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The aim of the paper is to evaluate the matching noise produced by nonparametric imputation techniques referring to the kNN method, both with fixed and variable number of donors k. The matching noise is evaluated formally and via a simulation Keywords.

Introduction

Partially observed data sets are ubiquitous in applied statistics. Usually missing data are filled in, and only the final imputed data set is disseminated. Imputation is justified by practical problems, and at the same time its use is controversial; see [START_REF] Haziza | Why do we impute? The Imputation[END_REF] and references therein.

The main problem is that an imputed data set is not a real data set, and statistical conclusions drawn from an imputed data set are questionable. Let D = {x i ; i = 1, . . . , n} be a sample of n i.i.d. multivariate records from a distribution f (x|θ), θ ∈ Θ. Let x i;obs and x i;mis be the observed and missing part in the ith record respectively, for every i = 1, . . . , n. Imputation of missing items consists in choosing a substitute x i;mis for the missing components of D. The final imputed data set is a complete data set D on which usual estimators and tests are applied. The ideal situation is given by an imputed data set D whose imputations are randomly generated by the (unknown) conditional distribution f (x mis |x i;obs ; θ) for every i, while the actual imputation generating distribution g(x mis |x i;obs ) may be different. The appropriateness (or better, the reliability) of D depends on two distinct aspects: (i) the missing data generating mechanism and (ii) the imputation mechanism. These two aspects interact: discrepancy between f and g for each missing data pattern affects the reliability of the imputed data set, and are especially important for highly probable missing data patterns.

Missing data patterns and their probabilistic relationships with observed data are studied in the literature, since the seminal paper by [START_REF] Rubin | Inference and missing data[END_REF]. On the contrary, the study of the discrepancy between the data and imputation processes has just received little attention. A remarkable exception is the statistical matching problem [START_REF] Paass | Statistical record linkage methodology, state of the art and future prospects[END_REF] where such a discrepancy is named matching noise.

The goal of this paper is to discuss the matching noise produced by a class of nonparametric imputation procedures in the simplified context of statistical matching. This class is based on the kNN nonparametric estimation of the regression function of Z on X in B, and includes some of the most popular nonparametric imputation procedures (as distance hot deck). The asymptotic properties of the imputation procedures are formally analyzed, and then studied by simulation.

The paper is organized as follows. In Section 2 the statistical framework for the matching problem is described. In Section 3 the matching noise of different procedures is studied. In Section 4, a nonparametric imputation procedure is introduced, and its matching noise is evaluated. In Section 5 the matching noise of different procedures and its effect on some estimators is shown via simulation.

Statistical framework for matching noise

Let (X, Z) = ((X 1 , . . . , X P ), (Z 1 , . . . , Z R )) be a (P + R)-variate r.v. and denote by f (x, z) its joint density function (d.f., for short). Let further A and B be two independent samples of size n A , n B , respectively, generated by (X, Z). Finally, assume that only X is observed in A, and (X, Z) is observed in B. Hence, Z is missing in A. Then, the sample data can be written as

x A a = x A a1 , . . . , x A aP , a = 1, . . . , n A x B b , z B b = x B b1 , . . . , x B bP , z B b1 , . . . , z B bR , b = 1, . . . , n B
for samples A, B, respectively. Note that n A and n B are fixed by design; this is the traditional statistical matching framework [START_REF] D'orazio | Statistical Matching: Theory and Practice[END_REF].

The construction of a complete synthetic data set containing (X, Z), with no parametric assumptions on the family of distributions for the variables of interest, is usually faced via nonparametric imputation procedures. They consist in completing the records of a file (the recipient file A, say) by means of the records of the other file (the donor file B, say). The final product is a synthetic data file where all the variables of interest are simultaneously recorded.

The synthetic data set can be used in inference procedures only when it can be (at least approximately) considered as a sample generated from the joint distribution of (X, Z). The discrepancy between the joint probability distribution of the variables of interest (a) in the population, and (b) in the imputed file (i.e. the matching noise) is of primary interest. Attempts at evaluating such discrepancy are reviewed in D' Orazio et al. (2006). In [START_REF] Rässler | Statistical Matching: a Frequentist Theory, Practical Applications and Alternative Bayesian Approaches[END_REF] normative suggestions for evaluating the accuracy of statistical matching procedures are provided.

In subsequent sections, we study the matching noise produced by different nonparametric imputation techniques. The final output of these procedures is a new data set A with records (x A a , z a ), a = 1, . . . , n A , where z a is a z-value observed in B associated by the imputation technique to record a in A.

