
EPJ manuscript No.
(will be inserted by the editor)

3D Finite Element Model for Magnetoelectric sensors
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Abstract. This paper presents a 3D numerical model of magnetoelectric sensors based on the finite element

method. It is obtained using the association of magnetoelastic and piezoelectric behaviour laws. The 3D

finite element formulation is evaluated on a bi-layer beam, combining magnetostrictive and piezoelectric

materials, submitted to magnetic fields. These results are compared to the ones obtained with a validated

2D finite element model. At last, a cylindrical magnetoelectric sensor, which can not be modelled with a

2D analysis, is evaluated.

PACS. 02.70.Dh Finite-element and Galerkin methods – 85.70.Ay Magnetic device characterization, de-

sign, and modeling – 85.70.Ec Magnetostrictive, magnetoacoustic, and magnetostatic devices

1 Introduction

Nowadays, active materials applications include a wide

range of areas (robotic, structural control...), and their

use tends to increase. Despite the different kinds of ac-

tive materials are commonly used separately, their com-

bination leads to new possibilities, with new equivalent
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material properties. Thus, there are especially numbers

of research publications dealing with the associations of

piezoelectric (PM) and magnetostrictive (MM) materials,

and more generally with the magnetoelectric effect, link-

ing magnetic and electric behaviours. Although this ef-

fect is observed in some single-phase materials (such as

Cr2O3) [1], better magnetoelectric coefficients are noticed
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with composite structures, such as laminates [2] or par-

ticulate composites, i.e. particles embedded in a matrix of

active material [3]-[4]. In multi-phase structures, the mag-

netoelectric property is obtained through the mechanical

coupling: the presence of a magnetic field within a MM

generates a magnetostriction strain that is transmitted to

a PM, leading to an electric polarization. Conversely, an

electric field in a PM can modify the magnetization in a

MM:

magnetic

mechanical
·

mechanical

electric

or

electric

mechanical
·

mechanical

magnetic

(1)

In order to study and optimize the design of a novel

generation of smart systems based on the magnetoelec-

tric effect, models describing accurately their behaviours

as well as robust modelling tools for coupled problems are

required. Numerical computations of the piezoelectric and

magnetostrictive effects have already been investigated [5]

[6] [7] [8]. In [9], a 2D finite element model coupling such ef-

fects has been developed, and compared to analytical solu-

tions for structures such as beam bi-layer and multi-layer.

However, the 2D hypothesis presents some known restric-

tions, e.g. the impossibility of modelling a cylindrical sen-

sor placed in a transversal magnetic field. Therefore, this

paper deals with a 3D finite element modelling, based on

the same theory than the 2D one; the numerical formula-

tion of the magneto-electric problem is established from an

energy functional, taking into account the magnetostric-

tive and piezoelectric constitutive laws. Its minimisation

and discretization leads to the finite element formulation

of the coupled problem. As a first step, 2D and 3D results

of a multi-layer beam placed in a uniform magnetic field

are compared. Next, a cylindrical magnetoelectric sensor

is evaluated with the 3D model.

2 Magneto-electric modelling

Considering the magnetoelectric effect in the case of com-

posite structures, the present model is based on the asso-

ciation of the behaviours of the different active materials.

They can be described by the knowledge of the depen-

dence between the electric flux density d and the stress

tensor σ on the electric field e and the strain tensor s

(piezoelectricity), and of the dependence between mag-

netic field h and the stress σ on the magnetic flux den-

sity b and the total strain s (magnetoelasticity). Only re-

versible mechanical, magnetic and electric behaviours are

here considered.

2.1 Piezoelectric behaviour

A standard approach for the modelling of the electrome-

chanical coupling is to consider small variations around

a polarization point. In this case, the electromechanical

coupling is linear (piezoelectricity), leading to constant

material parameters. It is then described by the following

expressions [10]:











σ(e, s) = [Ce] s − [α]t e

d(e, s) = [α] s + [εs] e

(2)

xmininger
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where Ce and εs are respectively the stiffness tensor at

constant electric field and the electric permittivity at con-

stant strain. α represents the piezoelectric coefficient, cou-

pling the mechanical and electrostatic equations.

