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Divergence-based tests for model diagnostic 1

M.D. Estebana, T. Hobzab, D. Moralesa and Y. Marhuendaa,∗

a Operations Research Center, Miguel Hernández University of Elche, Elche, Spain
b Department of Mathematics, Czech Technical University, Prague, Czech Republic

Abstract. Pearson’s χ2 test, and more generally, divergence-based tests of goodness-of-fit are asymp-
totically χ2-distributed with m− 1 degrees of freedom if the numbers of cells m is fixed, the observations
are i.i.d and the cell probabilities and model parameters are completely specified. Jiang (2001) proposed
a nonstandard χ2 test to check distributional assumptions for the case of observations not identically
distributed. Under the same set up, in this paper a family of divergence-based tests are introduced and
their asymptotic distributions are derived. In additions bootstrap tests based on the given divergence test
statistics are considered. Applications to generalized linear models diagnostic are proposed. A simulation
study is carried out to investigate performance of several power divergence tests.

Key words. Goodness of fit; divergence statistics; GLM; model checking, bootstrap.

1 Introduction

The problem of goodness of fit to a distribution in the real line, H0 : F = F0, is frequently treated
by partitioning the range of data in disjoint intervals and by testing the hypothesis H0 : p = p0 of a
multinomial distribution.

Let Y1, . . . , Yn be i.i.d. random variables with c.d.f. F . Let E1, . . . , Em be a partition of R = (−∞,∞)
in m intervals. Let p = (p1, . . . , pm) and p0 = (p01, . . . , p0m) be the true and hypothetical probabilities
of the intervals Ek, i.e.

p0k =
∫

Ek

dF0, pk =
∫

Ek

dF, k = 1, . . . ,m.

Define the observed cell counts

Nk =
n∑

j=1

1(Yj∈Ek) = #(1 ≤ j ≤ n : Yj ∈ Ek), k = 1, . . . ,m,

and the estimated cell probabilities p̂ = (p̂1, . . . , p̂m) with p̂k = Nk/n, k = 1, . . . ,m. To test H0 : p = p0

the most commonly used test statistic is the Pearson’s χ2 statistic

χ2
nP (p̂,p0) = n

m∑
k=1

(p̂k − p0k)2

p0k
, (1)

which is a particular case of the family of power-divergence statistics introduced by Cressie and Read
(1984) and given by

T r
n(p̂,p0) =

2n
r(r + 1)

m∑
k=1

p̂k

[(
p̂k

p0k

)r

− 1
]
, −∞ < r <∞. (2)

The test statistics T 0
n(p̂,p0) and T−1

n (p̂,p0) are defined by continuity. Well known test statistics are
obtained from particular values of r in (2). Some examples are r = 1 for Pearson’s test statistic, r = 0
for the log-likelihood-ratio statistic, r = −1/2 for the Freeman-Tukey test statistic, r = −2 for the
Neyman-modified test statistic and r = 2/3 for the Cressie-Read statistic.

1Supported by the grants MTM2006-05693 and MSMT 1M0572.
∗ Corresponding author. E-mail address: y.marhuenda@umh.es (Y. Marhuenda)
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More generally, T r
n(p̂,p0) is a particular case of the φ-divergence test statistic

Tφ
n (p̂,p0) =

2n
φ′′(1)

Dφ(p̂,p0) =
2n
φ′′(1)

m∑
k=1

p0kφ

(
p̂k

p0k

)
, (3)

where Dφ(·, ·) denotes the φ-divergence of two probability distributions introduced by Csiszár (1963) and
Ali and Silvey (1966) for every φ in the set Φ of real convex functions defined on [0,∞), continuously
differentiable in the neighborhood of 1 and satisfying φ(1) = φ′(1) = 0, φ′′(1) > 0. In formula (3) if
either p0k or p0k and p̂k are zero, expressions 0φ(x/0) and 0φ(0/0) are defined as x · limu→∞ φ(u)/u and
0 respectively. Properties of φ-divergences have been extensively studied by Liese and Vajda (1987) and
Vajda (1989). Zografos et al. (1990) proved that Tφ

n (p̂,p0)
L−→ χ2

m−1 as n → ∞ under H0 : p = p0,

where L−→ stands for convergence in law.
It is common to deal with the problem of testing the composite hypothesis that the c.d.f. F is a

member of a parametric family {Fθ}θ∈Θ for a given open subset Θ ⊂ Rd. In such cases cell probabilities
depends on the unknown parameter θ, i.e.