A family of nonparametric imputation techniques can be described as follows. a , z a ) in A are generated from a r.v. (X, Z), say. The donor procedure works appropriately if the distribution of (X, Z) coincides with (is "not too far from") the distribution of (X, Z). The usual factorization rules for d.f.s lead, with obvious notation, to

f X A a X B b(a) e Za (x, t, z) = f X (x) f X B b(a) |X A a (t|x) f e Z|X B b(a) X A a (z|x, t).
Once it is known that X B b(a) = t, Z a and X A a are independent, the relationship

f X A a X B b(a) e Za (x, t, z) = f X (x) f X B b(a) |X A a (t|x) f e Z|X (z|t)
holds. Hence, the synthetic sample data (x A a , z a ), a = 1, . . . , n A , can be considered as composed by observations (identically distributed but not generally independent) generated from:

f X A a e Za (x, z) = f X (x) f X B b(a) |X A a (t|x) f e Z|X (z|t) dt. ( 1 
)
Matching noise is determined by two elements: (i) the presence of the donor distribution

f X B b(a) |X A a (t|x); (ii) the combination of the donor values Z = g( Z B b(a)
). If k = 1 and g(.) is the identity function, then the matching noise is null if the r.v.s X A a , X B b1(a) coincide almost surely, so that the r.v.'s (X A a , Z a ) and (X, Z) possess the same d.f.. This is possible when X is categorical and all the categories are observed in both A and B. In all other cases, the two distributions are different.

In the next sections, we will illustrate the influence of the matching noise for different, widely used donor selection procedures. This problem has been addressed by many authors (see [START_REF] Sims | Comments on: "Constructing a New Data Base From Existing Microdata Sets: the 1966 Merge File[END_REF], [START_REF] Rodgers | An Evaluation of Statistical Matching[END_REF], [START_REF] Paass | Statistical Match: Evaluation of Existing Procedures and Improvements by Using Additional Information[END_REF], [START_REF] Rässler | Statistical Matching: a Frequentist Theory, Practical Applications and Alternative Bayesian Approaches[END_REF] p. 21-22) but an explicit probabilistic evaluation of the matching noise is still missing.

In what follows, the r.v.s X and Z will be assumed absolutely continuous.

Matching noise for kNN nonparametric imputation techniques

In this section we explicitly evaluate the matching noise for a class of nonparametric imputation procedures that includes some of the most used ones: the distance and random hot deck imputation procedures. This class is defined by assuming that the k donors to a record a ∈ A are given by the k nearest neighbours of x a in B, a = 1, . . . , n A . Formally, let D be a positive definite matrix, and let d(

x A a , x B b ) = ((x B b -x A a ) D(x B b -x A a )) 1/2 be the corresponding Euclidean distance. The k nearest neighbours of x A a are the k 1 observations x B b(a) = (x B b1(a) , . . . , x B b k (a) ) in B which are closest to x A a , according to the distance d. The imputed value Z A a is then a function g(Z B b1(a) , . . . , Z B b k (a)
). In the sequel we will denote by Ψ b the quantities

X B b -x A a , by W b the quantity Ψ b DΨ b , by Ψ n B :1 • • • Ψ n B :n B the ordered Ψ b s, and by f Ψ the conditional d.f. of Ψ b given X A a = x A a .

Formal evaluation of the matching noise

In order to evaluate the matching noise for the kNN nonparametric imputation procedures, let Γ = (Γ 1 , . . . , Γ k ) be the r.v. taking the value b(a) = (b 1 (a), . . . , b k (a)) for every observed sample, i.e. the k nearest neighbour labels of each record in the sample. Consider next the joint probability

P (Γ = b(a), Ψ n B :j ψ j , j k) = 1 D n B ,k P (Ψ n B :j ψ j , j k|Γ = b(a)) (2) 
where

D n B ,k = n B (n B -1) • • • (n B -k + 1), and let S k = {(ψ 1 , ψ 2 , .., ψ k ) : ψ 1 Dψ 1 ψ 2 Dψ 2 ... ψ k Dψ k } be a k-dimensional subset of R P ,
and (-∞, ψ j ] = {a ∈ R P : a ψ j } the orthant with (upper) vertex ψ j , j = 1, 2, .., k. Since

