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 Gamma-Hadron Separation in Very-High-Energy γ-ray astronomy using a multivariate
analysis method

S. Ohma,∗, C. van Eldika, K. Egbertsa

aMax-Planck-Institut für Kernphysik, Heidelberg, Germany

Abstract

In recent years, Imaging Atmospheric Cherenkov Telescopes (IACTs) have discovered a rich diversity of very high energy (VHE,
> 100 GeV) γ-ray emitters in the sky. These instruments image Cherenkov light emitted by γ-ray induced particle cascades in the
atmosphere. Background from the much more numerous cosmic-ray cascades is efficiently reduced by considering the shape of the
shower images, and the capability to reduce this background is one of the key aspects that determine the sensitivity of a IACT. In
this work we apply a tree classification method to data from the High Energy Stereoscopic System (H.E.S.S.). We show the stability
of the method and its capabilities to yield an improved background reduction compared to the H.E.S.S. Standard Analysis.

Key words: classification, separation, decision tree, γ-ray astronomy, Cherenkov technique

1. Introduction

In the last years ground-based Imaging Atmospheric
Cherenkov Telescopes (IACTs) opened a previously inaccessi-
ble window for the study of astrophysical sources of γ radiation
in the VHE regime. The detection of more than 50 galactic
VHE γ-ray emitters during the galactic plane scan performed
by the H.E.S.S. collaboration between 2004 and 2007 [1, 2, 3]
decupled the number of known VHE γ-ray sources and hence
established a new field in astronomy.

The earth’s atmosphere is opaque to VHE photons, which ini-
tiate electromagnetic particle cascades (Extensive Air Showers,
EAS) in the atmosphere. The highly relativistic charged parti-
cles in the cascade emit Cherenkov light which can be imaged
via a large mirror onto a fine-grained camera. From the shower
image one can reconstruct the arrival direction of the primary
γ-ray and calculate its energy using the number of collected
Cherenkov photons and the directional information.

One of the big advantages of IACTs is their enormous ef-
fective detector area. Modern instruments reach ∼ 105 m2

which is five orders of magnitude larger than what is typically
achieved with satellite-based instruments like EGRET or Fermi
LAT. While the latter benefit from quasi background free obser-
vations, Cherenkov telescopes have to deal with a vast number
of hadronic cosmic-ray background events. The capability to
suppress these against the γ-rays associated with astrophysical
sources is one of the key aspects that determines the sensitivity
of IACTs.

To increase the sensitivity of ground-based VHE γ-ray tele-
scope systems beyond what is obtained with state-of-the-art

∗Corresponding author.
Email addresses: stefan.ohm@mpi-hd.mpg.de (S. Ohm),

christopher.van.eldik@mpi-hd.mpg.de (C. van Eldik),
kathrin.egberts@mpi-hd.mpg.de (K. Egberts)

instruments like H.E.S.S. [4], MAGIC [5], VERITAS [6] or
CANGAROO-III [7] larger arrays are needed, as e.g. studied
by the CTA [8] and AGIS [9] consortia.

Still, for the existing instruments, increased background re-
duction can improve the sensitivity considerably. With respect
to the classical - robust but less sensitive - Hillas approach
[10], which parametrises the 2-dimensional elliptical shape of
the recorded images for reconstruction and selection of γ-ray
like events, sensitivity can be increased by e.g. analysis meth-
ods which compare the detected images with a 3-dimensional
photosphere model of the EAS (e.g. 3D Model analysis, in-
troduced by Lemoine-Goumard et al. [11]). Furthermore, the
applicability of multivariate analysis techniques 1 like Random
Forests [12] in ground-based VHE astronomy has recently been
demonstrated [13, 14, 15].

In this paper we follow the latter approach and discuss the
application of the Boosted Decision Trees (BDT) method, pro-
vided by the TMVA package [16], to data obtained by the
H.E.S.S. experiment. The stability of the technique and its
capabilities to improve γ/hadron separation compared to the
H.E.S.S. Standard Analysis are demonstrated. After a brief
description of the method (Chapter 2) and an introduction of
the training and evaluation of the BDT method with events
recorded by the H.E.S.S. experiment in Chapter 3, the applica-
tion of BDT to H.E.S.S. data is discussed (Chapter 4). Finally,
performance and sensitivity evaluated using Monte-Carlo sim-
ulations and background data are presented (Chapter 5).

