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A perturbation method for the A -χ geometric formulation to solve eddy-current problems is introduced. The proposed formulation is applied to the feasibility design of a non-destructive evaluation device suitable to detect "long" longitudinal flaws in hot steel bars.

Introduction

Industrial companies have a remarkable interest about the techniques for the detection of the surface flaws that can be present during hot mill rolling process of steel bars with circular cross-section (with a diameter from 8 to 80 mm, a speed from 5 to 100 m/s in the longitudinal direction z and a temperature from 800 to 1200 • C).

The capability to detect these flaws permits a fast and straightforward quality assessment of the product and provides the possibility to reduce those flaws due to a wrong set-up of the manufacturing process parameters. The flaws considered have a depth ranging from 0.1 mm to 2 mm and, even though they have quite different shapes and sizes, they generally correspond to an interruption of the material continuity (also from the electrical point of view) and lay almost along an axial direction.

Two main categories of surface flaws can be considered, depending on their axial length L: the "short" flaws, with L ranging from 1 mm to 20 mm and the "long" flaws with L from a meter to tens of meters. In any case, the flaw width is much smaller than the two other dimensions. Short flaws can be easily detected using a differential method in which the signal, after the noise reduction, is compared with a similar signal taken few centimeters away along the axial direction. On the contrary, so far, no practical solution has been found as regards the detection of long flaws, for which a differential approach is not suitable.

In this paper, the feasibility design of a possible configuration able to detect the long flaws is addressed. The numerical simulations have been performed by means of the A -χ geometric formulation [START_REF] Trevisan | 3-D Eddy Current Analysis With the Cell Method for NDE Problems[END_REF]. To solve the forward problem efficiently, a perturbation method suitable with Send offprint requests to: the A-χ formulation is proposed. The advantages over the classical A-χ formulation are discussed.

The A-χ geometric formulation

The so-called "Discrete Geometric Approach" (DGA) [START_REF] Branin | The Algebraic-Topological Basis for Network Analogies and the Vector Calculus[END_REF], [START_REF] Bossavit | How weak is the Weak Solution in finite elements methods?[END_REF], [START_REF] Bossavit | Yee-like Schemes on Staggered Cellular Grids: A synthesis Between FIT and FEM Approaches[END_REF], similarly to the Finite Integration Technique (FIT) [START_REF] Clemens | Discrete Electromagnetism with the Finite Integration Technique[END_REF] or the Cell Method [START_REF] Tonti | Algebraic topology and computational electromagnetism[END_REF], [START_REF] Tonti | On the geometrical structure of elecromagnetism[END_REF], allows to solve directly Maxwell's equations in an alternative way with respect to the classical Galerkin method in Finite Elements.

The domain of interest D of the eddy-current problem, has been partitioned into a source region D s and in a passive conductive region D c . The complement of D c D s in D represents the air region D a .

We introduce in D a pair of interlocked cell complexes using barycentric subdivision [START_REF] Tonti | Algebraic topology and computational electromagnetism[END_REF] for the dual complex and we denote by G the incidence matrix between edges e and nodes n, by C the incidence matrix between faces f and edges e and by D the incidence matrix between cells v and faces f . The matrices G = D T , C = C T and D = -G T describe the mutual interconnections of the dual barycentric complex (dual volumes ṽ, dual faces f , dual edges ẽ, dual nodes ñ).

Next, we consider the integrals of the field quantities with respect to the oriented geometric elements of the mesh, yielding the Degrees of Freedom (DoF) arrays. Each entry of a DoF array is indexed over the corresponding geometric element. There is a univocal association between a global variable and the corresponding geometric element [START_REF] Tonti | On the formal structure of physical theories[END_REF]. We introduce the following arrays of DoFs:

-Φ is the array of magnetic fluxes associated with faces f ∈ D; -F is the array of m.m.f.s associated with dual edges ẽ ∈ D;

-I is the array of currents associated with dual faces f ∈ D c . In D s we introduce the array I s of impressed currents; -U is the array of e.m.f.s associated with primal edges e ∈ D c .

