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Abstract

Serial correlation can seriously affect the performance of traditional control charts.
Many authors have studied the effect of autocorrelation on EWMA control charts
and have shown how to modify the control limits to account for autocorrelation. In
this paper we compare three different estimation methods for the variance of the
EWMA statistic that is adapted for autocorrelated data. This comparison is based
on the asymptotic relative efficiency of the estimators.

KEY WORDS: autoregressive model, control charts, Exponentially Weighted Moving
Average chart, relative efficiency.

1 Introduction

Today’s manufacturing environment hardly resembles the period in which control chart
methods were introduced. Due to high-tech measurement devices, the sampling rate may
increase easily. Because of this increasing sampling rate, independence of successive ob-
servations – one of the fundamental assumptions for control charts – is often violated.
This so-called serial correlation of the observations heavily affects the performance of the
traditional Shewhart control charts. This justifies the development of control charts which
takes serial correlation into account.

As it turns out, two approaches for dealing with autocorrelated data can be distin-
guished. The first approach is to use standard control charts with adjusted control limits
for autocorrelation (cf. Zhang (1998a), Zhang (1998b), Jiang et al. (2000), Apley and Lee

∗Correspondence to: M.B. Vermaat, IBIS UvA, Plantage Muidergracht 24, 1018 TV Amsterdam, The
Netherlands, tel.: +(31)20 5255203, fax: +(31)20 5255101 Email: tvermaat@science.uva.nl
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(2003), and Shiau and Hsu (2005)). The second approach consists of fitting a time series
model, followed by a study of the residuals with standard control charts such as individual
charts, X̄ charts or Exponentially Weighted Moving Average (EWMA) charts (cf. Mont-
gomery and Mastrangelo (1991), Wardell et al. (1994), and Koehler et al. (2001)). In this
paper we restrict ourselves on EWMA charts with adjusted control limits.

Consider observations from a stationary process X = (Xt, t = 0, 1, . . .). The EWMA
statistic at time t is defined by

Wt = λXt + (1− λ)Wt−1, t = 0, 1, . . . (1)

where λ is a constant satisfying 0 < λ ≤ 1. The control limits of the EWMA chart converge
to µ±L√α, where L is an appropriately chosen constant (often 3), µ = EX and α is given
by

α = lim
t→∞

Var(Wt).

Therefore, after an initial period, the control limits are determined by α.
We are interested in estimating α. Let ρ(k) denote the autocorrelation of X at lag

k ∈ N. Zhang (1998a) approximates α by Var(WM) for M sufficiently large. The expres-
sion obtained in this way depends on the autocorrelations at lags up till M , λ, and σ2

X .
Subsequently, Zhang (1998a) uses sample autocorrelations to estimate the first M auto-
correlation coefficients ρ(1), . . . , ρ(M). Knowing that X is an AR(1) or AR(2) process,
we can estimate α by a plug-in estimator, using the Yule-Walker estimators for the model
parameters (cf. Brockwell and Davis (1991)). It is a natural question to ask which of these
estimators should be preferred. It is the goal of the paper to answer this question. To
analyze the performance of the estimators, we study their asymptotic properties as the
number of observations tends to infinity. Their asymptotic distributions are used to study
the relative efficiency of the estimators. It turns out that if X is an autoregressive process,
the estimators based on plugging in the Yule-Walker estimators outperform the estimator
of Zhang (1998a) in terms of relative efficiency. Intuitively, this was to be expected since
less parameters have to be estimated and more information is available. The analysis is
checked by a simulation study.

This paper is organized as follows. In the next section we present a few preliminary
results on autoregressive processes. In Section 3 we present the variances of the EWMA
statistic as in Zhang (1998a), Schmid (1997), and Vermaat et al. (2005). In Section 4 we
introduce the estimators for these variances. In the subsequent section we will study their
asymptotic distributions and their relative efficiencies. Section 6 contains a simulation
study on the effect of model misspecification. We finish this paper with some concluding
remarks.

