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Abstract

In a recent paper, Liu (2007) proposed a generalization of the Markov–switching

GARCH model of Haas et al. (2004) to allow both for a nonlinear relation between

past shocks and future volatility as well as for the leverage effect, which refers to the

observation that stock market volatility reacts differently to positive and negative

shocks. For the new model, Liu (2007) derived conditions for stationarity and the

existence of moments. This article complements Liu’s (2007) results in two direc-

tions. First, a simple method for calculating the moments and the autocorrelation

structure of the power–transformed absolute process is devised, which is of vital

interest in applied GARCH modeling. Second, in an application to stock returns,

the relevance of the extended Markov–switching GARCH process proposed by Liu

(2007), as compared to simpler versions, is illustrated.

Keywords— Autocorrelations, Conditional volatility, GARCH, Leverage effect, Markov–

switching, Stock market
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1 Introduction

In a recent paper, building on work of Hwang and Basawa (2004), Liu (2007) provided a

generalization of the Markov–switching GARCH model of Haas et al. (2004) to allow both for

a nonlinear relation between past shocks and future volatility as well as for the leverage effect,

which refers to the observation that stock market volatility reacts differently to positive and

negative shocks. For the new model, Liu (2007) derived conditions for stationarity and the

existence of moments.

The present article complements Liu’s (2007) work in two directions. First, we suggest a

representation of the process which admits straightforward computation of the unconditional

moments and the dynamic autocorrelation structure of the power–transformed absolute returns

(residuals), which are taken as a measure of volatility. Such results are of vital interest in the

context of GARCH modeling, because it is the desire to capture the dependence structure

of these measures of financial volatility which motivates the use of GARCH models in the

first place, and, therefore, researchers will want to assess how well the dynamic properties

of an estimated model mimic the corresponding quantities directly estimated from the data

under consideration. Second, in an application to stock returns, we compare the fit of Liu’s

(2007) model with several simpler single–regime and Markov–switching GARCH specifications

to illustrate the usefulness of the extended model. To the best of our knowledge, Liu’s model

has not been confronted with real data so far.

2 The Markov–switching Asymmetric Power GARCH Model

(MS–APGARCH)

Time series {ǫt, t ∈ Z} is generated by a k-regime Markov–switching asymmetric power

GARCH process, or, in short, MS–APGARCH(k), if it can be described by

ǫt = ηtσ∆t,t, t ∈ Z, (1)

where {ηt, t ∈ Z} is an iid sequence of symmetric zero mean random variables, and {∆t, t ∈ Z}
is a Markov chain with finite state space S = {1, . . . , k} and primitive (i.e., irreducible and

aperiodic) transition matrix, P , with typical element pij = p(∆t = j|∆t−1 = i), that is,

P = [pij ] = [p(∆t = j|∆t−1 = i)], i, j = 1, . . . , k. (2)

In addition, {ηt, t ∈ Z} and {∆t, t ∈ Z} are assumed to be independent. The stationary

distribution of the Markov chain will be denoted by π∞ = (π1,∞, . . . , πk,∞)′. We note that

1
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the assumption of ηt being symmetric is by no means crucial, but it holds for all candidate

densities commonly employed in regime–switching GARCH models (in particular, Gaussian

and Student’s t), and it helps to simplify the notation below.

In the parametrization adopted in Liu (2007), the conditional variance of regime j, σ2
jt, is

driven by a univariate asymmetric power GARCH (APGARCH) equation of the form

σδ
jt = ωj + θ1j |ǫ+t−1|δ + θ2j |ǫ−t−1|δ + βjσ

δ
j,t−1, δ > 0, (3)

where ωj > 0, θ1j , θ2j , βj ≥ 0, j = 1, . . . , k, ǫ+t = max{0, ǫt}, and ǫ−t = min{0, ǫt}. Equation (3)

nests the MS–GARCH(k) process of Haas et al. (2004) for δ = 2 and θ1j = θ2j , j = 1, . . . , k.

