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Abstract. We present in this paper a 3D electromagnetic formulation to describe two conductors in electric contact with each 
other, submitted to the field of a coil in which an AC current is flowing. One of the two conductors is described by the t-φ 
formulation, the other conductor is described by the surface impedance boundary condition. The proposed coupled 
formulation has been validated with a numerical example with a simple geometry. This coupled formulation has then been 
applied to a numerical example on which a crack has to be detected. It is composed of a non magnetic tube embedded in a 
thick steel tube sheet, submitted to the field of a coil. 
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1 Introduction 

The finite element formulations using magnetic scalar 
potential φ and electric vector potential t are efficient for 
performing sinusoidal time variation electromagnetic 
simulations, i.e. magneto-harmonic simulations. It has been 
widely used, and presented for instance in [1-4]. An 
alternative to this t-φ formulation is the A-V formulation, 
where A is a vector potential and V an electric scalar potential 
[5]. We can also mention H or E field formulations [6]. For 
the work presented in this article, we have chosen the t-φ 
formulation, as we consider them as less time consuming than 
the other methods, and already presented our previous works 
about t-φ methods in [7-9], especially for the coupling with 
external electric circuits. t-φ formulations can describe a solid 
conductor in which the skin effect is not too strong. When 
there is a strong skin effect in a conductor, i.e. when the skin 
effect becomes small compared to the dimensions of the 
conductor, the number of elements necessary to mesh it 
becomes too high and it can be favourably described by the 
surface impedance boundary condition (IBC) [10-18]. This 
IBC used with the finite element method has been proposed in 

2D with the magnetic vector potential A as state variable [10]. 
It has been presented in 3D with the finite element method or 
with the boundary integral method with the magnetic scalar 
potential φ [11-17], and with A-V potentials [18]. With all 
these methods, the conductor described with the IBC is 
surrounded by air and it can be in contact with a magnetic non 
conducting region. 

The work presented in this article deals with the eddy 
current detection of cracks in the steam generator tubes of 
nuclear power plants. The tubes are embedded in a steel tube 
sheet and the formers are in electric contact with the latter. 
Each tube is submitted to the field of an emitting coil of a 
crack detection probe. The tube is made of Inconel (non 
magnetic).  Cracks are present in this tube. These cracks must 
be detected. The skin effect is not strong in this tube. It can 
therefore be described by the t-φ formulation. In this article, 
we have considered that there is no crack in the tube sheet. As 
the skin effect is strong in it, it must be described by the 
surface impedance boundary condition. We present in this 
article the coupling of the t-φ formulation with the surface 
impedance boundary condition with an electric contact 
between those two conductors (the tube and the tube sheet). 
The proposed coupling has been validated with a numerical 
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example with simple geometry, and has then been applied to 
the case of the tube embedded in the steel tube sheet. This 
coupling can also be applied to the simulation of other 
devices. 

2 Numerical method 

2.1 Typical problem 

Let Ωc be a conductor described by the t-t0-φ formulation 
[7-9], in electric contact with another conductor Ωf described 
by the t0-φ magnetic scalar potential surface impedance 
formulation [11-17] (cf. figure 1.). Let Ωa be the air region 
which contains a coil described by the t0-φ formulation, where 
t0 is a source magnetic field due to the current in the coil and 
computed as mentioned in [7-9]. Let Γf be the boundary of Ωf 
and Γc, the boundary of Ωc. Let Γcf be the interface between 
both conductors Ωc and Ωf, Γfa, the one between Ωf and Ωa 
and Γca, the one between Ωc and Ωa. We then have: 
Γc = Γca U Γcf and Γf = Γcf U Γfa. Let Ω0 be the whole finite 
element domain (Ω0 = Ωa U Ωc U Ωf) and Γ0 its boundary. So 
as to clarify the presentation, we will not represent the non 
conducting ferromagnetic regions, as they can easily be taken 
into account without difficulty using t0-φ type formulations. 