2.2 Magnetoelastic behaviour

Unlike piezoelectricity, magnetostrictive behaviour is highly

non linear, and this non-linearity has then to be taken

into account in the model. It is introduced considering

a magnetostriction strain sµ [11], only depending on the

magnetic state via the magnetic flux density b. Thus, the

expression of Hooke’s law in the framework of linear elas-

ticity is given by:

σ(b, s) = [C]se = [C](s − sµ(b)) (3)

with se the elastic strain, s the total strain and C the

usual stiffness tensor, defined here considering an isotropic

material. From the integration of the piezomagnetic coef-

ficients over the strain [12], the magnetic behaviour law

h(b, s) is established:

h(b, s) = h(b, sµ) − C
∂sµ

∂b
(s − sµ)

h(b, s) = h(b, sµ) − hc(b, s)

(4)

with h(b, sµ) the magnetic field at free stress and hc(b, s)

the magnetic field induced by stress.

Relations (2) and (4) show that a magnetostriction

strain model sµ(b) is required. Assuming that the mag-

netostriction phenomenon is isochore and isotropic, the

magnetostrictive strain is approximated with a polyno-

mial function versus the magnetic flux density. In the ref-

erence frame of the magnetic induction (b//, b⊥1, b⊥2), it

is expressed with:

sµ
//(b) =

N
∑

n=0

βn b2(n+1)

sµ
⊥1(b) = sµ

⊥2 = −

sµ
//(b)

2

(5)

where the coefficients βn are deduced from experimental

curves [13].

2.3 Finite element formulation

From both materials, the finite element formulation is ob-

tained with the minimization of an energy functional F

(Virtual Work):

F = W − T (6)

where W is the magneto-elastic W (b, s) or the electro-

elastic W (e, s) energy, and T the work of magnetic and

mechanical or electric and mechanical sources [9]. Using

the magnetic vector potential a, the mechanical displace-

ment u and the electric potential ϕ, application of varia-

tional principles leads to four formulations. The formula-

tion coupling, associated with edge element discretization

for magnetic degrees of freedom (DOF) and nodal dis-

cretization for mechanical and electrical DOF, gives the

following algebraic system:



























[S](a) = (J) + (Jc(b, s))

[K](u) = (F ) + (Fmag(b)) + (Fm(b)) − [Kuϕ] (ϕ)

[Kϕϕ](ϕ) = [Q] − [Kuϕ]t(u)

(7)
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i← 0; a0 ← 0;

Cε ← 1; u0 ← 0;

εr ← 10−4; ϕ0 ← 0;

While (Cε ≥ εr) do

[S](ai) = (J) + (Jc(bi−1, Si−1));

[K](ui) = (F m(bi−1)) + (F mag(bi−1)) + (F ) −

[Kuϕ](ϕi−1);

[Kϕϕ](ϕi) = (Q)− [Kuϕ]t(ui−1);

Cε =
|ai − ai−1|

|ai|
+
|ui − ui−1|

|ui|
+
|ϕi − ϕi−1|

|ϕi|
;

i← i + 1;

done

Fig. 1. Fixed-point algorithm; i represents the iteration num-

ber, εr the error criterion.

where a represents the circulation of a along the edges, [S],

[K] and [Kϕϕ] respectively the magnetic, mechanical and

electric stiffness matrix, [Kuϕ] the piezoelectric matrix. F ,

Fmag and Fm are respectively nodal external, magnetic

and “equivalent” magnetostriction forces; Q is the vector

of nodal electric charges. Jc(b, s) can be interpreted as

a coercitive current density representing the effect of an

applied stress. The resolution of this non-linear system

is obtained with an iterative fixed-point method (Fig. 1)

[14].
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Fig. 2. FeCo/PZT multilayers for magnetoelectric sensors.

3 Magnetoelectric sensors

Depending on the layer organisation and on their respec-

tive polarization, several magnetoelectric sensors can be

designed. In this paper, only two kinds of structure are

evaluated with the model. The first one is a parallelepiped

tri-layer, for which the 2D hypothesis seems conceivable,

and the other one is a cylindrical tri-layer, which needs the

3D model (Fig. 2). The piezoelectric and magnetostrictive

materials are respectively PZT (EB10 ceramic) and FeCo

alloy. Piezoelectric polarisation is along the Y-axis (Fig.

