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Abstract

We study the time evolution of an increasing stochastic process governed by a first

order stochastic differential system. This defines a particular piecewise deterministic

Markov process (PDMP). We consider a Markov renewal process (MRP) associated

to the PDMP and its Markov renewal equation (MRE) which is solved in order to

obtain a closed-form solution of the transition function of the PDMP. It is then

applied in the framework of survival analysis to evaluate the reliability function of

a given system. We give a numerical illustration and we compare this analytical

solution with the Monte-Carlo estimator.
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1 Introduction

In the literature of stochastic differential systems, a large part is dedicated to those

involving diffusion type processes, that lead to the theory of stochastic differential

equations (see, e.g., Øksendal, 2003). Another class of stochastic models has arisen

to describe the random evolution of processes that do not involve diffusion type

motion, but rather the mixture of deterministic motions and random jumps. Such an

idea has been suggested by various authors, yet Davis provided a major contribution

to this approach : he gave the underlying theory for the class of stochastic models

called piecewise deterministic Markov processes (PDMP) in Davis (1984), farther

developed in Davis (1993) and Jacobsen (2006). In Koroliuk and Limnios (2005)

the limit theory is studied, in a functional setting. Lapeyre and Pardoux (2003)

worked with transport processes, which are a special case of PDMP, in order to

give a stochastic interpretation of the transport equations used in physics for the

modeling of the motion of particles. This family of processes are nowadays much

used in several applications, e.g., reliability analysis (Devooght and Smidts, 1996)

or insurance (Embrechts et al., 2001). In Chiquet and Limnios (2006); Chiquet

et al. (to appear), we took advantage of a PDMP for the modeling of degradation

mechanisms arising in a structure subject to random environmental effects.

The main contribution of this paper is to provide a closed-form solution for the

transition function of a PDMP defined through a first order differential equation.

For this purpose, we associate to this PDMP a Markov renewal process (MRP),

thus we will refer to results from this theory (see e.g. Limnios and Opriçan, 2001).

The outline is the following: in section 2, we give the model settings and standard

notation for MRP. We then build and solve a Markov renewal equation (MRE)

for the transition function of the PDMP. In section 3, an application for survival

analysis is studied, where the numerical computation of the reliability is detailed.

We compare the result obtained through the direct resolution of the MRE with the

empirical estimator obtained with the Monte-Carlo method.
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2 Transition function of the PDMP

Let (Zt, t ∈ R+) be a real-valued stochastic process starting almost surely from

z > 0 and governed by the following first order differential system

Żt = C(Zt, Xt), Z0 = z, (1)

with the following assumptions:

A. 1 The process (Xt, t ∈ R+) is an irreducible Markov process with a countable

state space E, an initial distribution αi = P(X0 = i), and a matrix generator

A = (aij)i,j∈E such that aij ≥ 0, for all i 6= j, and aii = −ai = −∑k∈E,i 6=k aik.

A. 2 The function C : R+×E −→ R+ is measurable, strictly positive and Lipschitz

w.r.t. the first argument, i.e, there is a function f : E −→ R, for x, y ∈ R+ and

i ∈ E, such that |C(x, i)− C(y, i)| ≤ f(i) |x− y|.

Each path Zt(ω) is built in a piecewise manner according to the function C and a

path Xt(ω) of the jump Markov process. That is, for t ∈ R+, the Cauchy problem

Żt(ω) = C(Zt(ω), i), Z0(ω) = z, i ∈ E, (2)

has a unique solution built on the successive intervals [Sn(ω), Sn+1(ω)), where

(Sn, n ∈ N) is a random sequence describing the jump times of Xt. For any t <

S1(ω), we denote by ϕz,i(t) the solution of (2), where X0(ω) = i, i.e., ϕz,i(t) is

the solution before the first jump time of Xt, conditionally to the starting value of

(Z0, X0) = (z, i). We also assume that Z0 and X0 are independent. In the sequel,

we focus on the transition function P , defined by

Pij(z,B, t) := Pz,i(Zt ∈ B,Xt = j), i, j ∈ E,B ∈ B, (3)

where B is a subset of B, the Borel σ−field of R+ and Pz,i(·) := P(·|Z0 = z,X0 = i).

