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Ships hull corrosion diagnosis from close measuremts of electric
potential in the water

A. Guibert? O. ChadebégJ.-L. Coulomb, C. Rannofj R. P. Nogueira

1G2Elab (UMR 5269 INPG-UJF-CNRS), ENSIEG, BP 46, GBGRENOBLE FRANCE
’DGA/GESMA - Département DDBF BP 42 - 29240 BRESTMIEES FRANCE
*LEPMI (UMR 5269 INPG-UJF-CNRS) - 1130 rue de lacjrie 38000 GRENOBLE FRANCE

We present here an original application linking anelectrochemical domain and the computational aspedf electromagnetic fields to
make a corrosion diagnosis of a protected underwatesteel structure. After a defined operating time,it is mandatory to check an
underwater steel structure. This control may happertoo early, if the protection has not been damagedut it may happen too late, if
some particularly bad environmental conditions havealready damaged the structure. Moreover, current gamination techniques
require immobilizing the structure for a long time: they may be complicated to dry (pipe lines or tar®) or to place in dry docks for
vessels. The efficiency of these techniques could improved. The purpose of this paper is to replacthis checking/examination by a
series of close electrical measurements in the dletyte which provides a corrosion diagnosis of thestructure. This also allows
computing the electric and magnetic fields causedybthis phenomenon everywhere in the electrolyte. Thnew method introduced

ensures a great time-saving but also an accuracy ver reached before.

Index Terms—Cathodic protection, boundary elements method, inerse problems, regularization techniques.

1 INTRODUCTION

WO MAIN electrochemical phenomenon grow up when a

defect appears on the painting of an underwatesl ste
structure. They are accelerated because of theaseasalinity
which increases its conductivity. It first givessei to an
electrochemical corrosion: this is a reaction betwéhe iron
and the water leading to an iron oxidation and eation of
rust. But if the steel structure is also electficdihked to a
more noble metal (like bronze, aluminum, etc...) het
electrolyte, a galvanic couple appears, making sheel
become the anode of a reduction oxidation reaciibis will
oxidize the iron until it is fully destroyed. This called
galvanic corrosion. In this configuration, the aeoid the
defect in steel, the cathode is the noble meteh ared the
electrolyte is the seawater. Currents spread instrewvater
from the anode to the cathode and then pass almngteel
structure.

To prevent these destructive reactions, two elebimical
techniqgues have been developed, called cathoditegtian.
They have to be coupled to a correct painting efstiucture:

e Sacrificial Anode Cathodic Protection (SACP): the

electrolyte. This will artificially decrease the

electrochemical potential of the cathode. The more
current is injected, the more the potential of¢chthode

is decreased, until it reaches its passivation @doma
where the iron is protected.
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principle is to add a less noble metal than irontte Fig. 1. Principle of impressed current cathodiat@ction applied on the hull

structure to protect (like zinc, magnesium, etc. hjol

of a ship. The current is provided by a DC powersee in the vessel.

will become the new anode of the reaction, stefel These two techniques have in common the circulatibn

becoming a cathode (which is not oxidized). Thermai
drawback of this method is that the new anode haet
changed regularly.

current in the electrolyte from the production tdatrons due
to the oxidation of the anode (in the case of tAECB only,
electrons are directly provided by the anode wiith KCCP)

and their use by the reduction of the cathode. Lakgy

« Impressed Current Cathodic Protection (ICCP): lzere
noble metal (often platinum) is placed on the dtme;
electrically linked to the steel, injecting curreéntthe

conduction problem, this current circulation creze electric
field in the electrolyte.



impose currents lines spreading under the stedhitncase,
modeling the water surface is not useful: The itdiproblem
described can also be semi infinite. In this wal, the
simulations made further in the article (in annité domain
/ with the mock-up) are representative of the immengert of a
x P = <P Nr\ ship far away from the sea floor.
To examine such an external problem, it is necgstar
Bow think about the modeling method to use. First,rtfeghod has
thruster in . . P
NAB to easily take into account the infinite bound,ecafien faced.
Propellers But as developing an inverse method is the main gbthe
In NAB == Active or sacrificial anodes study, the method has to create a system linkinectly the
__ Cathodic protection current line boundary conditions. The Boundary Elements Methufte i
, called BEM) has both advantages and will be chdeerthe
O Defects areas (iron) study [3]