2. Classification using Boosted Decision Trees

Machine learning algorithms like Neural Networks (NNs),
Likelihood Estimators or Fisher discriminants are basically ex-

1These techniques combine several shower parameters into one number
which gives the likeness of an event with a γ-ray or a cosmic ray.
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Figure 1: Sketch of a decision tree. An event, described by a parameter set,
Mi = (mi,1,. . .,mi,6), undergoes at each node a binary split criterion (passed or
failed) on one of its parameters until it ends up in a leaf. This leaf marks it as
signal (S) or background (B).

tensions of simple cut-based analysis techniques to multivari-
ate algorithms. They are widely used in natural sciences for
classification of events of different type which are described by
a set of input parameters. Beyond the aforementioned tech-
niques the MiniBooNE [17, 18] and D0 [19] collaborations
recently utilised the BDT method for particle identification in
high energy physics, and Bailey et al. [20] used it for supernova
searches in optical astronomy.

One of the main advantages of NNs and BDT compared to
Likelihood classifiers or Fisher discriminants is the consider-
ation of nonlinear correlations between input parameters. Fur-
thermore, the BDT method effectively ignores parameters with-
out separation power whereas NNs could suffer from those, re-
sulting in a degraded separation.

2.1. Basics of the Decision Tree Algorithm

Decision trees [21, 22] can be represented by a two dimen-
sional structure like the one sketched in Fig. 1. By applying,
at each branching, a binary split criterion (passed or failed) on
one of the characterising input parameters they classify events
of unknown type as signal-like or background-like. The de-
termination of these criteria is also referred to as training of a
decision tree, and is performed with a training set consisting
of events of known type. To circumvent a drawback of single
decision trees, namely the instability against statistical fluctua-
tions in the training event set, one extends the single decision
tree to a forest of decision trees, which differ in the binary split
criteria. A weighted mean vote of the classification of all single
trees in the forest stabilises the response of the classifier and
improves its performance. This vote is the output of the BDT
and describes the signal- or background-likeliness of an event.
In this work it is referred to as the ζ variable. The forest of
trees is obtained by a process called “boosting”, starting from
an initial single tree.

2.2. The training procedure for a single tree

The training or building of a decision tree is the process that
finds the appropriate splitting criterion for each node using a
training sample, S , of events of known type. The training sam-
ple is composed of a signal training sample, S 1, and a back-
ground training sample, S 2, which consist of N1 signal and N2

background events, respectively. Each event in the training set
is characterised by a weighting factor ωi and a set of input para-
meters, Mi. To build a decision tree from such a training sample
the following steps are performed:

• The training samples are normalised in such a way that all
signal events have the same weight, ωi(S 1) = 1/N1, and all
background events have the same weight ωi(S 2) = 1/N2.

• Tree building starts at the root node (top node in Fig. 1),
where one finds the variable and split value that provides
the best separation of signal and background events. Ac-
cording to this splitting criterion, S is divided into two sub-
sets of events that either pass or fail this criterion. Each
subset is fed into a child node where again the cut para-
meter which separates best signal and background events
is determined.

• This procedure is applied recursively until further splitting
would not increase the separation, or a preassigned min-
imum number of events is reached 2. According to the
majority of signal and background events, the last-grown
nodes (which are called leaves) are assigned signal (S) or
background (B) type, respectively (see Fig. 1).

2.3. Boosting

Single decision trees are sensitive to statistical fluctuations
in the training sample, hence a boosting procedure is applied
which results in a forest of trees and thus increases the stability
of the method. In this procedure, events that got misclassified
in the building of the previous tree are multiplied with a boost
weight, α, thereby getting a higher weight in the training of the
next tree. Hence, the boosting is applied to all trees except for
the first one. This method is known as AdaBoost or adaptive
boost [23]. α is calculated from the fraction of misclassified
events in all leaves, err:

α =
1 − err

err
(1)

After having applied α to each misclassified event, renormali-
sation of the training samples retains the sum of weights of all
events in a decision tree constant.

