the value ρatm and setting the velocity to zero. The
values for the threshold and the atmosphere are 10−6 and 10−10 times the initial
central density respectively. We have checked that the results presented here do not
change if we decrease the values of these two quantities. We use three radial domains
for the spectral metric solver: two including the star and one compactified domain in
the exterior. Each of the domains has either 17 or 33 collocation points for our low
and high metric resolution simulations. Since the CFC approximation only contains
elliptic equations, which are not restricted by the CFL condition, it is not necessary
to solve the metric as frequently as the hydrodynamics equations. We use a metric
computation rate of nr/8, i.e. we compute the metric once every nr/8 time step of
the hydrodynamics. We use a parabolic extrapolation of all the metric quantities
between consecutive metric computations, which has been shown to provide sufficient
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Figure 3. Dependence of the numerical viscosity ζ on the resolution in neutron
star evolution. We show values for different flux formulae, Marquina (filled circles)
and HLL (open circles), and different reconstruction schemes, constant (back),
minmod (red) and MC (green). In all cases the highest metric resolution case is
plotted. The dashed line represents the function ζ/ζdyn = ∆r/λ.

accuracy during the evolution (Dimmelmeier et al 2002). We do not add physical bulk
viscosity in any of the simulations (ζ = 0), therefore the only dissipative processes in
the evolution are of numerical nature. To compute the numerical bulk viscosity we
use (9) as in the previous section but with ζdyn ≡ 2ρ̄0c

2
s/ω according to (B.14), where

ρ̄ is estimated as the central density. Since the numerical viscosity can depend on
the location in the star the resulting value represents an average numerical viscosity.
For our particular case and the fundamental radial mode (ω = 9.11 × 103 Hz) the
resulting value is ζdyn = 3.99 × 1031 g cm−1 s−1. This procedure gives us an idea of
the order of magnitude of the averaged numerical viscosity on the star. More accurate
computations of the damping-time could be done using the expressions of the appendix
B or the procedure described in Cutler et al 1990.

Figure 3 shows the variation of the viscosity with the radial resolution normalized
to the wavelength of the perturbation computed at the center of the star. In general
the viscosity decreases with increasing resolution. However the lowest resolution case
with the minmod reconstruction shows an anomalously low numerical viscosity, which
we think is an artifact of the low resolution. We plot the function ζ/ζdyn = ∆r/λ
for comparison. The general trend is roughly first order decreasing the order for the
highest resolution models, although we are using both first and second reconstruction
schemes. The reason for the lower order of convergence is that all reconstruction
schemes reduce to first order at discontinuities. Since we encounter a discontinuity at
the surface any evolution will inevitably lead to first order convergent results. This
is also a strong indication that the main numerical dissipation process in the neutron
star evolution is probably due to the surface of the star, and therefore increasing the
reconstruction order does not decreases the mean numerical viscosity responsible for
the damping of global oscillations.

We have checked the influence of the CFL factor, the metric calculation rate and
the 2D effects for simulations with nr = 80 radial points, Marquina flux formula and
MC reconstruction. One of the main differences with respect to the spherical test case
of the previous section is that the equations that we are solving have sources due to the
gravity terms. In general the presence of non-zero sources can increase the stiffness of
the problem leading to inaccurate solutions, even unstable for extremely stiff sources.
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We expect some influence of the CFL factor in our simulations since the reduction of
the time step tends to cure the stiffness problems. We have performed simulations
with CFL factor 0.8 (standard for all previous simulations), 0.1, 0.01 and 0.001, with a
metric computation rate of 10×0.8/(CFL factor), which maintain constant the metric
computation rate per unit evolution time. The amplitude of the oscillation at the
end of the simulation varies about 0.5% at most. However most of the variation is
observed between CFL factor 0.8 and 0.1, and decreasing the CFL factor further does
not significantly changes the solution. Therefore the effect on the computed damping
rate can be neglected. We find that the stiffness of the sources depends on how
often the metric is computed. We also perform the same simulations with a metric
computation rate 10. In this case the metric is computed more often per time unit
than the previous one, as the CFL factor decreases. We find variations of about 25%
in the final amplitude depending on the CFL factor used, although these variations
depend strongly on the radial resolution. For nr = 160 the maximum variation due to
CFL factor changes is smaller than 10%. Since the effect of the CFL factor becomes
larger lowering the metric computation rate, we can conclude that the sources become
more stiff if the metric is computed more often. An explanation for this effect is that if
the metric is computed less often, the sources vary due to the space-time evolution on
time-scales longer, than the hydrodynamic variables, which reduces the stiffness. We
conclude that the stiffness of the sources is not significantly affecting the computation
of the damping rates for the metric computation rate that we use in our regular
simulations. However special care should be taken in simulations in which the metric
computation rate is high (close to one), e.g. in black hole formation simulations, since
the stiffness of the sources could lead to an increasing of the numerical viscosity of the
code if the CFL factor is not appropriately lowered. We also perform 2D-axisymmetric
simulations with 4, 8 16 and 32 angular grid points. Since the initial perturbation is
radial, non-radial modes are not excited. We find an error in the angular velocity which
is of order vθ/vr ≈ 10−9, and which is closely related to the accuracy of numerical
recovery of the primitive variables. Since the angular extension of the grid restricts
the time step of the simulation in a factor proportional to 1/nθ, we find a similar
behaviour increasing nθ as it is found decreasing the CFL factor.

