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We define a multivariate extension of the Prentice z-distribution, as a Pólyatype (infinitely divisible) mixture of multivariate Gaussian distribution. The paper obtains representations of the Lévy measure and the probability density of such mixtures in terms of series of Bessel functions.

Introduction

The well known z-distributions, introduced in [START_REF] Prentice | Discrimination among some parametric models[END_REF] and having density functions

f (x) = exp β 1 x-µ α αB(β 1 , β 2 ) 1 + exp x-µ α β 1 +β 2 , x ∈ R 1 , α 1 , β 1 , β 2 > 0, µ ∈ R 1 ,
where B(β 1 , β 2 ) denote the Euler's beta function, are important in statistical modelling (see, e.g., Barndorff-Nielsen et al.). Observing that z-distributions are particular (Pólya) mixtures of multivariate Gaussian, the paper introduce a class of general Pólya mixtures of multivariate Gaussian. Because mixing Pólya distributions, as infinite convolutions of exponential distributions, are self-decomposable, the mixtures are infinitely divisible.

Using the results in [START_REF] Rogozin | On some classes of processes with independent increments[END_REF] on subordinated Lévy processes and the expansion of the mixing density, obtained in [START_REF] Kent | Eigenvalue expansion for diffusion hitting times[END_REF], we derive representation of the Lévy measure and the probability density function of such mixtures in terms of series of modified Bessel functions. As a particular case we describe a class of mixtures with z-distributed marginals.

Pólya distributions

Let we are given a sequence {λ k , k = 0, 1, . . ., } of positive numbers, ∞ k=0 λ -1 k < ∞, and a sequence {ε k , k ≥ 0} of independent exponentially distributed random variables with

Eε k = 1, k ≥ 0. Probability laws L( ∞ k=0 λ -1 k ε k )
we call the Pólya distributions (see [START_REF] Schoenberg | On Pólya frequency functions I; the totally positive functions and their Laplace transforms[END_REF]). Because

Ee -uε k = 1 1 + u , u > 0, then E exp -u ∞ k=0 λ -1 k ε k = ∞ k=0 λ k λ k + u = exp ∞ k=0 log λ k λ k + u = exp ∞ 0 e -uv -1 ν(d u) , u > 0, (1) 
where

ν(d v) = 1 v ∞ k=0 e -λ k v d v, v > 0. ( 2 
)
Observing that

v ν(d v) d v = ∞ k=0 e -λ k v , v > 0,
is a decreasing function of v, we conclude that Pólya distributions are self-decomposable and all Lévy processes X(t), t ≥ 0 with L(X(1)) = L( ∞ k=0 λ -1 k ε k ) are subordinators, having zero drift and the Lévy measure (2) (for used terminology see, e.g., [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF].

Denote

ν k = λ k j =k λ k λ j -λ k , k = 0, 1, . . .
It was proved in [START_REF] Kent | Eigenvalue expansion for diffusion hitting times[END_REF] 

that if 0 < λ 0 < λ 1 < . . . , ∞ k=0 λ -1 k < ∞ and for each c > 0 |ν k | = O(e cλ k ), as k → ∞, (3) 
the density function h of the Pólya distribution

L( ∞ k=0 λ -1 k ε k ) equals h(v) = ∞ k=0 ν k e -λ k v , v > 0. ( 4 
)
In the special case, when λ k = 1 2 (κ + k) 2χ, χ < 1 2 κ 2 , after elementary calculations (cf. [START_REF] Barndorff-Nielsen | Normal variance-mean mixtures and z-distributions[END_REF]) we find that

ν k (κ, χ) =: λ k j =k λ j λ j -λ k = (-1) k Γ(2κ + k)(κ + k) k!Γ(κ + √ 2χ)Γ(κ - √ 2χ)
and

P ∞ k=0 λ -1 k ε k ∈ C = C h κ,χ (s)d s, C ∈ B(R + ),
where B(R + ) is the σ-algebra of the Borel subsets of [0, ∞) and

h κ,χ (s) = ∞ k=0 ν k (κ, χ)e -[ 1 2 (κ+k) 2 -χ]s , s > 0.
Proposition 1. (cf. [START_REF] Barndorff-Nielsen | Normal variance-mean mixtures and z-distributions[END_REF]). For all χ, κ > 0,