P (Ψ n B :j ψ j , j k|Γ = b(a)) = P (Ψ bj (a) ψ j , j k, W t W b k (a) , t / ∈ b(a)|Γ = b(a)) = S k P Ψ bj (a) ψ j , j k, W t W b k (a) , t / ∈ b(a)|Γ = b(a), Ψ bj (a) = x j , j k k j=1 f Ψ (x j )dx j = S k ∩( T k j=1 (-∞,ψj ]) P (W t x k Dx k ∀t / ∈ b(a)) k j=1 f Ψ (x j ) dx j = S k ∩( T k j=1 (-∞,ψj ]) t / ∈b(a) P (W t x k Dx k ) k j=1 f Ψ (x j )dx j = S k ∩( T k j=1 (-∞,ψj ]) P (W x k Dx k ) n B -k k j=1 f Ψ (x j )dx j it is seen that (2) is equal to 1 D n B ,k S k ∩( T k j=1 (-∞,ψj ]) P (W x k Dx k ) n B -k k j=1 f Ψ (x j )dx j . (3) 
Hence, the marginal d.f. of (Ψ n B :1 , Ψ n B :2 , ..., Ψ n B :k ) is given by

f Ψn B :1 Ψn B :2 ... Ψ n B :k (ψ 1 , ψ 2 , ..., ψ k ) = P (W ψ k Dψ k ) n B -k k j=1 f Ψ (ψ j ). (4) 
Finally, taking into account that

X B b(a) = (X B b1(a) , . . . , X B b k (a) ) coincides with (Ψ n B :1 + x A a , . . . , Ψ n B :k + x A a )
, we have proved the following result.

Proposition 1 The conditional d.f. of X B b(a) , given X A a = x A a , is equal to f X B b(a) |X A a (x 1 , . . . , x k ) = f Ψn B :1 ... Ψ n B :k (x 1 -x A a , x 2 -x A a , ..., x k -x A a ), (5) 
where f Ψn B :1 ... Ψ n B :k is given by (4).

The behaviour of the k donors as n B increases is studied in Proposition 2.

Proposition 2 Let be a P -dimensional vector with all components equal to .

Using the same notation as in Proposition 1 , and writing

X B b(a) ∈ (x A a -, x A a + ) if and only if X B bj (a) ∈ (x A a -, x A a +
) for every j = 1, . . . , k, we have:

lim n B →∞ P (X B b(a) / ∈ (x A a -, x A a + ) |X A a = x A a ) = 0 ∀ > 0.
Proposition 2 implies that all k components of X B b(a) are "close" to X = x A a . Hence, the conditional d.f. of each Z B bj (a) , given X B b(a) , is close to the conditional d.f. of Z, given X = x A a , j = 1, . . . , k. This does not imply that the conditional d.f. of g(Z B b1(a) , . . . ,

Z B b k (a) ), given X B b(a) is close to the d.f. of Z given X. Example 1 If g is the mean of Z B bj (a) s, g(Z B b1(a) , . . . , Z B b k (a)
) tends to the distribution of the sample mean of k i.i.d. copies of Z, given X.

Example 2 If g is a random draw from the k nearest neighbours Z B bj (a) , j = 1, . . . , k, g(Z B b1(a) , . . . , Z B b k (a) ) tends to the distribution of Z, given X, i.e. the matching noise is null. is a consistent estimator of h(•) then it is not difficult to see that the matching noise of this procedure vanishes as n B increases. In this way we have defined a (nonparametric) class of consistent imputation methods. In section 5, the performance of this imputation technique is compared to the hot deck one in the special case of h = kNN estimator of h.

An important special case: distance hot-deck

Distance hot-deck is probably the most widely used imputation technique for statistical matching. Each record in the recipient file A is matched with the closest record in the donor file B. Formally speaking, it consists in selecting, for each a = 1, . . . , n A , the donor b 1 (a) ∈ B such that

d(x A a , x B b1(a) ) = min b∈B d(x A a , x B b )
It can be shown [START_REF] Paass | Statistical record linkage methodology, state of the art and future prospects[END_REF], [START_REF] Cohen | Statistical matching and microsimulation models. Improving Information for Social Policy Decisions, the Use of Microsimulation Modeling[END_REF] ) that distance hot-deck is equivalent to impute missing data through the conditional expectation of Z given X estimated by the (nonparametric) kNN nearest neighbour method, with k = 1. This is actually the most important theoretical justification of distance hot-deck.

Its main properties can be obtained by specializing the results in Section 3.1. More precisely, using the same notation as in Section 3.1, it is immediate to prove the following proposition, that allows the evaluation of the matching noise for distance hot-deck.

Proposition 3 The conditional d.f. of X B b1(a) , given X A a = x A a , is equal to f X B b 1 (a) |x A a (x) = f Ψn B :1 (x -x A a ),
Distance hot-deck exhibits an important feature: its matching noise decreases as n B increases. In fact, by particularizing Proposition 2, it is immediate to prove the following statement.

