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Abstract. We present in this paper a 3D electromagnetic titaition to describe two conductors in electric eshtvith each
other, submitted to the field of a coil in which A& current is flowing. One of the two conductorgdiscribed by the@
formulation, the other conductor is described bg surface impedance boundary condition. The prapasmipled
formulation has been validated with a numericalngxa with a simple geometry. This coupled formwaathas then been
applied to a numerical example on which a crackthdse detected. It is composed of a non magnetie embedded in a
thick steel tube sheet, submitted to the field obih

PACS. 07.05.Tp Computer modeling and simulation — 02.7-Dlite-element and Galerkin methods — 41.20.Gz
Magnetostatics; magnetic shielding, magnetic inda¢tooundary-value problems

2D with the magnetic vector potentialas state variable [10].
It has been presented in 3D with the finite elenmethod or
with the boundary integral method with the magnstalar
potential @ [11-17], and withA-V potentials [18]. With all
these methods, the conductor described with the IBC
surrounded by air and it can be in contact withaaynetic non
conducting region.

1 Introduction

The finite element formulations using magnetic acal
potential @ and electric vector potentidl are efficient for
performing sinusoidal time variation electromagneti
simulations, i.e. magneto-harmonic simulationshas been
widely used, and presented for instance in [1-4h A  The work presented in this article deals with thuglye
alternative to thist-¢ formulation is theA-V formulation, current detection of cracks in the steam generatbes of
whereA is a vector potential and V an electric scalaeptiél  nuclear power plants. The tubes are embedded tieeh tabe
[5]. We can also mentioR or E field formulations [6]. For sheet and the formers are in electric contact with latter.
the work presented in this article, we have chabent-¢ Each tube is submitted to the field of an emittoal of a
formulation, as we consider them as less time coirgythan crack detection probe. The tube is made of Incdneh
the other methods, and already presented our previorks magnetic). Cracks are present in this tube. Theseks must
aboutt-¢ methods in [7-9], especially for the coupling withbe detected. The skin effect is not strong in thise. It can
external electric circuitd-@ formulations can describe a solid therefore be described by the formulation. In this article,
conductor in which the skin effect is not too sggoWhen we have considered that there is no crack in the sheet. As
there is a strong skin effect in a conductor,when the skin the skin effect is strong in it, it must be desedbby the
effect becomes small compared to the dimensionshef surface impedance boundary condition. We preserthim
conductor, the number of elements necessary to ntesharticle the coupling of theé-@ formulation with the surface
becomes too high and it can be favourably describethe impedance boundary condition with an electric cointa
surface impedance boundary condition (IBC) [10-IBjis between those two conductors (the tube and the shbet).
IBC used with the finite element method has bee@p@sed in  The proposed coupling has been validated with aenigal
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example with simple geometry, and has then beetiegbfm 2.2 Surface impedance notion

the case of the tube embedded in the steel tubet.shkis

coupling can also be applied to the simulation tiieo When the skin depth becomes very small compared with

devices. the dimensions of the solid conductor regions, ves c
approach the solution of the problem in these regiby a
monodimensional  approximation along direction z,

2 Numerical method perpendicular to the surface of the conductor. W c
approach ande as follows [13]:

2.1 Typical problem

_(I+j)z
L , , h(z)=hse 9
et Q¢ be a conductor described by the)-¢ formulation
[7-9], in electric contact with another conducfey described _(@+j)z
by the tg-¢ magnetic scalar potential surface impedance(z)=€se o (1)
formulation [11-17] (cf. figure 1.). LeR, be the air region
which contains a coil described by thep formulation, where where hs and es are the magnetic and electric fields

to is a source magnetic field due to the currenhindoil and tangential to thel's surface. The solution of the magneto-
computed as mentioned in [7-9]. Ligtbe the boundary s harmonic problem leads to the definition of the face
andT¢, the boundary ofc. Let ¢t be the interface between impedance £[19]:
both conductor€); and Qs, s, the one betweef; and Q, _
€= Zs(nf x hs)
and e the one betweerf); and Qz We then have: .
Me=TcaUTl e andlMs =T¢f U Ma. Let Qg be the whole finite S :ﬂ
element domainClp = Qa U Q¢ U Q) andl g its boundary. So 0o 2
as to clarify the presentation, we will not reprdsthe non
conducting ferromagnetic regions, as they can\ehsiltaken
into account without difficulty usinty-¢ type formulations. 2.3 Finite element formulation

