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Abstract. In this work, an original procedure, based on the finite element method, is presented for the
design of a Levitron c©, a device made of permanent magnets and relying on stable gyroscopic magnetic
levitation, using secondhand components. A perturbation force analysis is performed on finite element
models of available magnets in order to derive the locus of stable equilibrium, as well as the top mass,
for a given configuration of the magnets. We investigate three methods for the estimation of forces from
finite element computations, two of them based on the virtual work principle, and one performing nu-
merical integration of the classical expression of forces between magnets. Results are employed to realize
a Levitron c© in laboratory, and are shown to be in better agreement with experience than those from a
simple analytical model available in the literature.

PACS. 85.70.Rp Magnetic levitation, propulsion and control devices – 02.70.Dh Finite-elements and
Galerkin methods – 07.55.Db Generation of magnetic fields ; magnets

1 Introduction

Even if common people are more familiar with the at-
tractive aspect of magnetic forces (lifting electromagnets,
actuators, etc.), attention must be paid to magnetic repul-
sion forces, for the numerous possibilities they offer. For
instance, when they are opposed to gravity in a carefully
designed system, stable magnetic levitation can be made
possible. Scientists and engineers, aware of the impact this
phenomenon could have in every day life, have been par-
ticularly concerned with magnetic levitation these years
(magnetic levitation trains, such as Japanese Maglev and
German Transrapid, are good examples).

Earnshaw proved in 1842 that static fields are not able
to maintain a magnetized body in stable levitation1. Con-
sequently, in order to make magnetic levitation viable,
researchers had to lean towards other possibilities. One
solution is based on the use of superconductor materials.
Indeed, these can be considered as perfect diamegnetic
bodies (µr ≃ 0), which have the property to repel applied
magnetic fields, and are not embraced in Earnshaw’s the-
ory [1,2]. The Japanese Maglev uses for instance the prin-
ciple of superconductor levitation. Another way to avoid
Earnshaw’s theorem limitations is to include a dynamical

a e-mail : zacharie.degreve@umons.ac.be
1 Earnshaw’s theorem precludes the existence of potential

extrema for a static configuration of electric (or magnetic) par-
ticles, thus forbidding stable equilibrium.

aspect in the system. In some applications, such as the
German Transrapid, a feedback loop regulates the current
flowing in electromagnet windings, in order to continu-
ously adjust the train motions. In a more academic solu-
tion, the magnetic levitation phenomenon is produced by
Laplace forces acting on induced current loops, circulating
in a conducting body placed in an alternating magnetic
field.

In the 1990s, two systems were developed, for which a
magnetized spinning top was maintained in stable levita-
tion above a base magnet: the Japanese U-CAS c© and the
American Levitron c©. In both cases, the levitation force
is caused by magnetic repulsion forces between perma-
nent magnets. However, the top of the U-CAS c© has a
conductive coating on its surface, so that its horizontal
stability is assured by the eddy currents flowing in it [3].
In the Levitron c©, the rotating magnet is maintained in
stable levitation by gyroscopic effects. More precisely, the
Levitron c© is made up of a top (a non-magnetic spindle
inserted in a flat, or toröıdally shaped, permanent mag-
net) and of a magnetized base with a circular hole on its
centre. The gyroscopic torques acting on the spinning top
maintain it in a nearly vertical alignment, so as to prevent
it being flipped over. But stability against flipping is not
enough: the phenomenon can not be explained if the top’s
axis has a fixed direction in space. Gyroscopic precession
is needed, so that the top’s axis is continuously aligned to
the base magnetic field direction [4–6]. An unmagnetized
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Fig. 1. The Levitron c© [5].

guide is also required in order to bring the rotating top
into the area of stable equilibrium (Fig. 1).

