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Abstract

In Multiple Failure Mode systems (MFM systems) each component may either work or experience one of
m 22 different failure modes. This work presents a lower product-type bound for the MFM system’s reliability
function, using the theory of stochastic ordering. Numerical calculations are also carried out to compare the new bound
to other bounds that appeared in the reliability literature recently.

Keywords and phrases: Reliability bounds; Minimal cut sets; Stochastic ordering; Multiple failures

1. Introduction

In traditional reliability theory, the components of a system and the system itself are usually
assumed to have two different states: on (good, operating) or off (down, failed). Because of this
assumption, the structure function of the system is a binary function of binary variables, and the
respective model is usually referred to as binary reliability system. However, for many engineering
systems, the binary assumption may not be appropriate for describing the possible states that each
of the components may experience. For example, in fluid control networks, a defective valve may
be either “stuck-open” or “stuck-closed”, in safety monitoring systems, a device will malfunction if
it “fails to detect breakdown” or “initiates a false alarm” etc. A structure whose components
experience two different modes of failure is usually referred to as three-state device.

A natural extension of the three-state devices is easily developed by assigning to each
component m > 2 failure modes. The resulting structure will then be called multistate system.

During the last decades, the multistate systems have attracted substantial research interest. In the
publications appeared in the literature so far, two different set-ups have been considered. In the first

one, each component and the system itself is assuming a finite number of states, say 0,1,...,m, each

corresponding to a different level of operating efficiency (key references to this subject are Barlow
and Wu(1978), Ross(1979) and the recent monograph by Kuo and Zuo(2003)). The basic feature of
this set-up is that the operating modes of the components (and the system) are ordinable, i.e. the

m+1 states represent successive deterioration levels ranging from perfect functioning (state 0)

down to complete failure (state m ). Obviously, this is not always feasible; for example, neither the
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fluid control networks nor the safety monitoring systems mentioned earlier can be modeled by this
set-up (form =2).
The second family of multistate structures does not make use of any state ordering and the

description of system’s failure is achieved by considering m different types of minimal cut sets.
More specifically, a family of minimal cut sets C| is assigned to each failure mode s € {1,2,...,m} .
Then system’s breakdown comes whenever all the components contained in a cut set C € C, have

shifted to failure mode s (for somes € {l,2,...,m}). In order to distinguish between the two different

set-ups we shall retain the term multistate systems for the first one and will be using the
nomenclature Multiple Failure Mode (MFM) systems for the latter. The interest reader may refer to
Barlow et al(1963), Ben-Dov(1980), Boutsikas and Koutras(2002), Koutras(1997) and Satoh et
al(1993) for results related to MFM systems; note that the special case m =2 is usually referred to

as DFM (Dual Failure Mode) while for m =1 we get the classical two-state or SFM (Single Failure
Mode) structures.

The main objective of the present work is to establish a tight lower bound for the reliability
function of a MFM system. The development of the bound is achieved by making beneficial use of
results from the area of stochastic ordering.

The rest of the paper is organized as follows: in Section 2 we introduce all necessary notation
and terminology used through the presentation. In Section 3 we firstly prove a stochastic ordering
result between a set of variables describing a MFM system’s operation and a set of auxiliary
variables. Then we obtain a multiplicative reliability bound for the reliability function of a general
MFM system. Finally, in Section 4 we carry out extensive numerical calculations and compare the

new bound to several bounds that have appeared recently in the reliability literature.

