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Pearson's χ 2 test, and more generally, divergence-based tests of goodness-of-fit are asymptotically χ 2 -distributed with m -1 degrees of freedom if the numbers of cells m is fixed, the observations are i.i.d and the cell probabilities and model parameters are completely specified. Jiang (2001) proposed a nonstandard χ 2 test to check distributional assumptions for the case of observations not identically distributed. Under the same set up, in this paper a family of divergence-based tests are introduced and their asymptotic distributions are derived. In additions bootstrap tests based on the given divergence test statistics are considered. Applications to generalized linear models diagnostic are proposed. A simulation study is carried out to investigate performance of several power divergence tests.

Introduction

The problem of goodness of fit to a distribution in the real line, H 0 : F = F 0 , is frequently treated by partitioning the range of data in disjoint intervals and by testing the hypothesis H 0 : p = p 0 of a multinomial distribution.

Let Y 1 , . . . , Y n be i.i.d. random variables with c.d.f. F . Let E 1 , . . . , E m be a partition of R = (-∞, ∞) in m intervals. Let p = (p 1 , . . . , p m ) and p 0 = (p 01 , . . . , p 0m ) be the true and hypothetical probabilities of the intervals E k , i.e.

p 0k = E k dF 0 , p k = E k dF, k = 1, . . . , m.
Define the observed cell counts

N k = n j=1 1 (Yj ∈E k ) = #(1 ≤ j ≤ n : Y j ∈ E k ), k = 1, . . . , m,
and the estimated cell probabilities p = ( p 1 , . . . , p m ) with p k = N k /n, k = 1, . . . , m. To test H 0 : p = p 0 the most commonly used test statistic is the Pearson's χ 2 statistic

χ 2 nP ( p, p 0 ) = n m k=1 ( p k -p 0k ) 2 p 0k , (1) 
which is a particular case of the family of power-divergence statistics introduced by [START_REF] Cressie | Multinomial goodness of fit tests[END_REF] and given by T r n ( p, p 0 ) = 2n r(r + 1)

m k=1 p k p k p 0k r -1 , -∞ < r < ∞. (2) 
The test statistics T 0 n ( p, p 0 ) and T -1 n ( p, p 0 ) are defined by continuity. Well known test statistics are obtained from particular values of r in (2). Some examples are r = 1 for Pearson's test statistic, r = 0 for the log-likelihood-ratio statistic, r = -1/2 for the Freeman-Tukey test statistic, r = -2 for the Neyman-modified test statistic and r = 2/3 for the Cressie-Read statistic.
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More generally, T r n ( p, p 0 ) is a particular case of the φ-divergence test statistic

T φ n ( p, p 0 ) = 2n φ (1) D φ ( p, p 0 ) = 2n φ (1) m k=1 p 0k φ p k p 0k , (3) 
where D φ (•, •) denotes the φ-divergence of two probability distributions introduced by [START_REF] Csiszár | Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten[END_REF] and [START_REF] Ali | A general class of coefficient of divergence of one distribution from another[END_REF] for every φ in the set Φ of real convex functions defined on [0, ∞), continuously differentiable in the neighborhood of 1 and satisfying φ(1) = φ (1) = 0, φ (1) > 0. In formula (3) if either p 0k or p 0k and p k are zero, expressions 0φ(x/0) and 0φ(0/0) are defined as x • lim u→∞ φ(u)/u and 0 respectively. Properties of φ-divergences have been extensively studied by [START_REF] Liese | Convex Statistical Distances[END_REF] and [START_REF] Vajda | Theory of Statistical Inference and Information[END_REF]. [START_REF] Zografos | φ-divergence statistics: sampling properties, multinomial goodness of fit and divergence tests[END_REF] proved that T φ n ( p, p 0 )

L -→ χ 2 m-1 as n → ∞ under H 0 : p = p 0 , where L -→ stands for convergence in law.
It is common to deal with the problem of testing the composite hypothesis that the c.d.f. F is a member of a parametric family {F θ } θ∈Θ for a given open subset Θ ⊂ R d . In such cases cell probabilities depends on the unknown parameter θ, i.e.

p k (θ) = E k dF θ , k = 1, . . . , m,
so they may be estimated with minimum φ-divergence estimators satisfying