The source magnetic field t0 due to the current in the coil 
is defined and computed by [7-9]: 

00s in  rot   Ω= tj  

00 on   0 Γ=× nt  

where js is the current density in the stranded coil. Note 
that the source magnetic field t0 is computed in the whole 
finite element domain Ω0, and is also computed inside the 
volume of the surface impedance region Ωf. 
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Fig. 1. Typical problem 

 
 

2.2 Surface impedance notion 

When the skin depth δ becomes very small compared with 
the dimensions of the solid conductor regions, we can 
approach the solution of the problem in these regions by a 
monodimensional approximation along direction z, 
perpendicular to the surface of the conductor. We can 
approach h and e as follows [13]: 
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where hs and es are the magnetic and electric fields 
tangential to the Γf surface. The solution of the magneto-
harmonic problem leads to the definition of the surface 
impedance Zs [19]: 
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2.3 Finite element formulation  

We explain the magnetic field h and the current density j 
in the different regions and on the interfaces as written below: 

In Ωc: 
φ−+= grad0 tth ,  tj rot=  (3) 

In Ωa: 
φ−= grad0th  (4) 

On Γfa: φ−= ss0s gradth  (5) 

On Γcf: 
φ−+= ss0ss gradtth  (6) 

where hs, ts and t0s are the quantities h, t and t0 tangential 
to the Γf interface. On Γca, we apply the condition t × n = 0, 
which ensure that j⋅n = 0 on Γca. With this boundary 
condition and the definitions (3-6), the h tangential 
component and the j normal component are conserved across 
interfaces. The continuities of the e tangential component and 
b normal component are ensured in a weak sense, i.e. by the 
equations to solve. 

The electric field e and flux density b are expressed as 
function of the current density j and magnetic field h with the 
constitutive laws, which we write in the following form: 

hb

jje

   

1
 

µ=
σ

=ρ=
 (7) 

where µ is the permeability, ρ, the resistivity and σ, the 
conductivity. 
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The implementation of the finite element method with the 
t-t0-φ and surface impedance formulation leads to solve in a 
weak sense the Maxwell-Faraday and Maxwell-Gauss 
equations: 

0 div
dt

d
 

=

−=

b

b
ecurl

 (8) 

The Maxwell-Ampère equation is verified (strongly) by 
the definitions of h and j (3-6). To obtain the formulation, we 
project the above equations with adapted projection functions 
[20]: 
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where Wi and wi are respectively edge and nodal 
approximation functions. After applying Green’s formulas to 
these equations, we obtain: 
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Where nc is the normal vector pointing out of Ωc 
conductor and nf, the normal vector pointing out of Ωf 
conductor. Let us transform, in a first time, the first equation 
of (10), which becomes: 
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Using the first relation of (2), noticing that nc = −nf on Γcf 
and cancelling Wi × nf on Γca, to ensure the condition j⋅n = 0 
[21], we express the second term of (11) as follows: 
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We now transform the second equation of (10). 
Considering the Maxwell-Faraday law in magneto-harmonic 
form, we can write: 

 ff ) ( 
j

1
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Using relations (2) and (13), the last term of the second 
equation of (10) can be transformed as follows [13]: 
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The system of equations to solve, obtained from the 
residuals (10) we have transformed, is finally in the form: 
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We interpolate φ and t on the finite element mesh with 
shape functions identical to the projection functions: 
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where the tj and φj are the unknowns of the system to solve 
[7-9,12]. 

The symmetry of the system is obtained multiplying the 
second equation of (15) by jω. We then obtain the following 
system of equations, in the case of natural boundary 
conditions: 
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The system of equations (16) corresponds to the 
« reduced » scalar potential formulation (t0-φ or t-t0-φ). The 
« total » scalar potential formulation, i.e. the φ or t-φ 
formulation, can be obtained cancelling D and E terms of 
(16). We can have, in the same problem, conducting or non 
conducting regions described by a « reduced » scalar potential 
formulation (t0-φ or t-t0-φ) and others described with the 
« total » scalar potential formulation (φ or t-φ). It is also 
possible to describe a part of the couple of conductors 
Ωc ∪ Ωf with « total » scalar potential formulations and 
another one with  « reduced »  scalar potential formulations. 

We have used the tree-cotree gauge applied to the electric 
vector potential t [22], where the unknowns ti are cancelled on 
the edges of a tree spanning the Ωc conductor described by 
the t-t0-φ or t-φ formulation. The linear system solving 
algorithm used is a preconditioned conjugate gradient 
algorithm after equilibrating the linear system [23]. The 
coupling method presented in this part has been implemented 
in the Flux® software. 