2. Definitions and notations

Let I ={1,2,...,n} be the set of components of a MFM system. For each component i € I we
shall denote by 0 its working state and by S = {1, 2,...,m} the set of its failure modes. At a specific
time instance 7, component i € I can only be in one of the m+1 mutually exclusive states of
S U{0}. Therefore, if we denote by p, =g¢,, its survival probability and by ¢, s =1,2,...,m the

probability that component i experiences failure mode s , then

pi+zm:qsi=iqsi =1, i=1L2,..,n
s=l1 5=0

(note that, time ¢ has been suppressed in the notation, since the study of the system will be carried

out at a fixed instance). The systems considered in the present work are shifting to a non operational
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state whenever specific groups of components experience simultaneously the same type of failure.
To be more specific, we assume that, by analysing the system’s structure, we may determine

m families of minimal subsets C,,C,,...,C, ofthe power set of I, such that the system fails if and
only if there exists an s € § and C € C, with all components in C experiencing (at time ¢) failure
of type s . We shall refer to the last event by the term system failure in mode s , while the elements
of C (subsets of I') will be called minimal cut sets of type s .

Apparently, the state of component i< I can be described by the aid of an integer-valued

random variable ¥, defined on § U {0} as follows

0, if component iis working

y 1, if component iis in failure model

m, if component iis in failure mode m.

Nevertheless, it is more convenient to replace the random variable V', by a binary random (column)

vector X, =(X,;,X,,,....X,,) with the entry X taking on the value 0 whenever component

mi

i experiences failure mode s and 1 if not (manifestly X, =(1,1,...,1)" if and only if the component

is working). Using this set-up we may easily describe the operation of a MFM system by the aid of
binary functions similar to the well known structure functions of the traditional reliability theory.

To achieve the aforementioned goal, let us arrange the column vectors X, X,,...,X, ina

n

rectangular binary random matrix

X11 XIZ Xln
X:(Xﬂ_)mm: ‘XtZI X.zz )(.Zn ,
Xml XmZ T an

and denote by X, X, ,..., X, its rows. Then the system will be in failure mode s, if and only if the

(binary) structure function

9.(X,)= H(l—H(l—Xﬂoj

takes on the value 0. As a consequence, the probability that the system does not experience failure

mode s equals E(@(X, )). Obviously, the last quantity is the reliability of a classical SFM (single

failure mode, binary) system with components’ failure probabilities ¢ ,,q.,,...,q,, and respective
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survival probabilities 1-¢ ,,1-¢,,,....,1—q,. From now on we shall use the notation

q,. =(4q,,9,,,----9,,) for the vector of components’ failure probabilities in mode s and

R.(q,) = E(p(X,))
for the associated reliability. Alert readers may easily realize that, a MFM system will fail if and

only if (X, ) vanishes for at least one s € §. Therefore, the binary (and coordinatewise

increasing) function ¢: {0, 1} — {0, 1} , defined by
0=0(X,.X,...X,)=[[o,(X,) =1ﬂ[[H(1—H<l—XS,-)n
51 s=1\ CeC,\ ieC
can be exploited to describe system’s operation: ¢ =1 if the system works while ¢ =0 if the
system is down (in any of the m failure modes). Moreover, the reliability of the system admits the
following compact formula
s=1

R(q)=E(@(X,.X,,...X,)) = E(lﬁ[(ps(Xs')) _ E(H

\)

o)) o

where ¢ stands for the m x n matrix

q:. 9, 4 " 4
|| |9 Y92 T 9
= . |=| : .. :
qm. qml qu T qmn

The aforementioned approach for the description of a MFM system was first used by Boutsikas
and Koutras(2002). The same authors illustrated how this approach can be applied in small MFM
systems in order to arrive at an explicit (sum of products) expression for the reliability R(q). They
also developed an alternative expression for R(q) in terms of the reliability of a series structure
comprising of SFM systems.

Motivated by the fact that, as »,m and the cardinalities of C , s €., increase, the exact
reliability evaluation of MFM systems rapidly becomes tedious, Boutsikas and Koutras(2002)
proceeded to the construction of computationally tractable reliability bounds and asymptotic results.
In the next section we are using tools from the area of stochastic ordering to develop a new
multiplicative lower bound for the reliability of a MFM system that improves the multiplicative