We introduce also the following arrays of DoFs relative to the potentials used in this formulation:

-A is the array of circulations of the magnetic vector potential A along the primal edges e ∈ D; -χ is the array of the electric scalar potential χ associated with primal nodes n ∈ D c .

Within the framework of the DGA, Maxwell's laws can be written exactly as topological balance equations between DoFs arrays, as

C T F = I t (a), Φ = CA (b), G T c I = 0 (c), (1) 
where (1a) is the Ampère's balance law, (1b) assures that Gauss' balance law DΦ = 0 is satisfied identically (since DC = 0) and (1c) is the balance continuity law. G c is the sub-matrix of G relative to the edges and nodes in D c and (I t ) e is equal to (I) e for edges e ∈ D c , (I s ) e for edges e ∈ D s and zero elsewhere.

The discrete counterparts of the constitutive laws can be written as

F = ν Φ in D (a), I = σ U in D c (b), (2) 
where the construction of the matrices ν and σ, called constitutive matrices, will be addressed in Section 3.

Combining discrete Faraday's law (CU) f = -iω (Φ) f , with f ∈ D c , with (1b), we can express the e.m.f. associated with an edge e ∈ D c as

(U) e = -iω ((A) e + (G c χ) e ) , (3) 
since CG = 0 holds identically. From (1), ( 2) and (3), the final algebraic system, having A and χ as unknowns [START_REF] Trevisan | 3-D Eddy Current Analysis With the Cell Method for NDE Problems[END_REF], [START_REF] Specogna | Discrete constitutive equations in A-χ geometric eddy-currents formulation[END_REF], [START_REF] Trevisan | Geometric interpretation of finite dimensional eddy current formulations[END_REF], can be written as

(C T νC A) e = 0 ∀e ∈ D a , (C T νC A) e = (I s ) e ∀e ∈ D s , (C T νC A) e + iω(σ A c ) e + iω(σG c χ) e = 0 ∀e ∈ D c , iω(G T c σ A c ) n + iω(G T c σG c χ) n = 0 ∀n ∈ D c , ( 4 
) where the array A c is the sub-array of A, associated with primal edges in D c . With the notation (x) k , we mean the k-th row of array x, where k = {e, n} is the label of edge e or of node n.

As boundary conditions we impose (A) e = 0 on e ∈ ∂D and solve the singular linear system of equations with a CG method without gauge condition.

Constitutive matrices

The square matrix ν (dim(ν) = N f , N f being the number of faces in D) is the reluctance matrix such that (2a) holds exactly at least for an element-wise uniform induction field B and magnetic field H in each tetrahedron and it is the approximate discrete counterpart of the constitutive relation H = ν B at continuous level, ν being the reluctivity assumed element-wise a constant.

The square matrix σ (dim(σ) = N e c , N e c being the number of edges in D c ) is the conductance matrix such that (2b) holds exactly at least for an element-wise uniform electric field E and current density J in each tetrahedron and it is the approximate discrete counterpart of the constitutive relation J = σ E at continuous level, σ being the conductance assumed element-wise a constant.

Classical ways to construct the constitutive matrices ν and σ for a tetrahedral mesh are the Discrete Hodge technique based on Whitney's maps, described in [START_REF] Tarhasaari | Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques[END_REF] or the so called Galerkin Hodge [START_REF] Bossavit | Computational electromagnetism and geometry. (5): The 'Galerkin hodge[END_REF], that produce the same stiffness matrix as the Finite Elements with first order edge element basis functions. With the first solution the obtained matrix is non-symmetric, but it's possible to demonstrate that, if the Whitney's functions are evaluated in the center of mass of the tetrahedron, the matrix σ becomes symmetric [START_REF] Specogna | Discrete constitutive equations in A-χ geometric eddy-currents formulation[END_REF].

Another original solution is to use the edge and face vector basis functions defined in [START_REF] Codecasa | Symmetric Positive-Definite Constitutive Matrices for Discrete Eddy-Current Problems[END_REF] for tetrahedra and triangular prisms. As proven in [START_REF] Codecasa | Symmetric Positive-Definite Constitutive Matrices for Discrete Eddy-Current Problems[END_REF], these basis functions assure that symmetry, positive-definiteness, and consistency 1 properties are satisfied for all constitutive matrices.