Fig. 2. Cathodic protection current lines spregdimthe seawater, under the

ship. They go back to the hull through the defects the noble areas. 2.1 Goveming equations and BEM method

The problem exposed above deals with some current
It is important to see that with both cathodic pations, the injection in the resistive seawater which comekitadhe hull
current goes back to the structure through the dathareas through the defects. This is a conduction probhgse main
(cathodes). If it was possible to perform many tiec unknown is then the electrical potenti@l in the seawater
potential (or current) measurements stuck to thecttre, it defined by the Faraday law:
would be easy to find the corroded areas: it wdagdhe areas
where currents go back to the hull or the ones Withless E= —grad(¢) @)
electric potentials. But in practice a user does have the
time to get so many measurements and cannot do flitem
close to the structure. J=0E =-ograd(g) (2)
The purpose of this article is to show the posgibdf such . . .
a diagnosis with a limited number of measuremems, so This also induces a very useful equation:
close to the structure. Some kind of studies haentmade ¢
[1] [2] but in internal problems. The structure éi@an be a 9n = I =0.EN =-ograd(g)n = %%n ®)
pipe line or any piece of painted steel fully dr@gnin the
seawater. The conduction is then not bounded angrthlem  Thec parameter is the seawater conductivity, relatetd its
is called external. salinity. Moreover, the seawater will be supposechdigenous
First the forward modeling of this phenomenon viik and isotropic, with non additional charges so thatLaplace
presented: this means providing an electromagpetidiction €duation is verified:
from the knowledge of some boundary conditions ba t Ag =0 (4)
structure. Then an inverse method will be extrapdla make
a diagnosis. This means to find the boundary cmditof the Green’s first identity gives:
structure (and so the corroded areas) from a sesfes

E is the electric field defined by:

electromagnetic measurements. Finally some expetihe L(uAv—vAu)dV :J' (u(@v/an)-v(ou’an)ds (5)
results will be presented to corroborate the method s
The example taken in the whole article will be & dhull Replacing u by the electric potenti@land v by Green’s

protected with an ICCP, but the extrapolation tbthe case of function in 3D:

SACP will be often reminded.
G(M,P)=1/r,, =1/|PM]| ()
2 PREDICTION:THE FORWARD MODELING

As mentioned above, the considered case here wilab
piece of painted steel equipped with defects andGEP,
drowned in an infinite electrolyte; this means fiamm the sea _
floor and from the surface (also previously callexternal h(P).¢(P)—L¢(M ).(6G(M,P)/6n)d$
problem). It is also possible to consider the dearfand _
surface (to model the immerged part of a floatiegsel for LG(M,P).(&(&(M)/an)dS

example), then the problem becomes internal. Tass ¢ase L . . .
will be considered in the experimentation part. h coefficient is the solid angle the point P seesiad. It is

The piece of steel shape studied is a ship mockitip possible to extrapolate (4) for P on the boundad&ghe

defects and ICCP protection on its lowest partsmalical Problem (non singular ones i.e. P on a plane bayhadeth
simulations have shown that placing ICCP and dsfemére the introduction of a potential for the infinity tad ¢.., (Fig.

We obtain Green's'3identity, linking the potential and its
normal derivative on the whole surface:

(@)



3). Indeed, two choices remain for this infinityumal: to set
the infinity bound potential or the current densitye choice
made here is to set the current on the infinityriabto zero,

letting a infinite potentiab., exist [4]. This potential, taken as

a reference potential will be then very useful dgrithe
resolution. The further potential results are thartained
regarding this reference. The Green 3rd identity the
boundaries of the problem becomes:

~2124(P)= | p(M)oc(M. P)/an)ds
_LG(M ,P)(0¢(M)/ dnYdS- 4778, (8)

The described problem can be illustrated by thieviehg
scheme:

electrolyte (seawater,o)

Fig. 3. Schematic representation of the boundesplpm, a closed structure
filled with air is drowned in an infinite domain. PAinfinite bound is
represented to make the problem external.