lower bound suggested by Boutsikas and Koutras(2002).
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3. A Lower reliability bound for MFM systems
The development of our reliability bound is couched on a key result of the theory of stochastic
ordering of multivariate random variables. To begin with, let us recall that a (univariate) random
variable Z is said to be smaller than the random variable Y in the (with respect to) usual stochastic
order if
P(Z >u) < P(Y >u), for all u € (—o0,+x)
(or equivalently P(Z <u) > P(Y <u), for all u € (—oo,+00)). In this case we shall write Z<_ Y .1t

is not difficult to verify that the stochastic ordering condition stated about can be replaced by the
condition
E(f(Z2) < E(f(Y))
for all increasing functions f for which the expectations exist.
The last result carries over to the multivariate case as well. More specifically, if Z and Y are

random vectors in R", then Z will be smaller than Y in the usual stochastic order (denoted
by Z <, Y)ifand only if
E(f(Z))< E(f(Y))

for all increasing functions f for which the expectations exist.

Needless to say, confirming the stochastic ordering between two variables by the aid of the last
condition is a tough task. Fortunately, a sufficient condition is available for verifying the
multivariate stochastic order by means of the usual univariate stochastic order. This is described in
the following theorem (see e.g. Shaked and Shanthikumar(1994) or Muller and Stoyan(2002)).
Theorem 3.1. Let Z =(Z,,Z,,...,.Z,) and Y = (1,Y,,....Y,) be two n-dimensional random vectors.

If Z, <,Y,,andfors =2,...,n,

(Z,| Z =2,Z2,=2y,...2 , =z,]<, [Y]
wheneverz; <y, forall j=1,2,..,s—1, then
Z<,Y.

Y=».Y,=y,,..Y =yl

The symbol [ZS| Z =z,2,=2,,.,Z_,=z_,] used above denotes any univariate random variable

that has its distribution the conditional distribution of Z_ giventhat Z, =z,,Z, =z,,....Z | =z

sl s—1°

We are now ready to state and prove our first result.

Proposition 3.1. For a MFM system with n components and m different failure modes, consider a

fixed iel and denote by X,=(X,,X,,...X,;) the column vector describing the i-th

component’s state. If
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T, =(T

i i

r,..T,)
is a binary (column) vector consisting of m independent binary random variables defined by
P(T; =0)=q,, P(T, =)=1-gq,,
P(T, =0)=(g,) /1 —2@ P, =D = (-2, Szjqﬁ), $=2,m
J= J= I=

then

Ti Sst X-i ‘

Proof. In view of Theorem 3.1 it suffices to verify that P(7, <u)>P(X, <u), for all
u € (—o,40)and, for s =2,...,m

P(T, < u| T, =t,..,T,,;, =t )2 P(X, < u| X, =x,...,X,_;,=x_),forall u e (-o0,+0)
whenever 7, <x,, j=1,2,...,s—1. Since both T, and X are binary (0-1) random variables, the
first condition holds true as an equality since, for # >1 both sides become 1, for u <0 both sides
vanish while for 0 <u <1we have

P(T,, fu)y=P(T,=0)=¢q, =P(X,,=0)=P(X,, <u).

As far as the second inequality is concerned, observe first that, due to the independence of the
random variables 7,,7,,,...,T,, the conditional probability in the LHS equals
1, ifu>1

qsi

s—1
-4,

j=1
0, if u<0.
For u >1 both sides of the inequality we are looking at turn out to be 1, while for u <0 both

if 0<
P(T, <u)= ,if 0<u <l

vanish. Therefore, the proof will be completed should we be able to prove that

— x571 ) < qsi

- s—1
1- Z qji
j=1

P(X, <u|l X, =x,X,, =x,,.., X,
for 0<u <1 and t,<x;, j=12,..,5s—1,0r equivalently

— xs_l) < L

- s—1
- Z qji
=]

P(X, =0 X, =x,X, =x,,..X

s—1,i

forall x, €{0, 1}, j=1,2,....s - 1.