For our application, an hexahedral mesh will be particularly effective. The construction of the constitutive matrices, called also Discrete Hodge operators, for an hexahedral mesh is addressed for example in [START_REF] Dular | Constitutive matrices using hexahedra in a discrete approach for eddy currents[END_REF], where a consistent but non-symmetric matrix is constructed. In this paper we will use the original solution presented in [START_REF] Codecasa | Discrete constitutive equations over hexahedral grids for eddy-current problems[END_REF], which guarantee symmetry, positive-definiteness, and consistency of the constitutive matrices. In [START_REF] Codecasa | Discrete constitutive equations over hexahedral grids for eddy-current problems[END_REF] it is also shown that the constitutive matrices obtained by the Galerkin Hodge are not consistent in the case of hexahedral meshes, thus are not suitable within the DGA framework.

The main advantage of the DGA with respect to the correspondent Finite Element formulation is that the construction of the stiffness matrix is faster, since no numerical evaluation of a volume integral is needed, being the constitutive matrices constructed geometrically.

Integral sources

We can express the array A as A = A s + A r , where A s is the array of circulations of the contribution to the magnetic vector potential produced by the source currents in D s and A r is the array of circulations of the contribution to the magnetic vector potential due to the eddy-currents in D c . Therefore we have that

(C T νC A s ) e = (I s ) e (C T νC A r ) e = 0 ∀e ∈ D s (C T νC A s ) e = 0 (C T νC A r ) e = (I) e ∀e ∈ D c (5)
holds. Each entry (A s ) ei of the array A s can be precomputed as (A s ) i = e i A s • dl, where e i is a primal edge in D and A s is the magnetic vector potential due to the known source current density in D s .

Here we will consider stranded circular coils, thus A s can be computed in closed form in terms of the elliptic integrals of the first and second kind [START_REF] Durand | Magnetostatique[END_REF].

In this way, we can rewrite the system (4) by removing the source currents from its right hand side, obtaining 

(C T νC A r ) e = 0 ∀e ∈ D -D c , (C T νC A r ) e + iω(σ A cr ) e + iω(σG c χ) e = (v) e ∀e ∈ D c , iω(G T c σ A cr ) n + iω(G T c σG c χ) n = (w) n ∀n ∈ D c , ( 6 

Perturbation method for A -χ

We will indicate with the superscript u and p the quantities in the unperturbed and perturbed configurations respectively. For the unperturbed configuration we write:

(C T νC A u r ) e = 0, (C T νC A u r ) e + iω (σ u (A u cr + G c χ u + A cs )) e = 0, iω (G T c σ u (A u cr + G c χ u + A cs )) n = 0. (7) 
In the perturbed case the distribution of σ p differs from the distribution in the unperturbed case σ u

(C T νC A p r ) e = 0, (C T νC A p r ) e + iω (σ p (A p cr + G c χ p + A cs )) e = 0, iω (G T c σ p (A p cr + G c χ p + A cs )) n = 0. (8) 
Next, we consider the difference between the perturbed ( p ) configuration and the unperturbed ( u ) configuration, while keeping constant the source currents. We will indicate with A v = A p -A u = A p r -A u r and χ v = χ p -χ u the corresponding differences. The difference will be

(C T νC A v ) e = 0, (C T νC A v )e + iω (σ p (A p cr + Gcχ p + Acs ) -iω σ u (A u cr + Gcχ u + Acs ))e = 0, iω (G T c σ p (A p cr + G c χ p + A cs ) -iω G T c σ u (A u cr + G c χ u + A cs )) n = 0. ( 9 
)
Now we add and subtract to the second equation the following quantity iω σ p (A u cr + G c χ u + A cs ); similarly to the third equation we add and subtract the following quantity iω G T c σ p (A u cr + G c χ u + A cs ). Then [START_REF] Specogna | Discrete constitutive equations in A-χ geometric eddy-currents formulation[END_REF] becomes

