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, as compared to simpler versions, is illustrated.

Introduction

In a recent paper, building on work of [START_REF] Hwang | Stationarity and Moment Structure for Box-Cox Threshold GARCH(1,1) Processes[END_REF], [START_REF] Liu | Stationarity for a Markov-switching Box-Cox Transformed Threshold GARCH Process[END_REF] provided a generalization of the Markov-switching GARCH model of [START_REF] Haas | A New Approach to Markov-Switching GARCH Models[END_REF] to allow both for a nonlinear relation between past shocks and future volatility as well as for the leverage effect, which refers to the observation that stock market volatility reacts differently to positive and negative shocks. For the new model, [START_REF] Liu | Stationarity for a Markov-switching Box-Cox Transformed Threshold GARCH Process[END_REF] derived conditions for stationarity and the existence of moments.

The present article complements [START_REF] Liu | Stationarity for a Markov-switching Box-Cox Transformed Threshold GARCH Process[END_REF] work in two directions. First, we suggest a representation of the process which admits straightforward computation of the unconditional moments and the dynamic autocorrelation structure of the power-transformed absolute returns (residuals), which are taken as a measure of volatility. Such results are of vital interest in the context of GARCH modeling, because it is the desire to capture the dependence structure of these measures of financial volatility which motivates the use of GARCH models in the first place, and, therefore, researchers will want to assess how well the dynamic properties of an estimated model mimic the corresponding quantities directly estimated from the data under consideration. Second, in an application to stock returns, we compare the fit of [START_REF] Liu | Stationarity for a Markov-switching Box-Cox Transformed Threshold GARCH Process[END_REF] model with several simpler single-regime and Markov-switching GARCH specifications to illustrate the usefulness of the extended model. To the best of our knowledge, Liu's model has not been confronted with real data so far.

The Markov-switching Asymmetric Power GARCH Model (MS-APGARCH)

Time series {ǫ t , t ∈ Z} is generated by a k-regime Markov-switching asymmetric power GARCH process, or, in short, MS-APGARCH(k), if it can be described by

ǫ t = η t σ ∆t,t , t ∈ Z, (1) 
where {η t , t ∈ Z} is an iid sequence of symmetric zero mean random variables, and {∆ t , t ∈ Z} is a Markov chain with finite state space S = {1, . . . , k} and primitive (i.e., irreducible and aperiodic) transition matrix, P , with typical element

p ij = p(∆ t = j|∆ t-1 = i), that is, P = [p ij ] = [p(∆ t = j|∆ t-1 = i)], i, j = 1, . . . , k. (2) 
In addition, {η t , t ∈ Z} and {∆ t , t ∈ Z} are assumed to be independent. The stationary distribution of the Markov chain will be denoted by π ∞ = (π 1,∞ , . . . , π k,∞ ) ′ . We note that the assumption of η t being symmetric is by no means crucial, but it holds for all candidate densities commonly employed in regime-switching GARCH models (in particular, Gaussian and Student's t), and it helps to simplify the notation below.

In the parametrization adopted in [START_REF] Liu | Stationarity for a Markov-switching Box-Cox Transformed Threshold GARCH Process[END_REF], the conditional variance of regime j, σ 2 jt , is driven by a univariate asymmetric power GARCH (APGARCH) equation of the form

σ δ jt = ω j + θ 1j |ǫ + t-1 | δ + θ 2j |ǫ - t-1 | δ + β j σ δ j,t-1 , δ > 0, (3) 
where ω j > 0, θ 1j , θ 2j , β j ≥ 0, j = 1, . . . , k, ǫ + t = max{0, ǫ t }, and ǫ - t = min{0, ǫ t }. Equation (3) nests the MS-GARCH(k) process of [START_REF] Haas | A New Approach to Markov-Switching GARCH Models[END_REF] for δ = 2 and θ 1j = θ 2j , j = 1, . . . , k.