Equation (5) is applied on the whole surface ofgrablem.
The values of the unknowns vary on the entire madel the
geometries studied are not simple. That is why itripossible
to compute analytically the integral term in (5)dathe next
step is to mesh the model.

. pA) g
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Indeed the unknowns can be taken out of the iateagrm
as they are considered constant on the integratioface
(order 0). The first step of the system creatiotoiduild the
left matrix, containing all surface integrationsnguuted at
each barycenter. This part relatively complicatollytically
integrate would spend too much time so the solutiuosen is
to proceed to a numerical integration. The metheetus the
Gauss integration process. The integration terrecoines, for
a sufficient number m of Gauss points:

1 1
- - [ T gsi =
Tj J.QJ. ré‘i} dSy Z (ii)

g=1 PM q

W, (11)

ey is the distance between the P point (where the
integration is computed) and each Gauss point, Wdhe
weight given to the g-Gauss point. The only vaeatol study
is the number of Gauss points to place on the carfa get
integrations close to the analytical ones. Onddatilfy comes
from the choice of the number m of Gauss points: do
element P, the influence (i.e. the integrationq ¢ér element is
not preponderant and it needs only a few Gausgbit it is
not the case of a neighbor element which needs roaey. A
fixed number is not well optimized, but with simgleometries
meshed uniformly, this will work quite well.

In our studies where geometries do not exceed one/®
meters, and where meshing elements can reach lfresqu
centimeters, around 25 to 64 Gauss points ar§3jet.

An important error occurs when computing numehyctie
influence of an element on itself. This error issd by an
analytic correction: the integral term in;Hand T; are
computed analytically.

As the integral computation is done, the separatbn
variable can be done. The boundary conditions alvkilfor an

In a first approximation an order O approach of thg.iye protection (PCCI) are the active anode (f)e

unknowns is made: all quantities are set constanteach

polarizable cathode (C) and the isolated partThe systems

element. The unknowns are then located at eacheelsm can pe finally written:

barycenter: this is also called a point matchinghoe. The
error induced by this approximation is insignifican our
case, so more complicated modeling will not be erpo
Moreover, the measurements made hereinafter arevergt
close to the model: this explains why the approxioma
provides quite good results. Finally, this approadion avoids
singularities on the further computations. Afterstmag, the
system obtained is:

¢
[H T -4n]{ag/on
¢..

The corresponding H and T equal to:

0

(9)

Ia
e
4
0fa
on
¢
on
2%
on
L e |
The A is the area of the element i. dIyE 0 is included in

the Laplace equation (starting point of the systdm) the
introduction ofe,, does not ensure this equality anymore. The
last line is then added to ensure this conditibis interesting
to remark in (9) that, if the problem is meshedirlements,
the system has N+1 equations for 2N+1 unknowns.

Hyt2m  Hy His Ty T Ts
Hyi  Hpt2m  Hyy T Ty T3 —4m
Hss Hy,  Hgst2m Ty Ty Ty —47

0 0 0 A A A O
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2.2 Application for a PCCI case As said in the legend, the steel is the referembe. curve

Since the problem studied here deals with PCCI, trives then the relation f between the current dgnsceived
PL

* Anode regions (non-polarizable electrode), haveér the(%J = () (14)

current density AJ known. dpa/on is linked to 4 by

multiplying it by o, the conductivity of the electrolyte. This knowledge simplifies the (13) system which taen
be solve by an iterative solver; the one chosenNewton
+ Cathode regions (polarizable electrode), have theRaphson [5] algorithm. The varying parametepdswhich is
polarization lawdec/on=f(pc) known and are most of notedec\" below. The previous system becomes:
the time non linear.

