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Beta-hypergeometric distributions and random continued
fractions

Claudio Asci �, Gérard Letac y, Mauro Piccioni z

26th April 2007

Abstract. In this paper an enlargement of the beta family of distributions on (0; 1) is
presented. Distributions in this class are characterized as being the laws of certain random
continued fractions associated to products of independent random matrices of order 2 whose
entries are either constant or beta distributed. The result can be proved by a famous 1879
Thomae formula on generalized hypergeometric functions 3F2:

Keywords: beta distributions of second kind, hypergeometric functions, Thomae identities.

I Introduction

The aim of this paper is to generalize the following well known facts about gamma and beta
distributions. If the independent random variables X and G1 are distributed as beta �a;a0
and gamma a+a0;1 respectively, then XG1 � a;1. Furthermore, if the random variable G2 is
distributed as a0;1 and if it is independent of (X;G1), then

G2 +XG1 � a+a0;1;
G2

G2 +XG1
=

1

1 +X G1
G2

� �a0;a (1.1)

and these two random variables are independent. Next, recall that for any a; b > 0 the beta law
of the second kind �(2)b;a given by

�
(2)
b;a (dw) =

�(a+ b)

�(a)�(b)

wb�1

(1 + w)a+b
1(0;1)(w)dw

is the law of the ratio of two independent gamma variables with shape parameters b for the
numerator and a for the denominator, and the same scale parameter (equivalently, it is the law
of (1� U)=U with U � �a;b). Thus we have that the random variable appearing in (1.1)

W 0 � G1
G2

� �(2)a+a0;a0 (1.2)

and we can reexpress (1.1) by saying that if W 0 has the law (1.2) and is independent of X
� �a;a0 , then

1

1 +W 0X
� �a0;a:
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Moreover, if W � �(2)a+a0;a is independent of (X;W 0), then

1

1 + W
1+W 0X

� X: (1.3)

This relation (1.3) characterizes the law �a;a0 (Chamayou and Letac (1991), Example 11). In

this paper we generalize the result (1.3) to the general caseW � �(2)b;a , W 0 � �(2)b;a0 , with b > 0 not
necessarily equal to a+ a0. We prove that there is again a unique law parameterized by (a; a0; b)
for X, supported by the positive real line, which ensures the equality in law (1.3). In Section
2 we will explicitly present its density function and prove this characterization. In Section 3
some of the properties of this family of laws will be investigated. In Section 4 we will prove
the identi�ability of the parameters (a; a0; b) and in Section 5 we discuss symmetry properties.
Finally, in Section 6 we will give some particularly interesting cases. The appendix links our
results with the Thomae (1879) formula.

II The beta-hypergeometric distribution

First recall that for any real number a the sequence of Pochhammer�s symbols f(a)ng1n=0 is
de�ned by (a)0 = 1 and (a)n+1 = (a + n)(a)n: For positive numbers a1; : : : ; ap; b1; : : : ; bq we
consider the sum of the power series

pFq(a1; : : : ; ap; b1; : : : ; bq; z) =
1X
n=0

(a1)n : : : (ap)n
n!(b1)n : : : (bq)n

zn: (2.4)

For p = q + 1, which is the case of our interest, the power series (2.4) is always convergent for
jzj < 1 by means of the ratio criterion. If x > 0 then

� (x+ n) = (x)n� (x) ; (2.5)

so that by the Stirling approximation to the gamma function (x)n � nx�1n!
�(x) . Hence the series

(2.4) converges for z = 1 if and only if

c = b1 + � � �+ bq � a1 � � � � � aq+1 > 0 (2.6)

since the coe¢ cient of the general term of the series (2.4) is equivalent (up to a multiplicative
constant) to n�1�c. We will also need to consider (2.4) when some of the aj is negative, in which
case the series (2.4) terminates if at least one of them is a non positive integer. Otherwise, since
�k < a < �k+1 implies (a)n = (a)k(a+k)n�k for n � k; the general term of (2.4) has constant
sign eventually in n, and again we have that the series (2.4) converges for z = 1 if and only if
c > 0. Next for any positive a; a0 and b, de�ne the following probability measure

�a;a0;b(dx) = C(a; a
0; b)xa�1(1� x)b�1 2F1(a; b; a+ a0;x)1(0;1)(x)dx; (2.7)

where

C(a; a0; b) =
�(a+ b)

�(a)�(b) 3F2(a; a; b; a+ b; a+ a0; 1)
: (2.8)

By our previous remarks 3F2(a; a; b; a+ b; a+ a0; 1) is �nite and Theorem 38 in Rainville (1960),
page 104, can be applied to prove that (2.7) integrates to 1. As suggested by a referee we get a
mixture representation for �a;a0;b: if N is an integer valued random variable with

E(zN ) =
3F2(a; b; a; a+ a

0; a+ b; z)

3F2(a; b; a; a+ a0; a+ b; 1)

2
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and if XjN � �a+N;b, then X � �a;a0;b. A noticeable subclass of this family is met for b = a+a
0
,

since
2F1(a; a+ a

0; a+ a0;x) = 1F0(a;�;x) = (1� x)�a :

Therefore �a;a0;a+a0(dx) = �a;a0(dx).