pk(θ) =
∫

Ek

dFθ, k = 1, . . . ,m,

so they may be estimated with minimum φ-divergence estimators satisfying

θ̂φ = arg infθ∈ΘDφ(p̂,p(θ)),

which contains as a particular case the maximum likelihood estimator (MLE) based on the quantized
data. Morales et al. (1996) proved that if regularity conditions given by Birch (1964) hold, then

Tφ1
n (p̂,p(θ̂φ2))

L−→
n→∞

χ2
m−d−1

under H0 : F = Fθ for any φ1, φ2 ∈ Φ. However, if MLE estimator θ̂ is based on the original data, then
the asymptotic distribution of Tφ

n (p̂,p(θ̂)) under H0 : F = Fθ is a linear combination of independent χ2
1

variables. This result was originally proved by Chernoff and Lehmann (1954) and extended to any φ ∈ Φ
by Morales et al. (1996).

If original variables are independent with c.d.f.s F1, . . . , Fn, depending on an unknown parameter
θ ∈ Θ ⊂ Rd open, the hypothesis of interest is

H0 : Y1 ∼ F1, . . . , Yn ∼ Fn. (4)

Let us define pk(θ) = Eθ[Nk]/n, with Eθ[Nk] =
∑n

j=1 Pθ(Yj ∈ Ek). Jiang (2001) proposed to test H0

with

χ2
nJ(p̂,p(θ̂)) = n

m∑
k=1

(p̂k − pk(θ̂))2, (5)

where θ̂ is a consistent estimator of θ, and gave regularity conditions under which asymptotic distribution
of χ2

nJ(p̂,p(θ̂)) is a linear combination of independent χ2
1 variables.

The targets of this paper are to extend Jiang’s result to the class of test statistics Tφ
n (p̂,p(θ̂)), to

introduce their bootstrap versions and finally to give some recommendations on the choice of φ based
on the results obtained from Monte Carlo simulation experiments. The rest of the paper is organized as
follows: In Section 2 the asymptotic distribution of Tφ

n (p̂,p(θ̂)) is derived. In Section 3 the corresponding
bootstrap tests are introduced. In Section 4 applications to GLM diagnostics are suggested, a simulation
experiment is carried out to investigate the finite sample performance of the introduced test statistics
and some conclusions are given.

2 Asymptotic distribution of T φ
n statistics

In this section we derive the asymptotic distribution of the Tφ
n statistics

Tφ
n = Tφ

n (p̂,p(θ̂)) =
2n
φ′′(1)

m∑
k=1

pk(θ̂)φ

(
p̂k

pk(θ̂)

)
(6)
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for the class of functions φ ∈ Φ under the null hypotheses (4). This leads to a goodness-of-fit test,
which can be used to check the distributional assumptions in the model involving independent but
not identically distributed random variables. Essential for us will be the result of Jiang (2001) where
asymptotic distribution of the statistics χ2

nJ(p̂,p(θ̂)) was given. Let us start with introducing some
notation and regularity conditions used in Jiang (2001).

It is known that the choice of θ̂ has an impact on the asymptotic distribution of Tφ
n . Throughout this

paper it is assumed that θ̂ is a consistent estimator of θ and has an asymptotic expansion

√
n(θ̂ − θ) = An

 1√
n

n∑
j=1

ψj(Yj , θ)

+ oP (1). (7)

For example, under some regularity conditions, the MLE of θ has the expansion (7), where ψj is the
score function corresponding to the jth observation and An is equal to n times the inverse of the Fisher
information matrix (based on all data).