_H11+27T H13 T12 _47T ¢A
« On insulator regions the current density is null: H H T — 477 9
0¢/on=0. 21 23 22 Iag BEM | —
n
The previous system (6) can then be written, bysging | O 0 A O é
known and unknown variables: ~ *
0¢
— - NR
i Pa ~Hppfe ™ T 6nA (15)
Hy +2m1 H H T, -—-4m
1 12 13 12 b “(H,, +2m) 4R =T 0P A
— Al - 9
H31 H32 H33 + 27T T32 47T % _ H 32.¢C NR _-|—31' ¢A
0 0 0 A 0 || on on
) L ¢oo i - AEI.%
r T on
1,994 3) ]
Jan Considering the size of the left matrix, it is imsting to
-T 0Pa observe that if the problem has N meshing elemethis;
2 90 matrix has N+1 equations (lines) and N+1 unknowosvs).
T 0P The new system is square and can be easily solved.
31 an In the Newton Raphson algorithm, the residual ndem
A 1IN minimize is the difference between thec/on obtained with
“on | the system (9) and the one got with the polaripataov.
. . . . BEM PL BEM
The only information not used is the polarizatiaw. Its R ):(%j _[%j :[%j () (16)
non-linearity makes the resolution problematic: © on on on ©

095 Examp?le of steel po‘larization Iaw‘ BEM

The two quantities dpc/on)”— and fipc) can be computed

, from the knowledge ofpc. The Newton Raphson algorithm
make theec parameter vary to minimize the residual. When
the algorithm has correctly converged, the t@oc(on) are

1 close to equality and the solution obtained hashgsipal

09 -

085 -

o
)
T

-
50_75, ] behavior.
z With a good starting point for the algorithm (oftsituated
% o7 | at the middle of the polarization law), the systemnverge in
g 085 1 less than a dozen iterations. It is possible terinthe infinite
S o6l ] potential in the varying parameters, adding a nee in the
055. | residual norm system (di¥=0 again), which makes the
algorithm numerically converge faster: in 3 todrdtions. The
05y 1 S accuracy of algorithm’s convergence does not havgetvery
045 o~ M 55 : 1i1 low, as the quantitieSpc/on have values close to the unit. For

potential gap between steel and close steel electrolyte (V) ' eXample, in the furthel‘ cases, a precision O-Zf i]SOin most Of
times sufficient.

Fig. 4. Example of a non linear polarization lafvsteel. The steel is the
reference in our problem so the abscissa scaletia potential gap but only
the electrolyte potential close to steel.



One example of resolution is shown below with g dhuill In this expression, the potential computed at thpo@t will
model under cathodic protection (ICCP) meshed 5210 have the same offset than Fig. 5 due to the presehtheq.,
elements: term. It is possible to remove this term to get &ectric

potential centered in zero. The boundary conditiares set
with a point matching approximation, the values dam
extracted from the integral terms and the meshivesg

__1xogm)p 1
#Q)=- 2 s
s . (18)
- i - LJ5sua, ""mas
T i=1 i rQM I

Like the previous resolution, the first step wile to
evaluate the integral terms and then use the boynda
Fig. 5. Geometry meshed of an existing mock-ughw& uniform active conditions to get the potential at point Q. Moreovhe

anodes under the hull (6 elements in black), 4dbfit cathodes (31 elements Maxwell Faraday gives the well known equation (1).
in grey), and the hull completely isolated (101&ménts in white) By using the opposite gradient of the potenti&dation in
(14), a new formula provides a simple electric diel
The algorithm presented above is used to compute tbalculation:
boundary conditions on the whole surface. The tesate

N
resented in the following Fig. 5: 1 < ooV fom,
p i wing Fig EQ)=1) 8 |)J‘ Q as,
amés on Yo rQM_)3
1.34 1.36 1.38 1.4 1.42 1.44 1.46[ (I ) (19)
I ] ] N 3
1 Tou fom M ) Ny,
+E‘r ‘¢(Mi)-IQ_ e - dSy,
i=1 : (rQM, )6 (rQM, )3

Once again, from the boundary conditions on the ehadd
Fig. 6. Boundary conditions (electric potentialdacurrent densities) 1S pOSSIble to calculate the electric field withrfage
obtained on the hull with.. = 1.3762 V. The scale is in volts integrations. A result of electrical potential arfitld
calculation is presented below on a grid underntioglel hull
The scale of the figure is in volts and the valarscentered from the boundary conditions represented on Fig@40 =
on the infinite potential. The white areas corregbdo the 1400 square elements):
active anodes and, as said in the introductiory treve the
higher potential. The paint defects are coloredark and as 10°
expected they have the lowest potential. The sitioulaalso
gives current densities, represented as arrowsngpouit of
the hull through anodes and get back through cathddsing
equation (12) for the residual norm, results ar@ioled with a
maximum error of 18A/m? between injected and received
currents.