2). Magnetic behaviour (i.e. h(b, sµ) in (4)) is here consid-

ered as constant (no variation of the material permeabil-

ity).

For each structure, the working principle is the same:

the sensor is placed in a magnetic field, leading to the

strain of the MM layer. The resulting strain of the PM

layers gives the electric polarisation. Thus, the electric po-

tential obtained on the electrodes is the output of these

sensors.
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Fig. 3. Magnetic boundary conditions.

3.1 Comparison of 2D and 3D results

In this first example, the parallelepiped sensor is placed

in a uniform magnetic field, applied in the longitudinal

direction (X-direction). Although the excitation is easily

obtained for the 2D model, using a Dirichlet boundary

condition (constant potential vector a on the horizontal

boundaries of the domain), the problem is more difficult

for the 3D problem using edge elements. In this case, the

circulation of the magnetic vector potential is imposed as

presented on figure 3.

Due to the symmetries of the structure, only 1/4 of

the 2D geometry and 1/8 of the 3D one are meshed. Fig-

ures 4 and 5 present the magnetic flux density for the two

models. As the permeabilities of FeCo and EB10 mate-

rials are respectively about 1000µ0 and µ0, the magnetic

flux lines are mainly concentrating in the magnetostric-

tive layer. Excitations are chosen so as to get the same

magnetic flux level in this layer, about 0.7 T in order to

stay in the linear part of the b(h) curve of FeCo.
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Fig. 4. Magnetic flux density (T), 2D.
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Fig. 5. Magnetic flux density (T), 3D.

Resulting displacements are shown on figures 6 and 7.

The MM layer tends to get longer in the magnetic field di-

rection, and the PM layer limits this strain. Thus, the dis-

placement magnitudes are smaller for the PZT layer. The

differences obtained with the two methods are mostly due

to the plane strain hypothesis applied for the 2D study.

Finally, figures 8 and 9 give the electric potential dis-

tributions (represented in the piezoelectric layer only). In

the two cases, the ground electrode is obtained by impos-

ing null electric potential for the nodes associated with the

surfaces located between the piezoelectric and the magne-

xmininger
Texte surligné 
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Fig. 6. Mechanical displacement (m), 2D.
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Fig. 7. Mechanical displacement (m), 3D.
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Fig. 8. Electric potential (V), 2D.

tostrictive layers. Again, the results are lightly different,

for the same reason as for the displacement amplitudes.
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Fig. 9. Electric potential (V), 3D.

3.2 Cylindrical magnetoelectric sensor

In this part, the cylindrical sensor placed in a uniform

magnetic field, always along the X-direction (Fig. 2), is

evaluated. Its dimensions are chosen in order to corre-

spond to the same material volumes than for the paral-

lelepiped sensor. Figures 10 to 12 present the correspond-

ing results. Fig. 13 compares the electric potentials ob-

tained with the two sensors depending on the value of the

external magnetic field. It appears that the choice of the

cylindrical sensor leads to smaller electric potential on the

electrodes, probably because of the differences of magnetic

flux concentration in the MM layer. Moreover, the ratio

between the electric potentials is about ϕcyl/ϕpar = 1/3,

and goes smaller with the increase of the magnetic field.

4 Conclusion

In this paper, a 3D finite element magnetoelectric mod-

elling has been presented. Its aim is the study of the mag-

netoelectric effect observed in composite structures ob-

tained with magnetostrictive and piezoelectric materials.
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Fig. 10. Magnetic flux density for the cylindrical sensor (T).
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Fig. 11. Mechanical displacement for the cylindrical sensor

(m).
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Fig. 12. Electric potential for the cylindrical sensor (V).
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Fig. 13. Electric potentials versus external magnetic field.

A validated 2D model has been used as a comparison to

the results of the 3D model. Some differences appear, espe-

cially for displacement and electric potential, mostly due

to the plane strain hypothesis of the 2D model. Lastly,

a cylindrical magnetoelectric sensor has been modelled,

giving smaller electric potential for a given magnetic field

than the parallelepiped solution. Ongoing works aim at

improving the model with the consideration of harmonic

excitations. Moreover, the 3D finite element model is now

going to be applied to more complex configurations, such

as particulate composites, e.g. magnetostrictive particles

embedded in a piezoelectric matrix.
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