The introduction of the power parameter δ in (3), which dates back to Higgins and Bera

(1992) and Ding et al. (1993), is rooted in the observation of Ding et al. (1993) that “there is

no obvious reason why one should assume the conditional variance is a linear function of lagged

squared returns (residuals)”, and, in fact, the time series dependencies of power–transformed

residuals, |ǫt|δ, are often found to be strongest for δ ≈ 1. The rationale behind the allowance

for asymmetry in (3), i.e., θ1j 6= θ2j , is an empirical regularity known as the leverage effect,

i.e., the “stylized fact” that, for stock returns, past negative shocks have a deeper impact on

volatility than positive shocks of the same magnitude, which corresponds to θ1j < θ2j in (3)

(for a deeper discussion of the leverage effect and its economic interpretation, see, e.g., Bekaert

and Wu, 2000; and Bouchaud et al., 2001). The idea of capturing the asymmetries in volatility

as in (3) goes back to Glosten et al. (1993) and Zaköıan (1994).

In this article, we find a different parametrization of (3) more convenient. Namely, we use

the APGARCH structure of Ding et al. (1993), which is given by

σδ
jt = ωj + αj(|ǫt−1| − γjǫt−1)

δ + βjσ
δ
j,t−1, δ > 0, (4)

where ωj > 0, αj , βj ≥ 0, and γj ∈ (−1, 1), j = 1, . . . , k. Clearly (3) and (4) are equivalent if

θ1j = αj(1 − γj)
δ and θ2j = αj(1 + γj)

δ, j = 1, . . . , k. For applications of the single–regime

APGARCH model of Ding et al. (1993), where k = 1, see, e.g., Brooks et al. (2000), Giot and

Laurent (2003), and Brooks (2007).

3 Autocorrelation Structure

To derive the autocorrelation structure of the power–transformed process, i.e.,

̺(τ ; δ) := Corr(|ǫt−τ |δ, |ǫt|δ) =
E(|ǫt|δ|ǫt−τ |δ) − E2(|ǫt|δ)

E(|ǫt|2δ) − E2(|ǫt|δ)
, (5)

2
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we introduce the following matrices:

Xt =





σδ
1t

σδ
2t
...

σδ
kt

|ǫt−1|δ





, ω̃ =





ω1

ω2

...

ωk

0





, α̃ =





α1

α2

...

αk

1





, η̃t =





(|ηt| − γ1ηt)
δ

(|ηt| − γ2ηt)
δ

...

(|ηt| − γkηt)
δ

|ηt|δ





,

At = α̃ ⊙ η̃t, γ̃ =





γ1

γ2

...

γk

0





, B =





β1 0 · · · 0 0

0 β2 · · · 0 0
...

...
. . . 0 0

0 0 · · · βk 0

0 0 · · · 0 0





,

where ⊙ denotes the Hadamard product, i.e., the elementwise multiplication of conformable

matrices. Moreover, let ej be the jth unit vector in R
k+1, j = 1, . . . , k +1. Then we can write

the process as

Xt = ω̃ + (At−1e
′

∆t−1
+ B)Xt−1. (6)

Representation (6) differs from that in Liu (2007) insofar as |ǫt−1|δ has been included into

the state vector Xt. It turns out that this considerably simplifies the computation of the

autocorrelation structure of the process.

Assume that E(|ηt|2δ) < ∞, and define κ(µ) = E(|ηt|µ), µ > 0. For example, under

Gaussianity of ηt (as assumed in the example in Section 5), we have

κ(µ) =
1√
2π

∫
∞

−∞

|η|µe−η2/2dη =
2µ/2

√
π

Γ

(
µ + 1

2

)
.

Note that, by symmetry,

A := E(At) =
κ(δ)

2

{
α̃ ⊙ [(1k+1 + γ̃)(δ) + (1k+1 − γ̃)(δ)]

}
,

and, using the easily checked identity (α̃ ⊙ η̃t) ⊗ (α̃ ⊙ η̃t) = (α̃ ⊗ α̃) ⊙ (η̃t ⊗ η̃t),

A ⊗ A := E(At ⊗ At) = (α̃ ⊗ α̃) ⊙ E(η̃t ⊗ η̃t)

=
κ(2δ)

2
(α̃ ⊗ α̃) ⊙ [(1k+1 + γ̃)(δ) ⊗ (1k+1 + γ̃)(δ) + (1k+1 − γ̃)(δ) ⊗ (1k+1 − γ̃)(δ)],

where, for an n× 1 vector x, x(δ) := (xδ
1, . . . , x

δ
n)′, and 1n is an n–dimensional column of ones.