X
3
2

2.3  Extrapolating the electromagnetic field

The previous step gives all the boundary conditionghe
model, that is to say eachp/on and ¢ at the elements
barycenter. Physically, equivalence is possibleveeh those
results and virtual electrostatic sources in cotidoc
problems. To deduct the electrical potential sonee/hn the Fig. 7.  Result of electric potential measurementsle on the grid (1400
electrolyte, it is possible to use Greéh idlentity. The solid points) below the hull
angle a Q point in the electrolyte see ist -4he whole

problem) so the equation becomes: The scale is still in volts, without caring abobetinfinite
potential (., = 1.3762 V). That is why the values are centered
—471.¢(Q):L¢(M }0G(M,Q)/an)ds on zero. The field arrows are also representednbtitwell

(17)  nighlighted.
—LG(M ,Q)(a4(M)/on)ds- 44,



To get such results, a process can be imagined, lik

passing way
of the ship

20 electric potential
Sensors

Fig. 8. Electric potential measurements princigleship passing over a
series of 20 electric sensors at a determined depdiking 70 set of
measurements. The final measurements number isl#h

3 DIAGNOSTIC: INVERSE METHOD

The purpose of this part is quite simple: the prasistudy
provides a method which, from a set of boundaryd@@mns of
a defined geometry, predicts the electromagnegid fin the
electrolyte. The inverse method consists in a baond
conditions reconstruction from a set of measuremenhis
method is often represented by the following singmaation:

AX =B (23)

B is a measurements vector, which can be eledric
magnetic here. X is the unknown vector and A tlieraction
matrix between each measurement point and eactoumkn

This method only gives a mathematical conveniehitiem
but often not physical. To focus these difficultias example
Indeed vector B will first be simulated with theefit method.
The 1400 electric potentials computed on a gridwehe hull
are taken adding 10% of the maximum potential ramdoise.
This will be vector B. This induces a number of 209
unknowns bringing the system under determinedhis ¢ase
the system to inverse is:

Pa
¢hu|l
0@y /0N

[Ames]' = [B _TmeS'a¢A / an] (22)

This is in the same form as (23). The results afiract

inversion are shown below:
2 1.5 1

-0.5 0

Fig. 9. Boundary conditions (electric potentialdacurrent densities)
obtained on the hull with a “naive” inversion. Téwale is in volts.

We obtain non physic boundary conditions with maxim
potential values reaching ¥(the target values are shown in
Fig. 5). The first clue for the inversion probles the bad
condition number which is here equal to 4.1279°1a is
interesting to notice that the (23) equality is ified: the
inversion is mathematically correct. The problemehis very
ill-posed. A work on this system is necessary lefaversing

The main problem that appears in such methods és th to get a better solution.

condition number matrix A, directly linked to théfitulty to
inverse it. Indeed matrix A does not often have #aene
number of rows and lines or contains values thatciwse to

the computer zero (1'6). These reasons give a bad conditio
number and, with a noisy B vector, lead to impdrta'bhysical behavior to the solution [7]

difficulties to inverse the system (23). [6]

3.1 Naive inversion

One possible method would consist in 3 steps: figstto
orthogonalyze the system. Then an injection of tamithl
information can make the system have a better tondi

"umber. Finally a regularization technique allowgosing a

. The firsestpurpose,
not described in this paper, is to change the lmessription.
The unknowns introduced (potentiap and its normal

Although matrix A has a bad condition number, it iglerivative) are representative of the physical phesnon.

possible to solve the normal equation to get atsoluwhich
implies to find a minimum:

min|AX = B, (20)
This means to solve:
(atAlx =Ate (21)

This is possible by using a LU solver but some ioghests.
An example is developed hereinafter with the shifj tised
before (N=1052 elements). Vector B is entirely diesxl so
the position of each barycenter of the grid is knoWhe Ayes
matrix can be then easily built with (9) and (IBhe unknown
vector X will contain the potential and its norneirivative at
the barycenter of each hull element (except foratiede (A in
the further equations) whose current density is\kr)o

There is no need to change them, as the other stqused
before give good results.

