Vincent Levorato
email: vincent.levorato@univ-orleans.fr

Coralie Petermann
email: coralie.petermann@laisc.net

Detection of Communities in Directed Networks based on Strongly p-Connected Components

A lot of algorithms in communities detection have been proposed particularly for undirected networks. As methods to find communities in directed networks are few, our contribution is to propose a method based on strongly and unilaterally connected components, and more specifically on strongly p-connected components in directed graphs. The result is a clustering of nodes giving good results in generated graphs according to several clustering evaluation measures, and which practical time complexity remains acceptable.

Introduction

The field of complex systems have highlighted the central role played by networks in many phenomena. Analyzing the structure and the dynamic of a complex network is a difficult task which researchers are trying to answer. A partial response to this problem is the identification of equivalent roles of the elements composing such a network, which can be of several natures (social, biological, etc.) [1]. To solve this problem, one can use some techniques of different fields like clustering in data mining or graph partitions in graph theory. This kind of idea is generalized by a research field known as communities detection. With the expansion of the web, most of the works dedicated to communities detection focus on social networks of the web. Habitually, we represent networks as graphs, and a lot of papers are dealing with this subject since some researchers found some special properties characterizing these real networks [START_REF] Newman | The structure and function of complex networks[END_REF]- [START_REF] Strogatz | Exploring complex networks[END_REF]. Most of the papers on communities detection use graphs as a mathematical representation of a network, and more precisely undirected graphs [START_REF] Fortunato | Community detection in graphs[END_REF]. However, a lot of networks have complex relations and are expressed as directed links. There are few algorithms that identify communities in oriented networks, and it is easier to ignore link orientation. Moreover, transforming a directed graph into an undirected one causes a loss of information, and the detected communities don't really make sense [START_REF] Leicht | Community structure in directed networks[END_REF]. As few works propose communities detection in directed networks, finding these communities remains a difficult task [START_REF] Fortunato | Community detection in graphs[END_REF]. In this paper, we focus on the communities detection into directed networks, and on the definition of a community in such a network based on connected components. First, we give some basic notions of graph theory, and definitions of connected components, which is the main subject of our work. Then, we explain how we define a community in a directed network, and how our method works. Finally, we present results based on benchmarks dedicated to the communities detection and on measures validating our clustering algorithm.

Graph Theory Notions

Graph definitions

In this article, we consider only directed graphs (also noted digraph). Formally, a graph G = (V, A) is the pair composed of [START_REF] Berge | Graphes et Hypergraphes[END_REF]:

1) a set V = {x 1 , x 2 , ..., x n } named vertices or nodes.

2) a family A = (a 1 , a 2 , ..., a n) of elements of the Cartesian product

V × V = {(x, y)/x ∈ V, y ∈ V } named arcs.
We usually denote n as the amount of vertices (also noted |V (G)|) and m the amount of arcs (also noted |A(G)|). A path P is composed of k arcs such as P = (a 1 , a 2 , ..., a i , ..., a k) where for every arc a i the terminal end coincides with the initial end of a i+1 . Several equivalent notations can be used:

P = ((x 1 , x 2), (x 2 , x 3), ...) = [x 1 , x 2 , ..., x k , x k+1] = P [x 1 , x k+1].
A chain is, like a path, an alternating sequence of vertices and edges, where an edge is an arc without orientation.

Connected Components

As our work focus on connected components in a directed graph, we give a reminder of some definitions [START_REF] Harary | Graph Theory[END_REF]:

• a weakly connected component W CC of a digraph is a subgraph where: ∀x, y ∈ W CC, there is a chain between x and y. • an unilaterally connected component U CC of a digraph is a subgraph where: ∀x, y ∈ U CC, there is a path between

x and y, or there is a path between y and x. • a strongly connected component SCC of a digraph is a subgraph where: ∀x, y ∈ SCC, there is a path between x and y, and there is a path between y and x. A circuit is a path such that the first node of the path corresponds to the last. It can be viewed as an oriented cycle. In this paper, we use a special case of strongly connected component named strongly p-connected component by [START_REF] Wasserman | Social Network Analysis: Methods and Applications[END_REF] which is related to l-edge-connectivity [START_REF] Diestel | Graph Theory[END_REF] (we use p-connected notation instead of n-connected to avoid confusion):

• a strongly p-connected component p-SCC of a digraph is a subgraph where: ∀x, y ∈ p-SCC, there is a path of length p or less between x and y, and there is a path of length p or less between y and x, with p ≥ 2. This definition can be easily generalized to other types of components.