5. Discussion

We conclude that it is possible to estimate dissipation effects in numerical simulations
which produce an effect similar to physical bulk viscosity. In a very simplified case, as
the test fluid sphere of constant density, the numerical viscosity scales with the order
of the reconstruction. In the application of our method to neutron stars simulations
we find that the behaviour of the numerical viscosity is more complicated since the
gravity sources also contribute to the numerical dissipation processes, and the presence
of the surface lowers the scaling of the viscosity to first order.

To understand why the numerical inaccuracies can be modelled as a bulk viscosity
term we consider the generic form of the flux formula in a Riemann solver

F i
num = F̄ i + Λ∆U, (11)

where F i
num is the numerical flux that is used in the time update, F̄ i is an averaged

value of the flux, ∆U represents the discontinuity at each cell interface and Λ the
eigenvalue matrix. The particular form of the average and the matrix U depends on
the particular Riemann solver. If a reconstruction scheme of order p is used, the value
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of U at both sides of the interface in smooth regions of the flow agrees up to the
p − 1-th derivative, therefore for any function f(U)

∆f(U) ∝ (∆r)p DpU (12)

where Dp represents p-th spatial derivatives. If one applies this expression to the
momentum equation

∂t (
√

γSj) + ∂iF̄
i + µ (∆r)p D(p+1)Sj = Q, (13)

where µ depends on the specific Riemann solver used and Q represent the sources
(r.h.s of (A.2)). The new term appearing in the numerical version of the equations is
a dissipative term since in includes a p+1 derivative, while µ (∆r)p is the corresponding
dissipative coefficient. For first order reconstruction, the dissipation term includes
second derivatives that resemble to a viscosity term with viscosity proportional to ∆r.
For higher order reconstruction the new term resembles hyperviscosity coefficients.
Note that with this interpretation we can identify the computed value of ζ in our
simulations with a viscosity or hyperviscosity term, which scales with resolution with
the order of the reconstruction scheme. Furthermore, we can argue that, since the new
terms in (13) are responsible for both the bulk viscosity and shear viscosity terms,
the value of the numerical shear viscosity of the code has to be of the same order
of magnitude as the numerical bulk viscosity estimated in this work. If this case
were true, the method described in this paper could be a powerful tool to estimate
numerical dissipative effects in multidimensional simulations . However the method
has some limitations due to the approximations that we considered. The integral
expressions (B.12) and (B.13) as well as the approximate expression for the expansion
(4) rely on the facts that a post-Newtonian expansion is possible and that velocity
perturbations are small. This provides an order-of-magnitude estimate in the case
of systems involving neutron stars or proto-neutron stars since O(c−2) ∼ 0.15. In
this scenarios the velocity involved in oscillations is typically smaller than 0.1. In the
vicinity of black holes, the post-Newtonian expansion is not convergent anymore, and
the method can lead to large inaccuracies. Similar thing happens in the case of flows
with a high Lorentz factor as those observed in jets.