Let further ξn = (ξnk)1≤k≤m, where ξnk = Nk − E
bθNk; pj(θ) = (pjk(θ))1≤k≤m and pjk(θ) = Pθ(Yj ∈

Ek). Define

hnj = (1(Yj∈Ek) − pjk(θ))1≤k≤m −

 1
n

n∑
j=1

∂

∂θ
pj(θ)

Anψj(Yj , θ)

and Σn = Σn(θ) = n−1
∑n

j=1 Var(hnj). Let Qn be an orthogonal matrix such that

Qt
nΣnQn = Dn = diag(λn1, . . . , λnm),

where λn1 ≥ . . . ≥ λnm are the eigenvalues of Σn.

The following set of assumptions is supposed: (i) Y1, . . . , Yn are independent, (ii) Σn −→ Σ as n→∞,
(iii) (7) holds with Eψj(Yj , θ) = 0, 1 ≤ j ≤ n, and (iv) it holds

1
n

max
1≤j≤n

E|Anψj(Yj , θ)|4 −→ 0, max
1≤j≤n

∣∣∣∣ ∂∂θ pj(θ)
∣∣∣∣ = O(1),

and there exists δ > 0 such that

1
n

n∑
j=1

sup
|eθ−θ|≤δ

∥∥∥∥ ∂2

∂θ2
pjk(θ̃)

∥∥∥∥ = O(1), 1 ≤ k ≤ m.

Under the assumptions (i)-(iv) Jiang proved that the asymptotic distribution of χ2
nJ is the same as that

of
∑m

k=1 λkZ
2
k where Z1, . . . , Zm are i.i.d. N(0, 1) random variables and λ1, . . . , λm are the eigenvalues

of Σ.
First we extend the Jiang’s result to the Pearson statistics χ2

nP (p̂,p(θ̂)) defined in (1). To achieve
this aim we need to put an additional assumption about the partition and the probability model:

p(θ) =
1
n

n∑
j=1

pj(θ) −→
n→∞

q, where qk > 0 for all k ∈ {1, . . . ,m}. (8)

The above mentioned extension is stated in the following lemma.

Lemma 1 If the assumptions (i)-(iv) and (8) are fulfilled then the statistic

T 1
n = χ2

nP (p̂,p(θ̂))

has, under the null hypothesis (4), the same asymptotic distribution as
∑m

k=1(λk/qk)Z2
k , where Z1, . . . , Zm

are i.i.d. N(0, 1) random variables, and λ1 ≥ . . . ≥ λm are the eigenvalues of Σ.

3
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Proof: In the proof of his Theorem 1, Jiang (2001) showed that under the assumptions (i)-(iv) it holds

Xn , n−1/2Qt
nξn

L−→ X ∼ Nm(0, D) , (9)

where D = diag(λ1, . . . , λm). Let us define the random vector

X̃n , diag (p(θ))−1/2 ·Xn = BnXn,

where matrix Bn has diagonal elements (Bn)kk = pk(θ)−1/2 = (EθNk/n)−1/2, k = 1, . . . ,m. Then, (8)
imply

Bn −→ B = diag(q−1/2
1 , . . . , q−1/2

m )

for n→∞ and using the Slutsky theorem we get

X̃n
L−→ BX ∼ Nm(0, BDBt) .

From this it already follows that the asymptotic distribution of X̃t
nX̃n is the same as that of

∑m
k=1(λk/qk)Z2

k .
To finish the proof we will show that T 1

n = X̃t
nX̃n + oP (1). Let us start with a partial problem. For

k = 1, . . . ,m we can write

pk(θ̂) =
E
bθNk

n
=

1
n

n∑
j=1

pjk(θ̂) =
1
n

n∑
j=1

pjk(θ) +
1
n

n∑
j=1

(pjk(θ̂)− pjk(θ)) . (10)

Using the Taylor expansion

pjk(θ̂) = pjk(θ) +
(
∂

∂θ
pjk(θ)

)
(θ̂ − θ) +

1
2
(θ̂ − θ)t

(
∂2

∂θ2
pjk(θ(j,k))

)
(θ̂ − θ)

where θ(j,k) lies in the line between θ and θ̂, we get

1
n

n∑
j=1

(pjk(θ̂)− pjk(θ))

