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We present here an original application linking an electrochemical domain and the computational aspect of electromagnetic fields to 
make a corrosion diagnosis of a protected underwater steel structure. After a defined operating time, it is mandatory to check an 
underwater steel structure. This control may happen too early, if the protection has not been damaged; but it may happen too late, if 
some particularly bad environmental conditions have already damaged the structure. Moreover, current examination techniques 
require immobilizing the structure for a long time: they may be complicated to dry (pipe lines or tanks) or to place in dry docks for 
vessels. The efficiency of these techniques could be improved. The purpose of this paper is to replace this checking/examination by a 
series of close electrical measurements in the electrolyte which provides a corrosion diagnosis of the structure. This also allows 
computing the electric and magnetic fields caused by this phenomenon everywhere in the electrolyte. The new method introduced 
ensures a great time-saving but also an accuracy never reached before. 
 

Index Terms—Cathodic protection, boundary elements method, inverse problems, regularization techniques. 
 

1 INTRODUCTION 

WO MAIN electrochemical phenomenon grow up when a 
defect appears on the painting of an underwater steel 

structure. They are accelerated because of the seawater salinity 
which increases its conductivity. It first gives rise to an 
electrochemical corrosion: this is a reaction between the iron 
and the water leading to an iron oxidation and a creation of 
rust. But if the steel structure is also electrically linked to a 
more noble metal (like bronze, aluminum, etc…) in the 
electrolyte, a galvanic couple appears, making the steel 
become the anode of a reduction oxidation reaction. This will 
oxidize the iron until it is fully destroyed. This is called 
galvanic corrosion. In this configuration, the anode is the 
defect in steel, the cathode is the noble metal area and the 
electrolyte is the seawater. Currents spread in the seawater 
from the anode to the cathode and then pass along the steel 
structure. 
 To prevent these destructive reactions, two electrochemical 
techniques have been developed, called cathodic protection. 
They have to be coupled to a correct painting of the structure: 
 

• Sacrificial Anode Cathodic Protection (SACP): the 
principle is to add a less noble metal than iron on the 
structure to protect (like zinc, magnesium, etc…) which 
will become the new anode of the reaction, steel 
becoming a cathode (which is not oxidized). The main 
drawback of this method is that the new anode has to be 
changed regularly. 

 
• Impressed Current Cathodic Protection (ICCP): here a 

noble metal (often platinum) is placed on the structure, 
electrically linked to the steel, injecting current in the 

electrolyte. This will artificially decrease the 
electrochemical potential of the cathode. The more 
current is injected, the more the potential of the cathode 
is decreased, until it reaches its passivation domain 
where the iron is protected. 

 

 
Fig. 1.  Principle of impressed current cathodic protection applied on the hull 
of a ship. The current is provided by a DC power source in the vessel. 

 
These two techniques have in common the circulation of 

current in the electrolyte from the production of electrons due 
to the oxidation of the anode (in the case of the SACP only, 
electrons are directly provided by the anode with the ICCP) 
and their use by the reduction of the cathode. Like any 
conduction problem, this current circulation creates an electric 
field in the electrolyte. 

T 
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Fig. 2.  Cathodic protection current lines spreading in the seawater, under the 
ship. They go back to the hull through the defects and the noble areas. 

 
It is important to see that with both cathodic protections, the 

current goes back to the structure through the damaged areas 
(cathodes). If it was possible to perform many electric 
potential (or current) measurements stuck to the structure, it 
would be easy to find the corroded areas: it would be the areas 
where currents go back to the hull or the ones with the less 
electric potentials. But in practice a user does not have the 
time to get so many measurements and cannot do them so 
close to the structure. 

The purpose of this article is to show the possibility of such 
a diagnosis with a limited number of measurements, not so 
close to the structure. Some kind of studies have been made 
[1] [2] but in internal problems. The structure here can be a 
pipe line or any piece of painted steel fully drowned in the 
seawater. The conduction is then not bounded and the problem 
is called external. 