θ φ = arg inf θ∈Θ D φ ( p, p(θ)),
which contains as a particular case the maximum likelihood estimator (MLE) based on the quantized data. [START_REF] Morales | Divergence between various estimates of quantized information sources[END_REF] proved that if regularity conditions given by [START_REF] Birch | A new proof of the Pearson-Fisher Theorem[END_REF] hold, then

T φ1 n ( p, p( θ φ2 )) L -→ n→∞ χ 2 m-d-1
under H 0 : F = F θ for any φ 1 , φ 2 ∈ Φ. However, if MLE estimator θ is based on the original data, then the asymptotic distribution of T φ n ( p, p( θ)) under H 0 : F = F θ is a linear combination of independent χ 2 1 variables. This result was originally proved by [START_REF] Chernoff | The use of maximum likelihood estimates in χ 2 tests of goodness of fit[END_REF] and extended to any φ ∈ Φ by [START_REF] Morales | Divergence between various estimates of quantized information sources[END_REF].

If original variables are independent with c.d.f.s F 1 , . . . , F n , depending on an unknown parameter θ ∈ Θ ⊂ R d open, the hypothesis of interest is [START_REF] Jiang | A nonstandard χ 2 -test with application to generalized linear model diagnostics[END_REF] proposed to test H 0 with

H 0 : Y 1 ∼ F 1 , . . . , Y n ∼ F n . (4) Let us define p k (θ) = E θ [N k ]/n, with E θ [N k ] = n j=1 P θ (Y j ∈ E k ).
χ 2 nJ ( p, p( θ)) = n m k=1 ( p k -p k ( θ)) 2 , ( 5 
)
where θ is a consistent estimator of θ, and gave regularity conditions under which asymptotic distribution of χ 2 nJ ( p, p( θ)) is a linear combination of independent χ 2 1 variables. The targets of this paper are to extend Jiang's result to the class of test statistics T φ n ( p, p( θ)), to introduce their bootstrap versions and finally to give some recommendations on the choice of φ based on the results obtained from Monte Carlo simulation experiments. The rest of the paper is organized as follows: In Section 2 the asymptotic distribution of T φ n ( p, p( θ)) is derived. In Section 3 the corresponding bootstrap tests are introduced. In Section 4 applications to GLM diagnostics are suggested, a simulation experiment is carried out to investigate the finite sample performance of the introduced test statistics and some conclusions are given.

Asymptotic distribution of T φ n statistics

In this section we derive the asymptotic distribution of the T φ n statistics

T φ n = T φ n ( p, p( θ)) = 2n φ (1) m k=1 p k ( θ) φ p k p k ( θ) (6) 
for the class of functions φ ∈ Φ under the null hypotheses (4). This leads to a goodness-of-fit test, which can be used to check the distributional assumptions in the model involving independent but not identically distributed random variables. Essential for us will be the result of [START_REF] Jiang | A nonstandard χ 2 -test with application to generalized linear model diagnostics[END_REF] where asymptotic distribution of the statistics χ 2 nJ ( p, p( θ)) was given. Let us start with introducing some notation and regularity conditions used in [START_REF] Jiang | A nonstandard χ 2 -test with application to generalized linear model diagnostics[END_REF].

It is known that the choice of θ has an impact on the asymptotic distribution of T φ n . Throughout this paper it is assumed that θ is a consistent estimator of θ and has an asymptotic expansion

√ n( θ -θ) = A n   1 √ n n j=1 ψ j (Y j , θ)   + o P (1). ( 7 
)
For example, under some regularity conditions, the MLE of θ has the expansion ( 7), where ψ j is the score function corresponding to the jth observation and A n is equal to n times the inverse of the Fisher information matrix (based on all data). Let further ξ n = (ξ nk ) 1≤k≤m , where

ξ nk = N k -E b θ N k ; p j (θ) = (p jk (θ)) 1≤k≤m and p jk (θ) = P θ (Y j ∈ E k ). Define h nj = (1 (Yj ∈E k ) -p jk (θ)) 1≤k≤m -   1 n n j=1 ∂ ∂θ p j (θ)   A n ψ j (Y j , θ) and Σ n = Σ n (θ) = n -1 n j=1 Var(h nj ). Let Q n be an orthogonal matrix such that Q t n Σ n Q n = D n = diag(λ n1 , . . . , λ nm ),
where λ n1 ≥ . . . ≥ λ nm are the eigenvalues of Σ n .

