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Abstract. A mainly orthogonal and locally barycentric dual mesh is used to improve the performances

of a generalized finite difference method. A criterium is proposed to choose between an orthogonal and

a barycentric construction for the dual mesh taking into account stability considerations for an explicit

time scheme. The construction of the constitutive matrix is performed using either the Microcell or the

Galerkin method. The proposed method is shown to considerably reduce the computational cost in the

assembly process and the resolution compared to methods using completely barycentric dual meshes.

PACS. 02.70.Bf Finite-difference methods – 02.70.Dh Finite-element and Galerkin methods – 41.20.Jb

Electromagnetic wave propagation; radiowave propagation

1 Introduction

The resolution of complex electromagnetic problems re-

quires the use of numerical methods. Among the mesh

based methods, largely used ones consist in integrating

Maxwell equations on the faces of a complex of primal and

dual meshes: in the original FIT (Finite Integration Tech-

nique), the meshes are made of regular hexahedral cells

[1]; the Microcell method was first developed on meshes

composed of normally extruded triangles [2]. These meth-

ods can also be generalized to use other types of cells and

the respective theory is developped in the Cell Method [3]

and the Generalized Finite Difference method [4] which

give general tools for the treatment of partial differential

equations:

– when applied to regular hexahedral meshes with an

explicit time scheme, they are equivalent to the FDTD

(Finite Difference Time Domain method),
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– when using a barycentric dual mesh and special con-

stitutive matrices, they are equivalent to the Finite

Element Method.

Recent investigations are mainly focused on the choice of

the electromagnetic quantities to discretize on the primal

and the dual meshes [5], and on the construction of the

constitutive matrices [6] [7]. In fact, the characteristics of

the meshes and of the constitutive matrices are crucial.

For example, when the primal and the dual meshes are

orthogonal, the constitutive matrices are diagonal and the

efficiency of the computation is optimal. Unfortunately,

the construction of a complex of orthogonal meshes is not

always possible, and the constitutive matrices have to be

built using specific methods. The two options studied here

are:

– the Microcell method, which can be applied to any

type of dual mesh,

– the Galerkin method with Whitney elements, which

can only be applied with a barycentric dual mesh.

The aim of the proposed method is to take advantage of

the orthogonal dual mesh wherever possible. The method

is developped in a 2-dimensional case using an unstruc-

tured triangular primal mesh. A criterium is proposed in

order to choose between circumcenters and barycenters

for the nodes of the dual mesh. The construction of the

constitutive matrices is performed using the Microcell or

the Galerkin method. Numerical results are analysed for a

simple problem: a plane electromagnetic pulse propagat-

ing in a waveguide.

Fig. 1. Connection between orthogonal and barycentric dual

meshes

Fig. 2. Cell that do not contain its circumcenter

2 Dual mesh

The primal mesh is unstructured and consists of triangular

cells. There are mainly two interesting ways to construct

the dual mesh:

– the orthogonal construction (Voronöı diagram) in which

dual nodes are the circumcenters of the primal cells

and dual edges are segments of the perpendicular bi-

sectors of the primal edges,

– the barycentric construction in which dual nodes are

the barycenters of the primal cells and dual edges con-

sists of two segments joining the dual nodes to the

barycenters of the primal edges.

In the 2-dimensional case, barycentric and orthogonal con-

structions of the dual mesh naturally connect at the mid-

dle of a primal edge (Fig. 1).
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Fig. 3. Left: orthogonal construction with small dual edge;

Right: better barycentric construction.

If the triangular primal mesh is carefully built, only few

cells do not contain their circumcenters (Fig. 2). For these

cells, the dual mesh must be built using the barycentric

construction. For all the other elements, the orthogonal

construction of the dual mesh can be applied. However,

some of the primal cells’ circumcenters lie near the bound-

aries so that the respective parts of dual edges are small.