3.2 Injection of information

The first step of pre conditioning is to add somf@imation
to the system. A smart way to do it is to use theightforward
matrix defined in (8) which links all unknowns dfet inverse
system. With the new meshing (no separation ofocth and
isolated parts), it becomes:

P
i 2| P
Hy+2m  Hyp  —4m Ty Ty P -
Hoo  Hpt2m -4 Ty T ll og, =[] (23)
0 0 0 A A, E
i
L on |




Hi1, Hoi, T11 and Ty are the same as in (9), because thRemembering that the case has become over detehntine

anodes are in the same location. On the other thenidcation
of the cathodes is the main unknown. Under thetiootahull”
we gather the former cathodes and isolated palnis.ékplains
the new terms appearing: H'H’,,, T'1> and Th,.

Remembering the system (25) does not take intoustdhe
infinite potential, this unknown and the equaticssariated
can be deleted. In our case the infinite poternsiadupposed
known as the forward modeling gave it. This potntiould
be evaluated in practice by measuring the eleptitential far
away from the structure toward the steel potenfsat to
reference here). The anode current is known, ghathy the
previous system can be written:

{Hn+2n

H'12 T'12:| ¢A |:_T:I.l_Green-a¢A/aT (24)
H21

H'p42 Ty, | P | ~T21_Greend9a/0N

This new system will be then summarized:

Pa
¢hu|l
0Phui /0N

= [_TGreen'a¢A /an] (25)

[AGreen]'

The reader should see the link with equation (25tkwhas

the same unknowns. This allows building a new ecbdn
system with the same number of unknowns and more

equations:
Pa
Anmes | B=Thes0@ 4 /0N
Acroor | P | = T 0¢,/dn (26)
reen a¢hu” /an Green A

This system can be simplified, as the number ofaggns
brought by Green system is equal to the numberotérial

unknowns’ga andenu. The potentials can be eliminated from’

the system and the final system to inverse canrhitemw:
[AI]'[a¢huII /a“] = [B]

The only unknowns are the current densities onhiié

(27)

next step will be to choose the best solution clasehe
analytical one (injective). It is interesting to eusa
regularization technique here.

The one studied here is Tikhonov regularization,0seh
principle is to minimize a new quantity [8]:

[JA" X —B'||[+A|IL.X || (29)
This means here:
||A". Opnu/on —B’|[+A.]|L. dpnu/on || (30)

The main goal is to bring again some physical bighnao
the solution and the impact the user wants to dideed, L is
the regularization matrix which impose the behavibhe
elementary one is the identity matrix (zero ordernimizing
[IL.X|] amounts to minimize [|X|| and gives a mimmnorm
solution. It gives a physical solution but keep theisy
behavior. In the example current densities are doom every
element, even if it is an isolated one. Consequettie
corroded areas do not appear clearly and higheerord
regularization is needed. A first order matrix fees on a
continuous solution; the second order minimizes Ltaplace
operator of the solution:

i elements

k element

Fig. 10. Representation of a triangle mesh: thaclblelement has 14
neighbors which needs to be taken into account itinmze the Laplace
perator.

In the previous scheme, the k element has 14 beighTo
minimize the Laplace operator, the values of theukrent
density must not too much differ from the i currelensities.
To minimize this difference, the line correspondiogthis k

which will allow computing the potentials by forwaar element in the L matrix applied to X is then:

modeling. The new number of unknowns is then 1@4@.#00

equations from measurements: it is an over deteuiniase.
This injection of information has also brought aygibal

dimension to the problem because it avoids solutigarging.

But moreover, the number of unknowns has been yreal

decreased, permitting us to work with higher messtsity.
In the case of a SACP system, the only known isatiele

potential and not the anode current density. Thdy on

difference with the previous procedure is that Gregquations
eliminate thedp/on and the system to inverse becomes:

(A1l =[B"] (28)

3.3 Regularization

The new system to inverse has been previously miese
simpler than it could first appear. But its dir@otersion does
not give good results, because of the noisy behdvibas.