2 Preliminaries on second order autoregressive pro-

cesses

In this section we summarize some results on autoregressive processes that we will need in
the following. Let A = (At, t = 0, 1, . . .) be a white-noise series, i.e. a series of zero mean,
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uncorrelated random variables. A second order autoregressive process (an AR(2) process)
X = (Xt, t = 0, 1, . . .) is defined via the recursive relation

Xt = φ1Xt−1 + φ2Xt−2 + At, t = 1, 2, . . . . (2)

Define the quadratic function φ by φ(z) = 1− φ1z − φ2z
2. If

φ(z) 6= 0 for all z ∈ C with |z| ≤ 1, (3)

then the unique stationary AR(2) process exists and is given by Xt =
∑∞

j=0 ψjAt−j where
{ψj}∞j=0 is a sequence of numbers that is absolutely summable and which can be determined
from φ by the relation ψ(z) = 1/φ(z) =

∑∞

j=0 ψjz
j (see Brockwell and Davis (1991),

Theorem 3.1.1). The latter implies that the relationship between A and X is causal (cf.
Brockwell and Davis (1991), Definition 3.1.3). The set of values of (φ1, φ2) for which
φ(z) 6= 0 for all z ∈ C with |z| ≤ 1 is given by

{(φ1, φ2) ∈ R2 : φ1 + φ2 < 1, φ2 − φ1 < 1 and − 1 < φ2 < 1}.

Of course, the case that φ2 = 0 corresponds to a first order autoregressive process.
We recall that the autocovariance function of a stationary time series is given by γ(h) =

cov(Xt+h, Xt), h = 0, 1, . . .. The autocorrelation function is given by ρ(h) = γ(h)/γ(0).

3 The variance of the EWMA statistic

In this section we give expressions for the variance of the EWMA statistic. Zhang (1998a)
derived the variance of the EWMA statistic Wt at time t as

αt = Var(Wt) =
λ

2− λ
σ2
X

(

1− (1− λ)2t + 2
t−1
∑

k=1

ρ(k)(1− λ)k(1− (1− λ)2(t−k))

)

. (4)

If t→∞, this becomes

α := lim
t→∞

αt =
λ

2− λ

(

2
∞
∑

k=0

ρ(k)(1− λ)k − 1

)

σ2
X . (5)

The following lemma shows that if we assume that X is a causal stationary AR(2) process,
α can be expressed in the AR(2) model parameters.

Lemma 1 Suppose X is a causal stationary AR(2) process as defined in (2). Then

α =
λ

2− λ

(

φ1(1 + φ2)(λ− 1) + (φ2 − 1)(1 + φ2(λ− 1)2)

(1− φ2)(−1 + φ1(1− λ) + φ2(λ− 1)2)

)

σ2
X . (6)

In particular; if φ2 = 0 (i.e. an AR(1) process), then

α =
λ

2− λ

(

1 + φ1(1− λ)

1− φ1(1− λ)

)

σ2
X . (7)
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Proof. The autocorrelation function ρ(k) for an AR(2) process satisfies the second order
difference equation

ρ(k) = φ1ρ(k − 1) + φ2ρ(k − 2), k > 0 (8)

with starting values ρ0 = 1 and ρ1 = φ1/(1−φ2). The general solution of (8) can be found
in Brockwell and Davis (1991) p. 108. As it turns out, this solution depends on the zeros
of the characteristic equation corresponding to (8): π2 − φ1π − φ2 = 0. These zeros are
given by

ν1 =
(

φ1 +
√

φ2
1 + 4φ2

)

/2, ν2 =
(

φ1 −
√

φ2
1 + 4φ2

)

/2. (9)

Hence, we can distinguish three cases: (i) both zeros are real, (ii) there is one real zero
with multiplicity two, (iii) both zeros are conjugate complex numbers. Some tedious
computations yield that the solution to (8) is given by