The introduction of the power parameter δ in (3), which dates back to [START_REF] Higgins | A Class of Nonlinear ARCH Models[END_REF] and [START_REF] Ding | A Long Memory Property of Stock Market Returns and a New Model[END_REF], is rooted in the observation of [START_REF] Ding | A Long Memory Property of Stock Market Returns and a New Model[END_REF] that "there is no obvious reason why one should assume the conditional variance is a linear function of lagged squared returns (residuals)", and, in fact, the time series dependencies of power-transformed residuals, |ǫ t | δ , are often found to be strongest for δ ≈ 1. The rationale behind the allowance for asymmetry in (3), i.e., θ 1j = θ 2j , is an empirical regularity known as the leverage effect, i.e., the "stylized fact" that, for stock returns, past negative shocks have a deeper impact on volatility than positive shocks of the same magnitude, which corresponds to θ 1j < θ 2j in (3) (for a deeper discussion of the leverage effect and its economic interpretation, see, e.g., [START_REF] Bekaert | Asymmetric Volatility and Risk in Equity Markets[END_REF][START_REF] Bouchaud | Leverage Effects in Financial Markets: The Retarded Volatility Model[END_REF]. The idea of capturing the asymmetries in volatility as in (3) goes back to [START_REF] Glosten | On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks[END_REF] and [START_REF] Zakoïan | Threshold Heteroskedastic Models[END_REF].

In this article, we find a different parametrization of (3) more convenient. Namely, we use the APGARCH structure of [START_REF] Ding | A Long Memory Property of Stock Market Returns and a New Model[END_REF], which is given by

σ δ jt = ω j + α j (|ǫ t-1 | -γ j ǫ t-1 ) δ + β j σ δ j,t-1 , δ > 0, (4) 
where ω j > 0, α j , β j ≥ 0, and γ j ∈ (-1, 1), j = 1, . . . , k. Clearly (3) and ( 4) are equivalent if

θ 1j = α j (1 -γ j ) δ and θ 2j = α j (1 + γ j ) δ , j = 1, . . . , k.
For applications of the single-regime APGARCH model of [START_REF] Ding | A Long Memory Property of Stock Market Returns and a New Model[END_REF], where k = 1, see, e.g., [START_REF] Brooks | A Multi-Country Study of Power ARCH Models and National Stock Market Returns[END_REF], [START_REF] Giot | Value-at-Risk for Long and Short Trading Positions[END_REF][START_REF] Giot | Value-at-Risk for Long and Short Trading Positions[END_REF][START_REF] Brooks | Power ARCH Modelling of the Volatility of Emerging Equity Markets[END_REF].

Autocorrelation Structure

To derive the autocorrelation structure of the power-transformed process, i.e.,

̺(τ ; δ) := Corr(|ǫ t-τ | δ , |ǫ t | δ ) = E(|ǫ t | δ |ǫ t-τ | δ ) -E 2 (|ǫ t | δ ) E(|ǫ t | 2δ ) -E 2 (|ǫ t | δ ) , (5)      γ 1 γ 2 . . . γ k 0            , B =            β 1 0 • • • 0 0 0 β 2 • • • 0 0 . . . . . . . . . 0 0 0 0 • • • β k 0 0 0 • • • 0 0           
, where ⊙ denotes the Hadamard product, i.e., the elementwise multiplication of conformable matrices. Moreover, let e j be the jth unit vector in R k+1 , j = 1, . . . , k + 1. Then we can write the process as

X t = ω + (A t-1 e ′ ∆ t-1 + B)X t-1 . (6) 
Representation ( 6) differs from that in [START_REF] Liu | Stationarity for a Markov-switching Box-Cox Transformed Threshold GARCH Process[END_REF] insofar as |ǫ t-1 | δ has been included into the state vector X t . It turns out that this considerably simplifies the computation of the autocorrelation structure of the process.

