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I Introduction

The aim of this paper is to generalize the following well known facts about gamma and beta distributions. If the independent random variables X and G 1 are distributed as beta a;a 0 and gamma a+a 0 ;1 respectively, then XG 1 a;1 . Furthermore, if the random variable G 2 is distributed as a 0 ;1 and if it is independent of (X; G 1 ), then

G 2 + XG 1 a+a 0 ;1 ; G 2 G 2 + XG 1 = 1 1 + X G 1 G 2
a 0 ;a (1.1) and these two random variables are independent. Next, recall that for any a; b > 0 the beta law of the second kind [START_REF] Chamayou | Explicit stationary distributions for composition of random functions and products of random matrices[END_REF] b;a given by (1 + w) a+b 1 (0;1) (w)dw is the law of the ratio of two independent gamma variables with shape parameters b for the numerator and a for the denominator, and the same scale parameter (equivalently, it is the law of (1 U )=U with U a;b ). Thus we have that the random variable appearing in (1.1)

W 0 G 1 G 2 (2) a+a 0 ;a 0 (1.2)
and we can reexpress (1.1) by saying that if W 0 has the law (1.2) and is independent of X a;a 0 , then 1 1 + W 0 X a 0 ;a :
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Moreover, if W

(2) a+a 0 ;a is independent of (X; W 0 ), then 1 1 + W 1+W 0 X X:

(1.3)

This relation (1.3) characterizes the law a;a 0 (Chamayou and [START_REF] Chamayou | Explicit stationary distributions for composition of random functions and products of random matrices[END_REF], Example 11). In this paper we generalize the result (1.3) to the general case W

b;a , W 0

b;a 0 , with b > 0 not necessarily equal to a + a 0 . We prove that there is again a unique law parameterized by (a; a 0 ; b) for X, supported by the positive real line, which ensures the equality in law (1.3). In Section 2 we will explicitly present its density function and prove this characterization. In Section 3 some of the properties of this family of laws will be investigated. In Section 4 we will prove the identi…ability of the parameters (a; a 0 ; b) and in Section 5 we discuss symmetry properties. Finally, in Section 6 we will give some particularly interesting cases. The appendix links our results with the Thomae (1879) formula.

II The beta-hypergeometric distribution

First recall that for any real number a the sequence of Pochhammer's symbols f(a) n g 1 n=0 is de…ned by (a) 0 = 1 and (a) n+1 = (a + n)(a) n : For positive numbers a 1 ; : : : ; a p ; b 1 ; : : : ; b q we consider the sum of the power series p F q (a 1 ; : : : ; a p ; b 1 ; : : :

; b q ; z) = 1 X n=0 (a 1 ) n : : : (a p ) n n!(b 1 ) n : : : (b q ) n z n : (2.4) 
For p = q + 1, which is the case of our interest, the power series (2.4) is always convergent for jzj < 1 by means of the ratio criterion. If x > 0 then

(x + n) = (x) n (x) ; (2.5)
so that by the Stirling approximation to the gamma function (x) n n x 1 n! (x) . Hence the series (2.4) converges for z = 1 if and only if

c = b 1 + + b q a 1 a q+1 > 0 (2.6)
since the coe¢ cient of the general term of the series (2.4) is equivalent (up to a multiplicative constant) to n 1 c . We will also need to consider (2.4) when some of the a j is negative, in which case the series (2.4) terminates if at least one of them is a non positive integer. Otherwise, since k < a < k + 1 implies (a) n = (a) k (a + k) n k for n k; the general term of (2.4) has constant sign eventually in n, and again we have that the series (2.4) converges for z = 1 if and only if c > 0. Next for any positive a; a 0 and b, de…ne the following probability measure

a;a 0 ;b (dx) = C(a; a 0 ; b)x a 1 (1 x) b 1 2 F 1 (a; b; a + a 0 ; x)1 (0;1) (x)dx; (2.7)
where ; a + a 0 ; x) = 1 F 0 (a; ; x) = (1 x) a : Therefore a;a 0 ;a+a 0 (dx) = a;a 0 (dx). (2.9)