2.4. BDT settings

In this work we use the BDT method provided by the TMVA
package. The decision tree settings are mostly default values,
which have been optimised and tested by the TMVA develop-
ers. These parameters guarantee a fast training procedure and a
stable response of the classifier and are marked with a * in the
following.

• The number of trees was chosen to be 200*, which is a
compromise between separation performance and process-
ing power. Varying this value in a broad range does not
significantly change the presented results.

2This avoids overtraining due to statistically insignificant leaves.
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 • The Gini Index* was used as separation type. It calcu-
lates the inequality between signal and background distri-
butions for each value to find the best cut. Other separation
types were tested and found to achieve similar results.

• Splitting was stopped when the number of events in a node
fell below (N1 + N2) / (10 ·N2

par)*, taking into account the
training statistics and the number of training parameters.
Typical numbers are between 100 and 1000 for the small-
est and largest data set, respectively.

• The number of steps used to scan the parameter space for
the best splitting criterion was increased from 20 to 100 to
adequately cover training parameters with a large range of
values.

3. Training and Evaluation of the BDT method

Having discussed the basic BDT-functioning and details of
the growing procedure in the last chapter, this section deals with
the training and evaluation of the BDT method. After an intro-
duction of the training parameters used in this work, the prop-
erties of the signal- and background training sample are dis-
cussed. Finally, tests of the classifiers response are presented.

3.1. Training parameters
The recorded EAS images contain pixels which mainly store

photons from the night sky background (NSB). They are re-
moved in an image cleaning procedure [24] for the further im-
age analysis. Only pixels with an intensity of 5 p.e. and a neigh-
bouring pixel with more than 10 p.e. (and vice versa) are kept,
thereby just selecting pixels which contain Cherenkov photons
originating from the EAS.

To classify the recorded air-shower events as of either signal-
or background type, a set of training parameters has been de-
rived using information from the EAS images. The training
parameters are based on the Hillas Parameters [10] which are
calculated using the second moments of the cleaned shower
images. Of these, the width, length, and total intensity (also
called image size) of the ellipse are used for classification.
Compared to cosmic-ray induced showers, which in general
exhibit a rather irregular shape, showers produced by γ-rays
(or electrons) have an elliptical, quite regular structure. The
Hillas Parameters inherently store information about the shape
of the shower, and can therefore be used to discriminate be-
tween cosmic-ray and γ-ray primaries. Furthermore, an event
recorded by multiple telescopes is better constrained. To be in-
dependent of the number of participating telescopes (hereafter
called multiplicity), the Hillas Parameters of individual tele-
scopes are averaged. The same is true for all the BDT training
parameters, presented in the following:

• One type of training parameters is based on the mean
reduced scaled width approach introduced by Aharonian
et al. [24]. For an image with a given size and recon-
structed impact distance 3 the mean expected width for a

3The distance between the telescope and the impact point of the lengthened
primary particle track on ground.

γ-ray 〈Wi〉 as obtained from γ-ray simulations is compared
to the measured width Wi. The Scaled Width for telescope
i is then defined as SCWi = (Wi − 〈Wi〉)/σi, with σi be-
ing the spread of the expected width. The mean reduced
scaled width (MRSW) can then be calculated as the aver-
age SCW over all telescopes:

MRSW =
1∑

i∈Ntel

ωi

·
∑

i∈Ntel

(SCWi · ωi) , (2)

taking into account the accuracy of the γ-ray simulations
by introducing a weighting factor ωi, defined as ωi =

〈Wi〉2/σ2
i .

Similarly, the mean reduced scaled length (MRSL) is cal-
culated. By comparing the measured width and length of
the image with the prediction for an hadronic event 4, two
additional training parameters, the mean reduced scaled
width off (MRSWO) and mean reduced scaled length off
(MRSLO), are computed.

• Another parameter addresses the different interaction
lengths of photons and hadronic cosmic-rays in the at-
mosphere. It is expressed as the depth of the shower max-
imum Xmax and reconstructed from the recorded shower
images. Also this parameter is calculated as a weighted
mean value over all participating telescopes.

• Because of their irregular structure, the energy of hadron-
induced showers may be reconstructed differently for tele-
scopes seeing the shower from different directions. The
∆E / E parameter, calculated as the averaged spread in en-
ergy reconstruction between the triggered telescopes, adds
additional separation power to the BDT classification.