The following set of assumptions is supposed

: (i) Y 1 , . . . , Y n are independent, (ii) Σ n -→ Σ as n → ∞, (iii) (7) holds with Eψ j (Y j , θ) = 0, 1 ≤ j ≤ n, and (iv) it holds 1 n max 1≤j≤n E|A n ψ j (Y j , θ)| 4 -→ 0, max 1≤j≤n ∂ ∂θ p j (θ) = O(1),
and there exists δ > 0 such that

1 n n j=1 sup | e θ-θ|≤δ ∂ 2 ∂θ 2 p jk ( θ) = O(1), 1 ≤ k ≤ m.
Under the assumptions (i)-(iv) Jiang proved that the asymptotic distribution of χ 2 nJ is the same as that of m k=1 λ k Z 2 k where Z 1 , . . . , Z m are i.i.d. N (0, 1) random variables and λ 1 , . . . , λ m are the eigenvalues of Σ.

First we extend the Jiang's result to the Pearson statistics χ 2 nP ( p, p( θ)) defined in (1). To achieve this aim we need to put an additional assumption about the partition and the probability model:

p(θ) = 1 n n j=1 p j (θ) -→ n→∞ q, where q k > 0 for all k ∈ {1, . . . , m}. (8) 
The above mentioned extension is stated in the following lemma.

Lemma 1 If the assumptions (i)-(iv) and ( 8) are fulfilled then the statistic

T 1 n = χ 2 nP ( p, p( θ))
has, under the null hypothesis (4), the same asymptotic distribution as m k=1 (λ k /q k )Z 2 k , where Z 1 , . . . , Z m are i.i.d. N (0, 1) random variables, and λ 1 ≥ . . . ≥ λ m are the eigenvalues of Σ.
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Proof: In the proof of his Theorem 1, [START_REF] Jiang | A nonstandard χ 2 -test with application to generalized linear model diagnostics[END_REF] showed that under the assumptions (i)-(iv) it holds

X n n -1/2 Q t n ξ n L -→ X ∼ N m (0, D) , (9) 
where D = diag(λ 1 , . . . , λ m ). Let us define the random vector

X n diag (p(θ)) -1/2 • X n = B n X n ,
where matrix

B n has diagonal elements (B n ) kk = p k (θ) -1/2 = (E θ N k /n) -1/2 , k = 1, . . . , m. Then, (8) imply B n -→ B = diag(q -1/2 1 , . . . , q -1/2 m )
for n → ∞ and using the Slutsky theorem we get

X n L -→ BX ∼ N m (0, BDB t ) .
From this it already follows that the asymptotic distribution of X t n X n is the same as that of

m k=1 (λ k /q k )Z 2 k .
To finish the proof we will show that T 1 n = X t n X n + o P (1). Let us start with a partial problem. For k = 1, . . . , m we can write

p k ( θ) = E b θ N k n = 1 n n j=1 p jk ( θ) = 1 n n j=1 p jk (θ) + 1 n n j=1 (p jk ( θ) -p jk (θ)) . ( 10 
)
Using the Taylor expansion

p jk ( θ) = p jk (θ) + ∂ ∂θ p jk (θ) ( θ -θ) + 1 2 ( θ -θ) t ∂ 2 ∂θ 2 p jk (θ (j,k) ) ( θ -θ)
where θ (j,k) lies in the line between θ and θ, we get

1 n n j=1 (p jk ( θ) -p jk (θ)) = n -1/2 1 n n i=1 ∂ ∂θ p ik (θ) √ n( θ -θ) + 1 2 √ n( θ -θ) t 1 n n i=1 ∂ 2 ∂θ 2 p ik (θ (i,k) ) ( θ -θ) = o P (1) ,
as follows from the assumptions of the lemma. Substituting this results into (10) for all k we finally get the asymptotic relation

p( θ) = p(θ) + o P (1) . (11) 
For the statistic of interest we have

T 1 n = n m k=1 ( p k -p k ( θ)) 2 p k ( θ) = n -1 m k=1 (N k -E b θ N k ) 2 E b θ N k /n = n -1 ξ t n diag p( θ) -1 ξ n = n -1 ξ t n Q n diag p( θ) -1 Q t n ξ n = X t n diag p( θ) -1
X n and thus

T 1 n = X t n X n + X t n diag p( θ) -1 -diag p(θ) -1 X n = X t n X n + o P (1)
as can be seen from ( 8), ( 9) and ( 11).