C(a; a 0 ; b) = (a + b) (a) (b) 3 F 2 (
Proof. Suppose now that X 0 a 0 ;a;b : The relation (2.9) is equivalent to

1 X 0 X 0 XW 0 : The density of V = 1 X 0 X 0 is f V (v) = C 0 v b 1 (1 + v) a 0 +b 2 F 1 (a 0 ; b; a + a 0 ; 1 1 + v )1 (0;1) (v);
where C 0 = C(a 0 ; a; b). On the other hand the density of U = XW 0 is given by

f U (u) = C (a 0 + b) (a 0 ) (b) 1 u Z 1 0 x a 1 (1 x) b 1 2 F 1 (a; b; a + a 0 ; x)( u x ) b 1 (1 + u x ) a 0 +b dx = C (a 0 + b) (a 0 ) (b) u b 1 Z 1 0 x a+a 0 1 (1 x) b 1 (x + u) a 0 +b 2 F 1 (a; b; a + a 0 ; x)dx = C (a 0 + b) (a 0 ) (b) u b 1 Z 1 0 t b 1 (1 t) a+a 0 1 (1 + u t) a 0 +b 2 F 1 (a; b; a + a 0 ; 1 t)dt = C (a 0 + b) (a 0 ) (b) u b 1 (1 + u) a 0 +b Z 1 0 t b 1 (1 t) a+a 0 1 (1 t 1+u ) a 0 +b 2 F 1 (a; b; a + a 0 ; 1 t)dt;
where C = C(a; a 0 ; b). We conclude the proof of the theorem by means of the following Lemma 2.2. For a; a 0 ; b > 0 and for 0 < z < 1 we have

Z 1 0 t b 1 (1 t) a+a 0 1 (1 zt) a 0 +b 2 F 1 (a; b; a + a 0 ; 1 t)dt = (a 0 ) (b) (a 0 + b) 2 F 1 (a 0 ; b; a + a 0 ; z): (2.10) Proof of Lemma 2.2. Observe that Z 1 0 t b 1 (1 t) a+a 0 1 (1 zt) a 0 +b 2 F 1 (a; b; a + a 0 ; 1 t)dt (1) = 1 X n=0 (a) n (b) n n!(a + a 0 ) n Z 1 0 t b 1 (1 t) a+a 0 +n 1 (1 zt) a 0 +b dt (2) = 1 X n=0 (a) n (b) n n!(a + a 0 ) n (b) (a + a 0 + n) (a + a 0 + b + n) 2 F 1 (a 0 + b; b; a + a 0 + b + n; z) (3) = 1 X n=0 (a) n (b) n n!(a + a 0 ) n (b) (a + a 0 + n) (a + a 0 + b + n) 1 X k=0 (a 0 + b) k (b) k k!(a + a 0 + b + n) k z k (4) = 1 X k=0 (a 0 + b) k (b) k k! z k 1 X n=0 (a) n (b) n n!(a + a 0 ) n (b) (a + a 0 + n) (a + a 0 + b + n + k) (5) = 1 X k=0 (a 0 + b) k (b) k k! z k (b) (a + a 0 ) (a + a 0 + b + k) 2 F 1 (a; b; a + a 0 + b + k; 1) (6) = 1 X k=0 (a 0 + b) k (b) k k! z k (b) (a + a 0 ) (a + a 0 + b + k) (a + a 0 + b + k) (a 0 + k) (a 0 + b + k) (a + a 0 + k) (7) = (a 0 ) (b) (a 0 + b) 1 X k=0 (a 0 ) k (b) k k!(a + a 0 ) k z k = (a 0 ) (b) (a 0 + b) 2 F 1 (a 0 ; b; a + a 0 ; z):
In this sequence of equalities ( 1) and ( 4) come from the summation of series with positive terms under the integral (or sum) sign, (2) comes from the Gauss formula (see Rainville (1960), page 47, Theorem 16), ( 3) and ( 5) come from the de…nition of 2 F 1 , (6) come from the classical evaluation of 2 F 1 in 1 (see Rainville (1960), page 49, Theorem 18) and (7) comes from (2.5) with x = a 0 , x = a + a 0 and x = a 0 + b.