For illustration, Fig. 2 shows all training parameter distrib-
utions for events with zenith angles around 20◦ and energies
0.5 TeV ≤ E ≤ 1.0 TeV.

3.2. Training sample

The training set used for building the BDT consists of Monte-
Carlo simulations of γ-rays as signal events, and Off-Events as
cosmic ray background. The γ-rays are simulated as resulting
from a point source, at a fixed distance (offset) of 0.5◦ from the
camera centre, and follow an energy distribution dN/dE ∼ E−Γ
with index Γ = 2.0. Since cosmic-rays reach the earth isotrop-
ically, the Off-Events are homogeneously distributed over the
field of view of the camera. A cut on the minimum image size
of 80 p.e. and the maximum distance between the centre-of-
gravity (COG) of the Hillas ellipse and the camera centre (to
reduce effects of image truncation) was applied to the training
sample. This is also referred to as pre-selection and used to
exclude poorly reconstructed events from the training process.

4These hadronic events are obtained in H.E.S.S. observations of sky re-
gions without significant γ-ray contamination as cosmic-ray background (also
referred to as Off-Events)
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Figure 2: Distribution of the training variables with reconstructed energies between (0.5–1.0) TeV in the zenith angle range (15–25)◦ for γ-rays (black) and
cosmic-rays (grey).

3.3. Training
The aim of a BDT classification is a stable γ/hadron sep-

aration over the whole dynamical range of the telescope sys-
tem, which comprises the accessible energy range as well as
the observational conditions (e.g. the zenith angle of the ob-
servation). Since the shower shape changes with the primary
particle energy and its zenith angle, the distributions of some of
the input parameters and consequently the response of the clas-
sifier changes. As opposed to the mean reduced scaled para-
meters which by construction are independent of event energy
and zenith angle, the depth of the shower maximum and the
uncertainty in the energy estimation do depend on both these
quantities.

This characteristic requires a training of the BDT in energy-
and zenith angle bands. The energy range accessible for
H.E.S.S. (from ∼100 GeV to ∼100 TeV) was divided into six
bands, based on the energy reconstructed assuming a γ-ray hy-
pothesis, such that for each of seven zenith angle bands (from
0◦ to 60◦) the input parameter distributions do not change sig-
nificantly, and a sufficient number of events for the training
process was available. A summary of the training statistics in
the energy- and zenith angle bands can be found in Table 1.
The decreasing number of training events with increasing en-
ergy and/or zenith angle is a direct consequence of the energy
spectra of the training sample and the increased energy thresh-
old of the H.E.S.S. system at larger zenith angles.

As visible from Fig. 2 all parameters show a more or less
pronounced separation power which manifests itself in a differ-

ent importance of these variables for the building of the BDT.
This importance is calculated using the rate of occurrence of a
splitting variable during the training procedure, weighted by the
squared separation-gain and the number of events in the corre-
sponding nodes [21]. Fig. 3 demonstrates that the relative im-
portance of the training parameters does depend on the energy
and zenith angle of the event and that this importance changes
from band to band.

While the MRSW parameter is generally the most important
classification variable, this is not true for events with energies
below a few hundred GeV, since in this energy range hadron-
and γ-initiated showers look similar [25, 26]. Here, the Xmax

parameter provides better separation, because it carries infor-
mation about the primary particle interaction length without
taking into account the shape of the shower image. Therefore,
Xmax is uncorrelated with the image shape parameters and an
important parameter for the γ/hadron separation at low energies
and large zenith angles.

On the other hand, the spread in event energy reconstruc-
tion, ∆E / E, becomes more important for events of high ener-
gies, because in this energy range γ-initiated showers exhibit
a rather regular shape, whereas hadron-initiated showers show
large fluctuations and therefore a large spread in the energy re-
constructed by the participating telescopes.

Also the MRSWO and MRSLO parameters carry additional
information about the shower shape. They suffer from the larger
hadronic shower fluctuations, but nevertheless contribute to a
significant extent to the training procedure.