Jn

Jan
L Jn
Jn

(31)

In

The X vector presented above contains current tiesisbut
they are simply linked to thép/on by (2). The presented L
matrix brings more homogeneity to the values oletdiand
provides a noise smoothing without removing gapsabfies.
Moreover, the Green equations avoids the resultsn fr



diverging, which is main goal of an order zero Hagaation.
An order 2 regularization with Green equations clates the
two benefits.

The coefficienf, introduced is the regularization parameter,

representative of the weight given to the reguédiin term
[IL.X]| in Tikhonov regularization. In the less syicases this
term can have a very little value. On one hand,\éry high
is taken, the solution is only regularized. On ditleer hand, if
A is very low, nothing changes from the previousigoh (9).

Fig. 12. Current densities obtained on the haéirahversion (scale in A/m2)

-0.02 0 0.04

I T ‘ 1

Empirically, for a random noise reaching 10% of the

maximal potential computed, is often chosen between 30
and 10°. If the term chosen has a value more than 5, 1i6e
solution obtained is often too smooth, erasingdiseontinuity
of the boundary conditions, which is mainly intéirs here.
Indeed the goal is to find the lowest potentialaareso that
smoothing potential results makes the diagnosisfigrent.
The regularization has then a too important infaeenAs a
small conclusion, this parameter choice is the nrapbrtant
part of the inversion, because it is the only chaa@do.

A good tool to choose a correctis the L-curve [9] which
shows on a graph the solution semi norm ||L.Xwtd the
residual norm ||[A’.X —B’|| for different values. In the ship
case, for a zero order regularization matrix, theutve
obtained is shown below:

L-curve, Tikh. corner at 0.020438
10° ‘
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solution semi-norm || L x ||2
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Fig. 11. L-Curve obtained for the considered peohl The highlighted corner
points out the. parameters giving the best compromise for thelagigation.

This curve has often a corner which is the besa doe
choose the parameter. In this area, the solution serm and
the residual norm have both values close to théinmum
ones. It was the goal exposed before when introduthe
problem in (31).

3.4  Final result and comparison with the target
When chosen, the inversion is possible, and ddg/on
vector is obtained. As said above, the poteqtiaiindgnu are

then computed by forward modeling. The boundaryd@@mns
obtained on the hull are shown below:

Fig. 13. Electric potentials computed on the nith formula (12) (scale in
Volts)

These results are very important because they tyiee
boundary conditions which have to fit. Indeed cded areas
are situated where currents flow back into the, relults got
from the minimization of (32). As said above, pdi&non the
hull are then obtained by forward modeling. Thedstvones
are significant of a corroded area. The two previfigures
show that the clues for corrosion are situatechatexpected
locations compared to the target on Fig.4 with 00
measurements. The diagnosis has well succeeded.

A last remark can be made about the measurements
locations. It is obvious that measuring far awayfrreactions
does not provide good results. But how guess thst be
locations? In the case presented here, the reactior
expected on the lowest parts of the hull; this s/ vthe grid
presented is placed below the hull. A better sotuis to make
measurements like a semi cylinder shape, to getemor
precisions on the sides of the hull. The other timess the
maximum depth the measurements can reach to deant.
This needs a study on the seawater conductivite iore
conductive the electrolyte is, the closer the mesamants have
to be. Like any conduction problem, current linpeead more
in a more resistive domain. A smart study is neangsbefore
making any measurements.

The three steps (take well situated measurememsct i
information and regularization) allow making a wedirrosion
diagnosis with noised measurements. For a cledilitig the
approach does not take the infinite potential Etoount, but
it just can be added in (25). The next part deaith w
experimentations to check the results got with ghesented
algorithm.

4 EXPERIMENTATIONS

The previous parts have focused on an infinite jerabto
fit with marine applications for example. Makingretitly a
scale 1:1 experimentation would firstly face to roeyn
consuming problems so that the first trial will beld in
laboratory. The main idea is to reproduce a reakdaut at
different scale, so that a one square meter PMM&ldbbas
been built with a 25cm depth. To fit the scale,dhéy thing to



do is to control the electrolyte salinity linked tthe
conductivity (in S.m).

B R
PMMA bowl for first experimentations. Thappropriate

Fig. 14.
measurements system is also on the picture witlece pf protected steel in
the middle.