Assume that E(|η t | 2δ ) < ∞, and define κ(µ) = E(|η t | µ ), µ > 0. For example, under Gaussianity of η t (as assumed in the example in Section 5), we have

κ(µ) = 1 √ 2π ∞ -∞ |η| µ e -η 2 /2 dη = 2 µ/2 √ π Γ µ + 1 2 .
Note that, by symmetry,

A := E(A t ) = κ(δ) 2 α ⊙ [(1 k+1 + γ) (δ) + (1 k+1 -γ) (δ) ] ,
and, using the easily checked identity (α

⊙ ηt ) ⊗ (α ⊙ ηt ) = (α ⊗ α) ⊙ (η t ⊗ ηt ), A ⊗ A := E(A t ⊗ A t ) = (α ⊗ α) ⊙ E(η t ⊗ ηt ) = κ(2δ) 2 (α ⊗ α) ⊙ [(1 k+1 + γ) (δ) ⊗ (1 k+1 + γ) (δ) + (1 k+1 -γ) (δ) ⊗ (1 k+1 -γ) (δ) ],
where, for an n × 1 vector x, x (δ) := (x δ 1 , . . . , x δ n ) ′ , and 1 n is an n-dimensional column of ones. Representation ( 6) is a first-order vector difference equation with stochastic coefficient matrix. The (regime-specific) expectations of this matrix and its second-order Kronecker power are needed for determining whether the process has a stationary solution with a finite (2δ)th-order moment, as required for the autocorrelation function ( 5) to be well-defined (see Proposition 3.1), as well as for the computation of the unconditional moments in Proposition 3.2. By the independence of {η t } and {∆ t }, we have

C 11 (j) := E[(A t e ′ ∆t + B)|∆ t = j] = Ae ′ j + B, (7) 
C 21 (j) := ω ⊗ C 11 (j) + C 11 (j) ⊗ ω, C 22 (j) := E[(A t e ′ ∆t + B) ⊗ (A t e ′ ∆t + B)|∆ t = j] (8) = (A ⊗ A)(e j ⊗ e j ) ′ + (Ae ′ j ) ⊗ B + B ⊗ (Ae ′ j ) + B ⊗ B, j = 1, . . . , k,
and, borrowing notation from [START_REF] Francq | The L 2 -structures of Standard and Switching-regime GARCH Models[END_REF], we define the matrices

P C ℓm =         p 11 C ℓm (1) p 21 C ℓm (1) • • • p k1 C ℓm (1)
p 12 C ℓm (2) p 22 C ℓm (2) • • • p k2 C ℓm (2) . . . . . . . . . . . . p 1k C ℓm (k) p 2k C ℓm (k) • • • p kk C ℓm (k)         (9) 
for ℓ = 1, 2 and m ≤ ℓ.

Now let ρ(A) denote the spectral radius of a square matrix A, i.e., ρ(A) := max{|z| : z is an eigenvalue of A}. Lemma 3.1 For ℓ ≥ 1, if the variable Y t-ℓ belongs to the information set generated by Ψ t-ℓ :=

Assumption 3.1 E(|η t | 2δ ) < ∞, ρ(P C 11 ) < 1,
{ǫ s : s ≤ t -ℓ}, then π j,∞ E(Y t-ℓ |∆ t = j) = k i=1 π i,∞ p (ℓ) ij E(Y t-ℓ |∆ t-ℓ = i),
where the p (ℓ) ij := p(∆ t = j|∆ t-ℓ = i), i, j = 1, . . . , k, denote the ℓ-step transition probabilities, as given by the elements of P ℓ . Lemma 3.1 is based on the basic relation

E(Y t-ℓ |∆ t = j) = k i=1 p(∆ t-ℓ = i|∆ t = j)E(Y t-ℓ |∆ t-ℓ = i ∩ ∆ t = j), along with the identity π j,∞ p(∆ t-ℓ = i|∆ t = j) = π i,∞ p(∆ t = j|∆ t-ℓ = i) = π i,∞ p (ℓ)
ij , and essentially says that "given the regime at time t, the expectation of any variable determined by the information up to time t does not depend on the future regime history", i.e., E(Y

t-ℓ |∆ t-ℓ = i ∩ ∆ t = j) = E(Y t-ℓ |∆ t-ℓ = i).
Proposition 3.2 If Assumption 3.1 holds, then the first two fractional moments of the stationary distribution of the MS-APGARCH(k) are given by

E(|ǫ t | δ ) = (1 ′ k ⊗ e ′ k+1 )Q, ( 10 
)
and

E(|ǫ t | 2δ ) = (1 ′ k ⊗ e ′ k+1 ⊗ e ′ k+1 )R, (11) 
where Q and R are defined by the equations