4
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��������������������zenith angle [◦]

reconstructed energy [TeV]
0.1 - 0.3 0.3 - 0.5 0.5 - 1.0 1.0 - 2.0 2.0 - 5.0 5.0 - 100.0

0.0 - 15.0 120k/240k 55k/110k 55k/115k 35k/70k 25k/45k 15k/25k
15.0 - 25.0 95k/190k 60k/120k 65k/125k 40k/85k/ 30k/55k 15k/35k
25.0 - 35.0 60k/120k 65k/130k 70k/135k 50k/95k 35k/70k 20k/45k
35.0 - 42.5 -/- 75k/150k 75k/155k 55k/115k 45k/95k 35k/65k
42.5 - 47.5 -/- 55k/105k 95k/195k 75k/145k 60k/125k 50k/100k
47.5 - 52.5 -/- -/- 140k/275k 100k/200k 95k/185k 80k/165k
52.5 - 60.0 -/- -/- 50k/100k 70k/140k 70k/135k 70k/140k

Table 1: Number of signal- (first value) and background training events (second value) in all trained zenith angle- and energy bands. Events with small energy and
large zenith angle cannot be reconstructed since the energy threshold of the H.E.S.S. array increases with zenith angle.

ζ
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Figure 4: BDT output for events using an independent test sample (same energy
and zenith range as in Fig. 2).

Beyond the parameters used in this work, additional variables
which parametrise the intrinsic image properties (e.g. like those
obtained for the 3D Model analysis [11]) are sensitive to differ-
ent shower properties and could further improve the BDT clas-
sification.

3.4. BDT response

After having grown the BDT, the classifier’s response was
tested in all zenith angle- and energy bands with an independent
test sample of signal- and background events. As an example,
Fig. 4 shows the result of the classification of this test sample
with the BDT trained in the (0.5–1.0) TeV band with zenith an-
gles (15–25)◦, demonstrating the excellent classification power
of the BDT approach in terms of γ/hadron separation. However,
as explained in the last section, some of the input parameters
depend on zenith angle and energy and therefore the ζ distri-
butions look different from band to band. This later requires
zenith- and energy-dependent cuts, to make the γ/hadron sepa-
ration independent of the input parameter distributions (Chapter
4.2).

4. Systematic studies using H.E.S.S. data

The consistency between data and simulations is one of the
key aspects for the analysis of VHE γ-ray sources. Since ob-
servations cover a broad energy range and are performed un-
der various observational conditions (e.g. different zenith an-
gles or telescope configurations), the BDT classification has to
be tested under these conditions. For this purpose, we apply
the BDT method to H.E.S.S. observations of the Galactic Cen-
tre (GC) region performed in 2004 and compare the excess of
γ-rays above the background with the predictions from γ-ray
simulations with similar properties.

4.1. Comparison between simulations and data

The data set used here is a subset of the GC observations [27]
and accumulates to a total livetime 5 of 11.4 hours. The data
were selected by zenith angle to cover a smaller range of 15◦ ≤
θ ≤ 25◦, thereby avoiding the mixing of γ-ray simulations at
different zenith angles when comparing the results. The mean
offset of the observations is 1◦. In the following we compare
the γ-ray excess of the GC source HESS J1745–290 to γ-ray
simulations at a fixed zenith- and offset angle of 20◦ and 1◦,
respectively. The energy spectrum of HESS J1745–290 follows
a power-law in energy with a spectral index of Γ=2.21 between
(0.2–10.0) TeV [28], and the γ-ray simulations are chosen to
match the same spectral shape in this energy range.

The ζ distributions for events coming from the assumed
source region (On-Region) and from seven background control
regions (Off-Regions) 6 are shown in Fig. 5, (a). The γ-ray
excess can then be calculated as Nγ = NOn − α · NOff , with NOn

and NOff being the number of events from the On-Region and
Off-Regions, respectively, and α as normalisation factor which
accounts for the different geometrical areas of the On-Region
and Off-Regions. The comparison between γ-ray excess and
simulated γ-rays (Fig. 5, (b)) reveals an excellent agreement
and demonstrates that the BDT classifies both type of events in
the same way in a broader zenith angle- and energy range.

5The livetime is the observation time corrected for the dead-time of the sys-
tem.