First the forward modeling of this phenomenon will be 
presented: this means providing an electromagnetic prediction 
from the knowledge of some boundary conditions on the 
structure. Then an inverse method will be extrapolated to make 
a diagnosis. This means to find the boundary conditions of the 
structure (and so the corroded areas) from a series of 
electromagnetic measurements. Finally some experimental 
results will be presented to corroborate the method. 

The example taken in the whole article will be a ship hull 
protected with an ICCP, but the extrapolation to get the case of 
SACP will be often reminded. 

2 PREDICTION: THE FORWARD MODELING 

As mentioned above, the considered case here will be a 
piece of painted steel equipped with defects and an ICCP, 
drowned in an infinite electrolyte; this means far from the sea 
floor and from the surface (also previously called external 
problem). It is also possible to consider the sea floor and 
surface (to model the immerged part of a floating vessel for 
example), then the problem becomes internal. This last case 
will be considered in the experimentation part. 

The piece of steel shape studied is a ship mock-up with 
defects and ICCP protection on its lowest parts. Numerical 
simulations have shown that placing ICCP and defects there 

impose currents lines spreading under the steel. In this case, 
modeling the water surface is not useful: The infinite problem 
described can also be semi infinite. In this way, all the 
simulations made further in the article (in an infinite domain 
with the mock-up) are representative of the immerged part of a 
ship far away from the sea floor. 

To examine such an external problem, it is necessary to 
think about the modeling method to use. First, the method has 
to easily take into account the infinite bound, case often faced. 
But as developing an inverse method is the main goal of the 
study, the method has to create a system linking directly the 
boundary conditions. The Boundary Elements Method (often 
called BEM) has both advantages and will be chosen for the 
study [3].  

2.1 Governing equations and BEM method 

The problem exposed above deals with some current 
injection in the resistive seawater which comes back to the hull 
through the defects. This is a conduction problem, whose main 
unknown is then the electrical potential ϕ in the seawater 
defined by the Faraday law: 

( )ϕgradE −=  (1) 

E is the electric field defined by: 

( )ϕσσ gradEJ .. −==  (2) 

This also induces a very useful equation: 

( )
n

Jn ∂
∂−=−=== ϕσϕσσ ...... ngradnEnJ  (3) 

The σ parameter is the seawater conductivity, related to to its 
salinity. Moreover, the seawater will be supposed homogenous 
and isotropic, with non additional charges so that the Laplace 
equation is verified: 

0=∆ϕ  (4) 

Green’s first identity gives: 

( ) ( ) ( )( )dSnuvnvudVuvvu
SV ∫∫ ∂∂−∂∂=∆−∆ //  (5) 

Replacing u by the electric potential φ and v by Green’s 
function in 3D: 

( ) PMrPMG PM /1/1, ==  (6) 

We obtain Green’s 3rd identity, linking the potential and its 
normal derivative on the whole surface: 

( ) ( )( )
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h coefficient is the solid angle the point P sees around. It is 
possible to extrapolate (4) for P on the boundaries of the 
problem (non singular ones i.e. P on a plane boundary) with 
the introduction of a potential for the infinity bound φ∞, (Fig. 
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3). Indeed, two choices remain for this infinity bound: to set 
the infinity bound potential or the current density. The choice 
made here is to set the current on the infinity bound to zero, 
letting a infinite potential φ∞ exist [4]. This potential, taken as 
a reference potential will be then very useful during the 
resolution. The further potential results are then obtained 
regarding this reference. The Green 3rd identity on the 
boundaries of the problem becomes: 

( ) ( ) ( )( )

( ) ( )( ) ∞−∂∂−

∂∂=−

∫

∫
ϕπϕ

ϕϕπ

.4/.,

/,..2

dSnMPMG

dSnPMGMP

S

S  (8) 

The described problem can be illustrated by the following 
scheme: 
 

 
 

Fig. 3.  Schematic representation of the boundary problem, a closed structure 
filled with air is drowned in an infinite domain. An infinite bound is 
represented to make the problem external. 

 
Equation (5) is applied on the whole surface of the problem. 