(C T νC A v )e = 0, (C T νC A v ) e + iω (σ p (A v + G c χ v ) + iω (σ p -σ u ) (A u cr + G c χ u + A cs )) e = 0, iω (G T c σ p (A v + Gc χ v ) + iω G T c (σ p -σ u )(A u cr + Gcχ u + Acs ))n = 0, ( 10 
)
where the term

iω (σ p -σ u ) (A u cr + G c χ u + A cs ) = I d ( 11 
)
represents a known impressed current I d in the flaw region only; I d depends on the quantities computed in the unperturbed ( u ) configuration and on the sources A s . We rewrite [START_REF] Trevisan | Geometric interpretation of finite dimensional eddy current formulations[END_REF] as

(C T νC A v ) e = 0 ∀e ∈ D -D c , (C T νC A v ) e + iω (σ p (A v + G c χ v )) e = -(I d ) e ∀e ∈ D c , iω (G T c σ p (A v + G c χ v )) n = -(G T c I d ) n ∀n ∈ D c . ( 12 
) From ( 12), we obtain directly the solution due to the perturbation, reducing the cancelation error [START_REF] Albanese | An Integral Computational Model for Crack Simulation and Detection via Eddy Currents[END_REF], [START_REF] Sabariego | A Perturbation Approach for the Modeling of Eddy Current Nondestructive Testing Problems With Differential Probes[END_REF].

Application to non-destructive testing

The application concerns the design of a device for the detection of long longitudinal flaws that can be present during the hot mill rolling process of the steel bars with circular cross-section.

The geometry of the problem, depicted in Fig. 1, consists of a conducting AISI 310 steel bar, modeled as a conducting cylinder D c . The radius of the bar is 17 mm and the conductivity is σ = 1.236•10 6 S/m. A longitudinal perfectly insulating surface flaw is assumed, 0.5 mm deep from the surface of the cylinder and 0.2 mm thick.

A source coil D s (32 mm inner radius, 40 mm outer radius, 80 mm height, 640 turns) encircles the rod and is feeded by a sinusoidal current density of 10 6 A/m 2 with a frequency of f = 100 kHz. Since the rod is hot, the lift-off is chosen to be 15 mm.

Unlike usual NDT methods that use global quantities, usually the impedance variation of the receiving coils, the sensors sample B on points distributed over a circumference. We choose the circumference to lie in the plane z = 40 mm, with a radius of 31 mm and the center on the axis of the coil, see Fig. 1. The sampling circumference is considered fixed with the coil, since in practice the coil and the receiving sensors are assembled together.

The variation of the tangential component of B along the sampling points due to the presence of a flaw will be analyzed and compared with the one obtained from the difference between the perturbed and unperturbed solutions.

Magnetic induction field computation

To calculate the value of the induction magnetic field B components in a sample point P, two different approaches can be used: 1. Find the hexahedron whose P belong. Calculate A = A r + A s over the twelve edges. Find the magnetic fluxes through the four faces with Φ = CA and finally interpolate B(P) using the magnetic fluxes inside the hexahedron with the face basis functions; 2. Using the Biot-Savart Law:

B(P) = B s (P) + µ 0 4π Dc J(P ) × r r 2 dV,
where B s is the magnetic induction produced by the source coil and r is the unit vector directed as the segment PP .

The second solution is preferable, in fact, being B the result of a global evaluation, it yields a more accurate value. The volume integral is computed using three Gauss's points.

Numerical results

An extruded mesh with about 313k hexahedra, yielding more then 1.1 million of DoFs, is used for the computations, see Fig. 2. Thanks to integral representation of sources, this mesh will not be changed in all the simulations, even when the source coil is moved. Since in general it is a full three-dimensional problem, we cannot take advantage of any symmetry.

Validation

The code is validated comparing the results in terms of current density and magnetic induction with respect to a two-dimensional axisymmetrical FEM simulation. In Fig. 3 the current density along a sampling line (x = 2 • 10 -5 m; y = 16.95 mm; z = -150 ÷ 150 mm) shows very good agreement. In Fig. 4 and Fig. 5 the magnetic induction is compared along a sampling line (x = 2 • 10 -5 m; y = 31 mm; z = 0 ÷ 100 mm) with the FEM simulation. As we were expecting, the postprocessing using the Biot-Savart law is more accurate and will be used for further evaluations of the magnetic induction. 
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Fig. 4. The computed real part of the induction magnetic field B along a sampling line in the case of unperturbed problem, compared with an axisymmetrical two-dimensional FEM simulation. B is found both with direct interpolation (interp) and using the Biot-Savart law (integ).