6The used background estimation method is known as reflected background
model [29].
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Figure 3: Importance (as defined in the main text) of the training parameters as a function of (a) mean reconstructed energy in the (15–25)◦ zenith angle band and
(b) as a function of mean zenith angle for reconstructed energies between (0.5–1.0) TeV.

To illustrate the stability of the BDT classification with re-
spect to different subsets of events, Fig. 6 shows the comparison
for events with low energies of 0.2 TeV ≤ E ≤ 0.4 TeV and for
events which were recorded by just two telescopes. These two
subsets contain 1/2 and 1/3 of all events, respectively, and are
difficult to classify, given the limited separational information
for such kind of events. Even for those, the agreement between
γ-ray simulations and γ-ray excess is obvious and confirms the
robustness of the BDT classification.

4.2. Spectral analysis with the BDT method

The last section illustrated that the BDT classification of data
and simulations leads to consistent results under variation of
different parameters like the covered energy range or the tele-
scope multiplicity of the events. Hence, the BDT classification
can be used to select γ-ray-like events for the spectral analysis
of VHE γ-ray sources.

As aforementioned, the energy- and zenith-dependence of
some of the input parameters leads to a zenith- and energy de-
pendent BDT classification. A fixed cut on ζ would accordingly
lead to different cut efficiencies and hence result in a classifica-
tion which depends on the observational conditions 7. To cir-
cumvent this problem, the independent test sample was used
to predict the γ efficiency of all possible ζ cuts in each zenith
angle- and energy band. This information was then used to as-
sign a corresponding γ-efficiency to every ζ of an event, εγ(ζ).

In the H.E.S.S. Standard Analysis [24], γ-ray selection cuts
are optimised on MRSW, MRSL, image intensity and θ2 8 si-
multaneously to maximise the significance (σ, defined in [30],
Equation (17)). The same optimisation procedure was applied
to our analysis, but using εγ(ζ) instead of MRSW and MRSL.

7On the other hand, cuts on MRSW and MRSL as applied in the H.E.S.S.
Standard Analysis neither depend on the event energy nor on the zenith angle
and hence preserve the cut efficiency.

8The squared angular distance between the assumed source position and the
reconstructed shower direction.

(a)

Configuration εγ(ζ) θ2cut Size
Max Max Min

(degrees2) (p.e.)
Standard 0.84 0.0125 60

Hard 0.83 0.01 160

(b)

MRSW MRSL θ2cut Size
Configuration Max Max Max Min

σ σ (deg2) (p.e.)
Standard 0.9 2.0 0.0125 80

Hard 0.7 2.0 0.01 200

Table 2: (a): Selection cuts optimised for Configuration Standard (strong, steep
spectrum sources) and Hard (weak, hard spectrum sources) for the ζ analysis.
(b): Selection cuts optimised for the Standard and Hard Configurations for the
H.E.S.S. Standard Analysis [24]. Minimum cuts on MRSW and MRSL of -2.0
are applied in the case of the Standard Analysis.

Here we optimised for two different sets of assumed strength
and spectral index of the source, namely the ζ std-cuts (10%
of the integrated Crab flux above 200 GeV with a spectral in-
dex of Γ=2.6) and the ζ hard-cuts (1% of the integrated Crab
flux above 200 GeV with a spectral index of Γ=2.0). Together
with the cuts used in the H.E.S.S. Standard Analysis, which are
optimised for the same source types, they are summarised and
described in Table 2.

The optimised ζ std-cuts were applied to the HESS J1745–
290 data set and a spectrum was extracted. The spectrum ob-
tained for the application of the ζ std-cuts and the published dif-
ferential flux [28] are shown in Fig. 7. An excellent agreement
between both results further consolidates the applicability of
the BDT approach for the analysis of VHE γ-ray sources. Ad-
ditional spectral tests with sources of different spectral shape,
flux level or source extensions were performed. They show the
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Figure 5: (a): ζ distribution for events from the On-Region (red) and events from the Off-Regions (black), weighted by α, from HESS J1745–290 observations.
(b): Comparison between γ-ray simulations (red curve) and γ-ray excess, normalised to the number of events in the range (0 ≤ ζ ≤ 1). Also shown are the residua
between the two distributions and the result of a fit of a constant, which is compatible with 0 residuum within the statistical errors and has a χ2/ndf of 40/49.
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Figure 6: Comparison of ζ distributions for γ-ray simulations and γ-ray excess (a): for events with a multiplicity of 2 and (b): for events with reconstructed
energies 0.2 TeV ≤ E ≤ 0.4 TeV. The lower panel again shows their residua and the result of a fit of a constant. Both fits are compatible with 0 residuum within the
statistical errors and have a χ2/ndf of 57/49 and 43/49, respectively.
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��������������������zenith angle [◦]