Representation (6) is a first–order vector difference equation with stochastic coefficient

matrix. The (regime–specific) expectations of this matrix and its second–order Kronecker

power are needed for determining whether the process has a stationary solution with a finite

3
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(2δ)th–order moment, as required for the autocorrelation function (5) to be well–defined (see

Proposition 3.1), as well as for the computation of the unconditional moments in Proposition

3.2. By the independence of {ηt} and {∆t}, we have

C11(j) := E[(Ate
′

∆t
+ B)|∆t = j] = Ae′j + B, (7)

C21(j) := ω̃ ⊗ C11(j) + C11(j) ⊗ ω̃,

C22(j) := E[(Ate
′

∆t
+ B) ⊗ (Ate

′

∆t
+ B)|∆t = j] (8)

= (A ⊗ A)(ej ⊗ ej)
′ + (Ae′j) ⊗ B + B ⊗ (Ae′j) + B ⊗ B,

j = 1, . . . , k,

and, borrowing notation from Francq and Zaköıan (2005), we define the matrices

PCℓm
=





p11Cℓm(1) p21Cℓm(1) · · · pk1Cℓm(1)

p12Cℓm(2) p22Cℓm(2) · · · pk2Cℓm(2)
...

...
. . .

...

p1kCℓm(k) p2kCℓm(k) · · · pkkCℓm(k)




(9)

for ℓ = 1, 2 and m ≤ ℓ.

Now let ρ(A) denote the spectral radius of a square matrix A, i.e.,

ρ(A) := max{|z| : z is an eigenvalue of A}.

Assumption 3.1 E(|ηt|2δ) < ∞, ρ(PC11
) < 1, and ρ(PC22

) < 1, where matrices PC11
and

PC22
are defined via (9) along with (7) and (8).

Assumption 3.1 ensures that the first two unconditional fractional moments of the process,

i.e., E(|ǫt|δ) and E(|ǫt|2δ), are finite, so that the autocorrelations (5) are well–defined. This is

stated in the following proposition due to Liu (2007).

Proposition 3.1 (Liu, 2007, Corollary 2.1 and Theorem 3.2) If Assumption 3.1 holds, then

the MS–APGARCH(k) process defined by (1), (2), and (4) has a unique strictly stationary

solution with finite (2δ)th–order moment.

Assumption 3.1 therefore enables us to compute the autocorrelation structure of the power–

transformed absolute process, where use will be made of the following lemma (cf. Francq and

Zaköıan, 2005, Lemma 3).

Lemma 3.1 For ℓ ≥ 1, if the variable Yt−ℓ belongs to the information set generated by Ψt−ℓ :=

{ǫs : s ≤ t − ℓ}, then

πj,∞E(Yt−ℓ|∆t = j) =
k∑

i=1

πi,∞p
(ℓ)
ij E(Yt−ℓ|∆t−ℓ = i),

4



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

where the p
(ℓ)
ij := p(∆t = j|∆t−ℓ = i), i, j = 1, . . . , k, denote the ℓ–step transition probabilities,

as given by the elements of P ℓ.

Lemma 3.1 is based on the basic relation

E(Yt−ℓ|∆t = j) =
k∑

i=1

p(∆t−ℓ = i|∆t = j)E(Yt−ℓ|∆t−ℓ = i ∩ ∆t = j),

along with the identity πj,∞p(∆t−ℓ = i|∆t = j) = πi,∞p(∆t = j|∆t−ℓ = i) = πi,∞p
(ℓ)
ij , and

essentially says that “given the regime at time t, the expectation of any variable determined by

the information up to time t does not depend on the future regime history”, i.e., E(Yt−ℓ|∆t−ℓ =

i ∩ ∆t = j) = E(Yt−ℓ|∆t−ℓ = i).