Magnetic induction variation due to the flaw

After the code validation, we compute the variation of the magnetic induction on the sampling circumference due to the flaw. At first, this is achieved by computing the difference between the perturbed and unperturbed solutions. Then, the magnetic induction variation is directly computed by means of the perturbation method. In Fig. 6, Fig. 7 and Fig. 8 the magnetic induction variations of the tangential, radial and z components are shown respectively. The flaw is placed at 180 • and produces a perturbation on the tangential B field that changes sign passing from one side of the flaw to the other. The two alternative methods to compute such a variation are in very good agreement. The perturbation method allows to produce more accurate results at a less computational effort. The accuracy improvement is due to the reduction of the cancelation error. This becomes fundamental especially when the formulation is used as a forward solver for an inverse problem. In this case, in fact, the variation at every iteration be- comes smaller and smaller, requiring a good immunity to the cancelation error. The perturbation method also reduces the computational time. The resulting linear system of equations, in fact, converges more rapidly and no post-processing is needed for the unperturbed simulation. Moreover, the computation time of the source current I d is negligible and smaller then the calculation of the source v.

A further reduction of the computational time is obtained by observing that the source of the perturbation problem is localized into the flaw region. Consequently, the perturbation in the current density will be concentrated in a neighborhood of the flaw, see for example Fig. 9. For this reason, the initial mesh can be dramatically reduced considering only the hexahedra contained in a limited region surrounding the flaw.

In this paper, the reduced mesh is constructed keeping only the hexahedra with the center of mass contained into the cylinder (x -16.5mm) 2 + y 2 = r 2 . Two cases are considered, with radiuses of 20 mm and 15 mm. The hexahedra are reduced from 313k of the original mesh to respectively 114k and 80k. In Fig. 10 the variation in the real part of the tangential component of the magnetic induction due to the flaw obtained with the reduced meshes are compared with the original one. The accuracy can be further improved if a different and more refined mesh is created around the flaw. In this case, the impressed current I d has to be projected onto the new mesh [START_REF] Sabariego | A Perturbation Approach for the Modeling of Eddy Current Nondestructive Testing Problems With Differential Probes[END_REF].

Conclusions

The perturbation method, reducing the cancelation error, produces accurate results also for small variations in the solution. This is especially required when the tool is used as a forward solver for an inverse problem. Moreover the method yields also a considerable speed-up: The mesh used in the perturbed problem can in fact be reduced, considering only a limited region surrounding the flaw, at a small fraction of the initial mesh.

  ) where v = -iωσ A cs and w = iωG T c v. A cr and A cs are the sub-arrays of A r and A s containing the DoFs associated with primal edges in D c .
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 1 The geometry of the eddy-currents problem.
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 2 Fig. 2. a) One fourth of the hexahedral mesh used in the NDT application. b) A zoom on the mesh in the neighborhood of the flaw.
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 3 Fig. 3. The computed current density J (real part on the left, imaginary part on the right) along a sampling line in the case of unperturbed problem, compared with an axisymmetrical twodimensional FEM simulation.
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 56 Fig.5. The computed imaginary part of the induction magnetic field B along a sampling line in the case of unperturbed problem, compared with an axisymmetrical two-dimensional FEM simulation. B is found both with direct interpolation (interp) and using the Biot-Savart law (integ).
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 78 Fig. 7. Variation due to the flaw on the radial component. (pert.) denote the value obtained with perturbation, while (diff.) the value obtained with difference between the perturbed and unperturbed solutions. (r) denotes the real part, (i) the imaginary part.
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 910 Fig.9. On the top, the current density in the neighborhood of the flaw obtained using the unperturbed configuration. On the bottom, the current density obtained with the perturbation problem, which is confined in the neighborhood of the flaw.

A precise definition of the notion of consistency for constitutive matrices is given in[START_REF] Bossavit | Yee-like Schemes on Staggered Cellular Grids: A synthesis Between FIT and FEM Approaches[END_REF].