Communities detection

Community definition

Concerning undirected networks, a lot of works has been done mainly in: graph partitioning [START_REF] Faloutsos | On power-law relationships of the internet topology[END_REF], [START_REF] Kernighan | An efficient heuristic procedure for partitioning graphs[END_REF], clustering [START_REF] Girvan | Community structure in social and biological networks[END_REF]- [START_REF] Donetti | Improved spectral algorithm for the detection of network communities[END_REF] and random walks [START_REF] Dongen | Graph clustering by flow simulation[END_REF]- [START_REF] Rosvall | Maps of random walks on complex networks reveal community structure[END_REF]. Some of these algorithms have been adapted to oriented networks with varying degrees of success [START_REF] Lancichinetti | Community detection algorithms: A comparative analysis[END_REF]. If the definition of a community is blurry [START_REF] Fortunato | Community detection in graphs[END_REF], the communities appear to be relatively similar sets of nodes strongly interrelated and more weakly associated with the rest of the network. We can also imagine a community in term of network with dense communication. Based on this idea, we can define a community as a group of elements where each element can strongly communicate with other elements: this reflects the fact that there is always a bidirectional flow that connects two elements of a community. This vision can be related to the definition of the strongly connected components (SCC) we have in graph theory. As the SCC of a graph are maximal, these components are often not precise enough to make appear real communities. We answer to this problem by using strongly p-connected components (p-SCC) as subdivisions of the initial SCC. We can establish a hierarchical classification of components corresponding itself to a hierarchical classification of communities (Fig. 1). Thus, we consider the detection of communities as the finding of p-SCC. Note: in this article, we only work on clustering without overlapping.

Our Method

One of the most known algorithm to find SCC is the Tarjan's algorithm [START_REF] Tarjan | Depth-first search and linear graph algorithms[END_REF] which uses depth-first search (DFS). As we want to find some p-SCC, the exploration of the graph is bounded by p (the maximum path length in the component) in term of arcs, as we are searching for circuits. This operation is realized by a breadth-first search (BFS). Here is a description of each step of our method which computes p-SCC:

1) Choose a random start vertex x s .

2) Make a BFS beginning at x s .

3) If, during the BFS, a circuit with x s is found, all nodes of the circuit are added to the current component. 4) Stop the BFS if current path length reaches the threshold. 5) Remove nodes of the last added component of the graph. 6) Go to step 1 if the graph is not empty. The method is using a FIFO (i.e., First In, First Out) queue like a standard BFS. An example of the execution of our algorithm is given in Figure 2. In the illustration of Fig. 2, we seek circuits of length 4. At step a), the neighborhood of x s is explored. These nodes are contained in paths which are potential circuits (dashed nodes). At next step b), we find a circuit of length 2. Step c) finds a circuit of length 3 and deselects a node which is a leaf (upper node). Step d) finds a circuit of length 4. Step e) stops the algorithm because we reach the maximum path length. As our method starts exploration from a random vertex, results would be different between several executions, but it can be considered as a small issue as we will note in the experiment part. A bigger problem is the disconnection of nodes: the algorithm can find singletons as communities. In the previous example of the Figure 2 at step e), three nodes remains disconnected. To avoid this problem, a final phase groups communities having a too small size (which is a parameter to adjust). Having our p-SCC considered as core communities, we merge all "small" communities with large ones, if there is an arc in common between them, which extends some of the p-SCC to UCC (Fig. 3). This phase reduces errors that can be obtained by selecting nodes at random for each BFS.

The first algorithm (Alg. 1) finds a p-SCC starting from a given node x s . This method is called while the graph is not empty (Alg. 2) and the merging operation is then applied on found p-SCC (Alg. 3). Note: if the graph is not weakly-connected, we apply our method on each weakly connected component of the graph. For now, the complexity of our algorithm is exponential in the maximum length of the paths. The worst case for our method can be obtained by applying it on a complete graph K n (each pair (x, y) of nodes has an arc from x to y and from y to x). As the method pSCC keeps in memory all current paths, starting with a random node, we have n -1 initial paths. Then we exhaustively explore the neighborhoods of each path ends. The number of operations is equal to: (n -1) p . The worst case time complexity can be written as O(n p) with p the maximum path length. Although this complexity is exponential, it is parametrized by the maximum length of paths. It can be related to the Tarjan's algorithm [START_REF]Enumeration of the elementary circuits of a directed graph[END_REF] which enumerates all circuits in a digraph with a complexity in time of O((n • m)(c + 1)) (c is the amount of elementary circuits and is exponential). In real networks, the worst case should not be met because they are used to be sparse [START_REF] Clauset | Finding community structure in very large networks[END_REF], and our experiments show that the best value for p is no more than 4 with a low experimental complexity. The space complexity follows the same rules.