The values of the unknowns vary on the entire model and the 
geometries studied are not simple. That is why it is impossible 
to compute analytically the integral term in (5) and the next 
step is to mesh the model. 

In a first approximation an order 0 approach of the 
unknowns is made: all quantities are set constant on each 
element. The unknowns are then located at each elements 
barycenter: this is also called a point matching method. The 
error induced by this approximation is insignificant in our 
case, so more complicated modeling will not be exposed. 
Moreover, the measurements made hereinafter are not very 
close to the model: this explains why the approximation 
provides quite good results. Finally, this approximation avoids 
singularities on the further computations. After meshing, the 
system obtained is: 
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The corresponding H and T equal to: 
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 Indeed the unknowns can be taken out of the integral term 
as they are considered constant on the integration surface 
(order 0). The first step of the system creation is to build the 
left matrix, containing all surface integrations computed at 
each barycenter. This part relatively complicated: analytically 
integrate would spend too much time so the solution chosen is 
to proceed to a numerical integration. The method used is the 
Gauss integration process. The integration term T becomes, for 
a sufficient number m of Gauss points: 

q

m

q q
ij

PM

j
Mij

PM
ij W

r
dS

r
T

j

.
11

1
)()( ∑∫

=
Ω

≈=  (11) 

 r(ij)
PMq is the distance between the P point (where the 

integration is computed) and each Gauss point, Wq is the 
weight given to the q-Gauss point. The only variable to study 
is the number of Gauss points to place on the surface to get 
integrations close to the analytical ones. One difficulty comes 
from the choice of the number m of Gauss points: for an 
element P, the influence (i.e. the integration) of a far element is 
not preponderant and it needs only a few Gauss points but it is 
not the case of a neighbor element which needs many ones. A 
fixed number is not well optimized, but with simple geometries 
meshed uniformly, this will work quite well. 

In our studies where geometries do not exceed one or two 
meters, and where meshing elements can reach 10 square 
centimeters, around 25 to 64 Gauss points are set. [3] 
 An important error occurs when computing numerically the 
influence of an element on itself. This error is erased by an 
analytic correction: the integral term in Hii and Tii are 
computed analytically. 

As the integral computation is done, the separation of 
variable can be done. The boundary conditions available for an 
active protection (PCCI) are the active anode (A), the 
polarizable cathode (C) and the isolated part (I). The systems 
can be finally written: 
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 The Ai is the area of the element i. div(J) = 0 is included in 
the Laplace equation (starting point of the system) but the 
introduction of φ∞ does not ensure this equality anymore. The 
last line is then added to ensure this condition. It is interesting 
to remark in (9) that, if the problem is meshed in N elements, 
the system has N+1 equations for 2N+1 unknowns. 
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2.2 Application for a PCCI case 

Since the problem studied here deals with PCCI, the 
boundary conditions physically mean:  
 

• Anode regions (non-polarizable electrode), have their 
current density JA known. ∂φA/∂n is linked to JA by 
multiplying it by σ, the conductivity of the electrolyte. 

 
• Cathode regions (polarizable electrode), have their 

polarization law ∂φC/∂n=f(φC)  known and are most of 
the time non linear. 

 
• On insulator regions the current density is null: 

∂φI/∂n=0. 
 

The previous system (6) can then be written, by separating 
known and unknown variables: 
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 The only information not used is the polarization law. Its 
non-linearity makes the resolution problematic:  

 
Fig. 4.  Example of a non linear polarization law of steel. The steel is the 
reference in our problem so the abscissa scale is not a potential gap but only 
the electrolyte potential close to steel. 

 

As said in the legend, the steel is the reference. The curve 
gives then the relation f between the current density received 
by the metal and it electric potential: 
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C f
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 This knowledge simplifies the (13) system which can then 
be solve by an iterative solver; the one chosen is a Newton 
Raphson [5] algorithm. The varying parameter is φC, which is 
noted φC

NR below.  The previous system becomes: 
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Considering the size of the left matrix, it is interesting to 
observe that if the problem has N meshing elements; this 
matrix has N+1 equations (lines) and N+1 unknowns (rows).  
The new system is square and can be easily solved.  