Theorem 2.1. The probability measure �a;a0;b has the following property. If X � �a;a0;b

and W 0 � �(2)b;a0 are independent then

1

1 +XW 0 � �a0;a;b: (2.9)

Proof. Suppose now that X 0 � �a0;a;b: The relation (2.9) is equivalent to 1�X0

X0 � XW 0: The
density of V = 1�X0

X0 is

fV (v) = C
0 vb�1

(1 + v)a0+b
2F1(a

0; b; a+ a0;
1

1 + v
)1(0;1)(v);

where C 0 = C(a0; a; b). On the other hand the density of U = XW 0 is given by

fU (u) = C
�(a0 + b)

�(a0)�(b)

1

u

Z 1

0
xa�1(1� x)b�1 2F1(a; b; a+ a0;x)(

u

x
)b

1

(1 + u
x)
a0+b

dx

= C
�(a0 + b)

�(a0)�(b)
ub�1

Z 1

0

xa+a
0�1(1� x)b�1
(x+ u)a0+b

2F1(a; b; a+ a
0;x)dx

= C
�(a0 + b)

�(a0)�(b)
ub�1

Z 1

0

tb�1(1� t)a+a0�1
(1 + u� t)a0+b 2F1(a; b; a+ a

0; 1� t)dt

= C
�(a0 + b)

�(a0)�(b)

ub�1

(1 + u)a0+b

Z 1

0

tb�1(1� t)a+a0�1

(1� t
1+u)

a0+b 2F1(a; b; a+ a
0; 1� t)dt;

where C = C(a; a0; b). We conclude the proof of the theorem by means of the following

Lemma 2.2. For a; a0; b > 0 and for 0 < z < 1 we haveZ 1

0

tb�1(1� t)a+a0�1
(1� zt)a0+b 2F1(a; b; a+ a

0; 1� t)dt = �(a0)�(b)

�(a0 + b)
2F1(a

0; b; a+ a0; z): (2.10)

3
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Proof of Lemma 2.2. Observe thatZ 1

0

tb�1(1� t)a+a0�1
(1� zt)a0+b 2F1(a; b; a+ a

0; 1� t)dt

(1)
=

1X
n=0

(a)n(b)n
n!(a+ a0)n

Z 1

0

tb�1(1� t)a+a0+n�1
(1� zt)a0+b dt

(2)
=

1X
n=0

(a)n(b)n
n!(a+ a0)n

�(b)�(a+ a0 + n)

�(a+ a0 + b+ n)
2F1(a

0 + b; b; a+ a0 + b+ n; z)

(3)
=

1X
n=0

(a)n(b)n
n!(a+ a0)n

�(b)�(a+ a0 + n)

�(a+ a0 + b+ n)

1X
k=0

(a0 + b)k(b)k
k!(a+ a0 + b+ n)k

zk

(4)
=

1X
k=0

(a0 + b)k(b)k
k!

zk
1X
n=0

(a)n(b)n
n!(a+ a0)n

�(b)�(a+ a0 + n)

�(a+ a0 + b+ n+ k)

(5)
=

1X
k=0

(a0 + b)k(b)k
k!

zk
�(b)�(a+ a0)

�(a+ a0 + b+ k)
2F1(a; b; a+ a

0 + b+ k; 1)

(6)
=

1X
k=0

(a0 + b)k(b)k
k!

zk
�(b)�(a+ a0)

�(a+ a0 + b+ k)

�(a+ a0 + b+ k)�(a0 + k)

�(a0 + b+ k)�(a+ a0 + k)

(7)
=
�(a0)�(b)

�(a0 + b)

1X
k=0

(a0)k(b)k
k!(a+ a0)k

zk =
�(a0)�(b)

�(a0 + b)
2F1(a

0; b; a+ a0; z):