A Markov process is a special MRP, thus we may associate to (Zt, Xt) the extended

MRP (ζn, Yn, Sn, n ∈ N) such as

ζn = ZSn , Yn = XSn , n ∈ N.
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The process (Yn, Sn) is a standard MRP, while (ζn, Yn, Sn) is an extended one. In

the homogeneous case the associated semi-Markov kernel Q is defined, for t > 0, by

Qij(z,B, t) := Pz,i(ζ1 ∈ B, Y1 = j, S1 − S0 ≤ t). (4)

The Stieltjes-convolution is denoted by “∗”, hence, the convolution of Q with a

measurable function φ on the space R+ × E is

(Q ∗ φ)ij(z,B, t) =
∑
k∈E

∫
R+

∫ t

0
Qik(z,dy,ds)φkj(y,B, t− s),

for i, j ∈ E, z > 0 and B ∈ B. In the same way, the successive n−fold convolutions

of the semi-Markov kernel are defined recursively. For n = 0, 1,

Q
(0)
ij (z,B, t) = 1{i=j}1B(z)1R+(t), Q

(1)
ij (z,B, t) = Qij(z,B, t),

where 1B(x) is the indicator function, i.e., 1B(x) = 1 if x ∈ B, 0 otherwise. For

n ≥ 2, the n−fold convolution turns to

Q
(n)
ij (z,B, t) := (Q ∗Q(n−1))ij(z,B, t)

=
∑
k∈E

∫
R+

∫ t

0
Qik(z,dy,ds)Q

(n−1)
kj (y,B, t− s).

(5)

The Markov renewal function Ψ, which plays a central role, is defined by

Ψij(z,B, t) =
∑
n≥0

Q
(n)
ij (z,B, t). (6)

In the case at hand, we have (ζn, Yn, Sn) a normal MRP, that is, Ψij(z,B, t) < ∞
for any fixed t > 0, z > 0, B ∈ B and i, j ∈ E.

A MRE has the following form

Θij(z,B, t) = gij(z,B, t) + (Q ∗Θ)ij(z,B, t), (7)

where g is a known function defined on R+×E×R+ and Θ is the unknown function.

The solution (see e.g Koroliuk and Limnios, 2005) is given by

Θij(z,B, t) = (Ψ ∗ g)ij(z,B, t). (8)

Let us now take advantage of Markov renewal theory to build a solvable MRE for P .

For this purpose, we first need to calculate Q. This is done in the following Lemma.

4
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Lemma 1 The semi-Markov kernel Q of the MRP (ζn, Yn, Sn) verifies, for i 6= j,

Qij(z,B,dt) = aije
−aitδϕz,i(t)(B)dt, (9)

where δx(B) is the Dirac distribution, equal to 1 if x ∈ B, 0 otherwise.

PROOF. Assuming that S0 = 0, and conditioning on definition (4), we get

Qij(z,B,dt) = Pz,i(Y1 = j, S1 ∈ dt)Pz,i(ζ1 ∈ B|Y1 = j, S1 = t).

First, since S1 and Y1 are independent, we have Pz,i(Y1 = j, S1 ∈ dt) = aije
−aitdt

from usual results of Markov theory. Second, Zt is fully characterized by ϕz,i(t)

before the first jump time S1, thus Pz,i(ζ1 ∈ B|X1 = j, S1 = t) = Pz,i(Zt ∈ B) =

δϕz,i(t)(B). Indeed, the probability Pz,i(Zt ∈ B) is zero everywhere, excepted for the

time points where B is reached. We hence get the expected result.

Proposition 2 The transition function P of (Zt, Xt) is governed by the MRE

Pij(z,B, t) = gij(z,B, t) + (Q ∗ P )ij(z,B, t),

whose solution is Pij(z,B, t) = (Ψ ∗ g)ij(z,B, t) and where

gij(z,B, t) = e−ait1{i=j}1B(ϕz,i(t)). (10)

PROOF. It is convenient to make appear S1 in (3). Hence,

Pij(z,B, t) = Pz,i(Zt ∈ B,Xt = j, S1 > t)︸ ︷︷ ︸
P1

+ Pz,i(Zt ∈ B,Xt = j, S1 ≤ t)︸ ︷︷ ︸
P2

.