3 Simple geometry numerical example for the 
validation 

3.1 Description of the numerical example 

We have validated the coupling presented above on a 
simple geometry example composed of a magnetic 
parallelepiped conductor inserted in a non magnetic cylinder-
shaped conductor with a low conductivity (cf. figure 2.). A 
coil in which flows a sinusoidal current at a frequency equals 
to 10 kHz, 100 kHz or 1 MHz generates induced currents in 
both conductors which are in electric contact with each other: 
the cylinder-shaped conductor and the parallelepiped 
conductor. 

 Coil 
(t0-φ formulation) 

Cylindrer-shaped air 
region (φ formulation) 

Air region (t0-φ 
formulation) 

Cylinder with a low 
conductivity 
ρ = 10-5 Ωm 

µr = 1 

Conducting and magnetic 
parallelepiped   

ρ = 2.10-7 Ωm    µr = 1000 

1 mm 
x 

y z 

B 
A 

 
Fig. 2. Geometry description of the example. With the 3 
symmetries, one eighth of the geometry is described 
 

Table 1. gives the values of the skin depth in these 2 
conductors, at the 3 frequencies of the coil current. The 
cylinder-shaped conductor, in which skin depth is between 
1.6 mm and 16 mm, is described by the t-φ formulation. In the 
parallelepiped conductor, skin depth is between 0.0071 mm 
and 0.071 mm. For each frequency, two simulations have 
been performed: 

– 1st case, the parallelepiped conductor is described by the 
φ surface impedance formulation, using the method 
described above.  

– 2nd case, considered as the reference case, this conductor 
is described by the t-φ formulation. 

In both cases, a cylindrical air region including the 2 
conductors (which can be seen on figure 2.) is described by 
the φ formulation. The region which consists of the rest of air 
and the coil are described by the t0-φ formulation. 

Table 1. Skin depths in both conductors for the 3 frequencies 
of current in the coil 

Frequency Parallelepiped 
conductor 

Cylinder-shaped 
conductor 

10 kHz 0.071 mm 16 mm 

100 kHz 0.022 mm 5.0 mm 

1 MHz 0.0071 mm 1.6 mm 
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Fig. 3. Mesh of both conductors 

 
On figure 3. is depicted the mesh used for a frequency 

equal to 1 MHz. The parallelepiped conductor has been 
meshed with hexahedral finite elements. On the edges, the 
elements are very elongated and have a width equal to 
0.002 mm, so the mesh is compatible with the skin depth of 
0.0071 mm at this frequency. 

 
 

3.2 Results 

The convergence of the linear system is always obtained. 
Tables 2. and 3. and figures 4., 5., 6. and 7. show that the 
method presented in this article gives good results. 

On figure 4., on the vertical edge of the parallelepiped 
conductor, the current density is very small in the 2nd case and 
not in the 1st case. We can explain that with the following 
considerations: in the 2nd case, the parallelepiped conductor is 
described with the t-φ formulation, it is much more 
conducting than the cylinder-shaped conductor, the current 
density passes from a vertical face to the other passing 
through the interior of the volume, so the current density is 
taking the shortest way. The higher the frequency is, the 
smaller the skin depth is and the smaller the zone with very 
small current density on the vertical edge is. In the 1st case, 
the current density is not small on the edge, because it is 
tangential to each face, since the surface impedance 
formulation imposes that the current density be tangential to 
the surface of the conductor. On table 2., we can see that the 
difference at 1MHz is increased compared with the one at 
100 kHz. It is probably due to a not enough refined mesh for 
the second case at this frequency. 

Table 2. Eddy current losses in the parallelepiped conductor 

Frequency 1st case 2nd case Difference 

10 kHz 6.92×10-8 W 6.73×10-8 W 2.81 % 

100 kHz 2.11×10-6 W 2.09×10-6 W 0.756 % 

1 MHz 5.84×10-5 W 5.76×10-5 W 1.47 % 

 

Table 3. Eddy current losses in the cylinder-shaped conductor 

Frequency 1st case 2nd case Difference 

10 kHz 1.99×10-8 W 2.01×10-8 W 0.82 % 

100 kHz 1.951×10-6 W 1.956×10-6 W 0.24 % 

1 MHz 1.804×10-4 W 1.805×10-4 W 0.071 % 
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Fig. 4. Isovalues of the current density modulus in the 
parallelepiped conductor, at 100 kHz: on the left 1st case 
(with parallelepiped conductor described with the surface 
impedance formulation), on the right 2nd case (with 
parallelepiped conductor described with the t-φ formulation). 
The scale of the current density is in A/m².  
 