In this sequence of equalities (1) and (4) come from the summation of series with positive terms
under the integral (or sum) sign, (2) comes from the Gauss formula (see Rainville (1960), page 47,
Theorem 16), (3) and (5) come from the de�nition of 2F1, (6) come from the classical evaluation
of 2F1 in 1 (see Rainville (1960), page 49, Theorem 18) and (7) comes from (2.5) with x = a0,
x = a+ a0 and x = a0 + b. �

End of the proof of Theorem 2.1. By substituting z = 1=(1 + u) with u > 0 in (2.10)
we get that the densities of U and V are equal, as their normalizing constants C and C 0: �

Remark 2.3. We actually proved that C(a; a0; b) is a symmetric function of (a; a0), equival-
ently

3F2(a; a; b; a+ b; a+ a
0; 1)

�(a0)�(a+ b)
=

3F2(a
0; a0; b; a0 + b; a+ a0; 1)

�(a)�(a0 + b)
: (2.11)

The following theorem is the main result of our paper. It gives a characterization of distributions

of the family �a;a0;b which generalizes that discussed in the introduction for the beta distribution,
to which it reduces for a+ a0 = b. Theorem 2.4.

1. If W � �(2)b;a , W 0 � �(2)b;a0 and X > 0 are three independent random variables, then

X � 1

1 + W
1+W 0X

(2.12)

if and only if X � �a;a0;b:

4
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2. If W � �(2)b;a and X > 0 are two independent random variables, then

X � 1

1 +WX
(2.13)

if and only if X � �a;a;b:

3. Let (Wn)n�1 and (W 0
n)n�1 be two independent i.i.d sequences of random variables with

respective distributions �(2)b;a and �
(2)
b;a0 : Then �a;a0;b is the distribution of the random con-

tinued fraction
1

1 + W1

1+
W 0
1

1+
W2
1+:::

: (2.14)

Proof. By Theorem 14, page 506 of Chrystal (1964) (2.14) converges almost surely, sinceP
n(W

�1
n +W 0

n
�1) =1 almost surely. We are in position to apply a general principle (Propos-

ition 1 in Chamayou and Letac (1991)) to the sequence (Fn)1n=1 of random mappings of (0; 1)
into itself de�ned by

Fn(z) =
1

1 + Wn
1+W 0

nz

:

Since F1 �� � ��Fn(z) has almost surely a random constant limit X then the distribution of X is a
stationary distribution of the Markov chain !n = Fn � � � ��F1(z) and this stationary distribution
is unique. Since Theorem 2.1 implies that �a;a0;b is a stationary distribution of the Markov chain
(!n)

1
n=0, this proves that X � �a;a0;b, which implies the �rst and the third statements of the

theorem. The second statement is obtained by repeating the argument with the simpler random
mappings

Gn(z) =
1

1 +Wnz
: �

Remark 2.5. The results of the above theorem can be reformulated in alternative ways by
recalling from the introduction that random variables with the �(2)b;a law can be expressed either
as a ratio Z=Y of independent Z � �b;1 and Y � �a;1 or as (1� U)=U with U � �a;b.

Remark 2.6. In Pham-Gia (2004) a particular type of densities called hyperbeta densities
are discussed. An hyperbeta density starts with the data of an integer m � 2 and of two
sequences a = (a1; : : : ; am+1) and b = (b1; : : : ; bm) of positive numbers such that b1 < a1 andP
j>1 bj �

P
i>1 ai > 0. Denote p = b1 and q = a1� b1 for simplicity and write a0 and b0 for the

sequences a and b where a1 and b1 have been taken away. We have thereforeZ 1

0
m+1Fm(a;b;x)�p;q(dx) = m+2Fm(a; p;b; p+ q; 1) = mFm�1(a

0;b0; 1):

The corresponding hyperbeta distribution is m+1Fm(a; b;x)

mFm�1(a0; b0;1)
�p;q(dx): It is designed for having a

hypergeometric normalizing constant mFm�1(a0;b0; 1) less complex than the density itself. The
simplest version is obtained for m = 2 and the �ve positive parameters a; b; c; p; q

�(c+ a)�(c+ b)

�(c)�(a+ b+ c)
3F2(p+ q; a; b; p; a+ b+ c;x)�p;q(dx): (2.15)

We know of no probabilistic interpretation of these hyperbeta distributions. It is easily checked
that none of them is beta-hypergeometric in the sense of the present paper: they do not overlap
at all with ours, except in the trivial case of beta distributions (for p = a and q = b+ c in (2.15)
�a;c is obtained).