This work aims to design and realize a Levitron c© in
laboratory, using secondhand components such as ferrite
permanent magnets from old speakers and Neodymium-
Iron-Bore magnets. To do so, the magnetic component pa-
rameters are first identified (in terms of volume magneti-
zation m). This is done by comparing magnetic induction
measurements along the z axis of the magnet, obtained
via a Hall effect gaussmeter, and the induction estimated
by means of finite element models (see sections 2 and 3).
Then, a perturbation force analysis is applied to derive
the locus of stable equilibrium: stability is obtained when
top radial or axial excursions are compensated by opposite
perturbation forces (see section 4). The top mass is there-
after estimated by opposing the magnetic force exerted
on it to gravity. Three methods will be compared for the
computation of magnetic forces, two based on the virtual
work theory and one performing the numerical integration
of the classical expression of forces between permanent
magnets (subsection 4.3). Finally, after being compared
with a simple analytical model available in the literature
[5] in which the top is considered as a pointwise magnetic
dipole, the results will be employed to create a Levitron c©,
by assembling the identified components. It will be shown
that our approach conducts to results in better agreement
with the experience than those obtained elsewhere [7].

It is important to note that this paper focuses on mag-
netic aspects only, in order to derive the conditions assur-
ing stable levitation. Mechanical aspects are not addressed
in this study: the impact of top rotation speed against sta-
bility is for instance not discussed. However, the authors
are convinced that this approach can be used as a base
for the comprehension of the complex phenomenology of
the Levitron c©, and suggest references [4,6,8,9] for more
detailed models.

Γ
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Γ

Fig. 2. Three-dimensional model of our Levitron c©.

2 Numerical model

Due to the absence of real currents, the total magnetic
scalar potential ψ, defined as follows, is employed:

h = −gradψ, (1)

where h stands for the magnetic field. The magnets’ con-
stitutive law is the following, with b the magnetic induc-
tion, µ0 the vacuum permeability and m the volume mag-
netization, constant and oriented along the z axis (rigid
permanent magnets):

b = µ0(m + h) (2)

Combining equations (1) and (2) with the Gauss law
of magnetism yields the local form to be solved for ψ on
the whole domain Ω (which is constituted by the magnets
and a surrounding cylinder-shaped air box, see Fig. 2):

Ω : −µ0div (gradψ) + µ0m = 0 (3)

Γ : ∂nψ = 0, (4)

Equation (4) completes the model by specifying condi-
tions to be fulfilled on the boundary Γ of domain Ω (mag-
netic field purely tangential along system boundaries). We
decomposed the problem geometry into tetrahedra, and
approximated ψ on each element using second-order La-
grangian nodal basis functions N(x, y, z) :

ψ̂ =

10
∑

i=1

Ni(x, y, z)ψ̂i (5)

In equation (5), ψ̂ stands for the approximated total

scalar magnetic potential, and ψ̂i for the values of ψ̂ on
the ten nodes of the second-order tetrahedron. A weak
form of problem (3-4) is then derived using the Galerkin

method [10], and ψ̂ is introduced in the obtained equa-

tions, leading to a linear system to be solved for the ψ̂i. A
Conjugate Gradient resolution procedure shows fast con-
vergence towards the solution.
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Fig. 3. Our measurement station (model 912 gaussmeter RFL

Industries Inc.).

Radial excursions of the top, as it will be explained in
section 4.2, led us to use a 3D cartesian model rather than
a simpler 2D axisymmetric one (see Fig. 2).

3 Magnetic component identification

As no information is a priori available for the ferrite and
Neodymium-Iron-Bore magnets, an identification phase is
first needed, in order to derive accurate magnetic mod-
els for the components. To that end, magnetic induction
measurements along the z-axis of the magnet, obtained
using a Hall effect gaussmeter (see Fig. 3), are compared
with the induction evaluated by means of finite element
models. An estimator, the SNSE (for Sum of Normalized
Squared Errors), is computed to account for the curves
adjustment quality:

SNSE =
n
∑

i=1

(
hi,mes − hi,sim

hi,mes

)2 (6)

The model volume magnetization m = muz is tuned
in order to minimize the SNSE. Fig. 4 compares the mea-
sured and simulated magnetic fields, for magnet B5, and
table 1 summarizes the identification results, as well as
the magnet dimensions (outer and inner diameters, respec-
tively do and di, and magnet height e). Note that the Bi

magnets are candidate for the Levitron c© base construc-
tion whereas the Ti ones are for the top. Worse SNSEs
are obtained for the top magnets, as these are subject to
greater measurement errors considering their small size: an
accurate experimental characterization of the h curves is
indeed trickier as the magnet dimensions decrease, espe-
cially in the positive slope area.