 

 

 
Fig. 5. Isovalues of the current density modulus in the 
cylinder-shaped conductor, at 100 kHz: on the left 1st case 
(with parallelepiped conductor described with the surface 
impedance formulation), on the right 2nd case (with 
parallelepiped conductor described with the t-φ formulation). 
The scale of the current density is in A/m². 
 

Figures 6. and 7. show curves of the current density and 
flux density, calculated on the AB segment, located at the 
interface between the parallelepiped conductor and the 
cylinder-shaped conductor in both cases (AB segment is 
depicted on figure 2.). Figure 6. shows curves of the 
imaginary part of the y component of the current density j in 
the parallelepiped conductor at 100 kHz. The y component of 

the current density j is the highest of the 3 components and j 
is tangential to the AB segment. We notice a small difference 
of values between both cases. At abscissa 0.5 mm, 
corresponding to the vertical edge of the parallelepiped 
conductor, the current density is very small in the 2nd case. We 
find again the phenomenon already observed on figure 4. and 
which we have already explained above. Figure 7. show the 
curves of the real part of the z component of the flux density b 
in the cylinder-shaped conductor at 100 kHz. The real part of 
this z component is the highest of the 3 components. The 
curves of the imaginary part of the z component show the 
same shapes. We observe that the curves corresponding to 
both cases are superimposed, which shows that the surface 
impedance formulation, even if it is not accurate near the 
vertical edge does not modify very much the results in the 
cylinder-shaped conductor described by the t-φ formulation. 
On figure 7., close to abscissa 0.5 mm, corresponding to the 
vertical edge, the curve presents oscillations, which would 
probably be due to the mesh which is not enough fine in this 
area. 

Current density in the parallelepiped conductor
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Fig. 6. Curves of the imaginary part of the y component of the 
current density j in the parallelepiped conductor, on the AB 
segment, at 100 kHz, in both cases 
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Flux density in the cylinder-shaped conductor 
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Fig. 7. Curves of the real part of the x component of flux 
density b in the cylinder-shaped conductor, on the AB 
segment, at 100 kHz, in both cases 

4 Numerical example of a tube with crack embedded 
in a tube sheet 

4.1 Description of the numerical example 

 We have then used the method presented above on a 
device which comprises a steam generator tube embedded in a 
steel tube sheet. The tube contains a crack and is submitted to 
the field of an emitting coil of a crack detection probe. 

Tube thickness : 
1.27 mm 

Inconel tube 
 
σ = 1 MS/m 

µr = 1 

Steel tube sheet 
 
σ = 5 MS/m 

µr = 100 

20 mm 

30 mm 

25 mm 

5 mm 

19.7 mm 

20,4 mm 

 
Fig. 8. Geometry of the tube and tube sheet, with material 
properties indicated. 

 

In the steam generators, the tubes made of Inconel (non 
magnetic) of around 22 mm diameter are embedded in a 
30 mm thick steel tube sheet and expanded. The tubes and the 
tube sheet are in electric contact. Each tube is submitted to the 

field of an emitting coil of a crack detection probe. The 
numerical example we have simulated is composed of a part 
of tube embedded in a part of the tube sheet. The tube has a 
larger diameter in the lower part than in the upper part. In the 
upper part, the diameter of the tube is equal to 19.7 mm, 
whereas in the lower part, its diameter is equal to 20.4 mm. 
There is a zone where the tube is cone-shaped. The tube is 
submitted to the magnetic field of the probe emitting coil. In 
this example, we have placed this latter in the cone-shaped 
zone of the tube and the rest of the probe (receiving coils, 
ferrite) are not represented. We have described only one 
fourth of the device with two vertical symmetry planes. On the 
first plane which cuts the coil, we have imposed a tangential 
magnetic field boundary condition. We suppose that the field 
of the coil is negligible in the diametrically opposite zone (see 
figure 9). Thanks to this approximation, the second vertical 
symmetry plane was put to reduce the number of nodes of the 
problem. On figure 8., we give the main dimensions taken for 
the simulation, for the tube and tube sheet, as well as the used 
material characteristics. It is necessary to model the tube sheet 
as it modifies the probe response. Indeed, the impedance 
measured by the probe receiving coils is not the same when 
this probe is in the lower part or in the upper part of the tube. 