5



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

III Some properties of beta-hypergeometric distributions

By using the classical formula (Rainville (1960) Theorem 21)

2F1(�; �; ; z) = (1� z)���� 2F1( � �;  � �; ; z); (3.16)

with (�; �; ) = (a; b; a+ a0); we can rewrite (2.7) as

�a;a0;b(dx) =
�(a+ b)�(a0)

�(b)�(a+ a0)3F2(a; a; b; a+ b; a+ a0; 1)
2F1(a

0; a+a0�b; a+a0;x)�a;a0(dx); (3.17)

where

�a;a0(dx) =
�(a+ a0)

�(a)�(a0)
xa�1(1� x)a0�11(0;1)(x)dx

is the beta distribution with parameters a and a0 > 0. Hence if d = a+ a0 � b = 0, then �a;a0;b
coincides with �a;a0 : From (3.17) we get that

d�a;a0;b
d�a;a0

(x) / 2F1(a
0; a+ a0 � b; a+ a0;x); x 2 (0; 1):

For d > 0 the function 2F1(a
0; d; a + a0;x) is increasing in x 2 (0; 1). For d < 0 use the Gauss

representation formula

2F1(a
0; d; a+ a0;x) =

1Z
0

(1� tx)�d�a0;a(dt) (3.18)

to check that 2F1(a0; d; a + a0;x) is decreasing. More generally for any �xed a and a0 > 0 the
family

�
�a;a0;a+a0�d ; d 2 (�1; a+ a0)

	
is seen to be increasing in the likelihood ratio order.

Moreover, from (3.18) we notice that �a;a0;b is the marginal law of the x-component of a joint
law on (0; 1)2

�(dx; dt) =
�(a+ b)�(a0)

�(b)�(a+ a0)3F2(a; a; b; a+ b; a+ a0; 1)
(1� tx)�(a+a0�b)�a0;a(dt)�a;a0(dx);

whereas the t-marginal is clearly �a0;a;b: The Mellin transform of �a;a0;b can be easily computed
from the de�nition; more generally if X � �a;a0;b we can easily compute E(Xt(1 � X)s). But
with the aid of Theorem 2.1 we can also obtain another expression for the Mellin transform of
X: This is the purpose of the following

Proposition 3.1. For real t and s the integral Ia;a0;b(t; s) =
R 1
0 x

t(1�x)s�a;a0;b(dx) converges
if and only if t > �a and s > �min(a0; b): In this case

Ia;a0;b(t; s) =
�(a+ b)�(a+ t)�(b+ s)

�(a)�(b)�(a+ b+ t+ s)
3F2(a+ t; a; b; a+ b+ t+ s; a+ a

0; 1)

3F2(a; a; b; a+ b; a+ a0; 1)
: (3.19)

Furthermore for t > �a

Ia;a0;b(t; 0) =

Z 1

0
xt�a;a0;b(dx) =

3F2(a
0; a0 � t; b; a0 + b; a+ a0; 1)

3F2(a0; a0; b; a0 + b; a+ a0; 1)
: (3.20)

6
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Proof. Since all terms are positive we can invert sums and integrals, whether they diverge or
not: Z 1

0
xt(1� x)s�a;a0;b(dx) = C

1X
n=0

(a)n(b)n
n!(a+ a0)n

Z 1

0
xa+t+n�1(1� x)b+s�1dx (3.21)

= C
�(a+ t)�(b+ s)

�(a+ b+ t+ s)

1X
n=0

(a)n(b)n(a+ t)n
n!(a+ a0)n(a+ b+ t+ s)n

(3.22)

= C
�(a+ t)�(b+ s)

�(a+ b+ t+ s)
3F2(a+ t; a; b; a+ b+ t+ s; a+ a

0; 1);

where C = C(a; a0; b). Note that the integrals at the right hand side of (3.21) are all �nite if and
only if a+ t > 0 and b+ s > 0: Under this condition the series of (3.22) converges if and only if
a0+s > 0 according to the criterion of (2.6). For the second part, �rst apply Theorem 2.1: given
two independent random variables X � �a;a0;b and W 0 � �(2)b;a0 then X 0 = (1+XW 0)�1 � �a0;a;b:
Since 1�X0

X0 = XW 0 and the Mellin transform of W 0 is given byZ
wt�

(2)

b;a0
(dw) =

�(a0 � t)�(b+ t)
�(a0)�(b)

;�b < t < a0; (3.23)

for �b < t < a0

E(Xt) =
1

E((W 0)t)
E((

1�X 0

X 0 )t):