ρ(k) =







































νk2 (φ1 + ν1(φ2 − 1))− νk1 (φ1 + ν2(φ2 − 1))

(ν1 − ν2)(φ2 − 1)
if ν1 6= ν2 are real

νk−1(−kφ1 + ν(k − 1 + φ2(1− k)))

φ2 − 1
if ν1 = ν2 = ν is real,

cνk1 + c̄ ν1
k if ν1 = ν2 are complex,

(10)

where c = (1 − iφ1(1 + φ2)(1 − φ2)
−1|φ2

1 + 4φ2|−1/2)/2. Note that condition (3) ensures
that max{|ν1|, |ν2|} < 1. Hence, substituting (10) into (5) yields a convergent series. After
some though calculations we find that

∞
∑

k=0

ρ(k)(1− λ)k =
−1 + φ2(1 + (λ− 1)φ1)

(φ2 − 1)(1 + (λ− 1)φ1 − (1− λ)2φ2)
.

Substituting this expression into (5) gives the result. ¤

Remark.

(i) Denote the variance of A by σ2
A. The variance of the marginal distribution of X is

related to σ2
A by (cf. Box et al. (1994), p. 62)

σ2
X =

(

1− φ2

1 + φ2

)

σ2
A

(1− φ2)2 − φ2
1

.

Substituting this expression into (7), we recover the result of Schmid (1997): for a
causal stationary AR(1) process α is given by

α =

(

λ

2− λ

)

σ2
A

(1− φ2
1)

1 + φ1(1− λ)

1− φ1(1− λ)
. (11)

(ii) The resulting variance in (6) is also derived in Vermaat et al. (2005). Moreover, in
their paper also an expression for αt in the AR(2) model parameters is derived.
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4 Estimators for the variance of the EWMA statistic

In this section we define three estimators for α.

Zhang’s estimator: For a stationary time series Zhang (1998a) approximates α by αM
(cf. (4)), where M is an integer greater than 25, setting (1 − λ)2M ≈ 0. This gives
the following approximation for α (cf. (5))

α(Z) =
λ

2− λ
σ2
X

(

1 + 2
M
∑

k=1

ρ(k)(1− λ)k(1− (1− λ)2(M−k))

)

. (12)

We suppress the dependence on M in the notation. We estimate α(Z) by a plug-in
estimator α̂

(Z)
n , which is defined by

α̂(Z)
n =

λ

2− λ
γ̂n(0)

(

1 + 2
M
∑

k=1

ρ̂n(k)(1− λ)k(1− (1− λ)2(M−k))

)

.

Here ρ̂n(k) is the sample autocorrelation at lag k, which is defined by ρ̂n(k) =
γ̂n(k)/γ̂n(0), where

γ̂n(k) =
1

n

n−k
∑

t=1

(Xt − X̄n)(Xt+k − X̄n) k = 0, 1, 2, . . . .

Schmid’s estimator: For a causal stationary AR(1) process, Schmid (1997) estimates α
by (cf. (11))

α̂(S)
n =

λ

2− λ

(

1 + φ̂1(1− λ)

1− φ̂1(1− λ)

)

γ̂n(0), (13)

where φ̂1 = γ̂n(1)/γ̂n(0) is the Yule-Walker estimator for φ1.

Vermaat’s estimator: For a causal stationary AR(2) process, Vermaat et al. (2005)
estimate α by (cf. (6))

α̂(V )
n =

λ

2− λ

(

φ̂1(1 + φ̂2)(λ− 1) + (φ̂2 − 1)(1 + φ̂2(λ− 1)2)

(1− φ̂2)(−1 + φ̂1(1− λ) + φ̂2(λ− 1)2)

)

γ̂n(0). (14)

Here φ̂1 and φ̂2 are the Yule-Walker estimators for φ1 and φ2 respectively. The latter
are given by

φ̂1 =
γ̂n(1)(γ̂n(0)− γ̂n(2))

γ̂n(0)2 − γ̂n(1)2
and φ̂2 =

γ̂n(0)γ̂n(2)− γ̂n(1)
2

γ̂n(0)2 − γ̂n(1)2
. (15)

5
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Hence, for a first order autoregressive process we have two estimators that can be used
to derive the control limits of the EWMA-chart: α̂

(Z)
n and α̂

(S)
n . In the next section we

compare these estimators by studying their asymptotic distribution. Similarly, we will
compare α̂

(Z)
n and α̂

(V )
n for second order autoregressive processes.