Before the first jump of Xt, i = j and Zt evolves according to ϕz,i(t). Thus, P1 =

e−a(i)t1B(ϕt(z, i))1{i=j}. From Total Probability Theorem, it holds for P2 that

P2 =
∑
k∈E
k 6=i

∫ t

0
Pz,i(Zt ∈ B,Xt = j|Y1 = k, S1 = s)Pz,i(Y1 = k, S1 ∈ ds).

As long as Pz,i(Y1 = k, S1 ∈ ds) = aike
−aisds, and noticing that Pz,i(Zt ∈ B,Xt =

j|Y1 = k, S1 = s) = Pkj(ϕz,i(s), B, t− s), then P2 is fully characterized. Finally,

Pij(z,B, t) = e−ait1{i=j}1B(ϕz,i(t)) +
∑
k∈E
k 6=i

aik

∫ t

0
e−a(i)sPkj(ϕz,i(s), B, t− s)ds,

5
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which may be written, with Q given by (9) and g given by (10), as

Pij(z,B, t) = gij(z,B, t) +
∑
k∈E

∫
R+

∫ t

0
Qik(z,dy,ds)Pkj(y,B, t− s).

This last equation is of the general form (7), whose solution is given by (8).

3 Application to reliability

As an application, let us now study system (1) under assumptions A.1, A.2 and E

a finite state space. The system remains reliable until Zt reaches a critical threshold

∆ > z > 0 at random time τ , which is the failure time, with a cumulative distribu-

tion function Fτ . A schematic view of the parallel evolution of both components Zt

and Xt can be seen on Figure 1, where three typical paths of the PDMP are plot-

ted. Of course, since, C > 0, Zt is an increasing process. Looking towards reliability
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Fig. 1. Schematic view of the PDMP – three paths of (Zt, Xt)

analysis, we put U = [z,∆) and D = [∆,∞) the respective sets of good states and

failure states for Zt. Due to the continuous, increasing evolution of Zt, it necessarily
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passes through ∆. The reliability function R is defined as follows:

R(t) = P((Zt, Xt) ∈ U × E) =
∑
i,j∈E

αiPij(z, U, t) = 1− Fτ (t).

Through Proposition 2, P is known. Hence R (as well as Fτ ) is fully characterized:

R(t) =
∑
i,j∈E

αi × (Ψ ∗ g)ij(z, U, t). (11)

Note that the kernel Q can be calculated at a given time point t > 0 for the Borel

subset U , by integrating (9). As a matter of fact, it holds that

Qij(z, U, t) = aij

∫ t

0
e−ais1U (ϕz,i(s))ds =

aij
ai

(
1− e−ai min(tz,i(∆),t)

)
,

where tz,i(∆) = inf {t ≥ 0 : ϕz,i(t) ≥ ∆} .

3.1 Numerical implementation

The numerical calculation of R successively requires the kernel Q, the n−fold con-

volutions Q(n) for each n ≥ 0, the Markov renewal function Ψ built upon the Q(n)

and the transition function P , by a convolution between g and Ψ. Since convolution

products are time consuming, any simplification would mean a great time saving.

By (9), the n−fold convolution (5) of Q turns to

Q
(n)
ij (z,B, t) =

∑
k∈E
k 6=i

aik

∫ t

0
e−aisQ

(n−1)
kj (ϕz,i(s), B, t− s)ds, (12)

hence removing the integral on R+, thanks to the Dirac distribution. Since our main

interest is the reliability, we compute P just for the subset B ≡ U , that is,

Pij(z, U, t) =
∫
U

∫ t

0
Ψij(z,dy,ds)e−aj(t−s)1U (ϕy,j(t− s)). (13)

Indeed, the sum on E has been removed thanks to the structure of g. Furthermore,

the integration on y ∈ R+ is limited on U since 1U (ϕy,j(t− s)) is zero elsewhere.