Proposition 3.2 If Assumption 3.1 holds, then the first two fractional moments of the sta-

tionary distribution of the MS–APGARCH(k) are given by

E(|ǫt|δ) = (1′

k ⊗ e′k+1)Q, (10)

and

E(|ǫt|2δ) = (1′k ⊗ e′k+1 ⊗ e′k+1)R, (11)

where Q and R are defined by the equations

Q = π∞ ⊗ ω̃ + PC11
Q, (12)

and

R = π∞ ⊗ ω̃ ⊗ ω̃ + PC21
Q + PC22

R, (13)

respectively. Furthermore, for τ ≥ 1,

E(|ǫt|δ|ǫt−τ |δ) = (1′k ⊗ e′k+1)S(τ)ek+1, (14)

where the sequence of k(k + 1) × (k + 1) matrices S(τ) is defined by the recursion

S(τ) = (P τ ⊗ ω̃)Q̃ + PC11
S(τ − 1), τ ≥ 1, (15)

and the k× (k + 1) matrix Q̃ and the k(k + 1)× (k + 1) matrix S(0) are obtained by reshaping

the vectors Q and R, respectively, as indicated in the proof.

Proof. Using the representation (6) and the fact that Xt belongs to the information set

generated by Ψt−1 = {ǫs : s ≤ t − 1}, Lemma 3.1 gives

πj,∞E(Xt|∆t−1 = j) = πj,∞ω̃ +
k∑

i=1

pijC11(j)πi,∞E(Xt−1|∆t−2 = i), j = 1, . . . , k. (16)

5
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Now define the k(k + 1) × 1 vector Q as

Q = (π1,∞E(Xt|∆t−1 = 1)′, . . . , πk,∞E(Xt|∆t−1 = k)′)′.

Then (16) implies (12), and (10) follows from E(Xt) =
∑

j πj,∞E(Xt|∆t−1 = j) = (1′

k⊗Ik+1)Q,

and E(|ǫt|δ) = e′k+1E(Xt) = (1⊗ e′k+1)(1
′

k ⊗ Ik+1)Q = (1′

k ⊗ e′k+1)Q, using (A⊗B)(C ⊗D) =

(AC) ⊗ (BD) for conformable matrices A, B, C, and D, and where In denotes the identity

matrix of dimension n.

Analogously, using the identities vec(xy′) = y ⊗ x and vec(ABC) = (C ′ ⊗ A)vec(B), we

obtain

πj,∞E[vec(XtX
′

t)|∆t−1 = j] = πj,∞(ω̃ ⊗ ω̃) +
k∑

i=1

pijC21(j)πi,∞E(Xt−1|∆t−2 = i)

+
k∑

i=1

pijC22(j)πi,∞E[vec(Xt−1X
′

t−1)|∆t−2 = i],

j = 1, . . . , k. (17)

Now let, analogously to Q, R be the k(k+1)2×1 vector with elements πj,∞E[vec(XtX
′

t)|∆t−1 =

j], j = 1, . . . , k. Then (17) establishes (13), and (11) follows from

E(|ǫt|2δ) = e′k+1E(XtX
′

t)ek+1 = (e′k+1 ⊗ e′k+1)E[vec(XtX
′

t)]

= (e′k+1 ⊗ e′k+1)(1
′

k ⊗ I(k+1)2)R = (1′

k ⊗ e′k+1 ⊗ e′k+1)R.

To calculate E(|ǫt|δ|ǫt−τ |δ), we observe from the representation (6) that, for τ ≥ 1, and j =

1, . . . , k,

πj,∞E(XtX
′

t−τ |∆t−1 = j) = ω̃πj,∞E(X ′

t−τ |∆t−1 = j) (18)

+C11(j)πj,∞E(Xt−1X
′

t−τ |∆t−1 = j).

From Lemma 3.1,

πj,∞E(X ′

t−τ |∆t−1 = j) =
k∑

i=1

πi,∞p
(τ)
ij E(X ′

t−τ |∆t−τ−1 = i), j = 1, . . . , k, (19)

and

πj,∞E(Xt−1X
′

t−τ |∆t−1) =
k∑

i=1

πi,∞pijE(Xt−1X
′

t−τ |∆t−2 = i), j = 1, . . . , k. (20)

Let S(τ), τ = 0, 1, . . ., be the k(k + 1) × (k + 1) matrix where the (k + 1) × (k + 1) matrices

πj,∞E(XtX
′

t−τ |∆t−1 = j), j = 1, . . . , k, are arranged one underneath the other. Then S(0) is

obtained by reshaping R. Furthermore, let Q̃ be the k×(k+1) matrix where πj,∞E(Xt|∆t−1 =

6
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j) in Q is replaced with its transpose, i.e., πj,∞E(X ′

t|∆t−1 = j). Then (18)–(20) imply (15),

and we have

E(|ǫt|δ|ǫt−τ |δ) = e′k+1E(XtX
′

t−τ )ek+1 = e′k+1(1
′

k ⊗ Ik+1)S(τ)ek+1 = (1′

k ⊗ e′k+1)S(τ)ek+1,

showing (14).