End of the proof of Theorem 2.1. By substituting z = 1=(1 + u) with u > 0 in (2.10) we get that the densities of U and V are equal, as their normalizing constants C and C 0 : Remark 2.3. We actually proved that C(a; a 0 ; b) is a symmetric function of (a; a 0 ), equival-

ently 3 F 2 (a; a; b; a + b; a + a 0 ; 1) (a 0 ) (a + b) = 3 F 2 (a 0 ; a 0 ; b; a 0 + b; a + a 0 ; 1) (a) (a 0 + b) : (2.11)
The following theorem is the main result of our paper. It gives a characterization of distributions of the family a;a 0 ;b which generalizes that discussed in the introduction for the beta distribution, to which it reduces for a + a 0 = b. Theorem 2.4.

1. If W (2) b;a , W 0 (2) 
b;a 0 and X > 0 are three independent random variables, then

X 1 1 + W 1+W 0 X (2.12) if and only if X a;a 0 ;b : 2. If W (2) 
b;a and X > 0 are two independent random variables, then

X 1 1 + W X (2.13)
if and only if X a;a;b :

3. Let (W n ) n 1 and (W 0 n ) n 1 be two independent i.i.d sequences of random variables with respective distributions b;a 0 : Then a;a 0 ;b is the distribution of the random continued fraction 

1 1 + W 1 1+ W 0 1 1+ W 2 
(F n ) 1
n=1 of random mappings of (0; 1) into itself de…ned by

F n (z) = 1 1 + Wn 1+W 0 n z : Since F 1 F n (z)
has almost surely a random constant limit X then the distribution of X is a stationary distribution of the Markov chain ! n = F n F 1 (z) and this stationary distribution is unique. Since Theorem 2.1 implies that a;a 0 ;b is a stationary distribution of the Markov chain (! n ) 1 n=0 , this proves that X a;a 0 ;b , which implies the …rst and the third statements of the theorem. The second statement is obtained by repeating the argument with the simpler random mappings

G n (z) = 1 1 + W n z :
Remark 2.5. The results of the above theorem can be reformulated in alternative ways by recalling from the introduction that random variables with the

b;a law can be expressed either as a ratio Z=Y of independent Z b;1 and Y a;1 or as (1 U )=U with U a;b . Remark 2.6. In Pham-Gia (2004) a particular type of densities called hyperbeta densities are discussed. An hyperbeta density starts with the data of an integer m 2 and of two sequences a = (a 1 ; : : : ; a m+1 ) and b = (b 1 ; : : : ; b m ) of positive numbers such that b 1 < a 1 and P j>1 b j P i>1 a i > 0. Denote p = b 1 and q = a 1 b 1 for simplicity and write a 0 and b 0 for the sequences a and b where a 1 and b 1 have been taken away. We have therefore

Z 1 0 m+1 F m (a; b; x) p;q (dx) = m+2 F m (a; p; b; p + q; 1) = m F m 1 (a 0 ; b 0 ; 1):
The corresponding hyperbeta distribution is m+1 Fm(a; b;x) mFm 1 (a 0 ; b 0 ;1) p;q (dx): It is designed for having a hypergeometric normalizing constant m F m 1 (a 0 ; b 0 ; 1) less complex than the density itself. The simplest version is obtained for m = 2 and the …ve positive parameters a; b; c; p; q

(c + a) (c + b) (c) (a + b + c)
3 F 2 (p + q; a; b; p; a + b + c; x) p;q (dx):

(2.15)

We know of no probabilistic interpretation of these hyperbeta distributions. It is easily checked that none of them is beta-hypergeometric in the sense of the present paper: they do not overlap at all with ours, except in the trivial case of beta distributions (for p = a and q = b + c in (2.15) a;c is obtained).

