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The exact Fisher information matrix of a Gaussian vector autoregressive-moving average (VARMA) process has been considered for a time series of length N in relation with the exact maximum likelihood estimation method. In this paper it is shown that the Gaussian exact Fisher information matrix converges to the asymptotic Fisher information matrix when N goes to infinity.

The exact Fisher information matrix of a Gaussian vector autoregressive-moving average (VARMA) process has been considered for a time series of length N in relation with the exact maximum likelihood estimation method. In this paper it is shown that the Gaussian exact Fisher information matrix converges to the asymptotic Fisher information matrix when N goes to infinity.

Several recent papers have discussed either the asymptotic Fisher information matrix (e.g. Godolphin and Bane, 2005) or the exact Fisher information matrix (e.g. [START_REF] Terceiro | Comments on "Kalman-filtering methods for computing information matrices for time-invariant, periodic, and generally time-varying VARMA models and samples[END_REF] but we have seen no indication of the result mentioned in the previous paragraph. Only [START_REF] Zadrozny | Analytic Derivatives for Estimation of Linear Dynamic Models[END_REF][START_REF] Zadrozny | Errata to "Analytical derivatives for estimation of linear dynamic models[END_REF] mentions the two information matrices, exact and asymptotic, but we could not see a convergence between the two expressions. On the contrary, the asymptotic Fisher information is defined as the limit of the exact Fisher information.

Consider {y t , t ∈ Z}, Z the set of integers, a Gaussian vector autoregressive-moving average (VARMA) process of order (p, q) in dimension n, which satisfies the vector difference equation

p j=0 α j y t-j = q j=0 β j ε t-j , t ∈ Z (1)
where {ε t , t ∈ Z} is the innovation process, a sequence of independent zero mean n-dimensional random variables each having positive definite covariance matrix Σ, and where α j , β j ∈ R n×n are the parameter matrices, and α 0 ≡ β 0 ≡ I n . We use L to denote the backward shift operator on Z, for example L y t = y t-1 , then (1) can be written as

α(L) y t = β(L) ε t (2) 
where

α(z) = p j=0 α j z j , β(z) = q j=0
β j z j are the associated matrix polynomials. We further assume the eigenvalues of the matrix polynomials α(z) and β(z) to be outside the unit circle so the elements of α -1 (z) and β -1 (z) can be written as power series in z. These eigenvalues are obtained by solving the scalar polynomials det(α(z)) = 0 and det(β(z)) = 0, where det(X) is the determinant of X. We assume that the matrix polynomials α(z) and β(z) have no common eigenvalues so that non-singularity of Fisher's information matrix is guaranteed (e. g. [START_REF] Klein | On the resultant property of the Fisher information matrix of a vector ARMA process[END_REF]. Let {y t , t = 1, ..., N } be a time series generated by the VARMA process (2) and let the set of parameters ϑ = (ϑ 1 , • • • , ϑ ) , where denotes transposition and = n 2 (p + q). The following definition of the parameter vector ϑ is introduced: ϑ = vec {α 1 , α 2 , ..., α p , β 1 , β 2 , ..., β q }, where vec X as usual stands for the vector resulting from stacking the columns of a matrix X on top of each other. We assume, as usual, that the nuisance parameters included in Σ are functionally independent from the parameters of interest included in ϑ.

State space form and Fisher information matrices

Although it is not strictly needed, the exact Fisher information of a Gaussian process is often introduced using a state space representation (e.g. Hannan and Deitsler, 1988) using a vector of the state variables x t ∈ R m , t ∈ N. Among other possibilities, using a specific basis in the state space, the following state space structure is considered

x t+1 = φx t + F ε t (3) 
y t = Hx t + ε t , (4) 
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where ε t ∈ R n is a Gaussian white noise process with E(ε t ) = 0, E ε t ε t = Σ > 0, and

φ =       -α 1 I n 0 n -α 2 0 n . . . . . . . . . I n -α h 0 n • • • 0 n       , F =      β 1 -α 1 β 2 -α 2 . . . β h -α h     
, and

H =      I n 0 n . . . 0 n      , (5) 
and h = max(p, q), α i = 0 n , i > p, β i = 0 n , i > q, and consequently m = hn.