4 Simple Cases

For some concreteness, assume k = 2, ω1 6= ω2, α1 = α2 =: α, β1 = β2 = 0, γ1 = γ2 = 0, δ = 2,

and normally distributed innovations ηt. This corresponds to a special case of a Markov–

switching ARCH process, where only the intercept in the variance equation is subject to

regime–switching, as considered in the classic paper of Cai (1994). Straightforward calculations

show that, for this model, if α < 1,

E(ǫ2t ) =
π1,∞ω1 + π2,∞ω2

1 − α
, (21)

which has already been calculated by Cai (1994). Moreover, if α <
√

1/3 ≈ 0.577, the fourth

moment of the unconditional distribution is

E(ǫ4t ) =
3(π1,∞ω1 + π2,∞ω2)

2(1 + α)

(1 − α)(1 − 3α2)
+

3(1 + δα)

1 − δα

π1,∞π2,∞(ω1 − ω2)
2

1 − 3α2
, (22)

where δ := p11 + p22 − 1 is the degree of regime persistence. Expressions (21) and (22) can

be compared with the moments of the single–regime ARCH(1) process of Engle (1982), i.e.,

ǫt ∼ N(0, σ2
t ), σ2

t = ω + αǫ2t−1, which has second and fourth moments given by ω/(1 − α)

and 3ω2(1 + α)(1 − α)−1(1 − 3α2)−1, respectively. Suppose that ω = π1,∞ω1 + π2,∞ω2. Then

both processes have the same unconditional variance, but we observe from (22) that the fourth

moment of the regime–switching process, and hence its kurtosis, is greater than that of the

single–regime ARCH model. Interestingly, the difference between the unconditional fourth

moments of the models increases not only with the difference between ω1 and ω2 but also with

the persistence of the regimes, δ. The covariance function of this Markov–switching ARCH

process is

Cov(ǫ2t , ǫ
2
t−τ ) = ατ [E(ǫ4t ) − E2(ǫ2t )] + δ

δτ − ατ

δ − α

π1,∞π2,∞(ω1 − ω2)
2

1 − δα
,

which reduces to Cov(ǫ2t , ǫ
2
t−τ ) = δτπ1,∞π2,∞(ω1−ω2)

2 for the basic Markov–switching process

with constant regime–specific variances, where α = 0, as calculated by Timmermann (2000).

Also, for ω1 = ω2, we have the single–regime ARCH(1) process with Corr(ǫ2t , ǫ
2
t−τ ) = ατ .

7



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Another special case is the single–regime APGARCH process, where k = 1, which has been

investigated in He and Teräsvirta (1999), Hwang and Basawa (2004), and Karanasos and Kim

(2006). For this model, provided that c22 < 1,

E(|ǫt|δ) = κ(δ)E(σδ
t ) =

κ(δ)ω1

1 − c11
, E(|ǫt|2δ) = κ(2δ)E(σ2δ

t ) =
κ(2δ)(1 + c11)ω

2
1

(1 − c11)(1 − c22)
,

where cii = E{[α1(|ηt| − γ1ηt)
δ + β1]

i}, i = 1, 2, and

Cov(|ǫt|δ, |ǫt−τ |δ) = cτ−1
11 {κ(δ)[κ(δ)β1 + κ̃(δ; γ1)α1]E(σ2δ

t ) − c11E
2(|ǫt|δ)},

where κ̃(δ; γ1) = E[(|ηt| − γ1ηt)
δ|ηt|δ] = 1

2 [(1+ γ1)
δ +(1− γ1)

δ]κ(2δ). For the original GARCH

model of Bollerslev (1986), where δ = 2, γ1 = 0, and ηt is standard normal, this reduces to the

well–known formulas E(ǫ2t ) = ω1/(1 − α1 − β1), E(ǫ4t ) = 3ω2
1(1 + α1 + β1)(1 − α1 − β1)

−1(1 −
3α2

1 − 2α1β1 − β2
1)−1, and Corr(ǫ2t , ǫ

2
t−τ ) = (α1 + β1)

τ−1α1(1 − α1β1 − β2
1)/(1 − 2α1β1 − β2

1).