reconstructed energy [TeV]
0.1 - 0.3 0.3 - 0.5 0.5 - 1.0 1.0 - 2.0 2.0 - 5.0 5.0 - 100.0

0.0 - 15.0 0.28/0.31 0.59/0.61 0.63/0.64 0.52/0.59 0.61/0.62 0.63/0.64
15.0 - 25.0 0.27/0.29 0.56/0.58 0.61/0.63 0.56/0.57 0.56/0.57 0.60/0.61
25.0 - 35.0 0.22/0.25 0.51/0.53 0.59/0.60 0.55/0.57 0.48/0.51 0.54/0.56
35.0 - 42.5 -/- 0.45/0.48 0.58/0.60 0.52/0.53 0.44/0.46 0.43/0.45
42.5 - 47.5 -/- 0.25/0.28 0.54/0.56 0.54/0.56 0.42/0.45 0.39/0.42
47.5 - 52.5 -/- -/- 0.47/0.50 0.48/0.51 0.36/0.39 0.38/0.41
52.5 - 60.0 -/- -/- 0.29/0.32 0.46/0.48 0.38/0.40 0.35/0.37

Table 3: ζ cuts in all zenith angle and energy bands which correspond to an εγ(ζ) cut of 0.84 (ζ std-cuts, first value) and 0.83 (ζ hard-cuts, second value).
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Figure 7: Comparison between the fit to the energy spectrum of HESS J1745–
290 for the July/August 2003 data set (dashed line, [28]) and the spectrum
obtained with the ζ std-cuts (filled circles).

same agreement between the ζ std-cuts and the H.E.S.S. Stan-
dard Analysis.

5. Performance and Sensitivity

Having shown the applicability of the BDT classification un-
der different observational conditions and for the spectral analy-
sis, the performance and sensitivity of BDT is studied on the
basis of γ-ray simulations and Off-Events.

5.1. Separation power of ζ cuts

An appropriate parameter to quantify the quality of analysis
cuts is the quality factor Q (e.g. [31]), defined as:

Q =
εγ√
εCR
,

with εi =
N̂i

Ni
(i = γ or CR),

where the cut efficiency εi is defined as the number of events
that pass certain cuts N̂i divided by the number of events before
cuts Ni. Fig. 8 shows the development of Qζ / Qstd as a function
of zenith angle and energy for the ζ std- and hard-cuts and the

std- and hard-cuts after application of the pre-selection and the
image shape selection. The pre-selection consist of the corre-
sponding image size cuts and a cut on the distance between the
COG of the shower image and the camera centre to avoid trun-
cated images at the camera edge. The image shape cuts com-
prehend cuts on ζ and MRSW, MRSL, respectively (see Table
2 and 3 for further information).

The training in energy- and zenith angle bands leads to a sta-
ble improvement in separation power for the BDT method and
makes the zenith- and energy-dependent cuts on ζ well suited
for this kind of analysis. Especially at energies below a few
hundred GeV and energies above a few TeV the improvement
in Q for hard- and std-spectrum sources is remarkable. As a
result of the training with γ-rays simulated at a fixed offset of
0.5◦, the performance of the ζ cuts is reduced for events with
larger offsets (≥ 1.5◦). However, a training in offset bands re-
sulted in steps in selection efficiency across the field of view and
in the description of the camera acceptance, and is therefore not
employed.