From our simulations we also conclude that the gravity can be an important
source of numerical viscosity which has to be estimated in an appropriate way. The
stiffening of the sources in the presence of rapidly changing spacetime, can lead to
a strong increasing in the numerical viscosity if the CFL condition is not adapted
accordingly. Although this effect is not a problem in the simulations presented in this
work, it could be in case in which the spacetime evolves in similar time-scales as the
fluid, e.g. in the formation of a black hole. It is therefore important to test in the
future which are the real effects of numerical viscosity in such simulations.

Finally, we note that all the viscosity results given in this paper are normalized
to ζdyn, which depends on the frequency of the oscillation ω. For a given astrophysical
scenario, and the same numerical resolution, different modes will be affected in a
different way depending on the frequency of the mode. Therefore, in order to estimate
the resolution needed to evolve a system for a given amount of time with reasonably
small damping one has to use the mode with higher frequency, of those who may be
important in the dynamics of the system. Deciding which is this mode may be non
trivial in non-linear simulations, since a strong numerical damping in high frequency
modes, which are coupled to the lower frequency modes, can modify the damping
times for the low frequency modes too.
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Appendix A. Radial oscillations of an homogeneus sphere.

We consider a spherically symmetric barotropic fluid in Minkowski spacetime, with
equation of state P = P (ρ). The hydrodynamics equations (A.1) and (A.2) in this
case read:

∂t (ρW ) +
1
r2

∂r

[
r2ρWv

]
= 0, (A.1)

∂t

(
ρĥW 2v

)
+

1
r2

∂r

[
r2ρĥW 2v2

]
= − ∂rP̂ , (A.2)

where v ≡ vr. The equilibrium solution of this system is trivially zero velocity, v0 = 0,
and constant pressure, P = P0, and hence constant rest mass density, ρ = ρ0. We
consider perturbations of the rest mass density and velocity, ρ = ρ0 + ρ′ and v = v′,
and hence

P = P0 +
∂P0

∂ρ0
ρ′ = P0 + h0 c2

s ρ′. (A.3)

where c2
s is the speed of sound of the equilibrium model. The linearized hydrodynamics

equations read

∂tv
′ +

c2
s

ρ0
∂rρ

′ − ζ

ρ0h0
∂rΘ = 0, (A.4)

∂tρ
′ + ρ0∂rv

′ +
2
r
ρ0v

′ = 0, (A.5)

If ζ is sufficiently small, i.e. ζ << h0ρ0, the viscosity terms can be neglected in the
computation of the perturbations spectrum. In this case equations (A.4) and (A.5)
can be combined in a wave equation for ρ′

∂ttρ
′ − c2

s∂rrρ
′ − 2c2

s

r
∂rρ

′ = 0. (A.6)

The system of equations (A.4) and (A.5) admits oscillatory solutions of the form
v′ = A(r) sin ωt and ρ′ = B(r) cosωt and hence (A.6) results in

∂rrB +
2
r
∂rB +

ω2

c2
s

B = 0. (A.7)

This equation has the form of the Lane-Emden equation of index 1, which have
solutions regular at r = 0 (Chandrasekhar 1967) of the form

B(r) = ρ′0
sin (k r)

k r
, (A.8)

where k = ω/cs and ρ′0 is a parameter which controls the amplitude of the density
perturbation. From (A.4) the solution for the velocity perturbation is

A(r) = v′0
k r cos (k r) − sin (k r)

(k r)2
, (A.9)
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where v′0 controls the amplitude of the velocity perturbation and is related to ρ′0 by

ρ′0
ρ0

= −v′0
cs

. (A.10)

If we impose boundary conditions at the surface v′(R) = 0, i.e., A(R) = 0 we find a
discrete spectrum of modes given by the solutions of

tan (k R) = k R. (A.11)

We have computed the roots of this equations by means of a bisection algorithm. The
first five numerical solutions correspond to k R = 4.49, 7.73, 10.90, 14.07 and 17.11.