-κ < θ < κ and µ ∈ R 1 ∞ 0 1 √ 2πsα 2 exp - (x -θαs -µ) 2 2sα 2 h κ, 1 2 θ 2 (s)d s = exp (θ + κ) x-µ α αB(κ + θ, κ -θ) 1 + exp x-µ α 2κ , x ∈ R 1 , ( 5 
)
Proof. Let K γ (u) be the modified Bessel function of the third type, i.e.

K γ (u) = 1 2 u 2 γ ∞ 0 e -v-u 2 4v v -γ-1 d v, u > 0, γ ∈ R 1 . (6)
Then, assuming for simplicity µ = 0,

f (x) =: ∞ 0 1 √ 2πsα 2 exp - (x -θαs) 2 2sα 2 h κ, 1 2 θ 2 (s)d s = ∞ k=0 ν k (κ, 1 2 θ 2 ) ∞ 0 1 √ 2πsα 2 exp - x 2 -2θαsx + θ 2 α 2 s 2 2α 2 s - 1 2 (κ + k) 2 -θ 2 s d s = ∞ k=0 ν k (κ, 1 2 θ 2 ) 1 √ 2πα e θx α ∞ 0 s -1 2 exp - x 2 2α 2 s - 1 2 (κ + k) 2 s d s (7) Taking u = x(κ+k) α , γ = -1 2 , v = 1 2 (κ + k) 2
s and noting that (see [START_REF] Janke | Tafeln Höherer Funktionen[END_REF])

K -1 2 (u) = K 1 2 (u) = π 2u e -u ,
from ( 6) and ( 7) we find that

f (x) = ∞ k=0 ν k (κ, 1 2 θ 2 ) 1 √ 2πα e θx α √ 2 κ + k 2 u 2 K 1 2 (u) = e θx α ∞ k=0 ν k (κ, 1 2 θ 2 ) 1 α(κ + k) e -u = 1 α e θx α ∞ k=0 (-1) k k! Γ(2κ + k) Γ(κ + θ)Γ(κ -θ) e -x(κ+k) α = e θ-κ α x αB(κ + θ, κ -θ) • 1 (e -x α + 1) 2κ = exp{(θ + x)κ} αB(κ + θ, κ -θ)(1 + e x α ) 2κ .
Remark, that the formula (5), when κ = 1 and θ = 0, was proved in [START_REF] Andrews | Scale mixtures of normal distributions[END_REF].

Pólya mixtures of the multivariate Gaussian distributions

Let a = (a 1 , . . ., a d ) ∈ R d , µ = (µ 1 , . . ., µ d ) ∈ R d , A = a jk d j,
k=1 be a symmetric positive definite matrix, g a,A be a d-dimensional Gaussian density function with a mean vector a and a covariance matrix A, i.e.,

g a,A (x) = 1 |A|(2π) d/2 exp - 1 2 ((x -a)A -1 , x -a) , x ∈ R d ,
where |A| = det A.

Definition 1. A d-dimensional distribution with the density function

f d (x) = ∞ 0 g va+µ,vA (x)h(v)d v, x ∈ R d , ( 8 
)
where h is the density function of

L ∞ k=0 ε k λ k , is called the Pólya mixture of the multi- variate Gaussian distributions. Denote h j = ∞ 0 v j h(v)d v, j = 1, 2, . . .
It is easy to check that the mean vector m of the mixture equals m =:

R d xf d (x)d x = ∞ 0 (av + µ)h(v)d v = ah 1 + µ
and the covariance matrix of the mixture equals =:

R d (x -m) T (x -m)f d (x)d x = ∞ 0 R d (x -m) T (x -m)g va+µ,vA (x)d x h(v)d v = Ah 1 + a T a(h 2 -h 2 1 ),
where a T is the transpose of a.