4 Design procedure

4.1 Static equilibrium

Static equilibrium is obtained when gravity is compen-
sated by the magnetic force exerted on the top. If M

Fig. 4. Identification of magnet B5. This figure shows the mag-
netic field along the magnet z axis, obtained experimentally
and numerically, versus the distance from the magnet centres.

Table 1. Results of the magnet identification phase. All the
magnets are made up of ferrite, except T3 which is made up of
Nd-Fe-B.

Code do[mm] di[mm] e[mm] m[A/m] SNSE

B1 94 44 16 183000 0.078
B2 82 38 15 172500 0.024
B3 64 24 12 227500 0.024
B4 52 22 9 250000 0.076
B5 101 46 18 192000 0.038
T1 36 18.5 6 190000 0.22
T2 32.5 16 8 260000 0.021
T3 29 6 3 765000 0.1

stands for the top mass, g for the terrestrial gravitational
acceleration and fm,z for the z component of the magnetic
force fm, we have:

fm = fm,zuz = Mg (7)

4.2 Stability analysis

For stable equilibrium to exist, small displacements of
the top in any direction should be compensated by op-
posite forces, which would put it back in its previous po-
sition. In other words, force field lines should all point
inwards, towards the equilibrium position, which means
that the divergence of the force field should be negative.
However, Earnshaw’s theorem states that such a situation
cannot be encountered with static magnetic fields. In the
Levitron c©, the spinning top acts as a gyroscope, prevent-
ing its magnetic field to align itself in the same direction
as that of the base. This flipping phenomenon, combined
with the top precession and nutation motions, allow the
existence of a stable equilibrium area, where gravitation,
magnetic and gyroscopic forces are compensated [5]. In
our approach, based on [5], these two motions (precession
and nutation) are ignored (orientational stability is con-
sidered as given), whereas assumptions are made about
the top orientation during excursions around the equilib-
rium position. More sophisticated models, which account
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for the complex dynamics of the Levitron c©, are available
in the literature [4,6,8,9].

Two models are investigated in this work [5]. The first
one assumes that the top is spinning so rapidly that gy-
roscopic action maintains its magnetic moment perfectly
aligned with the z axis, irrespective of radial or axial ex-
cursions (model M1):

m = mzuz (model M1) (8)

Magnetization norm is supposed to be constant (rigid
permanent magnets case). The second model,M2, assumes
that the top remains parallel to the base magnetic field
during radial or axial excursions around equilibrium, a
phenomenon well observed in practice:

m = m
h

‖h‖
(model M2) (9)

The geometry configuration during radial excursions
requires a three-dimensional model instead of a simpler
axisymmetric one, as depicted in Fig. 2.

Basing on these considerations, our approach for the de-
sign of the Levitron c© is the following. Axial (i.e. z ori-
ented) and radial perturbation forces acting on the top are
computed from finite element simulations, for both models
(equations (8) and (9)) and for different positions of the
top along the z axis. An equilibrium area is then derived,
considering the fact that stability is assured when the per-
turbations are compensated (i.e. when the perturbation
force is opposite to the displacement direction). Then, the
top mass is estimated by opposing the magnetic force ex-
erted on the top in the stability area to gravity (equation
(7)).

4.3 Force computation

Three methods are investigated for the computation of
perturbation forces from finite element simulations. One of
them (NUMINT) performs a numerical integration of the
classical expression of forces between magnets, whereas
the two others are based on the virtual work principle
(CVW and LVW). One might wonder why Maxwell stress
tensor (MST) methods are not addressed in our work. In
fact, in a finite element context, such methods imply the
choice of a surface of integration in the air surrounding
the cible body. For 3D cases, the influence of that choice
on results may become non trivial [11]. On the other hand,
virtual work based methods only require well-defined vol-
ume integrations as explained below, while keeping the
same advantages as MST methods.