Q = π ∞ ⊗ ω + P C 11 Q, (12) 
and

R = π ∞ ⊗ ω ⊗ ω + P C 21 Q + P C 22 R, (13) 
respectively. Furthermore, for τ ≥ 1,

E(|ǫ t | δ |ǫ t-τ | δ ) = (1 ′ k ⊗ e ′ k+1 )S(τ )e k+1 , (14) 
the sequence of k(k + 1) × (k + 1) matrices S(τ ) is defined by the recursion

S(τ ) = (P τ ⊗ ω) Q + P C 11 S(τ -1), τ ≥ 1, ( 15 
)
and the k × (k + 1) matrix Q and the k(k + 1) × (k + 1) matrix S(0) are obtained by reshaping the vectors Q and R, respectively, as indicated in the proof.

Proof. Using the representation (6) and the fact that X t belongs to the information set generated by Ψ t-1 = {ǫ s : s ≤ t -1}, Lemma 3.1 gives

π j,∞ E(X t |∆ t-1 = j) = π j,∞ ω + k i=1 p ij C 11 (j)π i,∞ E(X t-1 |∆ t-2 = i), j = 1, . . . , k. (16) 
Now define the k(k + 1) × 1 vector Q as

Q = (π 1,∞ E(X t |∆ t-1 = 1) ′ , . . . , π k,∞ E(X t |∆ t-1 = k) ′ ) ′ .
Then ( 16) implies ( 12), and (10) follows from E(X Analogously, using the identities vec(xy ′ ) = y ⊗ x and vec(ABC) = (C ′ ⊗ A)vec(B), we obtain

t ) = j π j,∞ E(X t |∆ t-1 = j) = (1 ′ k ⊗I k+1 )Q, and E(|ǫ t | δ ) = e ′ k+1 E(X t ) = (1 ⊗ e ′ k+1 )(1 ′ k ⊗ I k+1 )Q = (1 ′ k ⊗ e ′ k+1 )Q, using (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)
π j,∞ E[vec(X t X ′ t )|∆ t-1 = j] = π j,∞ (ω ⊗ ω) + k i=1 p ij C 21 (j)π i,∞ E(X t-1 |∆ t-2 = i) + k i=1 p ij C 22 (j)π i,∞ E[vec(X t-1 X ′ t-1 )|∆ t-2 = i], j = 1, . . . , k. (17) 
Now let, analogously to Q, R be the k(k+1 17) establishes (13), and (11) follows from

) 2 ×1 with elements π j,∞ E[vec(X t X ′ t )|∆ t-1 = j], j = 1, . . . , k. Then (
E(|ǫ t | 2δ ) = e ′ k+1 E(X t X ′ t )e k+1 = (e ′ k+1 ⊗ e ′ k+1 )E[vec(X t X ′ t )] = (e ′ k+1 ⊗ e ′ k+1 )(1 ′ k ⊗ I (k+1) 2 )R = (1 ′ k ⊗ e ′ k+1 ⊗ e ′ k+1 )R.
To calculate E(|ǫ t | δ |ǫ t-τ | δ ), we observe from the representation (6) that, for τ ≥ 1, and j = 1, . . . , k,

π j,∞ E(X t X ′ t-τ |∆ t-1 = j) = ωπ j,∞ E(X ′ t-τ |∆ t-1 = j) (18) +C 11 (j)π j,∞ E(X t-1 X ′ t-τ |∆ t-1 = j).
From Lemma 3.1,

π j,∞ E(X ′ t-τ |∆ t-1 = j) = k i=1 π i,∞ p (τ ) ij E(X ′ t-τ |∆ t-τ -1 = i), j = 1, . . . , k, (19) 
and

π j,∞ E(X t-1 X ′ t-τ |∆ t-1 ) = k i=1 π i,∞ p ij E(X t-1 X ′ t-τ |∆ t-2 = i), j = 1, . . . , k. (20) 
Let S(τ ), τ = 0, 1, . . ., be the k(k + 1) × (k 1) matrix where the (k + 1) × (k + 1) matrices π j,∞ E(X t X ′ t-τ |∆ t-1 = j), j = 1, . . . , k, are arranged one underneath the other. Then S(0) is obtained by reshaping R. Furthermore, let Q be the k ×(k +1) matrix where π j,∞ E(X t |∆ t-1 = j) in Q is replaced with its transpose, i.e., π j,∞ E(X ′ t |∆ t-1 = j). Then ( 18)-( 20) imply ( 15), and we have

E(|ǫ t | δ |ǫ t-τ | δ ) = e ′ k+1 E(X t X ′ t-τ )e k+1 = e ′ k+1 (1 ′ k ⊗ I k+1 )S(τ )e k+1 = (1 ′ k ⊗ e ′ k+1 )S(τ )e k+1 ,
showing (14).