In [START_REF] Klein | A direct derivation of the exact Fisher information matrix of Gaussian vector state space models[END_REF] an appropriate representation at the vector-matrix level for the exact Fisher information matrix J N (ϑ) is set forth. It is based on the multivariate version of minus the logarithm of the likelihood of the system described by ( 3) and ( 4) and is given by

l(ϑ) = -log L(ϑ) = N t=1 n 2 log 2π + 1 2 log det B t + 1 2 y t B -1 t y t .
where y t and B t are defined below. The exact information matrix is then

N J N (ϑ) = E ∂ 2 l(ϑ) ∂ϑ∂ϑ , to obtain N J N (ϑ) = N t=1 1 2 ∂vecB t ∂ϑ (B t ⊗ B t ) -1 ∂vecB t ∂ϑ + E ∂ y t ∂ϑ B -1 t ∂ y t ∂ϑ . (6) 
The operator ⊗ represents the Kronecker product of two matrices. The sample innovation y t and its covariance matrix B t = E[ y t y t ] are obtained through the Kalman filter equations, see e.g. Anderson and Moore (1979)

y t|t-1 = H xt|t-1 y t = y t -y t|t-1 xt+1|t = (φ -K t H) xt|t-1 + K t y t K t = φP t H HP t H -1 P t+1 = φP t φ + Q -φP t H HP t H -1 HP t φ .
Note that Mélard and [START_REF] Élard | On a fast algorithm for the exact information matrix of a Gaussian ARMA time series[END_REF], [START_REF] Zadrozny | Kalman filtering methods for computing information matrices for time-invariant periodic and generally time-varying VARMA models and samples[END_REF], [START_REF] Terceiro Lomba | Estimation of Dynamic Econometric Models with Errors in Variables[END_REF][START_REF] Terceiro | Comments on "Kalman-filtering methods for computing information matrices for time-invariant, periodic, and generally time-varying VARMA models and samples[END_REF] have introduced the exact Fisher information matrix for VARMA processes or more general dynamic systems. They have displayed it at a scalar level, and sometimes used the more efficient alternative Chandrasekhar recurrences instead of Kalman filter recurrences.

The asymptotic Fisher information matrix is more standard in statistics, econometrics and statistical signal processing, e.g. [START_REF] Whittle | The analysis of multiple stationary time series[END_REF], [START_REF] Friedlander | On the computation of the Cramér-Rao bound for ARMA parameter estimation[END_REF]. For very general statistical models, under some regularity conditions, it is proved that the asymptotic covariance matrix of a maximum likelihood estimator, or any asymptotically equivalent estimator, is the inverse of the asymptotic Fisher information matrix. For the model defined by [START_REF] Anderson | Optimal Filtering[END_REF], it is given by

F(ϑ) = E ∂ε ∂ϑ Σ -1 ∂ε ∂ϑ , (7) 
where we have omitted subscript t because the expectation does not depend on t. In [START_REF] Klein | A generalization of Whittle's formula for the information matrix of vector mixed time series[END_REF], equivalence of (7) with a vector-matrix level version of [START_REF] Whittle | The analysis of multiple stationary time series[END_REF] is proven.

Theorem 1 For a VARMA model under the conditions given in Section 1, given parametrization [START_REF] Klein | A generalization of Whittle's formula for the information matrix of vector mixed time series[END_REF] inserted in ( 3) and ( 4) and using the expressions ( 6) and ( 7), we have

lim N →+∞ J N (ϑ) = F(ϑ).
Proof. In addition to the ARMA and state-space forms, there is, at least in the stationary case, a direct representation of y t in terms of an infinite sequence of lagged ε t . Indeed, (3) can be written as

(I n -φL)x t = F ε t-1 . (8) 
Clearly, ( 8) is a vector difference equation. Imposing the stability condition λ max (φ) < 1, where λ max (φ) denotes the eigenvalues of the matrix φ of maximum modulus, one solution is given by

x * t = ∞ j=1 φ j-1 F ε t-j . (9) 
Hence y * t , the corresponding solution for y t , is given by:

y * t = ∞ j=1 Hφ j-1 F ε t-j + ε t . (10) 
Under the stability assumption every solution of (I -φL)x t = 0 satisfies x t -→ 0 for t -→ +∞. Therefore, every solution of (8) converges to (9) for t -→ +∞ which implies, of course, that every solution y t of ( 3) and (4) converges to (10) for t -→ +∞. The solution ( 10) is called the steady state solution. Since y t converges to the steady state solution given by (10) as t -→ +∞, it follows that y t|t-1 , the projection of y t in the space spanned by the random variables y t-1 , y t-2 , . . ., converges to ∞ j=1 Hφ j-1 F ε t-j when t -→ +∞, and the sample innovation y t = y t -y t|t-1 -→ ε t , when t -→ +∞. This implies also that B t converges to Σ. Now, as t -→ +∞, the first sum in (6) multiplied by N -1 converges to zero since B t will be independent of ϑ as t -→ +∞. The second term of (6) multiplied by N -1 converges to the right hand side of (7) which effectively does not depend on t. Using Toeplitz Lemma (e.g. Loève, 1977, p. 250) with weights N -1 , that shows that the exact Fisher information matrix converges to the asymptotic Fisher information matrix when N -→ +∞.
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