In the Newton Raphson algorithm, the residual norm to 
minimize is the difference between the ∂φC/∂n obtained with 
the system (9) and the one got with the polarization law: 
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The two quantities  (∂φC/∂n)BEM and f(φC) can be computed 
from the knowledge of φC. The Newton Raphson algorithm 
make the φC parameter vary to minimize the residual. When 
the algorithm has correctly converged, the two (∂φC/∂n) are 
close to equality and the solution obtained has a physical 
behavior. 

With a good starting point for the algorithm (often situated 
at the middle of the polarization law), the system converge in 
less than a dozen iterations. It is possible to insert the infinite 
potential in the varying parameters, adding a new line in the 
residual norm system (div(J)=0 again), which makes the 
algorithm numerically converge faster: in 3 to 6 iterations. The 
accuracy of algorithm’s convergence does not have to be very 
low, as the quantities ∂φC/∂n have values close to the unit. For 
example, in the further cases, a precision of 10-4 is in most of 
times sufficient. 
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One example of resolution is shown below with a ship hull 
model under cathodic protection (ICCP) meshed in 1052 
elements: 

 

Fig. 5.  Geometry meshed of an existing mock-up with: 3 uniform active 
anodes under the hull (6 elements in black), 4 different cathodes (31 elements 
in grey), and the hull completely isolated (1015 elements in white) 

 
The algorithm presented above is used to compute the 

boundary conditions on the whole surface. The results are 
presented in the following Fig. 5: 

 

 

1.34 1.36 1.38 1.4 1.42 1.44 1.46

 
Fig. 6.  Boundary conditions (electric potential and current densities) 
obtained on the hull with φ∞ = 1.3762 V. The scale is in volts 

 
The scale of the figure is in volts and the values are centered 

on the infinite potential. The white areas correspond to the 
active anodes and, as said in the introduction, they have the 
higher potential. The paint defects are colored in dark and as 
expected they have the lowest potential. The simulation also 
gives current densities, represented as arrows coming out of 
the hull through anodes and get back through cathodes. Using 
equation (12) for the residual norm, results are obtained with a 
maximum error of 10-4A/m² between injected and received 
currents. 

2.3 Extrapolating the electromagnetic field 

The previous step gives all the boundary conditions on the 
model, that is to say each ∂φ/∂n and φ at the elements 
barycenter. Physically, equivalence is possible between those 
results and virtual electrostatic sources in conduction 
problems. To deduct the electrical potential somewhere in the 
electrolyte, it is possible to use Green 3rd identity. The solid 
angle a Q point in the electrolyte see is -4π (the whole 
problem) so the equation becomes: 
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In this expression, the potential computed at the Q point will 
have the same offset than Fig. 5 due to the presence of the ϕ∞ 
term. It is possible to remove this term to get the electric 
potential centered in zero. The boundary conditions are set 
with a point matching approximation, the values can be 
extracted from the integral terms and the meshing gives: 

( ) ( )

( ) ( )∑ ∫

∑ ∫

=
Ω

=
Ω

−






−

+
∂

∂−=

N

i
M

QM

QMM
i

N

i
M

QMi

i

i
j

i

ii

j
i

i

dS
r

M

dS
rn

M
Q

1
3

1

.
.

4

1

1
.

4

1

rn
ϕ

π

ϕ
π

ϕ

 (18) 

 Like the previous resolution, the first step will be to 
evaluate the integral terms and then use the boundary 
conditions to get the potential at point Q. Moreover the 
Maxwell Faraday gives the well known equation (1). 
 By using the opposite gradient of the potential calculation in 
(14), a new formula provides a simple electric field 
calculation: 
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Once again, from the boundary conditions on the model, it 
is possible to calculate the electric field with surface 
integrations. A result of electrical potential and field 
calculation is presented below on a grid under the model hull 
from the boundary conditions represented on Fig.6 (70*20 = 
1400 square elements): 
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0

1
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3
x 10
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Fig. 7.   Result of electric potential measurements made on the grid (1400 
points) below the hull 

 
The scale is still in volts, without caring about the infinite 

potential (φ∞ = 1.3762 V). That is why the values are centered 
on zero. The field arrows are also represented but not well 
highlighted.  