SCC ← ∅ while V (G) = ∅ do x ← random node of V (G) C ← pSCC(G, x, p) V (G) ← V (G) -C SCC ← SCC ∪ C

Experiments

To test the efficiency of our method, we use specific benchmarks dedicated to the detection of communities. Graph generators have been introduced allowing complex tests of realistic undirected [START_REF] Lancichinetti | Benchmark graphs for testing community detection algorithms[END_REF] and directed [START_REF] Lancichinetti | Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities[END_REF] graphs with a reference dataset of communities. However, these graph generators are not intended to model the phenomena which result from real networks, they are simply trying to imitate some of their properties while imposing a structure in the community. We are aware that the community structures of real networks are certainly more complex than that generated graphs. The problem is that there are few real large graphs for which a reference partitioning is known. So we test our method on directed versions of these graphs, and we then apply it to some real network datasets to estimate practical time efficiency. The most common measure of similarity in the literature to compare two partitions is the Normalized Mutual Information (NMI) [START_REF] Danon | Comparing community structure identification[END_REF] which had been generalized to covering partitions (GNMI) by [START_REF] Lancichinetti | Detecting the overlapping and hierarchical community structure in complex networks[END_REF]. This measure is quite close to the standard NMI even when communities do not overlap. However, the use of a single test measurement is not sufficient. The evaluation of clustering is an important field of machine learning domain, and a lot of different measures which compare two clustering exist. In addition to the NMI, we measured the performance of our algorithm to find communities using: Adjusted Rand Index, Jaccard index, and F-measure. We compare our scores to InfoMap method [START_REF] Rosvall | Maps of random walks on complex networks reveal community structure[END_REF] which gives good results in undirected [START_REF] Navarro | Détection de communautés, étude comparative sur graphes réels[END_REF] and directed [START_REF] Lancichinetti | Community detection algorithms: A comparative analysis[END_REF] graphs. Obviously, we compare ourselves only to the directed version of their algorithm.

Evaluation methods

In a clustering evaluation, there is a correspondence between reference and predicted clusters, expressed by the confusion matrix. The confusion matrix can be considered to list the frequencies of occurrence common to reference-predicted pairs clusters. The mean information content of the confusion matrix is, by definition, identical to the mean entropy of referencepredicted pairs that resulted from the experiment. We use the following notations: I(X; Y) is the mutual information of X and Y with I(X; Y) = H(X) -H(X|Y), H(X) and H(Y) are the marginal entropies, H(X|Y) and H(Y |X) are the conditional entropies, and H(X, Y) is the joint entropy of X and Y which are two discrete random variables. All measures are between 0 (worst matching) and 1 (best matching). [START_REF] Danon | Comparing community structure identification[END_REF]. It is defined as the mutual information between the cluster assignments and a pre-existing labeling of the dataset normalized by:

Normalized Mutual Information

N M I(X, Y) = I(X; Y) H(X)H(Y)
4.1.2. Jaccard Index [START_REF] Milligan | The effect of cluster size, dimensionality, and the number of clusters on recovery of true cluster structure[END_REF]. The Jaccard index is used in statistics to compare the similarity and diversity between samples. Given two sets A and B, the Jaccard index is expressed as:

J(A, B) = |A ∩ B| |A ∪ B|
A set-theoretic interpretation of information shows that I(X; Y)/H(X, Y) is equivalent to the Jaccard Index.