Taking into account that, by the definition of the random variables X, X,,,...,X,, no more than

one of them can take on the value 0 (with the rest of them being 1), we conclude that

a. if at least one of x,,x,,...,x_, equals 0, then the inequality holds true in a trivial way, since its

LHS vanishes,
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b. if none of x,,x,,...,x_, equals 0, then the LHS of the inequality, becomes

_ P =0X,=L... X, =) PX,=0) _ g,

_ _ s—1 s—1
P(Xli _13~--5Xx—l,i _1) I_ZP(X/'{ :0) 1_qui
=1 j=1

P(X, =0X, =1,..X =1

As a consequence, the inequality we are interested at, holds also true in this case as equality.

The preceding arguments guarantee that the assumptions of Theorem 3.1 are valid for the random
vectors T, and X, thereof establishing the desired stochastic ordering for them. O

In the next proposition, we establish a lower bound for the reliability function of a MFM system
which uses the reliability function of appropriate SFM systems. The core of the proof for this result

is the stochastic order developed in Proposition 3.1.

Proposition 3.2. Consider a MFM system with n independent components each one experiencing

m distinct failure modes. For i € I and s € § let O, be the quantities
g, if s=1

0 ={—Ts _ ifg>2 )

s—1 >

1- qui
=

and denote by R =R (0,,,0,,,.-.0,,), the reliability function of a SFM system with component

failure probabilities Q

si

i € I and minimal cut sets all C € C,. Then, the reliability R = R(q),

q=(q,),., of the ME'M system is bounded from below as follows

R@) > [[RAQy-00rrn O,).

Proof. Let us denote by wy:{0,1}"" — {0,1} the structure function of the mn dimensional
vector(X |, X ,,...X ), ie.

vX,, X5, X)) = ﬁ(]‘[(1 -T1a- XS,.)D.

s=1 \ CeCy ieC

It is straightforward that y is a binary coordinatewise increasing function.

Consider now for each i e I the binary vectors T, introduced in Proposition 3.1, so that the m

entries of T , are independent and the vector variables 7 ;, T '2, vy T n are also mutually independent.
Then we shall have

T,<,X,, fori=L2,..,n

where T,;,T;,...,T'

n

is a family of independent variables and X ,VI,X,VZ,...,X ,'n a second family of

independent variables (the last assertion is immediately justified by the components’ independence).



-8-
By virtue of the multivariate stochastic ordering closure property under conjunction (see e.g.
Shaked and Shanthikumar(1994)) we deduce

V(T T,,..T,) <, (X, X, X))
and hence
EW(T,Ty,nT,) S EW(X3, X, X))
or equivalently
E(o(T,..T,,...T,)) S E(¢(X,,X,,...X,))-

Manifestly, the RHS is the reliability R = R(q) of the MFM system. On the other hand, applying
formula (1) for 7, ,T,,...,T, , we may write the LHS in the form E(ﬁ ¢,(T,)), which, in view of
the independence of T,’s, can be further analyzed as -

E( Lo, @) =] Eo.T, ).
The proof is now easily completed (;;1] observing '[S}:;lt the terms of the last product are in fact the

reliabilities of SFM systems with component failure probabilities QO

si 2

i e I, and minimal cut sets

all CeC,. O

Let us denote by L(q) the lower bound established in Proposition 3.2, i.e.

L(q) = HR: (Qsl’ QSZ’ bt an)
s=1
with the Q_’s given by (3.1). Making use of the well known Esary and Proschan bounds for the
SFM systems (see e.g. Barlow and Proschan(1981)) we may bound L(q) from below as follows.

Corollary 3.1. Consider a MFM system with n independent components each one experiencing m
distinct failure modes. Then its reliability function R(q) is bounded from below as follows

R@ = [(TT0-TT2.)

s=1  CeCy ieC

where Q, are given by (2).