Simple Cases

For some concreteness, assume k = 2,

ω 1 = ω 2 , α 1 = α 2 =: α, β 1 = β 2 = 0, γ 1 = γ 2 = 0, δ = 2,
and normally distributed innovations η t . This corresponds to a special case of a Markovswitching ARCH process, where only the intercept in the variance equation is subject to regime-switching, as considered in the classic paper of [START_REF] Cai | A Markov Model of Switching-Regime ARCH[END_REF]. Straightforward calculations

show for this model, if α < 1, E(ǫ 2 t ) = π 1,∞ ω 1 + π 2,∞ ω 2 1 -α , (21) 
which has already been calculated by [START_REF] Cai | A Markov Model of Switching-Regime ARCH[END_REF]. Moreover, if α < 1/3 ≈ 0.577, the fourth moment of the unconditional distribution is

E(ǫ 4 t ) = 3(π 1,∞ ω 1 + π 2,∞ ω 2 ) 2 (1 + α) (1 -α)(1 -3α 2 ) + 3(1 + δα) 1 -δα π 1,∞ π 2,∞ (ω 1 -ω 2 ) 2 1 -3α 2 , (22) 
where δ := p 11 + p 22 -1 is the degree of regime persistence. Expressions ( 21) and ( 22) can be compared with the moments of the single-regime ARCH(1) process of [START_REF] Engle | Autoregressive Conditional Heteroscedasticity With Estimates of the Variance of United Kingdom Inflation[END_REF], i.e., ǫ t ∼ N(0, σ 2 t ), σ 2 t = ω + αǫ 2 t-1 , which has second and fourth moments given by ω/(1 -α) and 3ω 2 (1 + α)(1 -α) -1 (1 -3α 2 ) -1 , respectively. Suppose that ω = π 1,∞ ω 1 + π 2,∞ ω 2 . Then both processes have the same unconditional variance, but we observe from ( 22) that the fourth moment of the regime-switching process, and hence its kurtosis, is greater than that of the single-regime ARCH model. Interestingly, the difference between the unconditional fourth moments of the models increases not only with the difference between ω 1 and ω 2 but also with the persistence of the regimes, δ. The covariance function of this Markov-switching ARCH process is

Cov(ǫ 2 t , ǫ 2 t-τ ) = α τ [E(ǫ 4 t ) -E 2 (ǫ 2 t )] + δ δ τ -α τ δ -α π 1,∞ π 2,∞ (ω 1 -ω 2 ) 2 1 -δα , which reduces to Cov(ǫ 2 t , ǫ 2 t-τ ) = δ τ π 1,∞ π 2,∞ (ω 1 -ω 2 )
2 the basic Markov-switching process with constant regime-specific variances, where α = 0, as calculated by [START_REF] Timmermann | Moments of Markov Switching Models[END_REF]. Also, for ω 1 = ω 2 , we have the single-regime ARCH(1) process with Corr(ǫ 2 t , ǫ 2 t-τ ) = α τ .

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT

Another special case is the single-regime APGARCH process, where k = 1, which has been investigated in [START_REF] He | Statistical Properties of the Asymmetric Power ARCH Process[END_REF], [START_REF] Hwang | Stationarity and Moment Structure for Box-Cox Threshold GARCH(1,1) Processes[END_REF], and [START_REF] Karanasos | A Re-Examination of the Asymmetric Power ARCH Model[END_REF]. For this model, provided that c 22 < 1,