As Zhang (1998a) reported, the advantage of using the approximate variance as in (12)
hinges on the fact that no modelling efforts are required. Only a number of autocorrela-
tions has to be estimated to obtain an estimator for the variance of the EWMA statistic.
However:

1. In practice it is valuable to know whether the process under study exhibits auto-
correlation. Modelling the autocorrelation structure of a process gives insight in the
working of the process. This may generate improvement actions besides the moni-
toring purpose.

2. With modern software it is relatively easy to fit a time series model for a given series.

3. Zhang (1998a) reported that for certain values of the parameters of the time series
model other control charts perform better than his proposal, in the sense that they
have better average run length (ARL) properties for signalling out-of-control situa-
tions, like a shift in the mean. So, to choose the most appropriate control chart we
need to estimate the time series parameters.

4. As we can see the estimator α̂
(V )
n uses only estimators for φ1, φ2, and σ

2
X , while the

estimator α̂
(Z)
n uses up to M estimates for the autocorrelations and an estimate for

the process variance σ2
X . Box et al. (1994) (p. 44) pointed out that each correlation

is a parameter to be estimated. Hence, Zhang’s approach might be very prodigal
with parameters, whereas the approach via the estimated model parameters could
be parsimonious.

5. The estimators α̂
(S)
n and α̂

(V )
n are asymptotically more efficient for AR(1) respectively

AR(2) processes than the estimator α̂
(Z)
n , which is shown in Section 5 of this paper.

We illustrate the difference in the two approaches by analyzing the asymptotic behavior of
the estimators for the control limits.

5 Asymptotics of the Estimators

In this section we analyze the asymptotic behavior of the estimators α̂
(Z)
n ,α̂

(S)
n , and α̂

(V )
n as

defined in (12), (13), and (14) respectively.

5.1 Asymptotic distributions

The following result will be used in the sequel. We will use the abbreviation IID to denote
Independent and Identically Distributed.

6
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Proposition 1 Suppose X is a causal AR(p) process generated by the IID sequence A.
Assume E(A4) <∞ and let η = E(A4)/σ4

A. For any non-negative integer k,

√
n





















γ̂n(0)
γ̂n(1)
...

γ̂n(k)











−











γ(0)
γ(1)
...

γ(k)





















d→ Nk+1(0,Ωk+1)

where
d→ denotes convergence in distribution and

Ωk+1 =

[

(η − 3)γ(q)γ(r) +
∑

i

(γ(i)γ(i− q + r) + γ(i+ r)γ(i− q))

]

q,r=0,...,k

. (16)

Proof. See Brockwell and Davis (1991), p. 230–231. ¤

Now we will give in three theorems the asymptotic distributions of the three estimators
α̂

(Z)
n ,α̂

(S)
n , and α̂

(V )
n as defined in (12), (13), and (14) respectively.

Theorem 1 Suppose X is a causal AR(p) process generated by the IID sequence A. As-
sume E(A4) <∞ and let η = E(A4)/σ4

A, then

√
n(α̂(Z)

n − α(Z))
d→ N(0, V (Z)),

where V (Z) is given by V (Z) = c′ΩM+1c for c as in (17) and ΩM+1 as in (16).

