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Abstract. The modeling and design of eddy currents sensors for non-destructive testing applications, gen-
erally, requires numerical methods. Among these methods, the finite element method is one of the most
used. Indeed, it presents a great capability to treat a large variety of configurations. However, in the study
of eddy current testing problems, the existence of structures that have a geometrical dimension smaller
than the others (thin air gaps, coatings...) will lead to difficulties related to the meshing process. The
introduction of particular elements such as shell elements allows to simplify the modeling of these prob-
lems. In this paper, the shell elements are used in two different 2D axisymmetric formulations, the electric
formulation a∗and the magnetic formulation t- φ in order to simulate the behaviour of the electromagnetic
fields. The results obtained with the two formulations are compared with analytical solutions.

PACS. 81.70.-q Methods of materials testing and analysis – 07.05.Tp Computer modeling and simulation

1 Introduction

In the context of non-destructive testing (NDT) of metal-
lic pieces, eddy current techniques are widely used. They
have been studied by different modeling techniques, among
them, the finite element method (FEM) is one of the most
common. The main advantage of this method comes from
its capability to deal with complex geometries. However,
in eddy current NDT, thin structures frequently appear.
These structures have one or two geometrical dimensions
considerably smaller than the others (coatings, air gaps
...). This can present difficulties for FEM related to the
meshing process, such as for example, a strong density of
elements or deformed elements in the thin area and its
vicinity.

A considerable effort of research was made about the
modeling of electromagnetic fields by FEM in thin regions.
Two main groups of solutions have been developed. All of
them suppose that the behaviour of the fields is known
through the thickness. The first approach uses the plane
wave hypothesis and assumes that the electromagnetic
fields have a tangential direction inside the thin region
[1],[2]. In the second approach, the thickness problem is
take into account during the meshing process [3],[4]. The
volume of the thin region is then represented by a type of
degenerated elements (shell elements) that constraints the
field behaviour across the thickness by his shape functions.
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The shell elements avoid the use of a priori assump-
tions about the fields penetration inside the thin region.
They allow a field description well adapted to eddy cur-
rent NDT where the fields are frequently not tangential
inside the thin regions. Nevertheless, the use of the shell
elements implies a linear approximation of the fields along
the thickness.

2 Problem Description

The considered geometric configuration is a classical prob-
lem in eddy current NDT (fig. 1a.): a coil placed above a
conductive thin material (the target). The problem do-
main Ω is decomposed in three sub domains: the target
material Ωc, which is a conductive region, the coil domain
Ω0 and the air region. The coil carries a current density
j0.

The physical description is performed by the Maxwell
reduced equations (without displacement currents):

curlh = j0 + j, curl e = −∂t b,
div b = 0, b = µ h, j = σ e ,

(1)

where h is the magnetic field, b is the magnetic flux den-
sity, e is the electric field and j is the current density.

The thin region is characterized by a number L that
is the ratio between the thickness d and a characteristic
geometrical quantity. L should be defined in two different
ways: in an intuitive approach, by comparison with a Lg

dimension that is a representative geometrical dimension,
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or in an electromagnetic approach, by comparison with
a δ parameter that represent the penetration of electro-
magnetic fields inside metallic regions. The characteristic
number L is defined by,

L =

{

d/Lg if Lg < δ or δ not defined

d/δ if δ < Lg

(2)

where δ =
√

2/(ωσµ) is the well-know expression of skin
depth, it is defined with the physical properties of the thin
region.

Two types of thin regions are considered in this paper.
When the air gap between the target and the coil (the
lift-off) becomes very narrow, this separation becomes the
thin region, thus, it is replaced by the shell elements (fig.
1b.). In the second example, the target material has a
conductive coating; this coating is modeled by the shell
elements (fig. 1c.). In both, the lift-off and the coating
examples, the impedance variation is studied in relation
to the thin region parameter L.
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Fig. 1: a.Problem description b.Thin air gap case c.Thin coat-
ing case

2.1 Magnetodynamic Formulations

In order to obtain a physical model of the eddy current
NDT configuration, an approach based on dual formula-
tions of eddy currents problems has been proposed by Ren
and Razek [5]. One formulation is based on the electrical
field, the other on the magnetic field.