Next apply the �rst part of the proposition by replacing (a; a0; b; t; s) by (a0; a; b;�t; t), getting
the result (3.20) for �min(b; a) < t < a0: To extend it to t > �a, we observe that the right hand
side of (3.20) is �nite if and only if t > �a and is a positive real analytic function of t on this
interval: The principle of maximal analyticity (see e.g. Letac and Mora (1990), Theorem 3.1)
for Laplace transforms therefore implies that (3.20) holds for t > �a. �

Remark 3.2. Our main result has allowed us to obtain two di¤erent expressions for the Mel-
lin transform I(t; 0; a; b; a0), obtained from (3.20) and (3.19). Equating these two and recalling
the equality (2.11) already obtained, we obtain

3F2(a+ t; a; b; a+ b+ t; a+ a
0; 1)

�(a0)�(a+ b+ t)
=

3F2(a
0; a0 � t; b; a0 + b; a+ a0; 1)
�(a+ t)�(a0 + b)

; (3.24)

for t > �a. It is readily checked that this equality (3.24) is a particular case of a result due to
Thomae (1879), which is reported as Theorem A.1 in the Appendix, under the form stated by
Maier (2005), page 46. To conclude this section, we prove and extend some observations of a
referee about the limits in distribution of the family �a;a0;b.

Proposition 3.3. The following convergences in law hold:

1. lima!0 �a;a0;b = �0 and lima!1 �a;a0;b = �1

2. lima0!0 �a;a0;b = �1 and lima0!1 �a;a0;b = �a;b

3. limb!0 �a;a0;b = �1, limb!1 �a;a0;b = �0 if a � a0 and limb!1 �a;a0;b = �a�a0;a0 if a0 < a:

7
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Proof. Since all probabilities here are concentrated on the compact interval [0; 1]; from the
Weierstrass uniform approximation theorem of continuous functions by sequences of polynomials
all the above statements will be proved if we prove convergence of moments, or even if we prove
the simple convergence of the Mellin transforms for t > 0. For statement 1. we use (3.20): since

3F2(a
0; a0 � t; b; a0 + b; a+ a0; 1) =

1X
n=0

(a0 � t)n(b)n
n!(a0 + b)n

� (a0)n
(a+ a0)n

;

we observe that a 7! (a0)n
(a+a0)n

is a decreasing function of a on (0;1): The monotone convergence
or the dominated convergence theorems therefore enable us to invert sum and limit. For instance
for t > 0 and a! 0 we get

lim
a!0 3F2(a

0; a0� t; b; a0+ b; a+ a0; 1) =
1X
n=0

(a0 � t)n(b)n
n!(a0 + b)n

� lim
a!0

(a0)n
(a+ a0)n

= 2F1(a
0� t; b; a0+ b; 1)

(here we have used the fact that

1X
n=0

����(a0 � t)n(b)nn!(a0 + b)n

���� <1;
from the introduction). Similarly for the denominator in (3.20) we have lima!0 3F2(a

0; a0; b; a0+
b; a + a0; 1) = 1: This proves that the limit of the Mellin transform (3.20) when a ! 0 is zero
for any t > 0, which implies lima!0 �a;a0;b = �0: When a ! 1 all the terms except the �rst go
to zero in 3F2(a

0; a0 � t; b; a0 + b; a + a0; 1) go to zero except the �rst, thus the Mellin tranform
(3.20) tends to 1 for any t > 0, which implies lima!1 �a;a0;b = �1. The proof of the statement 2.
requires either the use of (3.19) in the particular case s = 0 or equivalently it can be obtained
by plugging in the relation of Theorem 2.1 the limit distributions obtained in statement 1. The
proof of statement 3. is analogous to that of statement 1. For the last limit result notice that,
for a0 < a, the Mellin transform of �a�a0;a0 is

2F1(a
0; a0 � t; a+ a0; 1)

2F1(a0; a0; a+ a0; 1)
=
�(a)�(a� a0 + t)
�(a� a0)�(a+ t) : �

IV Identi�ability of (a; a0; b)

Proposition 4.1. If (a; a0; b) and (a1; a01; b1) in (0;1)3 are such that �a;a0;b = �a1;a01;b1 then
(a; a0; b) = (a1; a01; b1):

Proof. Let C = C(a; a0; b) and C1 = C(a1; a
0
1; b1): We see easily that a = a1 and that

C = C1 since for x ! 0 the densities of �a;a0;b and �a1;a01;b1 are equivalent to Cx
a�1 and

C1x
a1�1, respectively: Thus writing the equality of densities leads to

(1� x)b 2F1(a; b; a+ a0;x) = (1� x)b1 2F1(a; b1; a+ a01;x)

for all x 2 (0; 1): Now use a classical formula (Rainville (1960), Theorem 20, page 60) to obtain
for all x 2 (0; 12)