Proposition 4 Using the same notation as in Proposition 2, we have:

lim n B →∞ P (X B b1(a) / ∈ (x A a -, x A a + ) |X A a = x A a ) = 0 ∀ > 0.
Despite its similarity with Proposition 2, there is a fundamental difference. In fact, Proposition 4 tells us that, if n B is large enough, then the matching noise is negligible because X B b1(a) is "close" to X = x A a with high probability, and hence the conditional distribution of Z, given X B b1(a) , is close to the conditional d.f. of Z, given X = x A a . As discussed in Section 3.1, kNN method with k > 1 does not generally possess the same property.

d 0 -Kernel hot-deck

In this section we describe a nonparametric imputation procedure characterized by a variable number of donors k, the d 0 -Kernel, say. For each record in A, donor methods described in Section 3 select the k nearest neighbours with fixed k. As a consequence, some donors could be sparse, especially in the tails of the distribution of X. In other words, the kNN method forces units far from the record x A a to be equally informative on z A a . Since the optimal value of k varies with x A a , an obvious extension of the kNN method consists in allowing a possibly different number of donors k for each record x A a . In order to accomplish this, we fix a threshold d 0 : the records b in B having distance d(x B b , x A a ) smaller than d 0 are considered as neighbours of x A a , a = 1, . . . , n A . As a matter of fact, the number k of neighbours of a follows a binomial distribution with parameters n B and α(d 0 ) = P (W d 0 ).

Let Γ e k be the r.v. taking the value b(a) of records x B b such that d(x B b , x A a ) d 0 . Then, when k 1 we have

P ( k = k, Γ e k = b(a), Ψ n B :j ψ j , j k) = P ( k = k) 1 D n B ,k P (Ψ n B :j ψ j , j k| k = k, Γ e k = b(a)) = P ( k = k) 1 D n B ,k P (Ψ bj (a) ψ j , j k, W t W b k (a) , t / ∈ b(a)| W bj (a) d 0 , j k, W t > d 0 , t / ∈ b(a)) = P ( k = k) 1 D n B ,k P (Ψ bj (a) ψ j , j k|W bj (a) d 0 , j k) = P ( k = k) D n B ,k P (W d 0 ) k T k ∩( T k j=1 (-∞,ψj ]) k j=1 f Ψ (x j )dx j (6) 
where

T k = {(ψ 1 , ψ 2 , .., ψ k ) : ψ 1 Dψ 1 ψ 2 Dψ 2 ... ψ k Dψ k d 0 }.
Taking into account that there are no donors when k = 0, from (6) it is not difficult to compute the following probability

P (Ψ n B :j ψ j , j k| k 1) = k 1 P (Ψ n B :j ψ j , j k, k = k| k 1) = 1 P ( k 1) k 1 P (Ψ n B :j ψ j , j k, k = k) (7) 
where

P (Ψ n B :j ψ j , j k, k = k) = P ( k = k) P (W d 0 ) k T k ∩( T k j=1 (-∞,ψj ]) k j=1 f Ψ (x j )dx j (8)
From ( 7) the d.f. of the donors X B b(a) is derived, as well as the matching noise. The marginal d.f. of (Ψ n B :1 , Ψ n B :2 , ..., Ψ n B : e k | k 1) is given by 

f Ψn B :j ,j e k (ψ j , j k | k 1) = 1 P ( k 1) k 1 P ( k = k) P (W d 0 ) k k j=1 f Ψ (ψ j ). ( 9 
.f. of X B b(a) , given X A a = x A a , is equal to f X B b(a) |X A a (x j , j k | k 1) = f Ψn B :j ,j e k (x j -x A a , j k | k 1), ( 10 
)
where f Ψn B :j ,j e k is given by (9).

The results in Proposition 2 cannot be extended to the d 0 -Kernel method, unless d 0 goes to zero at an appropriate rate as n B goes to infinity.

A simulation study

In order to compare the matching noise of imputation methods considered so far a simulation experiment is performed. We have randomly generated 500 i.i.d. records from a bivariate normal distribution (X, Z) with means 1, 3, variances 5, 4, respectively, and covariance 3. Let the recipient file A consist of these 500 observations, with Z dropped. The simulation analysis involves the following steps. •

Step 3 : steps 1, 2 are repeated 400 times.

To evaluate the closeness between the data generating and the imputation generating models, the Kolmogorov-Smirnov distance (KS) between the empirical d.f. of imputed values Z in A ( F e Z,v (z)), and the actual d.f. (F 0 (z)) has been used:

KS Z = 1 400 400 v=1 KS Z (v) = 1 400 400 v=1 sup -∞<z<∞ | F 0 (z) -F e Z,v (z) | . (11) 
The matching noise (11) has been computed for different donor file sizes n B (Figure 1). For all nonparametric imputation techniques, the matching noise decreases as the donor file size n B increases. The mean kNN plus residual technique seems to perform slightly better than other methods. On the other hand, the mean kNN is the worst method. This imputation technique underestimates variability, and this worsens as k increases.