5 Illustrative Example

To illustrate the relevance of the generalization from MS–GARCH(k) to MS–APGARCH(k),

we consider the time series of daily returns of the New York Stock Exchange (NYSE) composite

index from January 1966 to August 2001, a sample of 8979 observations.1 Continuously

compounded percentage returns are used, i.e., returns rt are defined as rt = 100× log(It/It−1),

where It is the index level at time t. As the series does not exhibit any significant first–order

dependencies, we model returns as rt = µ + ǫt, where µ is a constant mean parameter, and ǫt

is described by (1) with standard normal ηt.

The return series is displayed in the top left plot of Figure 1, revealing the well–established

phenomenon of pronounced volatility clustering. The top right panel plots, for the largest

900 absolute (demeaned) return observations (i.e., approximately 10% of the sample), the

empirical complementary distribution function of |ǫt|, i.e., P(|ǫt| > x), against x on a log–log

scale, showing that the tail behavior of the data may be well approximated by a power law

of the form P(|ǫt| > x) ∼ cx−α with a tail exponent of α ≈ 3.3. Along with the conditional

heteroskedasticity observed in the left plot, this indicates the potential appropriateness of

the GARCH class of models in general, because it is known that these processes give rise to

asymptotic power laws even with light–tailed (e.g., Gaussian) innovation sequences (Mikosch

and Stărică, 2000; Liu, 2006a,b).

The bottom panel of Figure 1 illustrates properties of the return series relevant for the

specification of the volatility dynamics. The left plot shows, for τ = 1, 2, 5, 10, the sample ACF

1 Thanks are due to John Maheu for making the data available.
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Figure 1: The top left plot shows the return data under study. The top right plot depicts,
for the 900 largest absolute (demeaned) return observations, the log of the empirical comple-
mentary cdf, P (|ǫt| > x), versus log x, where {ǫt} is the demeaned return series. Approximate
linearity suggests an asymptotic power law, i.e., for large x, P (|ǫt| > x) ≈ cx−α for some α > 0.
The bottom left plot shows, for various lags, τ , the sample ACF (5) of the power transformed
residuals, ̺(τ ; δ) = Corr(|ǫt−τ |δ, |ǫt|δ), as a function of the power parameter δ. The right plot
illustrates the importance of the leverage effect, as defined by (23).

̺(τ ; δ) = Corr(|ǫt−τ |δ, |ǫt|δ) as a function of δ, revealing that the empirical autocorrelations

tend to be strongest for δ–values considerably different from 2, suggesting potential modeling

gains from relaxing the standard GARCH model’s restriction that δ = 2. The right plot

depicts the correlation between past returns and future volatility, as measured by the absolute

(demeaned) return observations, which may be taken as a measure for the leverage effect, L(τ),

i.e.,

L(τ) = Corr(rt−τ , |rt|), τ > 0. (23)

The leverage effect appears to be strong and highly significant for the first 10–15 lags, and,

therefore, should be incorporated into a sound volatility model for the returns under study.
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Table 1: Estimation results for the NYSE returns.

BIC

Model k δ̂ γ̂ ρ(PC11
) ρ(PC22

) loglik K Value Rank

GARCH 1 2 0 0.986 0.985 −10364 4 20765 8
2 2 0 0.986 0.987 −10157 9 20395 6
3 2 0 0.989 0.994 −10119 16 20384 4

PGARCH 1 1.742
(0.132)

0 0.986 0.982 −10363 5 20771 9

2 1.402
(0.140)

0 0.988 0.980 −10148 10 20388 5

3 1.345
(0.146)

0 0.991 0.983 −10108 17 20371 3

APGARCH 1 1.254
(0.099)

0.518
(0.053)

0.984 0.974 −10271 6 20598 7

2 1.099
(0.102)

0.558
(0.060)

0.985 0.974 −10078 11 20257 2

3 1.085
(0.101)

0.675
(0.068)

0.994 0.989 −10044 18 20252 1

Standard errors are given in parentheses. “loglik” is the value of the maximized log–likelihood
function, “K” refers to the number of parameters of a given model (including the mean parameter
µ), and “BIC” is the Bayesian information criterion, i.e., BIC = −2 × loglik + K log T , where T is
the sample size. Smaller values of BIC are preferred. Both the criterion value and the corresponding
ranking of the models are shown.