The main result of this section stating the asymptotic distribution of T φ n is presented in the following theorem.

Theorem 1 If the assumptions (i)-(iv) and ( 8) are fulfilled then for all φ ∈ Φ the statistics T φ n = T φ n ( p, p( θ)) defined in (6) has, under the null hypothesis (4), the same asymptotic distribution as m k=1 (λ k /q k )Z 2 k , where Z 1 , . . . , Z m are i.i.d. N (0, 1) random variables, and λ 1 ≥ . . . ≥ λ m are the eigenvalues of Σ.
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Proof: The proof is based on the Lemma 4.1 of [START_REF] Menéndez | Two approaches to grouping of data and related disparity statistics[END_REF] which states that for any random stochastic m-vectors s n , t n and all functions φ ∈ Φ it holds

T φ n (s n , t n ) = χ 2 nP (s n , t n ) + o P (1)
provided that the conditions s n -t n = O P (n -1/2 ) and Π(t n ) = o P (1) for no subsequence t n of t n ,

where Π(t n ) = m k=1 t nk , are satisfied. Since the validity of (12) for t n = p( θ) follows directly from ( 8) and ( 11), to prove the assertion we need to check the condition pp( θ) = O P (n -1/2 ) and apply Lemma 4.1 of [START_REF] Menéndez | Two approaches to grouping of data and related disparity statistics[END_REF] and Lemma 1 of the present paper. From the definition of ξ n , p and p( θ) it follows that p k -p k ( θ) = ξ nk /n, k = 1, . . . , m, and thus

√ n p -p( θ) = n m k=1 ( p k -p k ( θ)) 2 1 2 = 1 n m k=1 ξ 2 nk 1 2 = 1 n ξ t n ξ n 1 2 . As (1/n) ξ t n ξ n = χ 2 nJ ( p, p( θ))
is the Jiang statistics which has under the assumed conditions the asymptotic distribution stated in Theorem 1 of [START_REF] Jiang | A nonstandard χ 2 -test with application to generalized linear model diagnostics[END_REF] and is thus O P (1), the proof is finished.

Let us note that to use the class of statistics T φ n for testing, the eigenvalues λ 1 , . . . , λ m as well as the stochastic vector q = (q 1 , . . . , q m ) have to be replaced by their estimators. From (11) it follows that p( θ) = (1/n) n j=1 p j ( θ) is a consistent estimator of the vector q. If we denote λ n1 , . . . , λ nm the eigenvalues of Σ n = Σ n ( θ) then, by Weyl's eigenvalue perturbation theorem (e.g. [START_REF] Bhatia | Matrix Analysis[END_REF]), | λ nk -λ nk | ≤ Σ n ( θ) -Σ n (θ) which can be expected to go to 0 since θ is consistent. By the same theorem it can be seen also that λ nk → λ k and so λ nk is a consistent estimator of λ k , k = 1, . . . , m. The following testing procedure can be thus proposed: Reject H 0 if T φ n exceeds the critical value of

m k=1 ( λ nk /p k ( θ)) Z 2 k .

Bootstrap goodness of fit tests

The application of the Jiang statistic ( 5) and the T φ n statistics (6) to test the hypothesis (4) requires the use of their asymptotic distribution given in Theorem 1 of [START_REF] Jiang | A nonstandard χ 2 -test with application to generalized linear model diagnostics[END_REF] and Theorem 1 of the present paper respectively. Practitioners will find the following difficulties in applying this approach: (1) in most cases, derivation of Σ n is not straightforward and numerical computations may be needed, and (2) Σ n is estimated with Σ n = Σ n ( θ) and Σ n ( θ) is assumed to be close to Σ n (θ). Therefore sample size should be large enough to fulfil the desired test size. Bootstrap tests avoid the mentioned difficulties because they only require the calculation of the test statistics in independent bootstrap samples and they approximate the required distribution under H 0 .