Proposition 2. A probability distribution, having the density function (8), is infinitely divisible with the characteristic function

fd (z) = e i(µ,z) ∞ k=0 λ k λ k + 1 2 (zA, z) -i(a, z) , z ∈ R d , ( 9 
)
and a triplet of the Lévy characteristics (γ d , 0, Π d ), where

γ d = µ + |x|≤1 xΠ d (d x), ( 10 
) Π d (B) = B 2 exp{(aA -1 , x)} |A|(2π) d/2 ∞ k=0 2λ k + (aA -1 , a) (xA -1 , x) d/4 × ×K d 2 [(2λ k + (aA -1 , a))(xA -1 , x)] 1/2 d x, B ∈ B(R d \{0}), ( 11 
)
where B(R d \{0}) is the σ-algebra of the Borel subsets of R d \{0}.

Proof. We have that

R d e i(z,x) g va+µ,vA (x)d x = exp i(µ, z) + v[i(z, a) - 1 2 (zA, z)] , z ∈ R d . ( 12 
)
Infinite divisibility of the distribution, having the density function ( 8), and formula (9) follow from the well-known properties of the infinitely divisible distributions and formulas (1), ( 2), ( 12).

Using the results of [START_REF] Rogozin | On some classes of processes with independent increments[END_REF] (see also [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF]) on subordinated Lévy processes, we find that

Π d (B) = B ∞ 0 g va,vA (x)ν(d v)d x = = B ∞ 0 1 |A|(2πv) d/2 exp - 1 2v ((x-va)A -1 , x-va) ν(d v)d x = = B exp{(aA -1 , x)} |A|(2π) d/2 ∞ 0 v d 2 -1 exp - 1 2v (xA -1 , x) ∞ k=0 exp -v λ k + + 1 2 (aA -1 , a) d v, B ∈ B(R d \{0}), ( 13 
) because ((x -va)A -1 , x -va) = (xA -1 , x) -2v(aA -1 , x) + v 2 (aA -1 , a).
Formulas ( 10), ( 11) now follow from ( 13) after elementary transforms with application of the classical formula (6). Proposition 3. Let the assumption (3) holds. Then the density f d of the Pólya mixture of the multivariate Gaussian distributions is equal

f d (x) = 2 exp{(aA -1 , x -µ)} (2π) d/2 |A| ∞ k=0 ν k 2λ k + (aA -1 , a) ((x -µ)A -1 , x -µ) d-2 4 × ×K d-2 2 [2λ k + (aA -1 , a)]((x -µ)A -1 , x -µ) 1/2 , x ∈ R d . (14)
Proof. Indeed, using formulas ( 4) and ( 6), we find that

f d (x) = ∞ 0 g µ+va,vA (x)h(v)d v = = ∞ 0 1 |A|(2πv) d/2 exp - 1 2v ((x -µ -va)A -1 , x -µ -va) ∞ k=0 ν k e -λ k v d v = = exp{(aA -1 , x -µ)} |A|(2π) d/2 ∞ k=0 ν k ∞ 0 v -d-2 2 -1 × × exp - 1 2v ((x -µ)A -1 , x -µ) -v λ k + 1 2 (aA -1 , a) d v = = exp{(aA -1 , x -µ)} |A|(2π) d/2 ∞ k=0 ν k λ k + 1 2 (aA -1 , a) d-2 2 ∞ 0 v -d-2 2 -1 × A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT × exp -v - 1 4v ((x -µ)A -1 , x -µ)(2λ k + (aA -1 , a)) d v = = 2 exp{(aA -1 , x -µ)} |A|(2π) d/2 ((x -µ)A -1 , x -µ) d-2 4 ∞ k=0 ν k 2λ k + (aA -1 , a) d-2 4 × ×K d-2 2 [2λ k + (aA -1 , a)((x -µ)A -1 , x -µ)] 1 2 . 4 On d-dimensional z-distributions Definition 2. An infinitely divisible d-dimensional distribution with z-distributed one- dimensional marginals we call a d-dimensional z-distribution.
Trivial examples of such distributions provide the probability laws of random vectors with independent z-distributed components.