E(|ǫ t | δ ) = κ(δ)E(σ δ t ) = κ(δ)ω 1 1 -c 11 , E(|ǫ t | 2δ ) = κ(2δ)E(σ 2δ t ) = κ(2δ)(1 + c 11 )ω 2 1 (1 -c 11 )(1 -c 22 ) ,
where

c ii = E{[α 1 (|η t | -γ 1 η t ) δ + β 1 ] i }, i = 1, 2, and Cov(|ǫ t | δ , |ǫ t-τ | δ ) = c τ -1 11 {κ(δ)[κ(δ)β 1 + κ(δ; γ 1 )α 1 ]E(σ 2δ t ) -c 11 E 2 (|ǫ t | δ )}, where κ(δ; γ 1 ) = E[(|η t | -γ 1 η t ) δ |η | δ ] = 1 2 [(1 + γ 1 ) δ + (1 -γ 1 ) δ ]κ(2δ).
For the original GARCH model of [START_REF] Bollerslev | Generalized Autoregressive Conditional Heteroskedasticity[END_REF], where δ = 2, γ 1 = 0, and η t is standard normal, this reduces to the well-known formulas E(ǫ

2 t ) = ω 1 /(1 -α 1 -β 1 ), E(ǫ 4 t ) = 3ω 2 1 (1 + α 1 + β 1 )(1 -α 1 -β 1 ) -1 (1 - 3α 2 1 -2α 1 β 1 -β 2 1 ) -1 , and Corr(ǫ 2 t , ǫ 2 t-τ ) = (α 1 + β 1 ) τ -1 α 1 (1 -α 1 β 1 -β 2 1 )/(1 -2α 1 β 1 -β 2 1 ).

Illustrative Example

To illustrate the relevance of the generalization from MS-GARCH(k) to MS-APGARCH(k), we consider the time series of daily returns of the New York Stock Exchange (NYSE) composite index from January 1966 to August 2001, a sample of 8979 observations. 1 Continuously compounded percentage returns are used, i.e., returns r t are defined as r t = 100 × log(I t /I t-1 ), where I t is the index level at time t. As the series does not exhibit any significant first-order dependencies, we model returns as r t = µ + ǫ t , where µ is a constant mean parameter, and t is by (1) with standard normal η t .

The return series is displayed in the top left plot of Figure 1, revealing the well-established phenomenon of pronounced volatility clustering. The top right panel plots, for the largest 900 absolute (demeaned) return observations (i.e., approximately 10% of the sample), the complementary distribution function of |ǫ t |, i.e., P(|ǫ t | > x), against x on a log-log scale, showing that the tail behavior of the data may be well approximated by a power law of the form P(|ǫ t | > x) ∼ cx -α with a tail exponent of α ≈ 3.3. Along with the conditional heteroskedasticity observed in the left plot, this indicates the potential appropriateness of the GARCH class of models in general, because it is known that these processes give rise to asymptotic power laws even with light-tailed (e.g., Gaussian) innovation sequences [START_REF] Mikosch | Limit Theory for the Sample Autocorrelations and Extremes of a GARCH(1,1) Process[END_REF]Liu, 2006a,b).

The bottom panel of Figure 1 illustrates properties of the return series relevant for the specification of the volatility dynamics. The left plot shows, for τ = 1, 2, 5, 10, the sample ACF (23)

The leverage effect appears to be strong and highly significant for the first 10-15 lags, and, therefore, should be incorporated into a sound volatility model for the returns under study. Maximum likelihood estimation results for three different kinds of GARCH models with k = 1, 2, 3 regimes are reported in Table 1, where k = 1 corresponds to the standard singleregime GARCH process. In Table 1, "GARCH" refers to the specification with δ = 2 and without leverage effect. In the models labeled "PGARCH", the power parameter δ is freely estimated, but there is still no leverage, while the full specification, with no restriction on δ and allowance for asymmetric volatility dynamics, is denoted as "APGARCH". Preliminary analysis shows that, in the multi-regime models, there are no statistically significant differences between the regime-specific asymmetry parameters γ j in (4), and, therefore, Table 1 only reports the results for the specifications with γ

1 = • • = γ k =: γ.
According the the Bayesian information criterion (BIC) of Schwarz (1978), reported in the last two columns Table 1, the multi-regime models are clearly preferred over the single-regime specification. Moreover, for fixed k, k ≥ 2, PGARCH is always favored against GARCH but dominated by APGARCH. These results are supported by the parameter estimates of δ and γ, as reported in the third and fourth column of Table 1, respectively. These quantities are significantly different from 2 and 0, respectively, in all cases where they are freely estimated. This highlights the importance of both kinds of generalizations introduced the MS-APGARCH(k) as compared to the MS-GARCH(k) model.