When using an explicit time scheme, the stability depends

on the time step and the characteristic size of the space

discretization, just like it depends on the CFL criterium

in the FDTD method. In consequence, a small edge may

reduce the maximum time step that ensures stability. In

order to prevent this problem, some of the circumcenters

must be rejected from the dual mesh (Fig. 3). The stabil-

ity issue is studied more thoroughly in sections 4 and 5.

The dual of a primal edge (a) is an edge named ã. The

portion of the dual edge included in a primal cell (c) is

denoted ãc. This notation stands for an edge, for its length

or for the vector normal to the edge and which norm is

equal to the length of the edge, depending on the context.

The subscript ‘o’ (respectively ‘b’) is used to indicate that

the orthogonal (respectively barycentric) construction of

the dual mesh is considered. For each portion of dual edge,

the ratio r is computed:

r =
ãco
ãcb
. (1)

Whenever r < 0.3, the barycentric construction is used

for the cell containing the considered portion of dual edge.

This criterium will be discussed in the numerical results

section 5.

3 Construction of the constitutive matrices

The vectors containing the unknowns of the 2-dimensional

problem are:

– e, circulations of the electric field (E) on the edges (a)

of the primal mesh,

– d, fluxes of the electric displacement (D) through the

edges (ã) of the dual mesh considered as faces of unit

depth,

– h, circulations of the magnetic field (H) on unit seg-

ments normally crossing the plane at the dual nodes

(c̃),

– b, fluxes of the magnetic induction (B) through the

primal cells (c).

As the magnetic field is supposed to be normal to the

plane, the constitutive matrix Mν such that h = Mνb is

diagonal and its entries can be computed from:

Mνii = ν
c̃i
ci

= ν
1
ci
, (2)

where ci is the surface of the primal face and ν is the

inverse of the magnetic permeability in cell i. If the primal
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Fig. 4. Microcells and notations for portions of primal and

dual edges.

and the dual meshes are not orthogonal, the constitutive

matrix Mε such that d = Mεe is not diagonal and must

be built using elementary constitutive matrices.

3.1 Microcell method

The microcell method was first developped by Marrone

[2]. A microcell is this intersection of a primal cell and a

dual cell. A primal triangular cell consists of three quadri-

lateral microcells. The electric field and permittivity (ε)

are supposed to be constant on each microcell. For each

microcell, partial circulations (eij) and fluxes (dcj) can be

expressed in terms of field components in the xy-plane.

For example, in the microcell c1 (intersection of the pri-

mal cell c with the dual cell 1, Fig. 4):

dc1

dc2

 =

 ãc1
x
ãc1

y

ãc2x
ãc2y


Dx

Dy

 , (3)

and  e11

e12

 =

a1
1x
a1
1y

a1
2x
a1
2y


Ex

Ey

 (4)

where aij is a vector representing a portion of primal edge,

and ãcj is the vector normal to the dual edge and which

norm is equal to the length of the dual edge. As D = εE,

equations (3) and (4) give: e11

e12

 =

a1
1x
a1
1y

a1
2x
a1
2y

 ε−1

 ãc1x
ãc1y

ãc2x
ãc2y


−1 dc1

dc2

 . (5)

By writing similar equations for the other microcells

of cell c, adding partial circulations considering:
e1 = e11 + e21

e2 = e12 + e32

e3 = e23 + e33

(6)

and inverting, an elementary constitutive matrix mε can

be assembled such that:


dc1

dc2

dc3

 = mε


e1

e2

e3

 (7)

This elementary matrix links the partial fluxes dc to

the circulations e.

3.2 Galerkin method

It has been shown that the Galerkin finite element method

is closely related to the generalized finite difference method

[8]. Particularly, using Whitney edge elements (w) on the

primal triangular mesh, the components of the elementary

matrix for the cell c can be computed by:

mεij =
∫
c

εwiwj . (8)

The resulting matrix is then symmetric.