III Some properties of beta-hypergeometric distributions

By using the classical formula (Rainville (1960) Theorem 21) 

(dx) = (a + b) (a 0 ) (b) (a + a 0 ) 3 F 2 (a; a; b; a + b; a + a 0 ; 1)
2 F 1 (a 0 ; a+a 0 b; a+a 0 ; x) a;a 0 (dx); (3.17)

where

a;a 0 (dx) = (a + a 0 ) (a) (a 0 ) x a 1 (1 x) a 0 1 1 (0;1) (x)dx
is the beta distribution with parameters a and a 0 > 0. Hence if d = a + a 0 b = 0, then a;a 0 ;b coincides with a;a 0 : From (3.17) we get that d a;a 0 ;b d a;a 0 (x) / 2 F 1 (a 0 ; a + a 0 b; a + a 0 ; x); x 2 (0; 1):

For d > 0 the function 2 F 1 (a 0 ; d; a + a 0 ; x) is increasing in x 2 (0; 1). For d < 0 use the Gauss representation formula 2 F 1 (a 0 ; d; a + a 0 ; x) = 1 Z 0 (1 tx) d a 0 ;a (dt) (3.18)
to check that 2 F 1 (a 0 ; d; a + a 0 ; x) is decreasing. More generally for any …xed a and a 0 > 0 the family a;a 0 ;a+a 0 d ; d 2 ( 1; a + a 0 ) is seen to be increasing in the likelihood ratio order. Moreover, from (3.18) we notice that a;a 0 ;b is the marginal law of the x-component of a joint law on (0; 1) 2

(dx; dt) = (a + b) (a 0 ) (b) (a + a 0 ) 3 F 2 (a; a; b; a + b; a + a 0 ; 1)
(1 tx) (a+a 0 b) a 0 ;a (dt) a;a 0 (dx); whereas the t-marginal is clearly a 0 ;a;b : The Mellin transform of a;a 0 ;b can be easily computed from the de…nition; more generally if X a;a 0 ;b we can easily compute E(X t (1 X) s ). But with the aid of Theorem 2.1 we can also obtain another expression for the Mellin transform of X: This is the purpose of the following Proposition 3.1. For real t and s the integral I a;a 0 ;b (t; s) = R 1 0 x t (1 x) s a;a 0 ;b (dx) converges if and only if t > a and s > min(a 0 ; b): In this case

I a;a 0 ;b (t; s) = (a + b) (a + t) (b + s) (a) (b) (a + b + t + s) 3 F 2 (a + t; a; b; a + b + t + s; a + a 0 ; 1) 3 F 2 (a; a; b; a + b; a + a 0 ; 1) : (3.19) Furthermore for t > a I a;a 0 ;b (t; 0) = Z 1 0 x t a;a 0 ;b (dx) = 3 F 2 (a 0 ; a 0 t; b; a 0 + b; a + a 0 ; 1) 3 F 2 (a 0 ; a 0 ; b; a 0 + b; a + a 0 ; 1) : (3.20)
Proof. Since all terms are positive we can invert sums and integrals, whether they diverge or not:

Z 1 0 x t (1 x) s a;a 0 ;b (dx) = C 1 X n=0 (a) n (b) n n!(a + a 0 ) n Z 1 0 x a+t+n 1 (1 x) b+s 1 dx (3.21) = C (a + t) (b + s) (a + b + t + s) 1 X n=0 (a) n (b) n (a + t) n n!(a + a 0 ) n (a + b + t + s) n (3.22) = C (a + t) (b + s) (a + b + t + s) 3 F 2 (a + t; a; b; a + b + t + s; a + a 0 ; 1);
where C = C(a; a 0 ; b). Note that the integrals at the right hand side of (3.21) are all …nite if and only if a + t > 0 and b + s > 0: Under this condition the series of (3.22) converges if and only if a 0 + s > 0 according to the criterion of (2.6). For the second part, …rst apply Theorem 2.1: given two independent random variables X a;a 0 ;b and W 0

b;a 0 then X 0 = (1 + XW 0 ) 1 a 0 ;a;b : Since 1 X 0 X 0 = XW 0 and the Mellin transform of W 0 is given by

Z w t (2) b;a 0 (dw) = (a 0 t) (b + t) (a 0 ) (b) ; b < t < a 0 ; (3.23) for b < t < a 0 E(X t ) = 1 E((W 0 ) t ) E(( 1 X 0 X 0 ) t ):
Next apply the …rst part of the proposition by replacing (a; a 0 ; b; t; s) by (a 0 ; a; b; t; t), getting the result (3.20) for min(b; a) < t < a 0 : To extend it to t > a, we observe that the right hand side of (3.20) is …nite if and only if t > a and is a positive real analytic function of t on this interval: The principle of maximal analyticity (see e.g. [START_REF] Letac | Natural real exponential families with cubic variance functions[END_REF], Theorem 3.1) for Laplace transforms therefore implies that (3.20) holds for t > a.