Proof. Recall the definition of α̂
(Z)
n in (12). Write α̂

(Z)
n = c′γ̂n := c′(γ̂n(0), . . . , γ̂n(M))′

for c ∈ RM+1 defined by

c =
λ

2− λ



















1
2(1− λ)(1− (1− λ)2(M−1))
2(1− λ)2(1− (1− λ)2(M−2))

...
2(1− λ)M−1(1− (1− λ)2)

0



















. (17)

Let γ = (γ(0), . . . , γ(M))′. Using Proposition 1 and applying the Cramér-Wold device (cf.
Pollard (2002) p. 202) gives

√
n(α̂(Z)

n − α(Z)) =
√
n(c′γ̂n − c′γ)

d→ N(0, c′ΩM+1c).

¤

Theorem 2 Suppose X is a causal AR(1) process generated by the IID sequence A. As-
sume E(A4) <∞ and let η = E(A4)/σ4

A, then
√
n(α̂(S)

n − α)
d→ N(0, V (S)).

where V (S) is given by V (S) = b′Ω2b for b as

b = λ(2− λ)−1

(

2γ0 + γ1(1− λ)

γ0 − γ1(1− λ)
− γ2

0 + γ0γ1(1− λ)

(γ0 − γ1(1− λ))2
,

2γ2
0(1− λ)

(γ0 − γ1(1− λ))2

)′

and Ω2 as in (16).

7
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Proof. If we define f : R2 → R by

f(x, y) =
λ

2− λ

(

x2 + xy(1− λ)

x− y(1− λ)

)

,

then √
n(α̂(S)

n − α) =
√
n(f(γ̂n(0), γ̂n(1))− f(γ(0), γ(1))).

By the Delta-method (cf. Pollard (2002) p. 184), together with Proposition 1, this con-
verges weakly to a normal distribution with variance ∇f(γ0, γ1)Ω1∇f(γ(0), γ(1))′. One
can verify that the gradient ∇f(γ(0), γ(1)) equals the vector b. ¤

Theorem 3 Suppose X is a causal AR(2) process generated by the IID sequence A. As-
sume E(A4) <∞ and let η = E(A4)/σ4

A, then

√
n(α̂(V )

n − α)
d→ N(0, V (V )),

where V (V ) is given by V (V ) = d′Ω3d for d = ∇h(γ(0), γ(1), γ(2))′ as in (18) and Ω3 as in
(16) .

Proof. Substituting (15) into (14) we obtain α̂
(V )
n = h(γ̂n(0), γ̂n(1), γ̂n(2)), with h :

R3 → R defined by

h(x, y, z) =

(

λ

2− λ

)

x3 + 2y3(λ− 1)− x2(λ− 1)(y + z(1− λ))− xy(z(λ− 1) + y(2 + (λ− 2)λ))

x2 + x(λ− 1)(y + z(1− λ)) + y(z(1− λ) + y(λ− 2)λ))
.

An application of Proposition 1, combined with the Delta method, gives

√
n(α̂(V )

n − α)
d→ N(0,∇h(γ(0), γ(1), γ(2))Ω3∇h(γ(0), γ(1), γ(2))′).

Here, the gradient ∇h : R3 → R3 of h has elements

∂h(x,y,z)
∂x

= uλ(x, y, z)(x
4 + 2x3(λ− 1)(y + z − zλ) + 2xy{−z2(λ− 1)3 + yz(λ− 1)4

−y2(λ− 1)(2 + (λ− 2)λ)}+ x2(y + z(λ− 1)){−z(λ− 1)3 + y(1 + 3(λ− 2)λ)}
+y2{z2(λ− 1)2 + 2yz(λ− 1)(2 + (λ− 2)λ)− y2(2 + (λ− 2)λ(4 + (λ− 2)λ))}

∂h(x,y,z)
∂y

= uλ(x, y, z) (2(λ− 1){−x4x2(2y2 + 2yz(λ− 1) + z2(λ− 1)2)− 2x3y(λ− 1)+

2xy2(λ− 1)(y + z − zλ) + y3(−2z(λ− 1) + y(λ− 2)λ)})
∂h(x,y,z)

∂z
= uλ(x, y, z)2(λ− 1)2(x2 − y2)2,

(18)

where,

uλ(x, y, z) = λ(2− λ)−1
(

x2 + x(λ− 1)(y + z − zλ) + y(z − zλ+ y(λ− 2)λ)
)−2

.