The source magnetic fiekd due to the current in the coil

is defined and computed by [7-9]: We explain the magnetic field and the current density

in the different regions and on the interfaces atem below:
jg=rottgyin Qg

In Q¢ h=tg+t —gradcp’ j =rott 3)
tgxn=0o0nly,
. o . In Qu h =t ~grade @)
wherejs is the current density in the stranded coil. Note' ~°®
that the source magnetic fietd is computed in the whole ONnl: hg =t —grad, @ (5)
finite element domair)g, and is also computed inside the fa-
volume of the surface impedance regin onlef hg =tgs+ts—grads @ ©6)
wherehg, ts andtgs are the quantitiels, t andtg tangential
to thels interface. O ¢5 we apply the conditiohx n =0,
Qc T Q¢ It which ensure thatjlm =0 on g With this boundary
Cea=> nao cf Lo Air condition and the definitions (3-6), thén tangential
component and thenormal component are conserved across
t-to-® to-g surface Qa interfaces. The continuities of tleetangential component and
formulation flmpe?atnce Lo b normal component are ensured in a weak sensdyyi.the
ormulation equations to solve.
The electric fielde and flux densityb are expressed as
Stranded coil to-@ _ function of the current densifyand magnetic fielth with the
C formulation constitutive laws, which we write in the followirigrm:
Fig. 1. Typical problem e=pj :lj
o (7)

b=ph

whereu is the permeabilityp, the resistivity ands, the
conductivity.
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The implementation of the finite element methocdhwite Using relations (2) and (13), the last term of seeond
t-to-¢ and surface impedance formulation leads to salve i equation of (10) can be transformed as follows:[13]
weak sense the Maxwell-Faraday and Maxwell-Gauss

equations: jwi B [h¢ dl“:,i .[ZS grad w; [hg dr
jw
_db It It (14)
curle=—-— ®)
divh =0 dt The system of equations to solve, obtained from the
ivb =

The Maxwell-Ampere equation is verified (stronglyy
the definitions oh andj (3-6). To obtain the formulation, we
project the above equations with adapted projedtiontions
[20]:

I(curl e+ jmb)DNi dQ=0

e (©)
[divb i da =0

Q,0Q.

where W; and w are respectively edge and nodal

approximation functions. After applying Green’'srfaflas to
these equations, we obtain:

[ourl w; @dQ + [(ex W)t d +jo [W; bdQ =0
QC rc QC

Igradwi b dQ + .[Wi bh; dQ=0
Q0Q, N

(10)

Where n¢ is the normal vector pointing out o)
conductor andnf, the normal vector pointing out d®s
conductor. Let us transform, in a first time, tivstfequation
of (10), which becomes:

[ourl Wi @d + [ (n; xe)W; d + jo [W; bdQ =0
Qc Fe Qc (11)

Using the first relation of (2), noticing thag = —nf on I ¢¢
and cancellingV; x ns onT ¢ to ensure the conditigii = 0
[21], we express the second term of (11) as follows

I(ncxe)DNi dQ = J(ncxes)DNi dQ
Mt Iet
= jzs(ncx(nf ><hs))I]Ni dQ
Fef
= [Zshs W, d@
Fef

12)

We now transform the second equation of (10).

Considering the Maxwell-Faraday law in magneto-ramin
form, we can write:

b = —,i (rot €) (¢ (13)
jw

residuals (10) we have transformed, is finallyhia form:

[ (curl Wi e+ jo W; tb)dQ + [ZgWy; thedr =0

Qc Met

L (15)
Igrad w; b dQ +— IZS gradgw; thgdl =0
Q00 Jo I
We interpolatep andt on the finite element mesh with
shape functions identical to the projection furnesio

t= ZWJ g
J
9= W; @
i
where the;jtandq are the unknowns of the system to solve
[7-9,12].