Let Y 1 , . . . , Y n be random variables and let F 1θ , . . . , F nθ be c.d.f. depending on a common parameter θ ∈ Θ ⊂ R d open. The hypothesis (4) under consideration is of the form

H 0 : Y 1 ∼ F 1θ , . . . , Y n ∼ F nθ independent, θ ∈ Θ.
Let T n = T n (Y 1 , . . . , Y n ) be a given test statistic for this problem and assume that H 0 is rejected if T n > c n for a given critical value c n > 0. Let F Tnθ (x) = P n θ (T n ≤ x) be the distribution of T n under H 0 , where P n θ is the probability corresponding to the joint distribution n j=1 F jθ . Suppose that we have an estimator θ of θ such that θ is consistent under H 0 in the sense that

P n θ θ -θ > ε -→ n→∞ 0, for any ε > 0. A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT Assuming that F Tnθ is continuous a bootstrap estimator of c n is c n = F -1 Tn b θ (1 -α),
where α ∈ (0, 1) is the size of the test. The computation of c n can be done by Monte Carlo simulation in the following way. Generate B independent bootstrap samples {Y * 1b , . . . , Y * nb } from the joint distribution

n j=1 F j b θ . Then c n is approximated by the {[(1 -α)B] + 1}th order statistic of T n (Y * 1b , . . . , Y * nb ), b = 1, . . . , B.
Alternatively bootstrap estimated p-value can be used to decide if H 0 is rejected or not. Let Y 1 = y 1 , . . . , Y n = y n be the observed values. For the test of the form T n > c, its p-value is defined by

p n = P n θ (T n (Y 1 , . . . , Y n ) > T n (y 1 , . . . , y n )),
and hypothesis is rejected if p n < α. A bootstrap estimator of p n is

p n = P * (T n (Y * 1 , . . . , Y * n ) > T n (y 1 , . . . , y n ))
where 

Y * 1 ∼ F 1 b θ , . . . ,
p n = # (T n (y * 1 , . . . , y * n ) > T n (y 1 , . . . , y n )) B .
This approach is also used in Section 4 to calculate the p-value

p n = P m k=1 ( λ nk /p k ( θ)) Z 2 k > t
when T φ n = t has been observed.

Example and simulation

This section contains an example that illustrates results and proposals of Section 2 and 3, as well as a simulation study designed to investigate the performance of several test statistics. Let us consider the linear model H 0 : y j = βx j + e j , j = 1, . . . , n,

with e j i.i.d. N (0, σ 2 ). Let θ = (β, σ 2 ) be the unknown parameter and let

β = n j=1 y j x j n j=1 x 2 j , σ 2 = 1 n -1 n j=1 (y j -x j β) 2 .
be the corresponding maximum likelihood estimators. Consider the interval partition defined by the cut points

c 1 = 1 + F -1 N (0,1) (1/m), . . . , c m-1 = 1 + F -1 N (0,1) ((m -1)/m), i.e. E 1 = (-∞, c 1 ], E m = (c m-1 , ∞] and E k = (c k-1 , c k ], k = 2, . . . , m -1. Let E θk = E θ [N k ] = n j=1 p jk and define Σ kk = 1 n n j=1 var(h njk ), Σ k1k2 = 1 n n j=1 cov(h njk1 , h njk2 ), k 1 = k 2 , Σ = (Σ k1k2 ) k1,k2=1,...,m ,
for the h njk 's introduced in Section 2. Let λ 1 , . . . , λ m be the eigenvalues of

A = n diag(E -1 b θ1 , . . . , E -1 b θm ) Σ, then T r n ( p, p( θ)) ∼ m k=1 λ k Z 2 k ,
where Z 1 , . . . , Z m are i.i.d. N (0, 1).

Regarding the introduced example a simulation experiment has been implemented to analyze the performance of Jiang and Cressie-Read statistics

χ 2 nJ = n m k=1 ( p k -p k ( θ)) 2 , T r n = 2n r(r + 1) m k=1 p k p k p k ( θ) r -1 , r = -1/2, 0, 2/3, 1.
For every considered test statistics, T n , the simulation follows the next steps.