 6 

To get such results, a process can be imagined, like: 
 

 
Fig. 8.   Electric potential measurements principle: a ship passing over a 
series of 20 electric sensors at a determined depth, making 70 set of 
measurements. The final measurements number is then 1400. 

3 DIAGNOSTIC: INVERSE METHOD 

The purpose of this part is quite simple: the previous study 
provides a method which, from a set of boundary conditions of 
a defined geometry, predicts the electromagnetic field in the 
electrolyte. The inverse method consists in a boundary 
conditions reconstruction from a set of measurements. This 
method is often represented by the following simple equation: 

BXA =.  (23) 

 
 B is a measurements vector, which can be electric or 
magnetic here. X is the unknown vector and A the interaction 
matrix between each measurement point and each unknown.  
 

The main problem that appears in such methods is the 
condition number matrix A, directly linked to the difficulty to 
inverse it. Indeed matrix A does not often have the same 
number of rows and lines or contains values that are close to 
the computer zero (10-16). These reasons give a bad condition 
number and, with a noisy B vector, lead to important 
difficulties to inverse the system (23). [6] 

3.1 Naive inversion 

Although matrix A has a bad condition number, it is 
possible to solve the normal equation to get a solution, which 
implies to find a minimum: 

2
.min BXA =  (20) 

This means to solve: 

( ) BAXAA tt ... =  (21) 

This is possible by using a LU solver but some other exists. 
An example is developed hereinafter with the ship hull used 
before (N=1052 elements). Vector B is entirely described so 
the position of each barycenter of the grid is known. The Ames 
matrix can be then easily built with (9) and (14). The unknown 
vector X will contain the potential and its normal derivative at 
the barycenter of each hull element (except for the anode (A in 
the further equations) whose current density is known). 

This method only gives a mathematical convenient solution 
but often not physical. To focus these difficulties, an example 
Indeed vector B will first be simulated with the direct method. 
The 1400 electric potentials computed on a grid below the hull 
are taken adding 10% of the maximum potential random noise. 
This will be vector B. This induces a number of 2098 
unknowns bringing the system under determined. In this case 
the system to inverse is: 

[ ] [ ]nTB

n

A Ames

hull

hull

A

mes ∂∂−=















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/.

/

. ϕ
ϕ

ϕ
ϕ

 (22) 

This is in the same form as (23). The results of a direct 
inversion are shown below: 

 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5

x 10
14

 
Fig. 9.  Boundary conditions (electric potential and current densities) 
obtained on the hull with a “naive” inversion. The scale is in volts. 

 
We obtain non physic boundary conditions with maximum 

potential values reaching 1014 (the target values are shown in 
Fig. 5). The first clue for the inversion problem is the bad 
condition number which is here equal to 4.1279 1016. It is 
interesting to notice that the (23) equality is verified: the 
inversion is mathematically correct. The problem here is very 
ill-posed. A work on this system is necessary before inversing 
it to get a better solution. 

One possible method would consist in 3 steps: first try to 
orthogonalyze the system. Then an injection of additional 
information can make the system have a better condition 
number. Finally a regularization technique allows imposing a 
physical behavior to the solution [7]. The first step purpose, 
not described in this paper, is to change the basis description. 
The unknowns introduced (potential ϕ and its normal 
derivative) are representative of the physical phenomenon. 
There is no need to change them, as the other steps exposed 
before give good results. 

3.2 Injection of information 

The first step of pre conditioning is to add some information 
to the system. A smart way to do it is to use the straightforward 
matrix defined in (8) which links all unknowns of the inverse 
system. With the new meshing (no separation of cathodes and 
isolated parts), it becomes: 
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H11, H21, T11 and T21 are the same as in (9), because the 
anodes are in the same location. On the other hand the location 
of the cathodes is the main unknown. Under the notation “hull” 
we gather the former cathodes and isolated parts. This explains 
the new terms appearing: H’12, H’22, T’12 and T’22. 