5.2. Sensitivity of ζ cuts

The optimised ζ cuts (introduced in Section 4.2 and Table
2) are applied to γ-ray simulations and Off-Events, and their
sensitivity for strong, std-spectrum and weak, hard-spectrum
sources was calculated. To disentangle the performance im-
provement due to the information stored in the additional pa-
rameters and due to the treatment of non-linear correlations by
the BDT method, the sensitivity for optimised box cuts on all
training parameters is also shown. These box cuts are a set of
one-dimensional cuts on each training parameter which are all
optimised simultaneously to obtain the best separation between
signal and background.

Fig. 9 illustrates the improved separation power of the ζ
analysis compared to the box cuts applied in the H.E.S.S. Stan-
dard Analysis. Shown is the required observation time for a
detection (signal with more than 5σ above background) of a
point source for a range of fluxes, assuming a power-law in en-
ergy with a spectral index of Γ = 2.63 as measured for the Crab
nebula [24] (Fig. 9, (a)) and for a hard spectrum source with
index Γ = 2.0 (Fig. 9, (b)) for the aforementioned sets of se-
lection cuts. Remarkably, the optimised ζ cuts show the highest
sensitivity over a wide range of source strengths. The required
observation time for the ζ analysis is up to 45% and 20% less
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 compared to the H.E.S.S. Standard Analysis, for configuration
Standard and Hard, respectively. It is also clear from Fig. 9,
that box cuts add just little to the total separation gain, since
they ignore non-linear correlations in the six training parame-
ters.

Since the Xmax parameter contributes especially at low ener-
gies to the classification (see Fig. 3 for comparison), and cuts
optimised for hard-spectrum sources tend to reject low-energy
events, the performance improvement of the ζ hard-cuts is only
20% compared to the H.E.S.S. hard-cuts. Nevertheless, the im-
provement is stable over a wide range of fluxes. One possibil-
ity to further improve the BDT performance for hard-spectrum
sources is to find the best match between size cut applied to se-
lect the training sample (see Section 3.2 for comparison) and
size cut optimised for a given source type in an alternating
process.

6. Summary and Outlook

IACTs have to deal with a vast number of hadronic cosmic-
ray background events. The capability to suppress these against
the γ-rays is one of the aspects which limits the sensitivity of
IACTS. In this work the training, testing and evaluation of the
BDT method with H.E.S.S. data was presented. The BDT is a
multivariate analysis method, which combines the information
carried in several classification parameters into one parameter
ζ. This parameter describes the likeness of an event to be of
hadronic or electromagnetic origin. Observations of the VHE
γ-ray source HESS J1745–290 show a very good agreement be-
tween ζ distribution of the measured γ-ray excess and the pre-
dictions from γ-ray simulations for a variety of observational
conditions. Zenith- and energy-dependent cuts are introduced
to account for the zenith and energy-dependent classification
of the BDT. Performance tests have shown a dramatically in-
creased separation power for the ζ analysis compared to the
H.E.S.S. Standard Analysis especially for sources with a spec-
tral index compatible with that measured for the Crab nebula.

The systematic studies performed in this work and the
achieved classification power demonstrate that a multivariate
analysis approach like BDT is well suited for the analysis of
γ-ray data measured with instruments like H.E.S.S.. In near-
and mid-term projects like H.E.S.S. II, MAGIC II, CTA and
AGIS the accessible energy range of IACTs is extended as the
reachable sensitivity increases. Multivariate methods can play
a major role for the analysis and particularly for the γ/hadron
separation of upcoming instruments. The majority of the events
will be recorded below a 100 GeV, where γ/hadron separation is
increasingly difficult. In this work, performance of parameters
such as Xmax demonstrate the ability especially for the separa-
tion at low energies.
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[25] Sobczyńska, D., 2007, J. Phys. G: Nucl. Part. Phys., 34, 2279-2288
[26] Maier, G and Knapp, J., 2007, Astropart. Phys., 28, 72
[27] Aharonian, F.A., et al. , 2006c, Phys.Rev.Lett., 97. 221102
[28] Aharonian, F.A., (H.E.S.S. Collaboration), 2004, Astron. & Astrophys.,

425, L13-L17
[29] Berge, D. and Funk, S. and Hinton, J., 2007, Astron. & Astrophys., 466,

1219-1229
[30] Li, T.-P. & Ma, Y.-W., 1983, ApJ, 272, 317
[31] Bugayov, V. V., et al. , 2002, Astropart. Phys., 17, 41

10