= n−1/2

[(
1
n

n∑
i=1

∂

∂θ
pik(θ)

)
√
n(θ̂ − θ) +

1
2
√
n(θ̂ − θ)t

(
1
n

n∑
i=1

∂2

∂θ2
pik(θ(i,k))

)
(θ̂ − θ)

]
= oP (1) ,

as follows from the assumptions of the lemma. Substituting this results into (10) for all k we finally get
the asymptotic relation

p(θ̂) = p(θ) + oP (1) . (11)

For the statistic of interest we have

T 1
n = n

m∑
k=1

(p̂k − pk(θ̂))2

pk(θ̂)
= n−1

m∑
k=1

(Nk − E
bθNk)2

E
bθNk/n

= n−1ξt
n diag

(
p(θ̂)

)−1

ξn

= n−1ξt
nQn diag

(
p(θ̂)

)−1

Qt
nξn = Xt

n diag
(
p(θ̂)

)−1

Xn

and thus

T 1
n = X̃t

nX̃n +Xt
n

(
diag

(
p(θ̂)

)−1

− diag
(
p(θ)

)−1
)
Xn = X̃t

nX̃n + oP (1)

as can be seen from (8), (9) and (11). �

The main result of this section stating the asymptotic distribution of Tφ
n is presented in the following

theorem.

Theorem 1 If the assumptions (i)-(iv) and (8) are fulfilled then for all φ ∈ Φ the statistics

Tφ
n = Tφ

n (p̂,p(θ̂))

defined in (6) has, under the null hypothesis (4), the same asymptotic distribution as
∑m

k=1(λk/qk)Z2
k ,

where Z1, . . . , Zm are i.i.d. N(0, 1) random variables, and λ1 ≥ . . . ≥ λm are the eigenvalues of Σ.

4
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Proof: The proof is based on the Lemma 4.1 of Menéndez et al. (1998) which states that for any random
stochastic m-vectors sn, tn and all functions φ ∈ Φ it holds

Tφ
n (sn, tn) = χ2

nP (sn, tn) + oP (1)

provided that the conditions
‖sn − tn‖ = OP (n−1/2)

and
Π(tn`

) = oP (1) for no subsequence tn`
of tn , (12)

where Π(tn) =
∏m

k=1 tnk, are satisfied.
Since the validity of (12) for tn = p(θ̂) follows directly from (8) and (11), to prove the assertion we

need to check the condition
‖p̂− p(θ̂)‖ = OP (n−1/2)

and apply Lemma 4.1 of Menéndez et al. (1998) and Lemma 1 of the present paper. From the definition
of ξn, p̂ and p(θ̂) it follows that p̂k − pk(θ̂) = ξnk/n, k = 1, . . . ,m, and thus

√
n ‖p̂− p(θ̂)‖ =

(
n

m∑
k=1

(p̂k − pk(θ̂))2
) 1

2

=

(
1
n

m∑
k=1

ξ2nk

) 1
2

=
(

1
n
ξt
nξn

) 1
2

.

As (1/n) ξt
nξn = χ2

nJ(p̂,p(θ̂)) is the Jiang statistics which has under the assumed conditions the asymp-
totic distribution stated in Theorem 1 of Jiang (2001) and is thus OP (1), the proof is finished. �

Let us note that to use the class of statistics Tφ
n for testing, the eigenvalues λ1, . . . , λm as well as

the stochastic vector q = (q1, . . . , qm) have to be replaced by their estimators. From (11) it follows
that p(θ̂) = (1/n)

∑n
j=1 pj(θ̂) is a consistent estimator of the vector q. If we denote λ̂n1, . . . , λ̂nm

the eigenvalues of Σ̂n = Σn(θ̂) then, by Weyl’s eigenvalue perturbation theorem (e.g. Bhatia (1997)),
|λ̂nk − λnk| ≤ ‖Σn(θ̂) − Σn(θ)‖ which can be expected to go to 0 since θ̂ is consistent. By the same
theorem it can be seen also that λnk → λk and so λ̂nk is a consistent estimator of λk, k = 1, . . . ,m.
The following testing procedure can be thus proposed: Reject H0 if Tφ

n exceeds the critical value of∑m
k=1(λ̂nk/pk(θ̂))Z2

k .