Remark 3.2. Our main result has allowed us to obtain two di¤erent expressions for the Mellin transform I(t; 0; a; b; a 0 ), obtained from (3.20) and (3.19). Equating these two and recalling the equality (2.11) already obtained, we obtain 3 F 2 (a + t; a; b; a + b + t; a + a 0 ; 1) (a 0 ) (a + b + t) = 3 F 2 (a 0 ; a 0 t; b; a 0 + b; a + a 0 ; 1) (a + t) (a 0 + b) ;

for t > a. It is readily checked that this equality (3.24) is a particular case of a result due to Thomae (1879), which is reported as Theorem A.1 in the Appendix, under the form stated by [START_REF] Maier | A generalization of Euler's transformation[END_REF], page 46. To conclude this section, we prove and extend some observations of a referee about the limits in distribution of the family a;a 0 ;b .

Proposition 3.3. The following convergences in law hold:

1. lim a!0 a;a 0 ;b = 0 and lim a!1 a;a 0 ;b = 1 2. lim a 0 !0 a;a 0 ;b = 1 and lim a 0 !1 a;a 0 ;b = a;b 3. lim b!0 a;a 0 ;b = 1 , lim b!1 a;a 0 ;b = 0 if a a 0 and lim b!1 a;a 0 ;b = a a 0 ;a 0 if a 0 < a:

Proof. Since all probabilities here are concentrated on the compact interval [0; 1]; from the Weierstrass uniform approximation theorem of continuous functions by sequences of polynomials all the above statements will be proved if we prove convergence of moments, or even if we prove the simple convergence of the Mellin transforms for t > 0. For statement 1. we use (3.20): since

3 F 2 (a 0 ; a 0 t; b; a 0 + b; a + a 0 ; 1) = 1 X n=0 (a 0 t) n (b) n n!(a 0 + b) n (a 0 ) n (a + a 0 ) n ;
we observe that a 7 ! (a 0 )n (a+a 0 )n is a decreasing function of a on (0; 1): The monotone convergence or the dominated convergence theorems therefore enable us to invert sum and limit. For instance for t > 0 and a ! 0 we get

lim a!0 3 F 2 (a 0 ; a 0 t; b; a 0 + b; a + a 0 ; 1) = 1 X n=0 (a 0 t) n (b) n n!(a 0 + b) n lim a!0 (a 0 ) n (a + a 0 ) n = 2 F 1 (a 0 t; b; a 0 + b; 1)
(here we have used the fact that

1 X n=0 (a 0 t) n (b) n n!(a 0 + b) n < 1;
from the introduction). Similarly for the denominator in (3.20) we have lim a!0 3 F 2 (a 0 ; a 0 ; b; a 0 + b; a + a 0 ; 1) = 1: This proves that the limit of the Mellin transform (3.20) when a ! 0 is zero for any t > 0, which implies lim a!0 a;a 0 ;b = 0 : When a ! 1 all the terms except the …rst go to zero in 3 F 2 (a 0 ; a 0 t; b; a 0 + b; a + a 0 ; 1) go to zero except the …rst, thus the Mellin tranform (3.20) tends to 1 for any t > 0, which implies lim a!1 a;a 0 ;b = 1 . The proof of the statement 2. requires either the use of (3.19) in the particular case s = 0 or equivalently it can be obtained by plugging in the relation of Theorem 2.1 the limit distributions obtained in statement 1. The proof of statement 3. is analogous to that of statement 1. For the last limit result notice that, for a 0 < a, the Mellin transform of a a 0 ;a 0 is 2 F 1 (a 0 ; a 0 t; a + a 0 ; 1) 2 F 1 (a 0 ; a 0 ; a + a 0 ; 1) = (a) (a a 0 + t) (a a 0 ) (a + t) :

IV Identi…ability of (a; a 0 ; b) where the normalizing constants have been computed by direct integration together with Gauss formula. 3 F 2 ( 1 2 ; 1 2 ; 1 2 ; 1; 3 2 ; 1) arcsin p x x p 1 x 1 (0;1) (x)dx and for a = b = 1; a 0 = 1=2 

Theorem 2 . 1 .