3.3 Assembly

For all cells having an orthogonal dual, the construction

of Mε needs no assembly process. In fact, the diagonal
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entries can be directly computed by:

Mεii = εc1
ãc1i

ai
+ εc2

ãc2i

ai
, (9)

if the edge i belongs to two cells (c1 and c2) the dual of

which is orthogonal,

Mεii = εc
ãci

ai
, (10)

if the edge i has an orthogonal dual.

Then the matrix Mε can be completed by applying

an assembly procedure to the cells having a barycentric

dual, using the elementary constitutive matrices generated

either by the microcell method or the Galerkin method.

4 Time scheme and maximum time step

A leapfrog scheme is applied to discretize Maxwell’s equa-

tions in the time domain:
dk+

1
2 = dk−

1
2 + δtRthk

bk+1 = bk − δtRek+ 1
2

(11)

where k is the time index, R is the discrete rotational

operator on the primal mesh and Rt its transpose. Using

the constitutive relations and eliminating the magnetic

quantities, this system gives a second order recurrence re-

lation:

ek+
3
2 − (2− δt2M−1

ε RtMνR)ek+
1
2 + ek−

1
2 = 0. (12)

The analysis of the characteristic equation of this recur-

rence gives the stability condition [9]:

δt <
2√
λmax

, (13)

where λmax is the greatest eigenvalue of the generalized

eigenvalue problem:

RtMνRv = λMεv, (14)

and δt is the time step of the leapfrog scheme.

5 Numerical results

A parallel-plate waveguide is considered with perfect mag-

netic conductor (PMC) boundaries at its terminations. A

gaussian pulse is generated at the left end and propagates

longitudinally through the guide. The pulse is totally re-

flected at the PMC and goes without attenuation from

one boundary to the other. The primal triangular mesh

is generated using Gmsh [10] (Fig. 5), it consists of 2034

cells. Various dual meshes are constructed for values of

the parameter r (1) varying from 0 (maximum number

of circumcenters) to 1 (completely barycentric dual). The

respective rate of primal cells having a barycentric dual

varies from 3% to 100% (Fig. 6). For each value of r, the

constitutive matrices are computed as presented in section

3 using the Galerkin or the Microcell method. The max-

imum time step is calculated from (13) using an Arnoldi

algorithm to solve the eigenvalue problem (14) (Fig. 7). It

can be noted that the rate of barycentric dual nodes in-

creases constantly with r whereas the maximum time step

is piecewise constant. The change of a dual node from cir-

cumcenter to barycenter does not necessarily implies an

increase of the maximum time step. A slight decrease of

the maximum time step is observed for r > 0.4. For the

lowest values of r, the maximum time step is significantly
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Fig. 5. Waveguide: plane gaussian pulse generated at the left

boundary; Left and right boundaries: perfect magnetic conduc-

tor; Bottom and top boundaries: perfect electric conductor

Fig. 6. Rate of elements having a barycentric dual as function

of parameter r

lower. r = 0.3 is then selected for the choice criterium of

section 2. In consequence, the dual mesh consists of only

8% of barycentric nodes.

The time resolution of the problem is then run with a

time step δt = 0.95δtmax for 30000 iterations. The value

of the y-component of the electric field is computed at the

center of the waveguide and is compared to the analytical

solution of the problem (Fig. 7). The proposed method

shows stable results and good agreement with the analyt-

ical solution even for the last time iterations.

Fig. 7. Maximum time step as function of parameter r

Fig. 8. y-component of the electric field at the center of the

guide at first and last times ( 30000 time iterations)

6 Conclusion

The use of a mainly orthogonal and locally barycentric

dual mesh in a generalized finite difference method allows

to work with a triangular unstructured primal mesh and to

reduce the computational cost: the assembly process needs

to be done only on 8% of the primal cells and the resulting

constitutive matrices are mainly diagonal. It is shown that

the method works well using the Galerkin or the Microcell

method to compute the elementary constitutive matrices
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in the 2-D case. This work will be extended to the 3-D

case taking into acount that orthogonal and barycentric

dual meshes do not connect naturally on tetrahedra.
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