4.3.1 Numerical integration

The force exerted on a permanent magnet of magneti-
zation m placed in an external magnetic field h (i.e. the
base magnetic field) is given by [12]:

fm = µ0

∫∫∫

Ω

(mgrad )hdΩ, (10)

Projecting equation (10) along the reference axis system
yields :

fm,x = µ0

∫∫∫

Ω

(mx∂xhx +my∂yhx +mz∂zhx) dΩ

fm,y = µ0

∫∫∫

Ω

(mx∂xhy +my∂yhy +mz∂zhy) dΩ

fm,z = µ0

∫∫∫

Ω

(mx∂xhz +my∂yhz +mz∂zhz) dΩ

(11)

The magnetic field h is obtained from finite element
solutions using equation (1). The integrals in equations
(11) are computed by performing a second order Gauss
quadrature on the top subdomain. This method will be
refered as NUMINT throughout this paper.

4.3.2 Coulomb Virtual Work method

In [11], the virtual work principle is employed to derive
an expression of the magnetic force exerted on a rigid
body, using the local jacobian derivative method. For a h
oriented formulation, the magnetic co-energy is differenti-
ated along the virtual displacement i, keeping the nodal

values of the scalar magnetic potential ψ̂i constants, so as
to obtain, for the force component along i axis:

fm,i =
∑

e

(

∫∫∫

Ωe

−bG−1∂iGh dΩe+

∫∫∫

Ωe

(

∫ b

0

bdh

)

‖G‖
−1
∂i ‖G‖ dΩe

) (12)

In equation (12), the sum extends to all the elements
e of the model, i stands for the direction of the virtual
displacement and Ωe represents the volume of the con-
sidered element. G is the jacobian matrix of the trans-
formation which maps global coordinates to local element
coordinates. All the elements belonging to the body are
displaced all together along i direction. Three categories
of elements appear: the fixed, the entirely movable and
the distorted ones (see Fig. 5). It can be shown that the
co-energy is only modified by the virtual displacement in
elements belonging to the third category, i.e. in air el-
ements surrounding the movable body (top magnet), so
that equation (12) needs only to be computed on these el-
ements. The amount of distorted elements can be arbitrar-
ily fixed, increasing the number of available algorithms,
but we chose the tetrahedron layer directly surrounding
the top subdomain for simplicity. In that case, equation
(12) becomes:
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Fig. 5. Coulomb Virtual Work method. Equation (12) is only
computed on dark elements.

fm,i =
∑

e

(

∫∫∫

Ωe

−µ0hG
−1∂iGh dΩe+

∫∫∫

Ωe

µ0 ‖h‖
2

2
‖G‖

−1
∂i ‖G‖ dΩe

)

,

(13)

This procedure will be refered from now as CVW (for
Coulomb Virtual Work method).

4.3.3 Local Virtual Work method

Unlike the CVW approach, where a set of nodes is simul-
taneously displaced, the local virtual work method (LVW)
displaces a single node at a time [13,14]. Only the co-
energy (for a h oriented formulation) corresponding to the
elements surrounding that node is modified during the vir-
tual displacement. Thus, a local force, associated to the
node, can be obtained by differentiating the co-energy ver-
sus the virtual displacement at constant scalar magnetic
potential. De Medeiros et.al. derived the force expression
in the case of rigid permanent magnets [13] :

fm,i,k =
µ0

2

∑

ek

∫∫∫

Ωe
k

(

−G−1∂iGh(h + m)+

(h + m)(−G−1∂iGh) + (h + m)

(h + m) ‖G‖
−1
∂i ‖G‖

)

dΩek

(14)

Terms in equation (14) have the same signification than
in equation (13): ek stands for the elements surrounding
node k, and the global force is obtained by summing the
nodal forces on the nodes of the magnet. This method is
a heuristic (all nodes are not displaced ’en bloc’), but has
the advantage to give a repartition of the forces inside the
magnet.