Maximum likelihood estimation results for three different kinds of GARCH models with

k = 1, 2, 3 regimes are reported in Table 1, where k = 1 corresponds to the standard single–

regime GARCH process. In Table 1, “GARCH” refers to the specification with δ = 2 and

without leverage effect. In the models labeled “PGARCH”, the power parameter δ is freely

estimated, but there is still no leverage, while the full specification, with no restriction on δ

and allowance for asymmetric volatility dynamics, is denoted as “APGARCH”. Preliminary

analysis shows that, in the multi–regime models, there are no statistically significant differences

between the regime–specific asymmetry parameters γj in (4), and, therefore, Table 1 only

reports the results for the specifications with γ1 = · · · = γk =: γ.

According the the Bayesian information criterion (BIC) of Schwarz (1978), as reported

in the last two columns of Table 1, the multi–regime models are clearly preferred over the

single–regime specification. Moreover, for fixed k, k ≥ 2, PGARCH is always favored against

GARCH but dominated by APGARCH. These results are supported by the parameter esti-

mates of δ and γ, as reported in the third and fourth column of Table 1, respectively. These

quantities are significantly different from 2 and 0, respectively, in all cases where they are

freely estimated. This highlights the importance of both kinds of generalizations introduced

by the MS–APGARCH(k) as compared to the MS–GARCH(k) model.

Within the class of multi–regime MS–APGARCH(k) models, the three–component specifi-

10



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

cation exhibits a superior fit according to the BIC. It may be worth mentioning that this may

not have been expected, because the BIC is a rather conservative model selection criterion due

to its strong penalty term. The superiority of the three–component model is also supported

by inspection of Figures 2 and 3, which show, for the three APGARCH specifications, the

empirical autocorrelations (ACFs) of the power–transformed residuals along with their theo-

retical counterparts implied by the estimated models. Note that Assumption 3.1 is satisfied

for all estimated models, as the dominant eigenvalues of matrices PC11
and PC22

, ρ(PC11
) and

ρ(PC22
), as reported in the fifth and sixth column of Table 1, respectively, are smaller than

unity. As often reported in the literature since Ding et al. (1993) and Ding and Granger (1993),

the empirical autocorrelations decay rapidly at the beginning and then decrease rather slowly,

displaying significant positive spikes over very long lags. The single–component APGARCH

model is not capable of reproducing this pattern, as its theoretical ACF, shown in the top plot

of Figure 2, decreases too slowly at the beginning and then too fast at higher lags. Model

MS–APGARCH(2), the ACF of which is depicted in the bottom plot of Figure 2, is better able

to capture the empirical ACF over the approximately first 100 lags, but its autocorrelations

then also decay to zero too fast. On the other hand, the ACF of model MS–APGARCH(3),

shown in Figure 3, does a good job in reproducing the empirical autocorrelation structure with

its fast decay at the beginning and its slow decrease afterwards.
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Figure 2: The top panel shows the empirical autocorrelations of the power–transformed ab-
solute NYSE returns (solid line), as defined in (5), along with their theoretical counterparts
implied by the fitted single–component APGARCH model (dashed line). The usual 95% as-
ymptotic confidence intervals are also included. The bottom panel repeats this, but for the
two–regime Markov–switching APGARCH process, i.e., model MS–APGARCH(2).
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Figure 3: This figure displays the empirical autocorrelations of the power–transformed ab-
solute NYSE returns (solid line), as defined in (5), along with their theoretical counterparts
implied by the fitted three–component Markov–switching APGARCH process, i.e., model MS–
APGARCH(3) (dashed line). 95% asymptotic one–at–a–time confidence intervals are also
included.
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