Appendix B. Damping time of an oscillating spherical star

The rate of change of the energy due to bulk viscosity of a pulsating star is (cf. Cutler
et al 1990)

dE

dt
= −4π

∫ R

0

dr r2φ6 ζ|Θ|2, (B.1)

and, provided that the energy of the pulsations E is known, the damping time is

τ = −2E

〈
dE

dt

〉−1

. (B.2)

where <> denotes the time average over a cycle.
The energy stored in the radial oscillations of a spherical star can be computed

as the energy difference between the star in equilibrium and the perturbed system.
Previous computations (Meltzer & Thorne 1966, Glass & Lindblom 1983) used
Schwarzschild coordinates in their computations. Instead of performing the coordinate
transformation to the choice of the present work we find it easier and more instructive
to compute the energy of the oscillations directly in our coordinates, although the
result should be identical.

The ADM energy is a conserved quantity which in spherical symmetry and under
our gauge choice is

EADM = −2
∫ R

0

dr r2∆φ = 4π

∫ R

0

dr r2φ5

(
ρhW 2 − P +

KijK
ij

16π

)
, (B.3)

being ∆ the Laplacian with respect to the flat 3-metric and Kij the extrinsic curvature
of the induced 3-metric γij . Since the extrinsic curvature vanishes for the equilibrium
system in our gauge choice the equilibrium ADM energy is

EADM0 = 4π

∫ R

0

dr r2φ5
0(ρ0h0 − P0). (B.4)

The ADM energy does not change with time and hence we can compute its value
by evaluating the integral at the oscillation phase with maximum velocity. In this
phase, due to the continuity equation (A.1), the variation of φ6ρW with respect to
the equilibrium is zero. The leading term in the perturbation corresponds to quadratic
terms in the velocity. The energy of the oscillations is thus E = EADM−EADM0 which
results in

E = 4π

∫ R

0

dr r2φ5
0

[
ρ0h0

1
2
v′

2 − (ρ0h0 − 5P0)
φ′

φ
+

K ′
ijK

′ij

16π

]
(B.5)
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for adiabatic perturbations. Note that here φ′ = φ − φ0 corresponds to the variation
of φ with respect to the equilibrium for the phase in which v′ is maximum and hence
is a term quadratic in v′.

If we apply this expressions to the case of the spherical fluid in Minkowski
spacetime of the appendix A the resulting expressions are

E = 4π

∫ R

0

dr r2 1
2
ρ0A(r)2 = ρ0v

′2
0π

R

k2
sin2 (k R), (B.6)

〈
dE

dt

〉
= −ζv′

2
0πR sin2 (k R), (B.7)

where we have explicitly used that (A.11) is fulfilled to perform the integration and
that < |Θ|2 >= (∇A)2/2 = ω2B2/(2ρ2

0). The damping time is therefore

τ =
2ρ0c

2
s

ζω2
, (B.8)

It is convenient to express it as

ωτ =
ζdyn

ζ
(B.9)

where ζdyn ≡ 2ρ0c
2
s/ω. For ζ ∼ ζdyn the damping of the mode occurs in dynamical

time-scales, while if ζ << ζdyn the damping occurs in secular timescales.
In the case of a perturbed relativistic star the computation of the damping rate

can not be computed analytically. However we can still make an order of magnitude
estimation. For this purpose it is useful to truncate the equations (B.1) and (B.5) to
the leading order in the post-Newtonian expansion

E = 4π

∫ R

0

dr r2 1
2
ρ0v

′2(1 + O(c−2)), (B.10)

dE

dt
= − 4π

∫ R

0

dr r2 ζ|Θ|2
(
1 + O(c−2)

)
. (B.11)

which corresponds to the Newtonian expression for the kinetic energy, beging O(c−2) ∼
O(v2) ∼ O(GM/R) the first post-Newtonian corrections (see e.g. Blanchet et al 1980).
If we assume ei(ωt+kr) dependence of the perturbations, where k is the wavenumber,
then < |Θ|2 >∼ k2 < v2 >= k2v2

max/2. The energy and energy losses result in this
case

E = 2π

∫ R

0

dr r2ρ0v
2
max

(
1 + O(c−2)

)
, (B.12)

〈
dE

dt

〉
∼ −2πk2ζ

∫ R

0

dr r2v2
max

(
1 + O(c−2)

)
, (B.13)

and hence

ωτ ∼ 2ωρ̄0

k2ζ
=

2ρ̄0c
2
s

ζω
, =

ζdyn

ζ
, (B.14)

where ρ̄ is an averaged density weighed by the eigenfunction A(r) and ζdyn ≡ 2ρ̄0c
2
s/ω.
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