Proof. Follows immediately from Proposition 3.2 by applying the inequality
Rs (Qsl ,Qsza"'s an) 2 H(l _HQS;‘)

CeCy ieC

which holds true for any SFM system (see Barlow and Proschan(1981)). 0

We are thus in possession of an explicit lower bound that can be effortlessly evaluated if we have

at hand the families of minimal cut sets C, ,s =1,2,...,m. A similar bound has been suggested by

Boutsikas and Koutras(2002). More specifically, using an expression of the MFM system reliability
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through the reliability functions of SFM systems and properties of associated random variables,

they proved that

R@)= ][R Q100 =L'@) (3)
where »

0 =—Li i-12..n.
pi + qsi
Recalling the monotonicity property of the reliability function of SFM systems and observing that

0,>0,,for s=1,2,...,mand i=1,2,..,n
it is readily ascertainable that the lower bound established in Proposition 3.2 is uniformly better

than the Boutsikas and Koutras bound, that is
L(q) Z L'(q) > for all q = (q‘y[)mxn *
It is noteworthy that the new multiplicative bound L(g) depends on the order in which the m

families of cut sets C,,s =1,2,...,m are entering in the calculations. This is transparent from the

form of QO (see formula (2)) and is due to the fact that, in the proof of Proposition 3.1, we had to
work with conditional distributions of a variable associated to a specific failure mode s, given the
values of variables associated to the preceding failure modes 1,2,...,s —1. A direct consequence of

this observation is that, one could probably improve on the lower bound’s value by considering all

m! possible bounds and choosing the one that maximizes L(q). It is however unclear that the slight

improvement achieved by that compensates for the additional computational effort needed.

4. Numerical Comparisons

As pointed out by Boutsikas and Koutras(2002), several classes of MFM systems could be
constructed by placing the classical SFM systems in a multistate environment. For example,
considering a relay circuit with a bridge structure topology and assuming that each of the five
components can be either “failed-open” or “failed-short (closed)” gives birth to a typical MFM
system. In the same spirit, the well known £ -out-of-#, consecutive- k -out-of-n systems and their
generalizations (the interested reader may refer to the excellent monograph by Kuo and Zuo(2003))
can be effortlessly adjusted to a multistate environment.

In this section we shall proceed to the numerical evaluation of the new bounds for a consecutive-

k,k,,....k,-out-of-n: MFM system and compare them to other bounds that have appeared in the
literature recently. A consecutive-k,,k,,...,k, -out-of-n: MFM system consists of » linearly arranged

components, each one experiencing m different failure modes; the system enters failure mode s
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s=1,2,...,m, whenever at least k  consecutive components have shifted to mode s. The special
case m=2 was studied in detail by Koutras(1997) while bounds for the general case have been
suggested by Boutsikas and Koutras(2002) and Chryssaphinou and Vaggelatou(2002). It is worth
mentioning that the reliability of that system is closely related to the waiting time for a run of alike
outcomes in a sequence of multistate trials (see Aki(1992) or Fu and Lou(2003)). It is straight
forward that the family of minimal cut sets of type s will be given by
C.={{i,i+L..,i+k —-1}:i=12,..,n—k +1},s =1,2,....,m.

For typographical convenience, throughout this section we shall be assuming that the »

components of  the system  are independent and identical ~ (iidd  case)

with p, =¢q,, =p, q,=q,, s=12,...m. Moreover we shall use the symbol R (q)to denote the
reliability of an ordinary iid SFM consecutive- k -out-of-nsystem with component failure
probabilities ¢; the evaluation of R (g) can be easily accomplished by initiating a simple recursive

scheme, exploiting exact combinatorial formulae or applying a Markov chain embedding technique
(see e.g. Balakrishnan and Koutras(2002), Chao et al(1995), Fu and Lou(2003) or Kuo and
Zu0(2003)).

With the notation introduced so far, the lower bound given in Proposition 3.2 and bound (3) take

on the form
L=1(q,.9,,.9,) = [R(©Q,). L'=L(4.9,,--.q,) =] [ R,(O),
s=1 s=1
where
q,,1if s=1
_ qs : ' qs _
O =4—5—,if 22 and Q, = ,fors=1,2,...m
1—2% P+a,

As already stated after Colloray 3.1, L(q) is always better (larger) thanZ'(g). In Table 1 we
consider several values of the parameters involved and present the MFM system
reliability R = R(q,,94,,....q,,) (for m =2 the exact value was computed, while for m=3 we used
simulation), the lower bounds L, L' and the relative improvement (L—L')/R when L is used
instead of L', for approximating R.