Results similar to those in Figure 1 hold when the KS distance between the empirical conditional d.f. of Z

| X = x A a , a = 1, . . . , 500 ( F e Z|x A a (z)) and the actual d.f. (F 0|x A a (z)) is performed: E[KS X Z ] ≈ 1 500 500 a=1 KS Z (x A a ) = 1 500 500 a=1 sup -∞<z<∞ | F 0|x A a (z) -F e Z|x A a (z) | (12)
The same evaluations have been considered to compute the matching noise of the d 0 -Kernel version of the previous methods, where d 0 has been chosen to minimize the asymptotic Mean Square Error of the local kernel density function estimator of X [START_REF] Silverman | Density Estimation for Statistics and Data Analysis[END_REF]. Again, results are similar to those in Figure 1.

The d 0 -Kernel for kNN plus residual methods avoid the use of donors "too far" from x A a , especially for the d.f. tails. Hence, the d 0 -Kernel kNN plus residual performs better than the fixed k cases, since they are able to adaptively choose the amount of smoothing.

Instead of the full distribution of (X, Z), it is possible to measure the performance of the imputation procedures when the aim is the estimation of some statistically meaningful parameters, such as the expectation of Z (µ Z , say), and the correlation coefficient between the variables of interest (ρ X,Z , say). For each nonparametric imputation technique, both with fixed and variable number of donors k, the performance of the sample mean and the sample correlation coefficient has been evaluated in terms of Mean Square Error.

The mean kNN technique better estimates µ Z , since it generates the best point estimate in terms of quadratic loss. This result can be considered as the nonparametric counterpart of results in Buck (1969). However, it should not be consider as a good matching method for a general purpose matched file (X, Z). For instance, this is confirmed by the Mean Square Error of the correlation coefficient estimator (Figure 2). The imputation mean method does not preserve the relationship between the variables of interest in the synthetic complete data set. Distance hot deck and random kNN methods preserve the relation between X and Z slightly better than the other methods. 

  For every x A a in A, let b(a) = (b 1 (a), . . . , b k (a)) be the labels of its k donor records in B, on the basis of the n B observations x B b , b = 1, . . . , n B , and let X B b(a) be the corresponding vector of r.v.'s (X B b1(a) , . . . , X B b k (a) ). Next, the corresponding z-values Z B b(a) = (Z B b1(a) , . . . , Z B b k (a) ) are considered. Finally, the missing value Z A a is imputed by Z a = g(Z B b(a) ), g(•) being an appropriate function. Examples are the arithmetic mean of Z B bj (a) s, their median, or a randomly chosen value from Z B bj (a) s. Since the observed x-values in A are generated from X, the records (x A

Example 3

 3 An alternative imputation procedure, again based on kNN, could be the following. Assume a (multivariate) nonparametric regression model Z = h(X) + U, with E(U|X) = 0, E(UU |X) = σ 2 I, I being the identity matrix. A simple idea consists in (i) estimating first h(X) by a nonparametric estimator h; (ii) defining the residuals e B b = z B b -h(x B b ), b = 1, . . . , n B ; (iii) drawing at random a residual e B b * ; (iv) imputing z A a = h(x A a ) + e B b * . If h(•)

  ) Finally, taking into account that X B b(a) = (X B b1(a) , . . . , X B b e k (a) ) coincides with (Ψ n B :1 + x A a , . . . , Ψ n B : e k + x A a ), we have proved the following result. Proposition 5 The conditional d

  0 -kernel with d 0 chosen to minimize the asymptotic Mean Square Error of the local kernel density function estimator of X (Section 4).

Figure 1 :

 1 Figure 1: Kolmogorov-Smirnov distance KS Z for distance hot deck, kNN mean, random kNN and mean kNN +residual with k = √ n B .

  

•

  Step 1 : a donor sample B of n B i.i.d. records is drawn from the same bivariate distribution. Different values of n B are used, n B = 100 -1000/100.

	• Step 2 : missing Zs are imputed by the following imputation techniques.
	1. Distance hot deck, with d(x A a , x B b ) = |x A a -x B b | (Section 3.2). 2. kNN with k = √ n B , g(.) corresponding either to the mean function
	(mean kNN: Example 1) or to a random draw (random kNN: Example
	2). The value of k is chosen according to Silverman (1986), p. 19.

3. kNN estimator of h(X) = E(Z|X) plus random residual, Example 3.
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