Within the class of multi-regime MS-APGARCH(k) models, the three-component specifi- 5), along with their theoretical counterparts implied by the fitted three-component Markov-switching APGARCH process, i.e., model MS-APGARCH(3) (dashed line). 95% asymptotic one-at-a-time confidence intervals are also included.
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 1 Figure1: The top left plot shows the return data under study. The top right plot depicts, for the 900 largest absolute (demeaned) return observations, the log of the empirical complementary cdf, P (|ǫ t | > x), versus log x, where {ǫ t } is the demeaned return series. Approximate linearity suggests an asymptotic power law, i.e., for large x, P (|ǫ t | > x) ≈ cx -α for some α > 0. The bottom left plot shows, for various lags, τ , the sample ACF (5) of the power transformed residuals, ̺(τ ; δ) = Corr(|ǫ t-τ | δ , |ǫ t | δ ), as a function of the power parameter δ. The right plot illustrates the importance of the leverage effect, as defined by (23).

Figure 2 :

 2 Figure2: The top panel shows the empirical autocorrelations of the power-transformed absolute NYSE returns (solid line), as defined in (5), along with their theoretical counterparts implied by the fitted single-component APGARCH model (dashed line). The usual 95% asymptotic confidence intervals are also included. The bottom panel repeats this, but for the two-regime Markov-switching APGARCH process, i.e., model MS-APGARCH(2).

Figure 3 :

 3 Figure3: This figure displays the empirical autocorrelations of the power-transformed absolute NYSE returns (solid line), as defined in (5), along with their theoretical counterparts implied by the fitted three-component Markov-switching APGARCH process, i.e., model MS-APGARCH(3) (dashed line). 95% asymptotic one-at-a-time confidence intervals are also included.

Table 1 :

 1 Estimation results for the NYSE returns.Standard errors are given in parentheses. "loglik" is the value of the maximized log-likelihood function, "K" refers to the number of parameters of a given model (including the mean parameter µ), and "BIC" is the Bayesian information criterion, i.e., BIC = -2 × loglik + K log T , where T is the sample size. Smaller values of BIC are preferred. Both the criterion value and the corresponding ranking of the models are shown.
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A C C E P T E D M A N U S C R I P T

ACCEPTED MANUSCRIPT cation exhibits a superior fit according to the BIC. It may be worth mentioning that this may not have been expected, because the BIC is a rather conservative model selection criterion due to its strong penalty term. The superiority of the three-component model is also supported by inspection of Figures 2 and3, which show, for the three APGARCH specifications, the empirical autocorrelations (ACFs) of the power-transformed residuals along with their theoretical counterparts implied by the estimated models. Note that Assumption 3.1 is satisfied for all estimated models, as the dominant eigenvalues of matrices P C 11 and P C 22 , ρ(P C 11 ) and ρ(P C 22 ), as reported in the fifth and sixth column of Table 1, respectively, are smaller than As often reported in the literature since [START_REF] Ding | A Long Memory Property of Stock Market Returns and a New Model[END_REF] and [START_REF] Ding | A Long Memory Property of Stock Market Returns and a New Model[END_REF], the empirical autocorrelations decay rapidly at the beginning and then decrease rather slowly, displaying significant positive spikes over very long lags. The single-component APGARCH model is not capable of reproducing this pattern, as its theoretical ACF, shown in the top plot of Figure 2, decreases too slowly at the beginning and then too fast at higher lags. Model MS-APGARCH(2), the ACF of which is depicted in the bottom plot of Figure 2, is better able to capture the empirical ACF over the approximately first 100 lags, but its autocorrelations then also decay to zero too fast. On the other hand, the ACF of model MS-APGARCH(3), shown in Figure 3, does a good job in reproducing the empirical autocorrelation structure with its fast decay at the beginning and its slow decrease afterwards.