Two additional lower bounds for the reliability function of a MFM system include (see
Boutsikas and Koutras(2002))

Ly=Ly(q,.q55.q,.) = iRs(qs.)—mH, Le=Lc(q,,95.4,.) =lil[Rs(qs.)— Do,

s=1 1<s<t<m
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where

cst:Z Z H%H%j-

CC, DEC, i jeD
The fist bound follows from a direct application of the Bonferroni inequality while the second one
makes use of a general covariance inequality established by Boutsikas and Koutras(2000).

It is of interest to note that, by rejecting the last term of the RHS of L. we may gain the

following product type upper bound (c.f. Boutsikas and Koutras (2002)),

UC = UC(ql~aq2~a--->qm-) = HRS‘ (qv) .
s=1

Note that, this bound, is exactly of the same form as the bound developed in the present article,

apart from the fact that the individual component reliabilities involved, are different. Since,
L(@<L@)<R(@)=<Uc(q),

for all ¢=(q,,),,,» and L'(q),U(q) tend asymptotically (under certain conditions) to the exact
reliability function R(q), the new bound L(q) is of the correct order in the sense that it is also
converging to R(q). Thus one could exploit both product type bounds L(¢) and U (g) to establish
a tight interval estimation of the exact system reliability.

In Tables 2 and 3 we perform a numerical comparison between the new bound and L,, L. for
several values of the parameters », k,k,,k, and g _,s =1,2,3 (the boldfaced entries in these tables

indicate the best bound for each parameter selection). As our experimentation reveals, in most of
the cases, the new bound betters the rest up-to-date available bounds, especially when at least one of
the SFM systems involved in the calculation of the lower bound, is of low reliability; in this case, a

rule of thumb for obtaining better bounds, is to use the family of minimal cut sets corresponding to
the low reliability system, in the first term of the product H :1:1 R (Q,).

Finally, in Table 4 we present the values of the new bound L = L(g,,q,,q,) for a consecutive-
k., k,,k,-out-of-n: MFM system with k, =k, =k, =k and the values of ¢,,q,,g, being chosen so

that all possible permutations are generated; this choice offers the opportunity to observe how the
rearrangement of the three families of minimal cut sets affects the lower bound L (the exact system
reliability remains unchanged under these permutations).

It is worth stressing that, the new bound does not require any additional computational load, as

compared to L, L. ; all of them use the reliabilities of SFM consecutive- k -out-of- n systems ( L

calls for the evaluation of the extra terms ¢, as well). Should one wish to avoid the calculation of
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the (exact) reliability of consecutive- k -out-of- n systems, he could exploit Corollary 3.1 thereof

obtaining the following simpler lower bound

L=[Ta-05y ™"
s=1
For the benefit of the practical minded reader, we have also tabulated L in the last column of

Tables 2 and 3, so that an assessment be made of the loss in accuracy created when replacing
R (q) by their Esary and Proschan lower bounds. It is of interest to note that, in some cases, L
remains better than L, and L.

In closing we mention that, both L and L obtain non negative values, in contrast to L, and L.

that may become negative for specific choices of the parameters involved. It goes without saying

that, in these cases, the lower reliability bound will be set equal to zero.
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Table 1. Exact reliability values and relative error improvement