3 Bootstrap goodness of fit tests

The application of the Jiang statistic (5) and the Tφ
n statistics (6) to test the hypothesis (4) requires the

use of their asymptotic distribution given in Theorem 1 of Jiang (2001) and Theorem 1 of the present
paper respectively. Practitioners will find the following difficulties in applying this approach: (1) in most
cases, derivation of Σn is not straightforward and numerical computations may be needed, and (2) Σn is
estimated with Σ̂n = Σn(θ̂) and Σn(θ̂) is assumed to be close to Σn(θ). Therefore sample size should be
large enough to fulfil the desired test size. Bootstrap tests avoid the mentioned difficulties because they
only require the calculation of the test statistics in independent bootstrap samples and they approximate
the required distribution under H0.

Let Y1, . . . , Yn be random variables and let F1θ, . . . , Fnθ be c.d.f. depending on a common parameter
θ ∈ Θ ⊂ Rd open. The hypothesis (4) under consideration is of the form

H0 : Y1 ∼ F1θ, . . . , Yn ∼ Fnθ independent, θ ∈ Θ.

Let Tn = Tn(Y1, . . . , Yn) be a given test statistic for this problem and assume that H0 is rejected if
Tn > cn for a given critical value cn > 0. Let FTnθ(x) = Pn

θ (Tn ≤ x) be the distribution of Tn under H0,
where Pn

θ is the probability corresponding to the joint distribution
∏n

j=1 Fjθ. Suppose that we have an
estimator θ̂ of θ such that θ̂ is consistent under H0 in the sense that

Pn
θ

(
‖θ̂ − θ‖ > ε

)
−→

n→∞
0, for any ε > 0.

5
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Assuming that FTnθ is continuous a bootstrap estimator of cn is

ĉn = F−1

Tn
bθ
(1− α),

where α ∈ (0, 1) is the size of the test. The computation of ĉn can be done by Monte Carlo simulation in
the following way. Generate B independent bootstrap samples {Y ∗1b, . . . , Y

∗
nb} from the joint distribution∏n

j=1 Fjbθ. Then ĉn is approximated by the {[(1 − α)B] + 1}th order statistic of Tn(Y ∗1b, . . . , Y
∗
nb), b =

1, . . . , B.
Alternatively bootstrap estimated p-value can be used to decide if H0 is rejected or not. Let Y1 =

y1, . . . , Yn = yn be the observed values. For the test of the form Tn > c, its p-value is defined by

pn = Pn
θ (Tn(Y1, . . . , Yn) > Tn(y1, . . . , yn)),

and hypothesis is rejected if pn < α. A bootstrap estimator of pn is

p̂n = P∗(Tn(Y ∗1 , . . . , Y
∗
n ) > Tn(y1, . . . , yn))

where Y ∗1 ∼ F1bθ, . . . , Y
∗
n ∼ Fnbθ are the bootstrap independent data. The computation of p̂n can be

done by Monte Carlo simulation in the following way. Generate B independent bootstrap samples
{Y ∗1b, . . . , Y

∗
nb} from the joint distribution

∏n
j=1 Fjbθ. Then p̂n is approximated by

p̂n =
# (Tn(y∗1 , . . . , y

∗
n) > Tn(y1, . . . , yn))
B

.

This approach is also used in Section 4 to calculate the p-value

pn = P

(
m∑

k=1

(λ̂nk/pk(θ̂))Z2
k > t

)

when Tφ
n = t has been observed.