5 Results and discussion

Numerous combinations of base candidate and top can-
didate magnets were possible and investigated, but only

Fig. 6. Force exerted on the top (z component), for different
positions of the base magnet along the z axis, computed with
the three methods NUMINT, CVW and LVW.

the results for the B5 − T3 configuration will be exposed,
as it is the authors’ final choice. In that case, it took ap-
proximately 15 s to get one 3D mesh of nearly 150000 el-
ements, using a 1.8GHz dual core processor with 4 GB
RAM. We have adopted deliberately such a dense mesh
in our example since accuracy, more than rapidity, was
an issue. Solving the finite element model took more or
less 40 s, and the post-processing operations, i.e. radial
and axial forces computation, took a few seconds, for the
three methods. That procedure has been repeated for each
position of the top along the z axis, spaced by 0.0005mm,
thus leading to a total simulation time of approximately
50min for the CVW and LVW methods, and 20min for
the NUMINT method. Indeed, in the latter case, there is
no need for solving the finite element model at each step
since the magnetic field involved in equation (10) is the
base magnetic field only.

Figure 6 shows the evolution of the z component of the
magnetic force acting on the top as the distance between
the two magnets changes. We are only interested in the
piece of curve with a negative slope, as it corresponds to an
area where axial perturbations (i.e. z oriented) are com-
pensated. Forces obtained with the three methods (NU-
MINT, CVW and LVW) are represented. We observe that,
considering the small value of the total force in our con-
figuration (around 0.2N), CVW and LVW methods suf-
fer from an excessive sensibility to the top position and
meshing. For that reason, the following results will be ex-
posed for the NUMINT method only. It is worth noting
that a classical meshing algorithm (based on the Delau-
nay triangulation) was employed in order to automatically
remesh the entirety of our system at each step (namely at
each position of the top). We just forced the number of
elements constituting the magnet to belong to a specific
interval (1520−1540 tetrahedra). This does not mean that
the element layer surrounding the top magnet keeps the
same configuration at each step. As the virtual work based
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Fig. 7. Radial perturbation forces during positive top radial
excursions, for the two m oriented models (NUMINT method).
Perturbations are compensated when force and displacement
have opposite signs.

methods only require a numerical integration on this type
of elements (see subsections 4.3.2 and 4.3.3), we under-
stand the numerical noise which appears on Fig. 6. On
the contrary, the NUMINT method requires an integra-
tion on the whole top, and is thus less influenced by the
changing mesh. Further investigations would give a better
understanding of the sensibility of the virtual work based
methods for the present problem. For instance, we could
use more sophisticated remeshing techniques, which for
instance would keep exactly the same mesh for the rigid
bodies at each step, and would deform the surrounding
air elements using dedicated algorithms (see [15] for an
overview of such methods). A combination of the finite
element method with a boundary element method may
also be considered. By doing so, the meshing of the air
could be avoided, as well as the remeshing at each top
position. For our purpose however, the NUMINT method
gave satisfactory results.

In addition, in order to meet stability, radial perturba-
tion forces have to be compensated when the top performs
radial excursions from the z axis. Figure 7 accounts for
these forces, for the two models exposed in section 4.2,
i.e. when m is rigidly oriented along z (M1) or when it
is directed along the base magnetic field (M2). One can
observe that only the second model gives satisfactory re-
sults: an area along the z axis where axial and radial per-
turbation forces are simultaneously compensated can be
found, whereas it is not possible for the first model. This
is not surprising, since the second model is far more close
to what is experimentally observed with a Levitron c©. To
a certain extent, the approach dicussed in this paper gives
a finite element validation of the assumptions about the
orientation of m made in [5]. Moreover, it is important
to note that the inconsistency of model M1 demonstrates
the existence of an upper limit for the top rotation speed,
beyond which stability is not possible any more. Stable
equilibrium is obtained for z values in a range of 62mm

Fig. 8. Our Levitron c©

to 68mm. The lower limit corresponds to a top mass value
of 22.8 g and the upper one to 22.3 g.