2.1.1 Electric formulation

The electric field e is associated with a modified magnetic
vector potential a∗, in the form a∗ = −

∫

t
e dt. The weak

formulation starts applying the Ampere’s law, for t > 0 in
the harmonic regime, thus, the weak formulation is

∫

Ω
1

µ curla′ · curla∗dΩ +
∫

Γ (n× h) · a′dΓ =

∫

Ω
a′ · (j0 − iωσ a∗) dΩ ,

(3)

where a′ is a test function.

2.1.2 Magnetic formulation

The magnetic field h is decomposed in two potentials, the
electric vector potential t and the magnetic scalar poten-
tial φ, then h = t−gradφ. The weak form starts applying
the Faraday’s law to conductor materials. Thus, the weak
formulation is

∫

Ωc

1

σcurl t′ · curl t dΩ +
∫

Γc
(n × e) · t′dΓ =

∫

Ωc
iωµ t′ · (grad φ − t) dΩ ,

(4)

where t′ is a vector test function. Outside metallic regions,
the formulation need another additional equation that ver-
ify the div b = 0, thus the weak formulation is completed
by

∫

Ω
iωµ grad φ′ · (t − gradφ) dΩ +

∫

Γ iω (n · b) φ′dΓ = 0 ,
(5)

where φ′ is a nodal test function.

3 Shell elements

The shell elements are a space degeneration of the finite
elements. They are geometrical objects that have a D− 1
geometrical dimension, where D is the model geometri-
cal dimension (in general D = 3 or 2). If the problem is
three-dimensional (D = 3), in the first stage of discretiza-
tion process (meshing), the thin region is represented by
a middle surface (Γsh). Then, the edge and the nodes in
Γsh are projected in two ”virtual” surfaces (Γ+

sh and Γ−

sh).
The physical behaviour inside the thin region can be repre-
sented by the shape functions in these surfaces. In the pro-
posed examples, the device has an axisymmetrical symme-
try, thus, they can be considered as a 2 dimensional model
and, in consequence, the shell elements are 1 dimensional
geometrical objects (lines).

Rectangular degenerated elements are used in the ex-
amples (fig. 2). These elements are similar to prismatic
degenerated elements proposed in [4]. The scalar and vec-
torial fields are approximated in thin regions by,

φ =
∑

i∈Nsh

w0

shi
φi = w0

sh
φ , (6)

t =
∑

k∈Esh

w1

shk
tk = w1

sh
t , (7)

where, Nsh =
{

N+

sh ∪ N−

sh

}

and Esh =
{

E+

sh ∪ E−

sh ∪ E±

sh

}

are, respectively, the set of nodes and the set of edges (with
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Fig. 2: 2D shell element. a. mesh b. split nodes c. split edges

E±

sh as the set of transversal edges) that represented the
thin region.
w0

sh
=

{

w0

shi
, i ∈ Nsh

}

is the vector of nodal shape fonc-
tions, and,

w1

sh
=

{

w1

shk
, k ∈ Esh

}

is the vector of edge shape func-

tions. φ and t represent, respectively, the vector of scalar
potential values on the nodes and the vector of circula-
tion values of the vector potential t along the edges that
discretize the thin region.

The nodal shape fonctions are defined by:

w0

sh
i−

= w0

li
α− ,

w0

sh
i+

= w0

li
α+ ,

(8)

where w0

li
are the shape fonctions in a line element,

w0

l1
= 1/2(1 − ξ) ,

w0

l2
= 1/2(1 + ξ) .

(9)

These shape fonctions are projected on the lines Γ−

sh and
Γ +

sh by the coefficients α− and α+ defined by,

α− = 1/2 − η/d ,
α+ = 1/2 + η/d .