 21 The probability measure a;a 0 ;b has the following property. If X a;a 0 ;b

Proposition 4 . 1 .

 41 If (a; a 0 ; b) and (a 1 ; a 0 1 ; b 1 ) in (0; 1) 3 are such that a;a 0 ;b = a 1 ;a 01 ;b 1 then (a; a 0 ; b) = (a 1 ; a 0 1 ; b 1 ): Proof. Let C = C(a; a 0 ; b) and C 1 = C(a 1 ; a 0 1 ; b 1 ):We see easily that a = a 1 and that C = C 1 since for x ! 0 the densities of a;a 0 ;b and a 1 ;a 0 1 ;b 1 are equivalent to Cx a 1 and C 1 x a 1 1 , respectively: Thus writing the equality of densities leads to(1 x) b 2 F 1 (a; b; a + a 0 ; x) = (1 x) b 1 2 F 1 (a; b 1 ; a + a 0 1 ; x)for all x 2 (0; 1): Now use a classical formula (Rainville (1960), Theorem 20, page 60) to obtain for all x 2 (0; 1 2a x a 1 (1 x) a 3=2 1 (0;1) (x)dx;

5 . 1 1=2; 1 ;

 511 From Rainville (1960) page 71, exercise 18 we get for a = b = 1=2; a 0 = 1=2 (dx) =

1

 1 

  almost surely. We are in position to apply a general principle (Proposition 1 in[START_REF] Chamayou | Explicit stationary distributions for composition of random functions and products of random matrices[END_REF]) to the sequence

	:	(2.14)
	1+:::	
	Proof. By Theorem 14, page 506 of Chrystal (1964) (2.14) converges almost surely, since P n (W 1 n + W 0 n 1 ) = 1

F 1 (a 0 ; b; a + a 0 ; x=(1 x)) = 2 F 1 (a 0 1 ; b 1 ; a + a 0 1 ; x=(1 x));
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hence for z in a neighborhood of 0 we have 2 F 1 (a 0 ; b; c; z) = 2 F 1 (a 0 1 ; b 1 ; c 1 ; z);

where c = a + a 0 and c 1 = a + a 0 1 : By equating the coe¢ cients of z; z 2 and z 3 and taking ratios we get V Symmetry of a;a 0 ;b

In this section we prove that a;a 0 ;b is symmetric with respect to 1=2 if and only if a = a 0 and b = a + a 0 , i.e. there are no symmetric laws out of the beta family. More generally the transformation x 7 ! 1 x on a a;a 0 ;b -distributed random variable induces a law which is not a member of the family, except in the beta case. The main argument for the proof of this result is contained in the following Lemma 5.1. Let ( ; ; ) and ( 1 ; 1 ; 1 ) be real numbers such that > 0 and 1 > 0: Consider the functions y and y 1 de…ned on (0; 1) by

and assume that Dy = y 1 for some real constant D 6 = 0: Then y 1 1, that is = 1 1 = 0. Proof. The functions y and y 1 are solutions of the di¤erential equations (see Rainville (1960), page 53)

x(1 x)y 00 (x) + ( + + + 1 ( + + 1)x)y 0 (x) y(x) = 0 (5.26) (the …rst being obtained as the second by changing x into 1 x). Since Dy = y 1 multiplying both sides of (5.26) by D we get another di¤erential equation for y 1 which subtracted from (5.25) yields (A Bx)y 0 1 (x) = Cy 1 (x) where A; B; C are suitable constants. By de…nition y 1 (0+) = 1; now suppose that y 1 is not constantly equal to 1. Then C 6 = 0 and (A; B) 6 = (0; 0): If B = 0 then y 1 (x) = e Cx=A , which is not a hypergeometric function as seen by its power series expansion. If A = 0 then y 1 (0+) = 1 is impossible. Thus without loss of generality we assume A = 1 and we get y 1 (x) = (1 Bx) a with a = C=B 6 = 0: Expanding x 7 ! (1 Bx) a in power series

which is impossible since the function on the r.h.s. is unbounded in any interval (0; ) for a > 0 and is zero at 0 if a < 0:

We can now prove the promised result.