A system of electrical potential measurements id ba the
bowl: the principle is to measure electrochemiaztkptials in
the electrolyte through a reference electrode (@Galo
electrode) toward the iron potential. This can lgase with a
multimeter whose positive side is connected to réference
electrode and the negative one directly to the imorthe
electrolyte.

The model drown in the bowl should be represergatif
the immerged part of a hull; it will be a piecepinted iron
with paint defects (lack of paint) on it. To makeststructure
protected from corrosion, an ICCP is set on it witplatinum
mesh (2x2 cm) set on its middle. The iron and plati are
electrically linked to a computer with adapted #lechemical
equipment which can set and measure the curremingpinto
the electrolyte due to the platinum anode. The mousshed
edge is shown below, with dimension 40x40x2 cm;

Fig. 15. Meshed model drown in the bowl with 1 @mand two defects.

The anode in the middle is represented by the wurr
densities it delivers with arrows. The two greyamrare the

defects with 8x4 cm dimension. The white areastlagewell
isolated part.

As the model geometry is well known, it can bevedrdn
the electrolyte. Seawater has conductivity closé&.® S.m,
here it will be chosen equal to 0.1 S.m which igiftes less.
The current injected by the anode is 160 A/m? winietkes 64
mA injected in the electrolyte. The reaction begimith a
release of hydrogen on the iron and platinum. #dseto work
on for a couple of hours depending on natural diddastate
of the iron. Then an electric potential measurengntade on
a grid 2 cm above the model as shown:

Fig. 16. Measurements locations set on a squatebove the piece of steel

Measurements are made at each barycenter of tthetiyei
bowl meshed representation has been set off fatycla

The interaction matrix between measurement looatend
the model is built, the Green equations are added a
Tikhonov regularization is applied. The correspogdilL-
Curve is set below:

L-curve, Tikh. corner at 0.00084156

12
10"% 1.6944e-013

10 .7997e-012
10+

.3596€-010
10° | 'g.8514e-009

.091e-007

.0905e-006

. 7546e-005

solution semi-norm || L x “z

10’ L L PR | L L PR |
10°
residual norm || A x - b ||2

10
Fig. 17. Corresponding L-Curve of the system t@ise.

The corner is not as simple to see as in numedasés.
Indeed the problem comes from the salinity: to gekbow
conductivity (0.1 S.m), the salinity have to bewkaw. In the
abacus, such salinities are subject to huge eroorsthe
corresponding conductivity because of two maindesctthe
non homogenous temperature in the electrolyte aedstlt

epurity (NaCl quantity in the salt) [10]. The infoation
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injected with the known current density fhrough dea/on 5  CONCLUSION

depends on the conductivity, so it induces erronstile A a conclusion, the method explained in this Erti@n be
inversion. The more noisy information the systers, ftke less | ,sed in several domains such as ships hulls, aiffquhs,
significant the L-curve is. But the vertical dottieae gives Us | nderwater pipe lines, offshore wind energy platf@retc. .. It
a clue of the inflection point. THeparameter is taken equal to:an pe also very useful to monitor water tanks,esswpipes,
0.0024 and the inversion gives the following elequotential  gjjos, etc... Moreover other scientific topics suchthermal
results: studies use the same equations and could take tagesnof
this method.

It provides a global tool to get clues about thegesiof an
underwater iron structure with an appropriate oditho
protection. It must be said that this method wavkh internal
or external problems with any cathodic protectionpfessed
current or sacrificial). An industrial applicatiohas been
developed to examine the state of a hull at easkgge in a
harbor.

The next step of the approach is to constraintiritaersion
of the system by evaluation of the solution we wanfind
(current densities with order 2 regularization) ¢he
permissible error due to measurement error prexdticti

Other measurements have been made with scale
Fig. 18. Electric potential boundary conditions &) parameter equal to Seawater (conductivity close to 5.6 S.m) in the lbwiich
0.0024 (scale in Volts) works, but the current injection has obviously eoibcreased.
Those results will be presented in further papers.
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The lowest potential areas are the same. The digi®
successful: the corroded areas have been explieitlgvered
by the algorithm. The current density results gikle same
diagnosis and have not been exposed.
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