(10)

The edge shape functions are defined by the relations,

w1

sh
k−

= w1

lk
α− , (11)

w1

sh
k+

= w1

lk
α+ , (12)

w1

sh
k±

= (α− grad α+ − α+ grad α−) w0

li
, (13)

where the subindice k identifies the edges that connect
the nodes i to j on the surface Γ+

sh or Γ−

sh. The subindice
k± identifies the edges that connect a node from the sur-
face Γ−

sh with his double over Γ+

sh. w1

lk
represents the edge

shape function of a line element, that is defined by

w1

lk
= w0

li
gradw0

lj
− w0

lj
grad w0

li
. (14)

3.1 Shell elements approximation in the
magnetodynamic formulations

The gradient and curl operators can be approximated in
a suitable form by the nodal and edge shell functions.
Thus, in the thin regions the weak formulations can be
reformulated. In order to illustrate this process, the mag-
netodynamic t − φ formulation are approximated. First,
the gradient is changed as,

grad φ =
∑

i∈Nsh

(

α− grad s w0

li
−

w0

li

d
n

)

φ−

i +

(

α+ grad s w0

li

w0
li

d n

)

φ+

i , (15)

and the curl is approximated in a similar way by

curl t =
∑

k−∈E−

sh

(

α− curl s w1

lk
−

1

d
n × w1

lk

)

tk− +

∑

k+∈E+

sh

(

α+ curl s w1

lk
+

1

d
n× w1

lk

)

tk+ +

∑

i±∈E±

sh

(

1

d
grad s w0

li
× n

)

tn
i±

(16)

where n is a normal vector to Γsh. The vector
tn =

{

tn
i±

, i± ∈ E±

sh

}

contains the circulation of t over
the perpendicular edges to line Γsh; These edges connect
the up and down nodes. Using these approximations the
t − φ formulation is transformed in a linear system in
which, the unknowns are the circulation tk over the edges
and the scalar quantities φi in the nodes. For example, the
first term in eq. (4) related to the edges in the line Γ−

sh is
transformed,

∫

Γsh

∫ d/2

−d/2

1

σ

∑

j∈E−

sh

k∈Esh

i±∈Nsh

[

α− curl s w1

lj
−

1

d
n× w0

lj

]

·

( [

α− curl s w1

lk

− 1

dn × w0

lk

]

tk− +

[

α+ curl s w1

lk

+ 1

dn × w0

lk

]

tk+ +

[

1

d grad s w0

li
× n

]

tn
i±

)

dη dΓ.(17)

In a similar form, the first term in eq. (5) related to the
nodes located on the line Γ−

sh, is transformed,

∫

Γsh

∫ d/2

−d/2

iωµ
∑

i∈N−

sh

j∈Nsh

[

α− grad s w0

li
− w0

li
/d

]

·

([

α− grad sw
0

lj

−w0

lj
/d

]

φj− +

[

α+ grad sw
0

lj

w0

lj
/d

]

φj+

)

dη dΓ.(18)

Remarks that the use of shell elements transforms the
integral domains: in a 2D case, the surface integrals are
reduced to line integrals, and in a 3D problem, the volume
integrals are changed by surface integrals.
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4 Results

In the proposed examples, the geometrical dimensions are
taken from the TEAM Workshop problem n. 15-1 [6],
these dimensions are synthetized in table (1). The charac-
teristic geometrical parameter Lg is the inner radius of the
coil and δ ≈ 3.0 mm (calculated with the problem param-
eters). The test problem is solved using the two bidimen-
sional formulations previously exposed. In the first stage
of the modeling process, a triangular mesh is constructed.
This mesh is highly refined to reduce the error originated
by triangular elements. After that, the shell elements are
inserted in the thin region. Thus, the error is strongly de-
pendent on the shell elements.