Theorem 5.2. Let X a;a 0 ;b : Then there exists (a 1 ; a 0 1 ; b 1 ) in (0; 1)

The if part is obvious since a;a 0 ;a+a 0 = a;a 0 : Conversely, suppose that X 1 = 1 X with X a;a 0 ;b and X 1 a 1 ;a 0 1 ;b 1 : Then, for all x 2 (0; 1) we have:

or equivalently

) to both sides of (5.27) (speci…cally ( ; ; ; z) = (a 1 ; b 1 ; a 1 + a 0 1 ; x) and (a; b; a + a 0 ; 1 x)) we get

Note for all t 2 R we have From the previous result we deduce immediately the symmetry result mentioned at the beginning of the section.

Corollary 5.3. Let X a;a 0 ;b and X 0 a 0 ;a;b : Then X 1 X 0 if and only if b = a + a 0 and X 1 X if and only if a = a 0 = b=2:

A C C E P T E D M A N U S C R I P T
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6. Using a result from the same exercise we get the elegant case a = a 0 = b = 1

Our main result states in this case that if (1 X)=X W X with X > 0 and W independent, the latter with Pareto distribution function 1 (1 + x) 1 ; for x > 0 (alternatively if X U U +(1 U )X for X and U independent, the latter uniform in (0; 1)), then X has distribution (6.29). Note that when t > 1; t 6 = 0, by expanding x 7 ! log(1 x) in power series, we get E(X t ) = 6 ). When t is an integer we get E(X t ) = 6

The number of interesting examples is quite large, as can be seen from Abramovitz and Stegun (1964), formulas 15.1.i for i = 3; 4; 6; 9; 10; 12 18 and 15.4.i for i = 7 26:

VII Appendix: a probabilistic proof of the Thomae formula

We give here the elements of a probabilistic proof of Thomae's result that we have mentioned in Remark 3.2. It gives a second proof of (3.20), which is essentially equivalent to our Theorem 2.1.

Theorem A.1. Consider the analytic function on C 5 de…ned by the analytic continuation of

De…ne the 5 5 matrices

where J k is the (k; k) matrix whose entries are 1, and de…ne by an easy calculation using Gauss formula (3.18). Notice incidentally that for a + b = 1 this has been called by [START_REF] Henrici | Applied and Computational Complex Analysis[END_REF] the hypergeometric distribution. The Mellin transform of such a X = 1 U V is the following function of t: An alternative expression for this is obtained by

Next check that multiplying by A 1 the row vectors of arguments of the functions 3 F 2 appearing in the two previous expressions we get that the one in (7.30) is obtained from the one in (7.31) by the permutation (1; 2; 3; 4; 5) ! (4; 5; 1; 2; 3) of the arguments. It is then easy to realize that the symmetry of the function E is guaranteed only by the invariance under this permution. The proof is …nished, since by choosing a = x; b = u x; c = y; d = v y; t = z the vector of arguments of 3 F 2 at the r.h.s. of (7.31) is precisely (x; y; z; u; v).

In order to see (3.24) as a particular case of Theorem A.1 it is enough to check that the two vectors (a + t; a; b; a + b + t; a + a 0 )3A 1 = (2t b + a + a 0 ; t b + a + a 0 ; t + 2b 2a + a 0 ; 2t + 2b + a 2a 0 ; t b + a + a 0 ); (a 0 ; a 0 t; b; a 0 + b; a + a 0 )3A 1 = (2t b + a + a 0 ; t b + a + a 0 ; 2t + 2b + a 2a 0 ; t + 2b 2a + a 0 ; t b + a + a 0 ) are obtained the second from the …rst by the transposition (3; 4).
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