Denote â = ( √ a 11 , . . ., √ a dd ).

Proposition 4. A probability distribution, defined by the density function

f d (x) = ∞ 0 g vθâ+µ,vA (x)h κ, 1 2 θ 2 (v)d v, x ∈ R d , |θ| < κ, κ > 0, (15) 
is a d-dimensional z-distribution, having the characteristic function 16)

fd (z) = e i(µ,z) Γ(κ -θ 2 -(zA, z) + 2iθ(â, z))Γ(κ + θ 2 -(zA, z) + 2iθ(â, z)) Γ(κ -θ)Γ(κ + θ) ,(
z ∈ R d ,
and a triplet of the Lévy characteristics, given by the formulas (10), ( 11) with a = θâ, 

λ k = 1 2 [(κ + k) 2 -θ 2 ], k = 0,
= ν k (κ, 1 2 θ 2 ), a = θâ and λ k = 1 2 [(κ + k) 2 -θ 2 ], k = 0, 1, . . ., |θ| < κ, κ > 0.
Proof. These statements follow directly from the Propositions 1, 3 and 4, observing that the one-dimensional marginals f (j) d of a probability distribution, defined by ( 15), are equal

f (j) d (x j ) = ∞ 0 g vθ √ a jj +µ j ,va jj (x j )h κ, 1 2 θ 2 (v)d v, j = 1, . . ., d,
and

∞ k=0 1 2 ((κ + k) 2 -θ 2 ) 1 2 ((κ + k) 2 -θ 2 ) + 1 2 (zA, z) -iθ(â, z) = ∞ k=0 (k + κ -θ)(k + κ + θ) (k + κ -θ 2 -(zA, z) + 2iθ(â, z))(k + κ + θ 2 -(zA, z) + 2iθ(â, z)) .

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT

Now it remains to apply formulas (1), ( 9) and the well-known formula:

∞ k=0 (k + b 1 )(k + b 2 ) (k + c 1 )(k + c 2 ) = Γ(c 1 )Γ(c 2 ) Γ(b 1 )Γ(b 2 ) , where b 1 + b 2 = c 1 + c 2 .
For example, taking d = 3, a = 0, λ k = 1 2 (κ + k) 2 and having in mind that

K 3 2 (u) = π 2u 1/2 e -u 1 + 1 u , u > 0,
we find after elementary summation that

Π 3 (B) = 2 (2π) 3/2 |A| B ∞ k=0 (κ + k) 3/2 (∆(x)) -3 2 K 3 2 ((κ + k)∆(x))d x = = 1 2π |A| B (∆(x)) -3 e -κ∆(x) (1 -e -∆(x) ) -1 + +(∆(x)) -2 e -κ∆(x) (κ + (1 -κ)e -∆(x) )(1 -e -∆(x) ) -2 d x, B ∈ B(R 3 \{0}),
where ∆(x) = (xA -1 , x).

In this case from ( 14) it follows that (1 + e ∆(x-µ) ) 2κ+1 , x ∈ R 3 .

f 3 (x) = 1 (2π) 3/2 |A| ∞ k=0 ν k (κ, 0) k + κ ∆(x -µ)
Remark 1. The probability laws of random vectors with independent z-distributed components are not contained in the class of z-distributions, having the characteristic function ( 16). The problem of characterization of all d-dimensional z-distributions in terms of their Lévy characteristics is still open.

Remark 2. Let X(t), t ≥ 0, be a Lévy process in R d such that L(X( 1)) is a ddimensional z-distribution. Following [START_REF] Grigelionis | Generalized z-distribution and related stochastic processes[END_REF], the distributions {L(X(t)), t > 0} we call the multivariate generalized z-distributions.

  k Γ(2κ + k)(κ + k) k!Γ 2 (κ) e -(κ+k)∆(x-µ) = κΓ(2κ) 4π |A|Γ 2 (κ)∆(xµ) e (κ+1)∆(x-µ)e κ∆(x-µ) 

  1, . . ., |θ| < κ, κ > 0. The density function (15) is representable by means of the formula (14) with ν k
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