Table 1: Problem Parameters

coil parameters

inner radius 6.15 mm
outter radius 12.3 mm
heigth 6.15 mm
number of turns 3790

target parameters lift-off example

thickness 12.22 mm
conductivity 30.6×106S/m
relative permeabiltity 1

target parameters coating example

thickness 12.22 + d mm
coating conductivity 30.6×106S/m
substrate conductivity 1×106S/m
relative permeabiltity 1

other parameters

frequency 900 Hz

In the first example, the lift-off case, d varies in the
interval [1µm, 1mm] . The characteristic parameter L is
defined by eq. (2), here δ is not defined (σ = 0). In the sec-
ond example, the coating case, d varies in the same interval
than in the lift-off case, and the characteristic parameter
L is defined by eq. (2), here δ < Lg. The analytical results
are calculated by Dodd and Deeds model [7]. The relative
errors are calculated by,

Rerror =
|Rmodel − Ranalytical|

|Zanalytical|
(19)

Xerror =
|Xmodel − Xanalytical|

|Zanalytical|
(20)

where Ranalytical, Xanalytical and Zanalytical are the ana-
lytical resistance, reactance and impedance, respectively.
Rmodel and Xmodel are the resistance and reactance ob-
tained by the dual formulations. The resistance, the re-
actance and consequently the impedance are associated
with the coil. These relative errors are illustrated, for lift-

Fig. 3: Relative Errors. Lift-off case.

Fig. 4: Relative Errors. Coating case.

off case in fig (3) and for coating case in fig (4).

The a∗ formulation verifies in a strong way the Fara-
day’s law and in a weak form the Ampere’s law, by con-
trast, the t − φ formulation verifies in a strong way the
Ampere’s law and in a weak form the Faraday’s law. Thus,
the results expected for the resistance will be better cal-
culated in the a∗ formulation in comparison with the t−φ
formulation. By symmetry, the magnetic field and the as-
sociated reactance will be better calculated in the t − φ
formulation than in a∗.

The results show than, in the lift-off case, the relative
error on the reactance, calculated by a∗, is more impor-
tant than in the t−φ formulation. In an analog situation,
in the coating case, the relative error on the reactance, cal-
culated by t−φ formulation, is more important than in the
a∗ formulation. The relative resistance error obtained by
the a∗ formulation shows a better approximation for both
lift-off and coating cases, this is different from expected
results. The explanation comes from the fields approxi-
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mation which is made by the linear shape functions in
the shell elements and the influence of these elements on
the calculation of reactance and resistance values. In the
lift-off case, the shell elements have a direct influence in
the reactance value and indirectly in the resistance value,
in the coating case, they have a direct influence in both
resistance and reactance calculations.

In the lift-off case, the use of a∗ formulation implies
a linear variation of the electric field e and, in metallic
regions (target material with a triangular mesh), a linear
variation of the current density. The magnetic field h, cal-
culated by the curl operator, is constant by element and
the relative error is quite important on the reactance. By
contrast, the resistance is more accurately calculated (tri-
angular elements). In t − φ formulation, the behaviour of
shell elements is symmetrical: the magnetic field h has a
linear variation along the lift-off thickness. The variation
is more realistic, and the relative error on the reactance is
less important. The current density is constant by element
inside metallic regions (triangular elements) since it is cal-
culated as the curl of the electric vector potential (curl t).
Thus, the resistance has a more important relative error
in comparison with a∗ formulation.

In the coating case, the electric field e calculated by
the a∗ formulation has a linear variation along the coat-
ing thickness (shell elements). The current density j will
be linear in all metallic domains (triangular and shell ele-
ments). This is a good approach to physical reality, espe-
cially if the skin depth is very large compared with coat-
ing thickness. On the other hand, in t − φ formulation
the current density j is constant inside the shell elements
since it is calculated by the curl operator (curl t = j).
This approximation is less adapted to the physical real-
ity. Consequently, the relative error on the resistance is
greater than the one obtained with the a∗ formulation.
In this case, the calculation of reactance is very similar in
both formulations: outside the metallic regions (coating
and substrate) the magnetic field is constant by element,
in this way, the relative reactance error has a comparable
value (differences ¡0.1%) and behaviour for both electrical
and magnetic formulations.

5 Conclusions

In both cases, the lift-off and the coating cases, the re-
sults obtained with the shell element dual formulations
exbihit a good agreement compared with the analytical re-
sults (Relative errors < 4%). The application of the shell
elements in magnetodynamic formulations represents an
interesting solution when the meshing with classical ele-
ments is impossible to realize or requires a high number
of elements.
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