The symmetry of the system is obtained multiplythg
second equation of (15) by.j We then obtain the following
system of equations, in the case of natural boyndar

e

Aj = J peurl W; Leurl W dQ+ijpWi (W, dQ
QC QC
+ [ ZgWe; W ar
Mef

(16)

Bj :—ijpWi [grad w;dQ - IZsWsi [gradsw;dr

Q¢ et

Cj=jw Iugradwi (gradw; dQ
Q00

+ stgradSWi [(gradsw;dr
Tt

D =- J-ZsWsi [osdl
et

Ei = joojgradwi dodQ+ jZSgradswi dgdr

Qa Mta
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The system of equations (16) corresponds to thé conducinganc magretic Coil
« reduced » scalar potential formulatidg-¢ or t-to-@). The parallelepiped .
. . h _ - B (to-@ formulation)
«total » scalar potential formulation, i.e. thge or t-¢@ p=210"Qm p =1000

formulation, can be obtained cancelling D and Engerof
(16). We can have, in the same problem, condueimgon
conducting regions described by a « reduced » ispatantial
formulation €o-¢ or t-tg-¢) and others described with the
« total » scalar potential formulatiorp (or t-¢). It is also
possible to describe a part of the couple of cotutac
Qc 0 Qf with «total » scalar potential formulations and z
another one with « reduced » scalar potentiahédations. kyx

/

AN

Air region (to-¢

. . formulation
We have used the tree-cotree gauge applied toebeie )
vector potentiat [22], where the unknownsare cancelled on inder vith al P
the edges of a tree spanning g conductor described by | Y 'Qom'jl‘j‘"cttivi? on
the t-to-@ or t-@ formulation. The linear system solving neLEvy . .
lqorith d i ditioned d di p=10"Qm Cylindrer-shaped air
algorithm used is a preconditioned conjugate gradie w=1 region (pformulation)
algorithm after equilibrating the linear system ]J[23he

coupling method presented in this part has beefemgnted

; Fig. 2. Geometry description of the example. Withthe 3
in the Flux® software.

symmetries, one eighth of the geometry is described

Table 1. gives the values of the skin depth in éh2s
conductors, at the 3 frequencies of the coil currdihe
cylinder-shaped conductor, in which skin depth &ween
1.6 mm and 16 mm, is described by thgformulation. In the
parallelepiped conductor, skin depth is betweerdT10mm

, ) and 0.071 mm. For each frequency, two simulatioaseh
We have validated the coupling presented above on fen performed:

simple geometry example composed of a magnetic

3 Simple geometry numerical example for the
validation

3.1 Description of the numerical example

parallelepiped conductor inserted in a non magrwfiader- — I* case, the parallelepiped conductor is describethdy
shaped conductor with a low conductivity (cf. figu2.). A ¢ surface impedance formulation, using the method
coil in which flows a sinusoidal current at a freqay equals described above.

to 10 kHz, 100 kHz or 1 MHz generates induced cusrén — 2 case, considered as the reference case, this ctondu
both conductors which are in electric contact veigtth other: is described by the@ formulation.

the cylinder-shaped conductor and the parallelebipe |, poth cases, a cylindrical air region includirige t2

conductor. conductors (which can be seen on figure 2.) is rifesdt by

the @ formulation. The region which consists of the rafsair
and the coil are described by tiyep formulation.

Table 1. Skin depths in both conductors for the 3 frequesci
of current in the coll

Frequency Parallelepiped Cylinder-shaped

conductor conductor
10 kHz 0.071 mm 16 mm
100 kHz 0.022 mm 5.0 mm

1 MHz 0.0071 mm 1.6 mm
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Fig. 3. Mesh of both conductors

On figure 3. is depicted the mesh used for a fraque
equal to 1 MHz. The parallelepiped conductor hagnbe
meshed with hexahedral finite elements. On the sdte
elements are very elongated and have a width etpal
0.002 mm, so the mesh is compatible with the sleptld of
0.0071 mm at this frequency.