2F1(a
0; b; a+ a0;�x=(1� x)) = 2F1(a

0
1; b1; a+ a

0
1;�x=(1� x));

8
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hence for z in a neighborhood of 0 we have

2F1(a
0; b; c; z) = 2F1(a

0
1; b1; c1; z);

where c = a+ a0 and c1 = a+ a01: By equating the coe¢ cients of z; z
2 and z3 and taking ratios

we get

a0b

c
=
a01b1
c1
;
(a0 + 1)(b+ 1)

(c+ 1)
=
(a01 + 1)(b1 + 1)

(c1 + 1)
;
(a0 + 2)(b+ 2)

(c+ 2)
=
(a01 + 2)(b1 + 2)

(c1 + 2)
:

From this we get (a0; b; c) = (a01; b1; c1) or (b1; a
0
1; c1): Here are the details: from the knowledge

of

�0 =
a0b

c
; �1 =

(a0 + 1)(b+ 1)

c+ 1
; �2 =

(a0 + 2)(b+ 2)

c+ 2
;

we get by taking suitable linear combination of both members

c(2�1 � �0 � �2) + 2 + 2�1 � 2�2 = 0; a0 + b = (c+ 1)�1 � c�0 � 1; a0b = c�0;

from which c can be uniquely obtained from the �rst equation (since �i > 0 for i = 0; 1; 2 such
an equation cannot be undetermined) and the unordered pair fa0; bg from the remaining two:
But since c = a + a0 we derive a0 and thus b as well. Hence a0 = a1, b = b1 and c = c1 as
promised. �

V Symmetry of �a;a0;b

In this section we prove that �a;a0;b is symmetric with respect to 1=2 if and only if a = a0

and b = a + a0, i.e. there are no symmetric laws out of the beta family. More generally the
transformation x 7! 1� x on a �a;a0;b-distributed random variable induces a law which is not a
member of the family, except in the beta case. The main argument for the proof of this result
is contained in the following

Lemma 5.1. Let (�; �; ) and (�1; �1; 1) be real numbers such that  > 0 and 1 > 0:
Consider the functions y and y1 de�ned on (0; 1) by

y(x) = 2F1(�; �; ; 1� x); y1(x) = 2F1(�1; �1; 1;x)

and assume that Dy = y1 for some real constant D 6= 0: Then y1 � 1, that is �� = �1�1 = 0.
Proof. The functions y and y1 are solutions of the di¤erential equations (see Rainville

(1960), page 53)

x(1� x)y001(x) + (1 � (�1 + �1 + 1)x)y01(x)� �1�1 y1(x) = 0 (5.25)

x(1� x)y00(x) + (� + �+ � + 1� (�+ � + 1)x)y0(x)� �� y(x) = 0 (5.26)

(the �rst being obtained as the second by changing x into 1�x). Since Dy = y1 multiplying both
sides of (5.26) by D we get another di¤erential equation for y1 which subtracted from (5.25)
yields (A�Bx)y01(x) = Cy1(x) where A;B;C are suitable constants. By de�nition y1(0+) = 1;
now suppose that y1 is not constantly equal to 1. Then C 6= 0 and (A;B) 6= (0; 0): If B = 0 then
y1(x) = e

Cx=A, which is not a hypergeometric function as seen by its power series expansion. If
A = 0 then y1(0+) = 1 is impossible. Thus without loss of generality we assume A = 1 and
we get y1(x) = (1 � Bx)�a with a = C=B 6= 0: Expanding x 7! (1 � Bx)�a in power series

9
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P1
n=0

(a)n
n! (B)

n xn shows that it is a hypergeometric function only if B = 1: To conclude the
proof

2F1(�; �; ;x) = y(1� x) = D�1y1(1� x) = D�1x�a;

which is impossible since the function on the r.h.s. is unbounded in any interval (0; �) for a > 0
and is zero at 0 if a < 0: �

We can now prove the promised result.

Theorem 5.2. Let X � �a;a0;b: Then there exists (a1; a01; b1) in (0;1)3 such that X1 =
1�X � �a1;a01;b1 if and only if a1 = a

0; a01 = a and b1 = b = a+ a
0 = a1 + a01.