Remembering the system (25) does not take into account the 
infinite potential, this unknown and the equation associated 
can be deleted. In our case the infinite potential is supposed 
known as the forward modeling gave it. This potential could 
be evaluated in practice by measuring the electric potential far 
away from the structure toward the steel potential (set to 
reference here). The anode current is known, that is why the 
previous system can be written: 



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=
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

+
+
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n
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A

/..

/..

/

.
'2'

''2

_21
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222221

121211

ϕ
ϕ

ϕ
ϕ
ϕ

π
π  (24) 

This new system will be then summarized: 

[ ] [ ]nT

n
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 (25) 

The reader should see the link with equation (25) which has 
the same unknowns. This allows building a new enhanced 
system with the same number of unknowns and more 
equations: 
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 This system can be simplified, as the number of equations 
brought by Green system is equal to the number of potential 
unknowns’ ϕA and ϕhull. The potentials can be eliminated from 
the system and the final system to inverse can be written: 

[ ][ ] [ ]'/.' BnA hull =∂∂ϕ  (27) 

 The only unknowns are the current densities on the hull, 
which will allow computing the potentials by forward 
modeling. The new number of unknowns is then 1046 for 1400 
equations from measurements: it is an over determined case. 

This injection of information has also brought a physical 
dimension to the problem because it avoids solution diverging. 
But moreover, the number of unknowns has been really 
decreased, permitting us to work with higher mesh density. 

In the case of a SACP system, the only known is the anode 
potential and not the anode current density. The only 
difference with the previous procedure is that Green equations 
eliminate the ∂φ/∂n and the system to inverse becomes: 

[ ][ ] [ ]''.'' BA hull =ϕ  (28) 

3.3 Regularization 

The new system to inverse has been previously presented, 
simpler than it could first appear. But its direct inversion does 
not give good results, because of the noisy behavior it has. 

Remembering that the case has become over determined, the 
next step will be to choose the best solution close to the 
analytical one (injective). It is interesting to use a 
regularization technique here. 

The one studied here is Tikhonov regularization, whose 
principle is to minimize a new quantity [8]: 

||A’.X –B’||+λ.||L.X || (29) 

This means here: 

||A’. ∂φhull/∂n –B’||+λ.||L. ∂φhull/∂n || (30) 

The main goal is to bring again some physical behavior to 
the solution and the impact the user wants to give. Indeed, L is 
the regularization matrix which impose the behavior. The 
elementary one is the identity matrix (zero order): minimizing 
||L.X|| amounts to minimize ||X|| and gives a minimum norm 
solution. It gives a physical solution but keep the noisy 
behavior. In the example current densities are found on every 
element, even if it is an isolated one. Consequently the 
corroded areas do not appear clearly and higher order 
regularization is needed. A first order matrix focuses on a 
continuous solution; the second order minimizes the Laplace 
operator of the solution: 
 

 
Fig. 10.  Representation of a triangle mesh: the black element has 14 
neighbors which needs to be taken into account to minimize the Laplace 
operator. 
 

 In the previous scheme, the k element has 14 neighbors. To 
minimize the Laplace operator, the values of the k current 
density must not too much differ from the i current densities. 
To minimize this difference, the line corresponding to this k 
element in the L matrix applied to X is then: 
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 (31) 

The X vector presented above contains current densities, but 
they are simply linked to the ∂φ/∂n by (2). The presented L 
matrix brings more homogeneity to the values obtained and 
provides a noise smoothing without removing gaps of values. 
Moreover, the Green equations avoids the results from 
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diverging, which is main goal of an order zero regularization. 
An order 2 regularization with Green equations cumulates the 
two benefits. 

The coefficient λ introduced is the regularization parameter, 
representative of the weight given to the regularization term 
||L.X|| in Tikhonov regularization. In the less noisy cases this 
term can have a very little value. On one hand, if a very high λ 
is taken, the solution is only regularized. On the other hand, if 
λ is very low, nothing changes from the previous solution (9). 