3.2 Results

The convergence of the linear system is alwaysimdda
Tables 2. and 3. and figures 4., 5., 6. and 7. st the
method presented in this article gives good results

On figure 4., on the vertical edge of the parafigled
conductor, the current density is very small in 2ffecase and
not in the i' case. We can explain that with the following
considerations: in the"®case, the parallelepiped conductor is
described with thet-¢ formulation, it is much more
conducting than the cylinder-shaped conductor, dherent
density passes from a vertical face to the othessipg
through the interior of the volume, so the currdatsity is
taking the shortest way. The higher the frequerssythie
smaller the skin depth is and the smaller the zgitle very
small current density on the vertical edge is.He f' case,
the current density is not small on the edge, bexatiis
tangential to each face, since the surface impedanc
formulation imposes that the current density beyéatial to
the surface of the conductor. On table 2., we esntkat the
difference at 1MHz is increased compared with the at
100 kHz. It is probably due to a not enough refinsesh for
the second case at this frequency.

Table 2. Eddy current losses in the parallelepiped conducto

Frequency 1st case 2nd case Difference
10kHz  6.9%10°W  6.7%10°w 281 %
100kHz ~ 2.1%10°W  2.0%10°W  0.756 %
1MHz  584&10°W  57610°W  1.47 %

Table 3. Eddy current losses in the cylinder-shaped comauct

Frequency 1st case 2nd case Difference
10kHz  1.9%10°wW  2.0x10°w  0.82%
100 kHz ~ 1.95%10°W 1.95610°W  0.24 %
1MHz  1.80410°W 1.80510°W  0.071 %
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858000
807529

757058
706588
656117
605647
555176
504705
454235
403764

the current density is the highest of the 3 components and
is tangential to the AB segment. We notice a sxliffitrence

of values between both cases.
corresponding to the vertical edge of the pargipled
conductor, the current density is very small in2ffecase. We
find again the phenomenon already observed ondiguand
which we have already explained above. Figure @wsthe
curves of the real part of the z component of bine densityb

in the cylinder-shaped conductor at 100 kHz. Tted part of
this z component is the highest of the 3 componenie
curves of the imaginary part of the z componentwsttioe
same shapes. We observe that the curves corresgotuli
both cases are superimposed, which shows thatuitiece
impedance formulation, even if it is not accuragamthe

Fig. 4. Isovalues of the current density modulus in thevertical edge does not modify very much the resintshe

parallelepiped conductor, at 100 kHz: on the lett case
(with parallelepiped conductor described with theface
impedance formulation), on the right”dz case (with
parallelepiped conductor described with the formulation).
The scale of the current density is in A/m2.

cylinder-shaped conductor described by thg formulation.
On figure 7., close to abscissa 0.5 mm, corresponth the
vertical edge, the curve presents oscillations,clvhivould
probably be due to the mesh which is not enough ifinthis
area.

Current density in the parallelepiped conductor

0,9

g 0.8
3 07 T
> o0 y
S 05 — Imag(Jy) surface impedance (1st cas
IS
o 04 —— Imag(Jy) t-phi (2nd case)
% 0,3
£ 0,2 \
g, |
E o1
; | | ‘ ‘ |
0 0,1 0,2 03 04 05

Abscissa (mm)

Fig. 6. Curves of the imaginary part of the y componerthef
current densityj in the parallelepiped conductor, on the AB
segment, at 100 kHz, in both cases

Fig. 5. Isovalues of the current density modulus in the

cylinder-shaped conductor, at 100 kHz: on the 18ftcase
(with parallelepiped conductor described with theface
impedance formulation), on the right”dz case (with

parallelepiped conductor described with theformulation).
The scale of the current density is in A/m2.