Proof. The if part is obvious since �a;a0;a+a0 = �a;a0 : Conversely, suppose that X1 = 1�X
with X � �a;a0;b and X1 � �a1;a01;b1 : Then, for all x 2 (0; 1) we have:

Cxa1�1(1� x)b1�1 2F1(a1; b1; a1 + a01;x) = (1� x)a�1xb�1 2F1(a; b; a+ a0; 1� x)

or equivalently

C(1� x)b1�a 2F1(a1; b1; a1 + a01;x) = xb�a1 2F1(a; b; a+ a0; 1� x); (5.27)

C being a constant. Introduce d = a + a0 � b and d1 = a1 + a
0
1 � b1: Applying (3.16) to both

sides of (5.27) (speci�cally (�; �;�; z) = (a1; b1; a1 + a01;x) and (a; b; a+ a
0; 1� x)) we get

C(1� x)a01�a 2F1(a01; d1; a1 + a01;x) = xa
0�a1

2F1(a
0; d; a+ a0; 1� x): (5.28)

Note for all t 2 R we have

Ia1;a01;b1(t;�t) = E((
X1

1�X1
)t) = E((

1�X
X

)t) = Ia;a0;b(�t; t):

Now application of Proposition 3.1 shows that the left hand side is �nite if and only if �a1 <
t < min(a01; b1) and that the right hand side is �nite if and only if �min(a0; b) < t < a: This
leads to

a1 = min(a
0; b); a = min(a01; b1):

It remains to discuss several cases. If a1 = a0 � b and a = a01 � b1 then one applies Lemma
5.1 to (5.28) and we get d = d1 = 0 as desired. If a1 = b < a0 and a = b1 < a01 then one
applies Lemma 5.1 to (5.27) and we get the absurd statement ab = a1b1 = 0: If a1 = a0 � b and
a = b1 < a

0
1 then (5.27) and (3.16) we get

C 2F1(a1; b1; a1 + a
0
1;x) = 2F1(a

0; d; a+ a0; 1� x);

leading via Lemma 5.1 to the absurd statement a1b1 = 0: The case a = a01 � b1 and a1 = b < a0
is similar. The result is proved. �

From the previous result we deduce immediately the symmetry result mentioned at the
beginning of the section.

Corollary 5.3. Let X � �a;a0;b and X 0 � �a0;a;b: Then X � 1�X 0 if and only if b = a+ a0

and X � 1�X if and only if a = a0 = b=2:

10
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VI Some particular examples

We list some values of (a; a0; b) for which �a;a0;b has a remarkable form.

1. As seen before b = a+ a0 gives �a;a0;a+a0(dx) = �a;a0(dx): If more generally b = a+ a0 + k
where k is a non negative integer, then the hypergeometric series

2F1(a
0; a+ a0 � b; a+ a0;x)

terminates and is a polynomial with degree � k. Thus �a;a0;a+a0+k(dx) has a simple expres-
sion from (3.17). In particular the normalizing constant and the moments of �a;a0;a+a0+k(dx)
are computable, since the integral of a polynomial by �a;a0 is elementary. For instance

�a;a0;a+a0+1(dx) =
a+ a0

a2 + aa0 + a02
(a+ a0(1� x))�a;a0(dx):

2. For a = a0 = b = 1=2 then from Rainville (1960) page 71, exercise 19 and using Dixon�s
theorem in order to compute the normalizing constant, we get

�1=2;1=2;1=2(dx) =
8�

x1=2(1� x)1=2�4(14)

(Z �=2

0

dtp
1� x sin2 t

)
1(0;1)(x)dx:

3. For a = a0 = 1=2 and b = 3=2 we can use (3.17) and Rainville (1960) page 71, exercise 20,
to get

�1=2;1=2;3=2(dx) =
1

3F2(
1
2 ;
1
2 ;
3
2 ; 2; 1; 1)

4

�2x1=2(1� x)1=2

Z �=2

0

p
1� x sin2 tdt 1(0;1)(x)dx:

4. For a = a0 = b+ 1
2� with � = �1 from Rainville (1960) page 70, exercise 10 we get

�a;a;a+ 1
2
(dx) =

2a�1�(3a)

2F1(a; a; 3a; 1=2)�(a)�(2a)
(1 +

p
1� x)1�2axa�1(1� x)a�1 1(0;1)(x)dx

and for a > 1
2

�a;a;a� 1
2
(dx) =

2a�1�(3a� 1)
2F1(a; a; 3a� 1; 1=2)�(a)�(2a� 1)

(1+
p
1� x)1�2axa�1(1�x)a�3=2 1(0;1)(x)dx;

where the normalizing constants have been computed by direct integration together with
Gauss formula.