These observations have been employed to realize a Lev-
itron in laboratory. For the B5−T3 configuration, stability
has been observed between 62mm and 68mm (as derived
from the simulations), for a top weighing between 25.9 g
and 26.2 g. The gap between simulated and measured data
can be partly explained by measurement errors. Indeed,
the magnetic induction along the z axis of the magnets has
been measured with a gaussmeter, using a probe manipu-
lated by hand, thus leading to inevitable approximations.
When favorable conditions were gathered (base magnet
carefully aligned with the vertical, external magnetic per-
turbations minimized, etc.), stable magnetic levitation has
been observed during up to 1min 22 s (Fig. 8).

Our results can be compared with a simple analytical
model avalaible in the literature [5], in which the top is
considered as a pointwise magnetic dipole. In [7], the au-
thors computed a locus of stable equilibrium from 61mm
to 66mm for the same magnet configuration, correspond-
ing to top masses of 19.7 g and 20.3 g. All the results are
summarized in table 2. We can observe that even if the sta-
bility areas coincide for the two approaches, the top mass
obtained with the proposed method is in better agreement
with the experimental measurements. This can be easily
understood since the magnetic forces are here computed
by numerically integrating over the entire top, instead of
considering a simple dipole repulsion model.

6 Conclusion

In this paper, a finite element based procedure for the
design of a Levitron c©, using secondhand components, has
been presented. After identifying the magnets, a pertur-
bation analysis has been performed in order to derive the
locus of stable equilibrium, as well as the top mass, for var-
ious magnet combinations. It has been demonstrated that
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Table 2. Simulated and experimental results, for the B5 − T3

configuration (M2)

Stability Area [mm] Top mass [g]

Our approach 62 − 68 22.3 − 22.8

Magnetic dipole
approach [5,7]

61 − 66 19.7 − 20.3

Experimental
results

62 − 68 25.9 − 26.2

the top flipping motion is required for stability: its mag-
netization vector must align itself with the base magnetic
field during radial excursions, otherwise axial and radial
perturbations cannot be simultaneously compensated. We
have also emphasized that the virtual work based meth-
ods for the force computations, whereas giving satisfac-
tory results in other general cases, suffer from an exces-
sive sensibility to the top position and meshing, consid-
ering the small value of forces involved in our study. In
our opinion, this effect should be reduced by implement-
ing sophisticated meshing algorithms which take motion
into account [15], instead of simply remeshing the entire
system at each step, through a Delaunay triangulation. A
combination of the finite element method with a boundary
element method may also be considered, so as to avoid the
meshing of the air as well as an entire remeshing at each
top position. For our purpose, the numerical integration
of the classical expression of forces exerted on permanent
magnets has been successfully employed.

To a certain extent, the approach discussed in this article
can be viewed as a finite element extension of [5], in which
the top is assimilated to a pointwise magnetic dipole, and
in which a simple analytical model is derived. Stability
areas have been proven to be in good agreement with the
experience for the two models. However, the top mass is
better estimated with our method, which can be easily
explained as forces are computed by integrating over the
entire top geometry rather than considering simple dipole
repulsion forces.

References

1. M.V. Berry and A.K. Geim, Eur. J. Phys. 18 (1997), 307-
313

2. E.H. Brandt, Phys. World 10 (1997), 23-24
3. M. Tsuchimoto, IEEE. Trans. on Mag. 35 (1999), no. 3,

1270-1273
4. M.D. Simon, L.O. Heflinger and S.L. Ridgway, Am. J. Phys.

65 (1997), no. 4, 286-292
5. T.B. Jones, M. Washizu and R. Gans, J. Appl. Phys. 82

(1997), no. 2, 883-888
6. M.V. Berry, Proc. R. Soc. Lond. A452 (1996), 1207-1220
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