Figures 6. and 7. show curves of the current demsid
flux density, calculated on the AB segment, locatedthe
interface between the parallelepiped conductor dine
cylinder-shaped conductor in both cases (AB segnient
depicted on figure 2.). Figure 6. shows curves loé t
imaginary part of the y component of the curremsiky j in
the parallelepiped conductor at 100 kHz. The y camemt of

At abscissa 0.5 mm,
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Flux density in the cylinder-shaped conductor

0,35 —
---- Re(Bx) surface impedance (1st case) ]

| | ——Re(Bx) t-phi (2nd case) /

Real part of Bx (m1

T T T T
0 0,1 02 03 0,4 05

Abscissa (mm)

field of an emitting coil of a crack detection peobThe
numerical example we have simulated is composeal [drt
of tube embedded in a part of the tube sheet. Uibe has a
larger diameter in the lower part than in the ugpeat. In the
upper part, the diameter of the tube is equal to&/ frém,
whereas in the lower part, its diameter is equa?2@at mm.
There is a zone where the tube is cone-shapedtulieeis
submitted to the magnetic field of the probe emittcoil. In
this example, we have placed this latter in theeesmaped
zone of the tube and the rest of the probe (rengicoils,
ferrite) are not represented. We have describeg onke
fourth of the device with two vertical symmetry pées. On the
first plane which cuts the coil, we have imposergential
magnetic field boundary condition. We suppose thatfield

Fig. 7. Curves of the real part of the x component of fluxof the coil is negligible in the diametrically opgite zone (see
density b in the cylinder-shaped conductor, on the ABfigure 9). Thanks to this approximation, the seceedtical

segment, at 100 kHz, in both cases

4 Numerical example of a tube with crack embedded
in atube sheet

4.1 Description of the numerical example

symmetry plane was put to reduce the number of s1ofi¢he
problem. On figure 8., we give the main dimensitaken for
the simulation, for the tube and tube sheet, abagethe used
material characteristics. It is necessary to mtuetube sheet
as it modifies the probe response. Indeed, the dapee
measured by the probe receiving coils is not thmesahen
this probe is in the lower part or in the uppert pdithe tube.

We have then used the method presented above on aTable 4. gives the values of skin depths in theetabd

device which comprises a steam generator tube esheled a
steel tube sheet. The tube contains a crack asubiwitted to
the field of an emitting coil of a crack detectiprobe.

19,7i mm Inconel tube
[ .

Tube thickness : : o=1MS/m
1.27 mn \ ! / He=1

20 mm

|
!
30m [
|
|

ZO,i mm \

Steel tube sheet

0=5MS/m
M, = 100

tube sheet at working frequencies of the probe: KH and
600 kHz. At these frequencies, skin depth is mucialier
than the dimensions of the tube sheet, which méaatsthe
use of the surface impedance boundary conditiorthia
region is valid. In the tube, the mesh consist8 ddyers of
hexahedral elements (cf. figure 10).

The tube is described by tiap formulation and the tube
sheet by the@ surface impedance formulation, using the
method described in this article. The air regiorraunding
the coil inside the tube is described by thep formulation.
The rest of the air region is described bygHermulation.

Fig. 8. Geometry of the tube and tube sheet, with material

properties indicated.

In the steam generators, the tubes made of Inqoosl

magnetic) of around 22 mm diameter are embeddead in
30 mm thick steel tube sheet and expanded. Thes tauhd the
tube sheet are in electric contact. Each tubelimgted to the



Tube

Surface of the
tube sheet

Crack

Emitting
coil

Fig. 9. Geometry described for the simulation.

Table 4. Skin depths in the tube and the tube sheet foR the
working frequencies of the probe

Frequency Tube Tube sheet
100 kHz 1.6 mm 0.071 mm
600 kHz 0.65 mm 0.029 mm

The European Physical Journal Applied Plsysic
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Z
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< 7

|
|
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|

Fig. 10. Mesh of the tube and surface of the tube she#t,awi
zoom of the cone-shaped zone of the tube.