Empirically, for a random noise reaching 10% of the 
maximal potential computed, λ is often chosen between 10-2 
and 10-3. If the λ term chosen has a value more than 5.10-1, the 
solution obtained is often too smooth, erasing the discontinuity 
of the boundary conditions, which is mainly interesting here. 
Indeed the goal is to find the lowest potential areas, so that 
smoothing potential results makes the diagnosis inefficient. 
The regularization has then a too important influence. As a 
small conclusion, this parameter choice is the most important 
part of the inversion, because it is the only choice to do. 

A good tool to choose a correct λ is the L-curve [9] which 
shows on a graph the solution semi norm ||L.X || toward the 
residual norm ||A’.X –B’|| for different λ values. In the ship 
case, for a zero order regularization matrix, the L-curve 
obtained is shown below: 
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Fig. 11.  L-Curve obtained for the considered problem. The highlighted corner 
points out the λ parameters giving the best compromise for the regularization. 

 
This curve has often a corner which is the best area to 

choose the parameter. In this area, the solution semi norm and 
the residual norm have both values close to their minimum 
ones. It was the goal exposed before when introducing the 
problem in (31).  

3.4 Final result and comparison with the target 

When chosen, the inversion is possible, and the ∂φhull/∂n 
vector is obtained. As said above, the potential ϕA and ϕhull are 
then computed by forward modeling. The boundary conditions 
obtained on the hull are shown below: 
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Fig. 12.  Current densities obtained on the hull after inversion (scale in A/m²) 
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Fig. 13.  Electric potentials computed on the hull with formula (12) (scale in 
Volts) 

 
These results are very important because they give two 

boundary conditions which have to fit. Indeed corroded areas 
are situated where currents flow back into the hull, results got 
from the minimization of (32). As said above, potential on the 
hull are then obtained by forward modeling. The lowest ones 
are significant of a corroded area. The two previous figures 
show that the clues for corrosion are situated at the expected 
locations compared to the target on Fig.4 with the 1400 
measurements. The diagnosis has well succeeded. 

A last remark can be made about the measurements 
locations. It is obvious that measuring far away from reactions 
does not provide good results. But how guess the best 
locations? In the case presented here, the reactions are 
expected on the lowest parts of the hull; this is why the grid 
presented is placed below the hull. A better solution is to make 
measurements like a semi cylinder shape, to get more 
precisions on the sides of the hull. The other question is the 
maximum depth the measurements can reach to stay relevant. 
This needs a study on the seawater conductivity. The more 
conductive the electrolyte is, the closer the measurements have 
to be. Like any conduction problem, current lines spread more 
in a more resistive domain. A smart study is necessary before 
making any measurements. 

The three steps (take well situated measurements, inject 
information and regularization) allow making a well corrosion 
diagnosis with noised measurements. For a clear visibility, the 
approach does not take the infinite potential into account, but 
it just can be added in (25). The next part deals with 
experimentations to check the results got with the presented 
algorithm. 

4 EXPERIMENTATIONS 

The previous parts have focused on an infinite problem, to 
fit with marine applications for example. Making directly a 
scale 1:1 experimentation would firstly face to memory 
consuming problems so that the first trial will be held in 
laboratory. The main idea is to reproduce a real case but at 
different scale, so that a one square meter PMMA bowls has 
been built with a 25cm depth. To fit the scale, the only thing to 

L-Curve corner, 
best λ area 
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do is to control the electrolyte salinity linked to the 
conductivity (in S.m). 

 

 
Fig. 14.  PMMA bowl for first experimentations. The appropriate 
measurements system is also on the picture with a piece of protected steel in 
the middle. 