n m k] kz k3 qi q> q3 R L L' (L —L')/R (%)
00 2 2 2 - 0.08 0.05 - 0.4348 0.4186 0.3935 5.79
2 3 - 0.05 0.05 - 0.7800 0.7786 0.7594 2.47
3 5 - 0.10 0.06 - 0.9152 0.9151 0.8994 1.73
5 4 - 0.20 0.15 - 0.9355 0.8844 0.8595 2.66
100 3 2 2 2 0.10 0.05 0.05 | 0.2502 0.2168 0.1705 18.52
2 3 4 0.09 0.03 0.06 | 0.4811 0.4726 0.4068 13.68
3 4 4 0.15 0.05 0.05 | 0.7559 0.7506 0.6793 9.43
6 2 4 0.16 0.06 0.08 | 0.7104 0.6151 0.5544 8.55
250 3 2 3 2 0.06 0.05 0.02 | 0.3705 0.3648 0.3198 12.15
2 2 2 0.10 0.05 0.05 | 0.0300 0.0214 0.0117 32.34
6 6 6 020 0.15 0.15 | 0.9853 0.9515 0.8585 9.44
5 4 5 0.12 0.12 0.12 | 0.9437 0.9052 0.8433 6.56
Table 2. Reliability bounds for consecutive-2, 3, 4-out-of-n: MFM system
n ‘Al 92 qs L L. Lp L
100 0.16 0.01 0.02 | 0.10472 0.10472 0.10463 0.07672
0.20 0.02 0.02 0.03132 0.03122 0.03059 0.01755
0.15 0.08 0.10 0.12348 0.12334 0.08232 0.09421
0.16 0.15 0.15 | 0.05532 0.03463 -0.1839 0.03530
500 0.01 0.01 0.01 | 0.95130 0.95131 0.95129 0.95083
0.09 0.02 0.01 | 0.02343 0.02333 0.01965 0.01719
0.08 0.04 0.04 | 0.04861 0.04821 0.01929 0.03889
0.09 0.09 0.08 | 0.01463 0.00394 -0.27695 0.01020
1.000 0.06 0.03 0.01 | 0.03203 0.03181 0.00724 0.02637
0.08 0.02 0.01 | 0.00253 0.00233 -0.00525 0.00162
0.06 0.01 0.06 | 0.03248 0.03237 0.01999 0.02675
0.08 0.05 0.02 0.00219 -0.00093 -0.10941 0.00140
Table 3. Reliability bounds for consecutive- &, , k, , k5 -out-0f-5.000: MFM system
9 © ¢k kK L Lc Ly L
0.10 0.01 002 3 2 5 [0.00596 0.00469 -0.37949 | 0.00363
3 4 3 |0.01038 0.01035 -0.02751 | 0.00636
5 5 6 [0.95603 0.95603 0.95603 | 0.95127
0.02 0.09 003 2 8 7 [0.14064 0.14064 0.14062 | 0.13533
2 3 6 0.00414 -0.00076 -0.82333 | 0.00282
9 6 5 0.99707 0.99747  0.99747 | 0.99679
0.03 0.02 004 2 4 4 |0.01241 0.01238 -0.00038 | 0.01091
2 3 5 10.01207 0.01197 -0.02631 | 0.01061
4 6 9 10.99608 0.99608 0.99608 | 0.99596
Table 4. Reliability bounds for consecutive- &, ,k, , k5 -out-of-1.000: MFM system with k, =k, =k; =k
k=3 k=4 k=5
AP I L ‘ 9 B L AR/ S L
0.10 0.05 0.01 |{0.34491 | 0.10 0.05 0.01 | 0.90596 | 0.10 0.05 0.01 | 0.99058
0.10 0.01 0.05]0.34314 | 0.10 0.01 0.05 | 0.90559 | 0.10 0.01 0.05 | 0.99055
0.05 0.10 0.01 [0.31173 | 0.05 0.10 0.01 | 0.89090 | 0.05 0.10 0.01 | 0.98826
0.05 0.01 0.10 [0.30190 | 0.05 0.01 0.10 | 0.88682 | 0.05 0.01 0.10 | 0.98765
0.01 0.10 0.05 [0.33425| 0.01 0.10 0.05 | 0.90236 | 0.01 0.10 0.05 | 0.99011
0.01 0.05 0.10 [0.30088 | 0.01 0.05 0.10 | 0.88661 | 0.01 0.05 0.10 | 0.98764