4.2 Results

Without the tree-cotree gauge applied to the ateeéctor

We have performed 2 computations, one, withoutkgrac potential t, the example of the tube embedded @ ttibe

the other with a crack. It is situated on the sytnynelane
which cuts the coil, in the cone-shaped zone ofube, and is
2.5 mm high, and has a depth half the one of the tef.
figure 9). We have described the crack bytan=0
boundary condition on a nearly rectangular face,clwh
imposes a zero normal component of current depgity this
face. This boundary condition describes a perfdotiylating
surface crack. It is quite possible to describeiremulating
volume crack, for instance: a parallelepiped craok. the
example, we have performed the simulations at 600 k
frequency, which corresponds to the most difficifhulation
in terms of convergence of the linear system sglailgorithm
and in terms of computation time, because the d&pths are
the smallest and the numbers of finite elementsuarkthowns
are the highest.

sheet does not converge at the 600 kHz frequeneyigDres
11. and 12. are represented the arrows and isevaliéhe
current density in the tube, in the case « withmrack » and
« with crack ». In the case « with a crack », togrent flows
under the crack and is therefore more important tios
external face of the tube, on the tube sheet side.
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On figure 13. are represented the arrows of theentr
densityj on the tube sheet, in the case «with crack ». The
arrows of the case «without crack » are not repnesl
because they are a lot alike those representeidjune f13.

-~

-

\
AN
!

; /
/

'

4

VNN

Fig. 11. Arrows of the rrht density in the tube, Udﬁ t
coil, for ax = 120°: on the left, in the case « with a crackhm

VA
: ,4
A
»
» A
the right, in the case « without crack » i

Fig. 13. Isovalues of the surface current density on thiase
of the tube sheet, under the coil, in the casetk avicrack »,
for wt = 90°

On figure 14. are represented the isovalues ottieent
densityj in the tube sheet, in the case « without crackd> a
«with crack ». The current density in the tubeethie a little
more greater in the case «with crack » than in ¢hee
« without crack », as we can see it on figure adhough the
maximum values between both cases are very cldgs.cén
be explained by the crack which forces currentsass under
the crack, therefore to be closer to the surfac¢heftube
sheet than in the case « without crack ».

Fig. 12. Isovalues of the current density modulus in tHeefu
under the coil: on the left, in the case « withrack », on the
right, in the case «without crack ». The scalehef current
density is in A/mz,
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Fig. 14. Isovalues of the surface current density on thfase
of the tube sheet, under the coil: at the tophéndase « with a
crack », at the bottom, in the case « without crackhe scale
of surface current density is in A/m.

5 Conclusion

We have developed and validated a method whichvallo
to model a conductor described by the formulation in
electric contact with another one described by sheface
impedance boundary condition. The coupling preskint¢his
article has been validated with a numerical exarop&mple
geometry. This coupling has then been applied toragk
detection problem in steam generators. This proldensists

of a non magnetic tube embedded in a steel tubet,she

submitted to the field of an emitting coil of a ckadetection
probe. Future work will deal with the extension tife

coupling method to the couples of multiply conndcte

conductors, i.e. with holes, and coupled with anemmal
electric circuit. The same approach will also beal@ped

with the AV-A formulation [18]. It will be possible to model a

conductor described by thé&-V formulation in electric
contact with another one described by the surfaqeedance
boundary condition witl\-V potentials.

The European Physical Journal Applied Risysi

Acknowledgment
This work has been carried out as part of the ANR

« Playa » project for the promotion of the simuatof eddy
current Non Destructive Testing processes.

References

=

T.W. Preston, A.B.J. Reece, IEEE Trans. Matf$.486 (1982)