Table 4. gives the values of skin depths in the tube and 
tube sheet at working frequencies of the probe: 100 kHz and 
600 kHz. At these frequencies, skin depth is much smaller 
than the dimensions of the tube sheet, which means that the 
use of the surface impedance boundary condition in this 
region is valid. In the tube, the mesh consists of 8 layers of 
hexahedral elements (cf. figure 10). 

The tube is described by the t-φ formulation and the tube 
sheet by the φ surface impedance formulation, using the 
method described in this article. The air region surrounding 
the coil inside the tube is described by the t0-φ formulation. 
The rest of the air region is described by the φ formulation. 
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Surface of the 
tube sheet 

Tube 

Emitting 
coil 

Crack 

 
Fig. 9. Geometry described for the simulation. 

 
Table 4. Skin depths in the tube and the tube sheet for the 2 
working frequencies of the probe 

Frequency Tube Tube sheet 

100 kHz 1.6 mm 0.071 mm 

600 kHz 0.65 mm 0.029 mm 

 
We have performed 2 computations, one, without crack, 

the other with a crack. It is situated on the symmetry plane 
which cuts the coil, in the cone-shaped zone of the tube, and is 
2.5 mm high, and has a depth half the one of the tube (cf. 
figure 9). We have described the crack by a t × n = 0 
boundary condition on a nearly rectangular face, which 
imposes a zero normal component of current density j on this 
face. This boundary condition describes a perfectly insulating 
surface crack. It is quite possible to describe an insulating 
volume crack, for instance: a parallelepiped crack. On the 
example, we have performed the simulations at 600 kHz 
frequency, which corresponds to the most difficult simulation 
in terms of convergence of the linear system solving algorithm 
and in terms of computation time, because the skin depths are 
the smallest and the numbers of finite elements and unknowns 
are the highest. 

 

Fig. 10. Mesh of the tube and surface of the tube sheet, with a 
zoom of the cone-shaped zone of the tube. 
 
4.2 Results 

Without the tree-cotree gauge applied to the electric vector 
potential t, the example of the tube embedded in the tube 
sheet does not converge at the 600 kHz frequency. On figures 
11. and 12. are represented the arrows and isovalues of the 
current density in the tube, in the case « without crack » and 
« with crack ». In the case « with a crack », the current flows 
under the crack and is therefore more important on the 
external face of the tube, on the tube sheet side.  
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Fig. 11. Arrows of the current density in the tube, under the 
coil, for ωt = 120°: on the left, in the case « with a crack », on 
the right, in the case « without crack » 
 

 

 
 

 

Fig. 12. Isovalues of the current density modulus in the tube, 
under the coil: on the left, in the case « with a crack », on the 
right, in the case « without crack ». The scale of the current 
density is in A/m². 
 

On figure 13. are represented the arrows of the current 
density j on the tube sheet, in the case « with crack ». The 
arrows of the case « without crack » are not represented 
because they are a lot alike those represented on figure 13.  
 

 
Fig. 13. Isovalues of the surface current density on the surface 
of the tube sheet, under the coil, in the case « with a crack », 
for ωt = 90° 
 

On figure 14. are represented the isovalues of the current 
density j in the tube sheet, in the case « without crack » and 
« with crack ». The current density in the tube sheet is a little 
more greater in the case « with crack » than in the case 
« without crack », as we can see it on figure 14., although the 
maximum values between both cases are very close. This can 
be explained by the crack which forces currents to pass under 
the crack, therefore to be closer to the surface of the tube 
sheet than in the case « without crack ». 
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Fig. 14. Isovalues of the surface current density on the surface 
of the tube sheet, under the coil: at the top, in the case « with a 
crack », at the bottom, in the case « without crack ». The scale 
of surface current density is in A/m. 
 

5 Conclusion 

We have developed and validated a method which allows 
to model a conductor described by the t-φ formulation in 
electric contact with another one described by the surface 
impedance boundary condition. The coupling presented in this 
article has been validated with a numerical example of simple 
geometry. This coupling has then been applied to a crack 
detection problem in steam generators. This problem consists 
of a non magnetic tube embedded in a steel tube sheet, 
submitted to the field of an emitting coil of a crack detection 
probe. Future work will deal with the extension of the 
coupling method to the couples of multiply connected 
conductors, i.e. with holes, and coupled with an external 
electric circuit. The same approach will also be developed 
with the AV-A formulation [18]. It will be possible to model a 
conductor described by the A-V formulation in electric 
contact with another one described by the surface impedance 
boundary condition with A-V potentials. 
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