4 Example and simulation

This section contains an example that illustrates results and proposals of Section 2 and 3, as well as a
simulation study designed to investigate the performance of several test statistics. Let us consider the
linear model

H0 : yj = βxj + ej , j = 1, . . . , n, (13)

with ej i.i.d. N(0, σ2). Let θ = (β, σ2) be the unknown parameter and let

β̂ =

∑n
j=1 yjxj∑n
j=1 x

2
j

, σ̂2 =
1

n− 1

n∑
j=1

(yj − xj β̂)2.

be the corresponding maximum likelihood estimators. Consider the interval partition defined by the cut
points

c1 = 1 + F−1
N(0,1)(1/m), . . . , cm−1 = 1 + F−1

N(0,1)((m− 1)/m),

i.e. E1 = (−∞, c1], Em = (cm−1,∞] and Ek = (ck−1, ck], k = 2, . . . ,m− 1.
Let Eθk = Eθ[Nk] =

∑n
j=1 pjk and define

Σkk =
1
n

n∑
j=1

var(hnjk), Σk1k2 =
1
n

n∑
j=1

cov(hnjk1 , hnjk2), k1 6= k2, Σ = (Σk1k2)k1,k2=1,...,m ,

for the hnjk’s introduced in Section 2. Let λ1, . . . , λm be the eigenvalues of A = n diag(E−1
bθ1
, . . . , E−1

bθm
)Σ̂,

then

T r
n(p̂,p(θ̂)) ∼

m∑
k=1

λkZ
2
k ,

6
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where Z1, . . . , Zm are i.i.d. N(0, 1).

Regarding the introduced example a simulation experiment has been implemented to analyze the
performance of Jiang and Cressie-Read statistics

χ2
nJ = n

m∑
k=1

(p̂k − pk(θ̂))2, T r
n =

2n
r(r + 1)

m∑
k=1

p̂k

[(
p̂k

pk(θ̂)

)r

− 1

]
, r = −1/2, 0, 2/3, 1.

For every considered test statistics, Tn, the simulation follows the next steps.

1. Repeat I = 10000 times (i = 1, . . . , I)

1.1. Generate a sample (y(i)
j , x

(i)
j ), j = 1, . . . , n, from model (13) with β = 1, σ2 = 1 and x(i)

j i.i.d.

Unif(0,2). Calculate β̂(i), σ̂2(i), λ̂1, . . . , λ̂m and T (i)
n .

1.2. Simulate v1, . . . , vA from
∑m

i=1 λ̂iZ
2
i , with Z1, . . . , Zm i.i.d N(0, 1) and A = 5000. Calculate

p(i)
n =

#{v` : v` ≥ T
(i)
n }

A
and ξ(i)n =

{
1 if p(i)

n < 0.05
0 otherwise.

1.3. Repeat B = 1000 times (b = 1, . . . , B)

1.3.1. Generate e∗(ib)j ∼ N(0, σ̂2(i)), j = 1, . . . , n. Generate a bootstrap sample (y∗(ib)j , x
(i)
j ),

j = 1, . . . , n, from model y∗(ib)j = β̂(i)x
(i)
j + e

∗(ib)
j .

1.3.2. Calculate β̂∗(ib), σ̂2∗(ib) and T ∗(ib)n .

1.4. Calculate

α∗(i)n =
#(T ∗(ib)n, ≥ T

(i)
n, )

B
and ξ∗(i)n =

{
1 if α∗(i)n, < 0.05
0 otherwise.

2. Output:

ξn =
1
I

I∑
i=1

ξ(i)n , ξ∗n =
1
I

I∑
i=1

ξ∗(i)n .

It should occur that both ξn and ξ∗n are close to 0.05. In Table 1 test sizes of bootstrap and asymptotic
tests are given. We observe that bootstrap tests attain the desired size even for small sample sizes
(n = 40), where some asymptotic tests fails. To be sure that asymptotic distribution works properly
under the null hypothesis, sample size should not be much lower than 100. At this point it is worthwhile to
emphasize that the asymptotic distribution is in fact also approximated in some sense because eigenvalues
are calculated from the estimated matrix Σ̂n and not from Σ.

(Here Table 1)

Powers are calculated, and presented in Tables 2-4, for the following alternatives to (13):

1. yj = ga(βxj) + ej , with ga(x) = xa and a varying from 0 to 2.5,

2. ej ∼ (1− p)N(0, σ2
1) + pGumbel(0, σ2

2), with σ2
1 = σ2

2 = 1 and p = 0, 0.2, 0.5, 0.8, 1,

3. yj =
∑κ

i=1 βix
i
j + ej , with β1 = . . . , β5 = 1 and κ = 1, . . . , 5.