5. From Rainville (1960) page 71, exercise 18 we get for a = b = 1=2; a0 = 1

�1=2;1;1=2(dx) =
1

�3F2(
1
2 ;
1
2 ;
1
2 ; 1;

3
2 ; 1)

arcsin
p
x

x
p
1� x

1(0;1)(x)dx

and for a = b = 1; a0 = 1=2

�1;1=2;1(dx) =
1

3F2(1; 1; 1; 2;
3
2 ; 1)

arcsin
p
x

p
x
p
1� x

1(0;1)(x)dx:

11
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6. Using a result from the same exercise we get the elegant case a = a0 = b = 1

�1;1;1(dx) =
6

�2
log

1

1� x1(0;1)(x)
dx

x
: (6.29)

Our main result states in this case that if (1�X)=X �WX with X > 0 and W independ-
ent, the latter with Pareto distribution function 1 � (1 + x)�1; for x > 0 (alternatively if
X � U

U+(1�U)X for X and U independent, the latter uniform in (0; 1)), then X has distri-
bution (6.29). Note that when t > �1; t 6= 0, by expanding x 7! log(1�x) in power series,
we get E(Xt) = 6

�2
1
t

P1
n=1(

1
n �

1
n+t). When t is an integer we get E(X

t) = 6
t�2
Pt
n=1

1
n :

The number of interesting examples is quite large, as can be seen from Abramovitz and
Stegun (1964), formulas 15.1.i for i = 3; 4; 6; 9; 10; 12� 18 and 15.4.i for i = 7� 26:

VII Appendix: a probabilistic proof of the Thomae formula

We give here the elements of a probabilistic proof of Thomae�s result that we have mentioned
in Remark 3.2. It gives a second proof of (3.20), which is essentially equivalent to our Theorem
2.1.

Theorem A.1. Consider the analytic function on C5 de�ned by the analytic continuation
of

(a; b; c; d; e) 7! 3F2(a; b; c; d; e; 1) =

1X
n=0

(a)n(b)n(c)n
n!(d)n(e)n

:

De�ne the 5� 5 matrices

A = I5 + J5 �
�
J3 0
0 0

�
; 3A�1 = 3I5 + J5 � 3

�
J3 0
0 J2

�
;

where Jk is the (k; k) matrix whose entries are 1, and de�ne (a; b; c; d; e) = (x; y; z; u; v)A: Then
the function

E(x; y; z; u; v) =
1

�(d)�(e)�(d+ e� a� b� c) 3F2(a; b; c; d; e; 1)

is a symmetric function of (x; y; z; u; v):
Sketch of the proof. Let U � �a;b and V � �c;d be independent; then the distribution of UV
is

�(a+ b)�(c+ d)

�(a)�(b+ c+ d)
2F1(b; c+ d� a; b+ d; 1� x)�c;b+d(dx)

by an easy calculation using Gauss formula (3.18). Notice incidentally that for a+b = 1 this has
been called by Henrici (1977) the hypergeometric distribution. The Mellin transform of such a
X = 1� UV is the following function of t:

E(Xt) =
�(a+ b)�(c+ d)�(b+ d+ t)

�(a)�(b+ d)�(b+ c+ d+ t)
� 3F2(b; c+ d� a; b+ d+ t; b+ c+ d+ t; b+ d; 1): (7.30)

An alternative expression for this is obtained by

E(Xt) = E
�
(1� UV )t

�
=

1X
n=0

(�t)n
n!

E(Un)E(V n) = 3F2(a; c;�t; a+ b; c+ d; 1); (7.31)

12
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since E(Un) = (a)n=(a+ b)n. Next check that multiplying by A�1 the row vectors of arguments
of the functions 3F2 appearing in the two previous expressions we get that the one in (7.30) is
obtained from the one in (7.31) by the permutation (1; 2; 3; 4; 5)! (4; 5; 1; 2; 3) of the arguments.
It is then easy to realize that the symmetry of the function E is guaranteed only by the invariance
under this permution. The proof is �nished, since by choosing

a = x; b = u� x; c = y; d = v � y; t = �z

the vector of arguments of 3F2 at the r.h.s. of (7.31) is precisely (x; y; z; u; v). �
In order to see (3.24) as a particular case of Theorem A.1 it is enough to check that the two

vectors

(a+ t; a; b; a+ b+ t; a+ a0)3A�1

= (2t� b+ a+ a0;�t� b+ a+ a0;�t+ 2b� 2a+ a0; 2t+ 2b+ a� 2a0;�t� b+ a+ a0);
(a0; a0 � t; b; a0 + b; a+ a0)3A�1

= (2t� b+ a+ a0;�t� b+ a+ a0; 2t+ 2b+ a� 2a0;�t+ 2b� 2a+ a0;�t� b+ a+ a0)

are obtained the second from the �rst by the transposition (3; 4).
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