2. T. Nakata, N. Takahashi, K. Fujiwara, Y. OkatBBEE Trans.
Magn.,24, 94 (1988)

3. F. Bouillaut, Z. Ren, A. Razek, IEEE Trans. Madt6, 478
(1990)

4. J.P. Webb, B. Forghani, IEE Proc., Sci. Meashiiet, 142,
133 (1995)

O. Biro, K. Preis, IEEE Trans. Mag@5, 3145 (1989)
6. A. Bossavit, IEEE Trans. Magre4, 74 (1988)

o

7. Y. Le Floch, Ph.D. thesis, Institut National Y®ethnique de
Grenoble (INPG), 2002

8. G. Meunier, Y. Le Floch, C. Guérin, IEEE Transagwi., 39,
1729 (2003)

9. G. Meunier, Y. Le Floch, C. Guérin, RIGE 9 (2005)

10. S.R.H. Hoole, C.J. Carpenter, IEEE Trans. Magh,, 1841
(1985)

11. G. Tanneau, IEEE Trans. Mag¥, 467 (1988)

12. D. Rodger, P. J. Leonard, H. C. Lai, R. J. Hilltbgham, IEEE
Trans. Magn.27, 4995 (1991)

13. C. Guérin, Ph.D. thesis, Institut National Petyinique de
Grenoble (INPG), 1994

14. C. Guérin, G. Meunier, G. Tanneau, IEEE Tranagi,32, 808
(1996)

15. L. Krahenbuihl, O. Fabregue, S. Wanser, M. Des8dias, A.
Nicolas, IEEE Trans. Magn33, 1167 (1997)

16. G. Meunier, Y. Le Floch, C. Guérin, COMPEIZ, 64 (2008)
17. C. Guérin, G. Meunier, Y. Le Floch, RIGH, 149 (2008)

18. F.-Z. Louai, D. Benzerga, M. Feliachi, F. Bouilta IEEE
Trans. Magn.32, 812 (1996)

19. R. L. Stoll, The analysis of eddy currentéClarendon Press,
Oxford, 1974).

20. P. Dular, F. Piriou, inModéles et formulations en
électromagnétismelraité EGEM (Hermés Science, Lavoisier,
2002)

21. A. Bossavit, EDF R&D, Clamart, report No. HI-708&2 1989



C. Guérin et al.: Coupling t-@ formulation with surface impedance boundary condition 11

22. R. Albanese, G. Rubinacci, Int. J. Num. Meth. .EG§, 453
(1990)

23. C. Doucet, I. Charpentier, JL. Coulomb, C. Guéfin,e Floch,
G. Meunier, COMPEL27, 897 (2008)

24. Flux®, Cedrat, www.cedrat.com



12 The European Physical Journal Applied Risysi

QC Qf *"Ffa
o kFCf
t-to-@ to-@ surface Q.
o impedance
formulation o rmyation Ho
. to-
Stranded coil —>® formulcgltion
Fig. 1.
Conducing anc magretic Coil
parallelepiped . .
p=210"Qm = 1000 (to-@ formulation)

Air region (to-¢
formulation)

Cylinder with a low

conductivity
p=10°Qm Cylindrer-shaped air
=1 region (pformulation)

Fig. 2.

Fig. 3.



C. Guérin et al.: Coupling t-@ formulation with surface impedance boundary condition 13

Flux density in the cylinder-shaped conductor

i
0,35
'c ---- Re(Bx) surface impedance (1st case) i ‘
£ o3
& 025 — Re(Bx) t-phi (2nd case) /’” 1‘
S o, M/’ v
£ L
Q. 015
©
& 01

0,05

0

T T T T
0 0,1 0,2 03 04 05

Abscissa (mm)
Fig. 7.
19.7 mm Inconel tube
I<i_>|
Tube thickness : : 0=1MS/m
|
. =1
1.27 mn \ 26m / Hr
!
20 mm !
5: mrrl
i
30m |
|
20 I
mm
—22qmm
i A\
Steel tube sheet
0=5MS/m
K =100
Current density in the parallelepiped conductor Fig. 8.
0,9 4
E 0,8
< o |
>
™ 0,6
% 05 — Imag(Jy) surface impedance (1st cas
o 04 —— Imag(Jy) t-phi (2nd case)
% 0.3 |
£
% 0,2 ]
E o1
: |

0 0,1 02 03 0,4 05

Abscissa (mm)
Fig. 6.




The European Physical Journal Applied Risysi

—
==
Z
pasi
vl

v

—
e
Z T
Vi

[

ZZ
=
<z

—=
e
o

=

Z 7

Tube ~

£

=

|
i.g.

Surface of the
tube sheet

Crack

Emitting
coil

Fig. 9.

Fig. 11.



C. Guérin et al.: Coupling t-@ formulation with surface impedance boundary condition 15

~

-

Y N N N N N N —r—
DN N N TR e e e

v

Y AN \\\\\
. R

Fig. 13.