¤

Remark For autoregressive processes the Yule-Walker estimators are asymptotically equiv-
alent to the maximum likelihood estimators based on a Gaussian likelihood (cf. Brockwell
and Davis (1991) p. 240). That is, rescaled differences of the estimators subtracted by
their true value converge weakly to a multivariate normal distribution with the same vari-
ance. This implies efficiency of the Yule-Walker estimators. Our estimators are obtained
by plugging in these efficient estimators.
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5.2 Asymptotic Relative Efficiencies

In this section we study the efficiency of α̂
(S)
n over α̂

(Z)
n for an AR(1) process and α̂

(V )
n and

α̂
(Z)
n for an AR(2) process. Note that α

(S)
n and α̂

(V )
n are consistent estimators for α while

α̂
(Z)
n is not.
Suppose that the process under study is a causal stationary first order autoregressive

process (this is equivalent to |φ1| < 1). We define the asymptotic relative efficiency for the

estimators α̂
(Z)
n and α̂

(S)
n by

Reff(α̂(Z)
n , α̂(S)

n ) =
V (S)

V (Z)
=

b′Ω2b

c′ΩM+1c
.

In this definition we neglect the fact that α̂
(Z)
n estimates α(Z), whereas α̂

(S)
n estimates

α. We use the current definition of relative efficiency purely to compare the asymptotic
variances of the estimators. In Figure 1 we have plotted the asymptotic relative efficiency
for different φ1s in the stationary region of an AR(1) process with M = 25. As we can

see Reff(α̂
(Z)
n , α̂

(S)
n ) varies from 0.4 to 1. Only at the boundaries of the stationary region

Reff(α̂
(Z)
n , α̂

(S)
n ) > 1, here the estimator of Zhang (1998a)(cf. (12)) is more efficient.

For a causal stationary AR(2) process we define the asymptotic relative efficiency for

the estimators α̂
(Z)
n and α̂

(V )
n by

Reff(α̂(Z)
n , α̂(V )

n ) =
V (V )

V (Z)
=

d′Ω3d

c′ΩM+1c
.

In Figure 2 we have drawn contour lines of Reff(α̂
(Z)
n , α̂

(V )
n ) for different φ1 and φ2 in

the stationary region of an AR(2) process, i.e. φ1 + φ2 < 1, φ1 − φ2 < 1, and −1 <
φ2 < 1 and with M = 25. The asymptotic relative efficiency varies from .56 to 1. Again
Reff(α̂

(Z)
n , α̂

(V )
n ) > 1 at the boundaries of the stationary region.

Effect of overfitting. Suppose X is a (stationary, causal) first order autoregressive

time series, but we estimate α by α̂
(V )
n , which is “designed” for a second order autoregressive

process. In Figure 3 we have plotted

Reff(α̂(V )
n , α̂(S)

n ) =
V (S)

V (V )
=

b′Ω2b

d′Ω3d
.

for φ1 ∈ (−1, 1). As we can see the Reff(α̂
(V )
n , α̂

(S)
n ) < 1 for all φ1 ∈ (−1, 1). Thus,

overfitting by one degree results in a loss of efficiency, which can be up to 35%.

6 Simulations and the effect of misspecification

We have studied the asymptotic properties in the previous section by simulation. The
obtained analytical results are confirmed by the simulation.

The simulation study was done as follows. We simulate
√
n(α̂n − α) 1000 times for

all three estimators. The length of the time series n is 1000. For the estimation of α we
have chosen to set λ = 0.2 and the noise to be gaussian with zero mean and standard

9
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deviation one. The sample means of the 1000 simulations of

√
n(α

(Z)
n − α(Z)),

√
n(α

(S)
n −

α), and
√
n(α

(V )
n − α) are denoted by

√
n(α

(Z)
n − α(Z)),

√
n(α

(S)
n − α), and

√
n(α

(V )
n − α)

respectively and their sample variances are denoted by V
(Z)
n , V

(S)
n , and V

(V )
n respectively.