Theses functions have to be properly discretized to achieve the numerical compu-

tation. In the following, a function with an upper-index “#” means its discretized

7
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version. This discretization must be operated on both intervals U = [z,∆) and [0, t],

thus we set two numerical partitions {z = y0 < y1 < · · · < y` < · · · < yL = ∆−} and

{0 = t0 < t1 < · · · < tm < · · · < tM = t}. Both L and M , being the respective num-

bers of discretization steps for [z,∆) and [0, t], have to be sufficiently large. When

L,M →∞ each numerical function tends to the associated ”true” one. For instance,

when L,M →∞, then Q# → Q uniformly w.r.t a given matrix norm, by example,

||Q|| = maxi,j Qij(z, y, t) with t, z, B fixed. Hence, the numerical version of (13) is

P#
ij (z, U, t) =

∑
y`∈[z,∆)

∑
tm∈(0,t]

∆ytΨ
#
ij(z, y`, tm)e−aj(t−tm)1ϕy`,j(t−tm)(U),

where ∆ytΨ
#
ij(z, y`, tm) is the only unknown, which stands for the numerical evalu-

ation of Ψ(z,dy,ds) in (13). By the definition (6), it can be evaluated through

∆ytΨ
#
ij(z, y`, tm) =

∑
n≥0

∆ytQ
#(n)(z, y`, tm). (14)

The derivative ∆ytQ
#(n) is estimated by finite differences on y and t:

∆ytQ
#(n)(z, y`, tm) = [Q#(n)(z, y`, tm)−Q#(n)(z, y`−1, tm)]

− [Q#(n)(z, y`, tm−1)−Q#(n)(z, y`−1, tm−1)]. (15)

Each element Q#(n) in (15) is obtained by the numerical version of (12):

Q
#(n)
ij (z, y`, tm) =

∑
k∈E
k 6=i

aik
∑

tm∈(0,t]

e−aitmQ
#(n−1)
kj (ϕz,i(tm), y`, t− tm)∆tm,

with ∆tm = tm − tm−1, the time-step discretization. Finally, we point out that the

sum on the n−fold convolutions of the kernel in (14) is truncated from the rank n∗,

provided that ||Q#(n∗)|| < ε. We put ε a small real number, chosen closed to the

machine precision. Note that the integer n∗ is finite since Q#(n)
ij (z, y, t) −−−→

n→∞
0 for

a normal MRP with fixed values of i, j ∈ E, t > 0, z > 0 and y ∈ [z,∆].

3.2 Numerical results

To check the validity of our results, let us study the process Zt governed by

Żt = aZt ×Xt, Z0 = z, (16)

8
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with a = 0.0075, z = 10, ∆ = 50. The process Xt is a three-state jump Markov

process with E = {1, 2, 3} , a matrix generator and an initial law given by

A =



−0.02 0.02 0

0.027 −0.03 0.003

0.01 0 −0.01


, α =

[
2
3

1
3 0

]
.

The coupled process (Zt, Xt) defines a PDMP whose transition function and re-

liability function can be computed through Proposition 2 and (11), based upon

the numerical implementation described above for which we put M = L = 100

points of discretization. Another way to compute the reliability is the Monte-Carlo

method, which consists in simulating a large number of paths of Zt and counting

when the state {∆} is reached or not. We use the empirical estimator applied on

K = 10000 paths (Zkt )k=1,...,K simulated through Monte-Carlo techniques, that is

R̂(t) = 1
K

∑K
k=1 1{Zk

t <∆}. This estimator is compared with the direct calculus of

R through the Markov renewal argument developed in this paper. Results can be

found on Figure 2 where the Monte-Carlo estimator is used as a reference to check

the validity both of the theoretical results and the numerical implementation. One

can see that the reliability curves obtained with the two methods are quite close.
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Fig. 2. Reliability estimation with two different methods
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4 Concluding remarks

Because models based on system (1) are encountered in the literature for many

different fields of applications, we think that the reliability results of this paper may

be useful for engineering studies, such as structural mechanics (see, e.g., Chiquet

et al., to appear). Yet, to be more suitable to real phenomena, the case of PDMP

which are not only monotone should be considered, as further developments.
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