(Here Tables 2, 3 and 4)

One can conclude that Jiang’s test statistic has an excellent performance in relation with the more
classical power divergence statistics. Comparing the Cressie-Read statistics no dramatic differences were
observed. Just in the case 2 the Freeman-Tukey statistic (r = −1/2) seems to have the best behavior in
the sense of powers, in this case even better than the Jiang’s statistic.
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n -1/2 0 2/3 1 Jiang -1/2 0 2/3 1 Jiang
40 .1000 .0683 .0457 .0462 .0440 .0512 .0537 .0548 .0547 .0547
100 .0571 .0500 .0444 .0445 .0458 .0539 .0534 .0524 .0527 .0533
200 .0584 .0545 .0511 .0521 .0518 .0498 .0498 .0493 .0495 .0507
500 .0563 .0543 .0530 .0531 .0533 .0525 .0525 .0523 .0524 .0528
1000 .0537 .0517 .0515 .0516 .0509 .0512 .0506 .0503 .0502 .0510

Table 1. Test sizes for α = 0.05 (asymptotic | bootstrap).

a -1/2 0 2/3 1 Jiang -1/2 0 2/3 1 Jiang
.0 .9408 .9349 .9278 .9242 .9822 .9397 .9397 .9359 .9326 .9844
.2 .6188 .6063 .5919 .5895 .7629 .6079 .6097 .6068 .6029 .7714
.4 .2765 .2672 .2657 .2664 .3824 .2646 .2724 .2802 .2818 .3937
.6 .1234 .1212 .1224 .1266 .1588 .1100 .1152 .1213 .1243 .1587
.8 .0705 .0674 .0685 .0694 .0749 .0640 .0680 .0702 .0722 .0759
1.0 .0584 .0545 .0511 .0521 .0518 .0498 .0498 .0493 .0495 .0507
1.2 .0725 .0654 .0603 .0592 .0602 .0624 .0617 .0608 .0602 .0635
1.4 .1075 .1007 .0944 .0937 .1035 .1052 .1053 .1011 .1006 .1130
1.6 .1985 .1912 .1881 .1887 .2182 .1889 .1945 .1970 .1998 .2314
1.8 .3652 .3634 .3712 .3796 .4470 .3375 .3562 .3768 .3855 .4521
2.0 .5822 .5918 .6119 .6282 .7557 .5413 .5773 .6120 .6253 .7627
2.5 .9848 .9873 .9904 .9921 .9998 .9779 .9852 .9896 .9910 .9999

Table 2. Powers for case 1, α = 0.05 and n = 200 (asymptotic | bootstrap).

p -1/2 0 2/3 1 Jiang -1/2 0 2/3 1 Jiang
.0 .0571 .0500 .0444 .0445 .0458 .0539 .0534 .0524 .0527 .0533
.2 .0777 .0650 .0579 .0559 .0618 .0647 .0636 .0612 .0598 .0633
.5 .1622 .1313 .1160 .1134 .1630 .1255 .1337 .1358 .1336 .1656
.8 .3265 .1967 .1200 .1018 .1709 .2860 .2110 .1470 .1304 .1737
1 .4518 .3140 .1852 .1543 .1667 .3936 .3057 .2058 .1718 .1701

Table 3. Powers for case 2, α = 0.05 and n = 100 (asymptotic | bootstrap).

κ -1/2 0 2/3 1 Jiang -1/2 0 2/3 1 Jiang
1 .1000 .0683 .0457 .0462 .0440 .0512 .0537 .0548 .0547 .0547
2 .2610 .1249 .1239 .1479 .2516 .0425 .0800 .1371 .1522 .2588
3 .4659 .4799 .6483 .7290 .9529 .0989 .4996 .6941 .7142 .9554
4 .7746 .8600 .9525 .9740 .9868 .7030 .9312 .9577 .9582 .9835
5 .9004 .9622 .9928 .9967 .9764 .9713 .9916 .9931 .9915 .9746

Table 4. Powers for case 3, α = 0.05 and n = 40 (asymptotic | bootstrap).
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