The empirical relative efficiency between Zhang’s and Schmid’s estimator is defined by

Reffn(α̂
(Z)
n , α̂(S)

n ) =
V

(S)
n

V
(Z)
n

. (19)

The empirical relative efficiency between Zhang’s and Vermaat’s estimator is defined
mutatis mutandis as in (19).

To study the effect of misspecification, we consider three cases to judge the performance
of the Zhang’s, Schmid’s and Vermaat’s estimator.

(i) Suppose that the data are generated by a stationary causal ARMA(1,1) process, i.e.
the process dynamics are given by the relation Xt = φXt−1 + θAt−1 + At, where
(At) is a sequence of independent standard Normally distributed random variables
and (φ, θ) ∈ (−1, 1)2. Zhang’s estimator is designed to handle this case adequately,
whereas both Schmid’s as Vermaat’s estimator are not. Figure 4 shows a contour
plot of the simulated asymptotic relative efficiency of Schmid’s estimator over Zhang’s
estimator (cf. (19)). From this figure we can conclude that roughly only in the region
(φ, θ) ∈ (−0.5, 0.5) × (−1,−0.5) Zhang’s estimator outperforms Schmid’s estimator
strongly.

(ii) Consider the same setting as under (i), but now compare Vermaat’s and Zhang’s
estimator. The resulting contour plot is not included, since the pattern of lines in
the plot is very similar to that of Figure 4. The only notable difference is that the
values corresponding to the lines are smaller in the region where Zhang’s estimator
performs better (around twice as small).

(iii) Suppose the data are from a stationary AR(2) process. Figure 5 shows contour lines
of the simulated asymptotic relative efficiency of Schmid’s estimator over Zhang’s
estimator within the stationary region of the AR(2) process. If φ2 is negative, then
Zhang’s estimator turns out to be much more efficient.

7 Conclusions

We have derived the asymptotic distributions for three estimators for the variance of the
EWMA statistic introduced by Zhang (1998a), Schmid (1997) respectively Vermaat et al.
(2005), where the estimator of Schmid is a special case of the estimator of Vermaat for
an AR(1) process. The asymptotic relative efficiency of the estimator by Zhang (1998a)
is compared to those by Schmid (1997) and Vermaat et al. (2005). The estimators of
Schmid (1997) and Vermaat et al. (2005) are more efficient for AR(1) respectively AR(2)
processes. Hence, for processes that can be modelled by an AR(1) or an AR(2) process,
we would advocate the EWMA control chart based on Schmid’s and Vermaat’s estimators
respectively.

10
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Figure 1: Plot of the asymptotic rela-
tive efficiency of Schmid’s estimator (cf.
(13)) over Zhang’s estimator (cf. (12))
for a stationary AR(1) process.
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Figure 2: Contour plot of the asymp-
totic relative efficiency of Vermaat’s es-
timator (cf. (14)) over Zhang’s estima-
tor (cf. (12)) for a stationary AR(2)
process.

−1 −0.5 0 0.5 1
60

65

70

75

80

85

90

95

100

φ
1

Reff %

Figure 3: Plot of the asymptotic relative efficiency Schmid’s estimator (cf. (13)) over
Vermaat’s estimator (cf. (14)) for a stationary AR(1) process.
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Figure 4: Contour plot of the sim-
ulated asymptotic relative efficiency
of Schmid’s estimator (cf. (13)) over
Zhang’s estimator (cf. (12)) for a sta-
tionary ARMA(1,1) process.
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Figure 5: Contour plot of the sim-
ulated asymptotic relative efficiency
of Schmid’s estimator (cf. (13)) over
Zhang’s estimator (cf. (12)) for a sta-
tionary AR(2) process.
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