1. Repeat I = 10000 times (i = 1, . . . , I)

1.1. Generate a sample (y

(i) j , x (i) 
j ), j = 1, . . . , n, from model ( 13) with β = 1, σ 2 = 1 and x

(i) j i.i.d. Unif(0,2). Calculate β (i) , σ 2(i) , λ 1 , . . . , λ m and T (i) n . 1.2. Simulate v 1 , . . . , v A from m i=1 λ i Z 2
i , with Z 1 , . . . , Z m i.i.d N (0, 1) and A = 5000. Calculate It should occur that both ξ n and ξ * n are close to 0.05. In Table 1 test sizes of bootstrap and asymptotic tests are given. We observe that bootstrap tests attain the desired size even for small sample sizes (n = 40), where some asymptotic tests fails. To be sure that asymptotic distribution works properly under the null hypothesis, sample size should not be much lower than 100. At this point it is worthwhile to emphasize that the asymptotic distribution is in fact also approximated in some sense because eigenvalues are calculated from the estimated matrix Σ n and not from Σ.

p (i) n = #{v : v ≥ T (i) n } A and ξ (i) n = 1 if p (i) n < 0.05 0 otherwise. 1.3. Repeat B = 1000 times (b = 1, . . . , B) 1.3.1. Generate e * (ib) j ∼ N (0, σ 2(i) ), j = 1, . . . , n. Generate a bootstrap sample (y * (ib) j , x (i) j ), j = 1, . . . , n, from model y * (ib) j = β (i) x (i) j + e * (ib) j . 1.3.2. Calculate β * (ib) , σ 2 * (ib
(Here Table 1) Powers are calculated, and presented in Tables 234, for the following alternatives to (13):

1. y j = g a (βx j ) + e j , with g a (x) = x a and a varying from 0 to 2.5, 2. e j ∼ (1 -p)N (0, σ 2 1 ) + p Gumbel(0, σ 2 2 ), with σ 2 1 = σ 2 2 = 1 and p = 0, 0.2, 0.5, 0.8, 1, 3. y j = κ i=1 β i x i j + e j , with β 1 = . . . , β 5 = 1 and κ = 1, . . . , 5.

(Here Tables 2, 3 and 4)

One can conclude that Jiang's test statistic has an excellent performance in relation with the more classical power divergence statistics. Comparing the Cressie-Read statistics no dramatic differences were observed. Just in the case 2 the Freeman-Tukey statistic (r = -1/2) seems to have the best behavior in the sense of powers, in this case even better than the Jiang's statistic.

  Y * n ∼ F n b θ are the bootstrap independent data. The computation of p n can be done by Monte Carlo simulation in the following way. Generate B independent bootstrap samples {Y * 1b , . . . , Y * nb } from the joint distribution

	n j=1 F j b

θ . Then p n is approximated by
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 .9408 .9349 .9278 .9242 .9822 .9397 .9397 .9359 .9326 .9844 .2 .6188 .6063 .5919 .5895 .7629 .6079 .6097 .6068 .6029 .7714 .4 .2765 .2672 .2657 .2664 .3824 .2646 .2724 .2802 .2818 .3937 .6 .1234 .1212 .1224 .1266 .1588 .1100 .1152 .1213 .1243 .6 .1985 .1912 .1881 .1887 .2182 .1889 .1945 .1970 .1998 .2314 1.8 .3652 .3634 .3712 .3796 .4470 .3375 .3562 .3768 .3855 .4521 2.0 .5822 .5918 .6119 .6282 .7557 .5413 .5773 .6120 .6253 .7627 2.5 .9848 .9873 .9904 .9921 .9998 .9779 .9852 .9896 .9910 .9999Table 2 .5 .1622 .1313 .1160 .1134 .1630 .1255 .1337 .1358 .1336 .1656 .8 .3265 .1967 .1200 .1018 .1709 .2860 .2110 .1470 .1304 .1737 1 .4518 .3140 .1852 .1543 .1667 .3936 .3057 .2058 .1718 .1701 Table 3. Powers for case 2, α = 0.05 and n = 100 (asymptotic | bootstrap).

κ -1/2 0 2/3 1 Jiang -1/2 0 2/3 1 Jiang 1 .1000 .0683 .0457 .0462 .0440 .0512 .0537 .0548 .0547 .0547 2 . 2610 .1249 .1239 .1479 .2516 .0425 .0800 .1371 .1522 .2588 3 .4659 .4799 .6483 .7290 .9529 .0989 .4996 .6941 .7142 .9554 4 .7746 .8600 .9525 .9740 .9868 .7030 .9312 .9577 .9582 .9835 5 .9004 .9622 .9928 .9967 .9764 .9713 .9916 .9931 .9915 .9746 Table 4. Powers for case 3, α = 0.05 and n = 40 (asymptotic | bootstrap).