  
A system of electrical potential measurements is held on the 
bowl: the principle is to measure electrochemical potentials in 
the electrolyte through a reference electrode (Calomel 
electrode) toward the iron potential. This can easily be with a 
multimeter whose positive side is connected to the reference 
electrode and the negative one directly to the iron in the 
electrolyte. 
 The model drown in the bowl should be representative of 
the immerged part of a hull; it will be a piece of painted iron 
with paint defects (lack of paint) on it. To make this structure 
protected from corrosion, an ICCP is set on it with a platinum 
mesh (2x2 cm) set on its middle. The iron and platinum are 
electrically linked to a computer with adapted electrochemical 
equipment which can set and measure the current flowing into 
the electrolyte due to the platinum anode. The model meshed 
edge is shown below, with dimension 40x40x2 cm: 
 

 
Fig. 15.  Meshed model drown in the bowl with 1 anode and two defects. 

 
The anode in the middle is represented by the current 

densities it delivers with arrows. The two grey areas are the 

defects with 8x4 cm dimension. The white areas are the well 
isolated part. 
 As the model geometry is well known, it can be drown in 
the electrolyte. Seawater has conductivity close to 5.6 S.m, 
here it will be chosen equal to 0.1 S.m which is 56 times less. 
The current injected by the anode is 160 A/m² which makes 64 
mA injected in the electrolyte. The reaction begins with a 
release of hydrogen on the iron and platinum. It needs to work 
on for a couple of hours depending on natural oxidation state 
of the iron. Then an electric potential measurement is made on 
a grid 2 cm above the model as shown: 
 

 
Fig. 16.  Measurements locations set on a square grid above the piece of steel 
 

Measurements are made at each barycenter of the grid; the 
bowl meshed representation has been set off for clarity. 
 The interaction matrix between measurement locations and 
the model is built, the Green equations are added and 
Tikhonov regularization is applied. The corresponding L-
Curve is set below: 
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Fig. 17.  Corresponding L-Curve of the system to inverse.  

 
The corner is not as simple to see as in numerical cases. 

Indeed the problem comes from the salinity: to get a low 
conductivity (0.1 S.m), the salinity have to be very low. In the 
abacus, such salinities are subject to huge errors on the 
corresponding conductivity because of two main factors: the 
non homogenous temperature in the electrolyte and the salt 
purity (NaCl quantity in the salt) [10]. The information 
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injected with the known current density JA through ∂φA/∂n 
depends on the conductivity, so it induces errors on the 
inversion. The more noisy information the system has, the less 
significant the L-curve is. But the vertical dotted line gives us 
a clue of the inflection point. The λ parameter is taken equal to 
0.0024 and the inversion gives the following electric potential 
results: 
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Fig. 18.  Electric potential boundary conditions for a λ parameter equal to 
0.0024 (scale in Volts) 

 
To get visible results, only lowest potentials are represented. 

It is an arbitrary criterion: as the corroded areas have the 
lowest potential ones, it is decided that here only the 10% 
lowest ones are kept. The target is also calculated with the 
same criterion by forward modeling: 
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Fig. 19.  Target of boundary conditions (electric potential) in the same 
conditions (scale in Volts) 

  
The lowest potential areas are the same. The diagnosis is 

successful: the corroded areas have been explicitly recovered 
by the algorithm. The current density results give the same 
diagnosis and have not been exposed. 

 

5 CONCLUSION 

As a conclusion, the method explained in this article can be 
used in several domains such as ships hulls, oil platforms, 
underwater pipe lines, offshore wind energy platforms, etc… It 
can be also very useful to monitor water tanks, sewers pipes, 
silos, etc… Moreover other scientific topics such as thermal 
studies use the same equations and could take advantages of 
this method.  

 
It provides a global tool to get clues about the state of an 

underwater iron structure with an appropriate cathodic 
protection. It must be said that this method works with internal 
or external problems with any cathodic protection (impressed 
current or sacrificial). An industrial application has been 
developed to examine the state of a hull at each passage in a 
harbor. 

 
The next step of the approach is to constraint the inversion 

of the system by evaluation of the solution we want to find 
(current densities with order 2 regularization) or the 
permissible error due to measurement error prediction. 

Other measurements have been made with scale 1:1 
seawater (conductivity close to 5.6 S.m) in the bowl which 
works, but the current injection has obviously to be increased. 
Those results will be presented in further papers. 
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