4.1.3. Adjusted Rand Index [START_REF] Hubert | Comparing partitions[END_REF]. The adjusted form of the Rand Index, the Adjusted Rand Index, which is used for increasing the sensitivity of the index value, is defined as:

AdjutedIndex = Index -ExpectedIndex M axIndex -ExpectedIndex
It can be related to the adjusted measure for the mutual information: [START_REF] Van Rijsbergen | Information Retrieval[END_REF]. The formula for the clustering F-measure is defined in [START_REF] Fung | Hierarchical document clustering using frequent itemsets[END_REF]. The recall, precision, and F-measure for natural class K i (reference) and cluster C j (predicted) are defined as

AI(X; Y) = I(X; Y) -E{I(X; Y)} max{H(X), H(Y)} -E{I(X; Y)} 4.1.4. F-measure
Recall(K i , C j) = n ij /|K i |, P recision(K i , C j) = n ij /|C j | and : F (Ki; Cj) = 2 × Recall(K i , C j) × P recision(K i , C j) Recall(K i , C j) + P recision(K i , C j)
where n ij corresponds to a cell of the confusion matrix.

Results on generated graphs

Our tests have been made on several digraphs generated by [START_REF] Lancichinetti | Community detection algorithms: A comparative analysis[END_REF] and having different parameters:

• n the number of nodes of the graph • k avg the average node degree, k max the maximum node degree • min c , max c min. and max. community size • µ the mixing parameter i.e. for each vertex the ratio between the number of outgoing arcs and the number inside his community. As done in [START_REF] Navarro | Détection de communautés, étude comparative sur graphes réels[END_REF], we move one criteria for each test (degree, mixing parameter, and community size), but the difference is that we did our tests on graphs of different sizes, from n = 1000 to n = 10000. Each score corresponds to a mean over 50 graph generations. The parameters used for our method is p = 4 (maximum path/circuit length) and minCsize = 3 (minimum community size) which give the best results on all types of graph. All tests are using JUNG graph (Java) library [START_REF] Madadhain | Analysis and visualization of network data using jung[END_REF] and have been runned on a lambda laptop. Our method is noted LP Method in the following tests. • Epinions social network: This is a who-trust-whom online social network of a a general consumer review site Epinions.com with 75 879 nodes and 508 837 arcs. • EU email communication network: The network was generated using email data from a large European research institution. It contains 265 214 nodes and 420 045 arcs. The first network is processed by our algorithm in less than 5 mins. The second one is treated in 58 minutes. The main difference in time processing can be explained by the merging operation. For Epinions, we obtain 58 026 clusters before merging, and 1572 clusters after merging. For the email network, we obtain 256 962 clusters before merging, and 174 clusters after merging. This observation is related to the results we obtain in undense graphs. The density of the email network is smaller than the Epinions network, and the choice of the size of the smallest community is important.

Conclusion

In this paper, we focused on communities detection using the strongly p-connected components approach. It really gives very good results on generated graphs, and has an acceptable ratio quality/time execution. Our main contribution is a simple and efficient algorithm for detecting communities using graph strongly and unilaterally connected components properties. We validate our algorithm by several performance tests of different natures. We are aware that using artificial networks is not sufficient to fully validate our results, and we have to extend our work to real networks which have communities reference datasets. As the algorithm makes a "naive" search in the graph, we should optimize it to obtain a better complexity. Another possible issue is the choice of the parameter minCsize in our method which needs to be studied. Moreover, the case of overlapping communities is not treated in this paper and should be taken in account in a future work.

Figure 1 .

 1 Figure 1. Hierarchical Classification of Components.

Figure 2 .

 2 Figure 2. Example of execution of our algorithm with a maximum circuit length of 4.

Algorithm 1 :

 1 Method pSCC(graph G, vertex xs, integer p) {C:set, paths:list, P:path, A(x):neighborhoods of x} C ← ∅ paths ← ∅ paths.add([xs]) while paths = ∅ do P ← paths.removeF irstP ath()

4. 2 . 1 .

 21 Standard Graph. We set the graph generator parameters with reference values as follows: k avg = 15, k max = 50, min c = 20, max c = 50, µ = 0.1. The results of the measures appear in

Table 1 .

 1 It appears that our algorithm gives always good results which are increasing with the number of nodes.

					Amount of nodes		
	Algorithm	Measures	1000 2000	3000 4000 5000	10000
	LP Method	ARI	0.95	0.97	0.98	0.98	0.98	0.99
		Jaccard	0.91	0.95	0.96	0.96	0.97	0.98
		F-Measure	0.97	0.98	0.99	0.99	0.99	0.99
		NMI	0.93	0.95	0.97	0.97	0.98	0.99
	InfoMap	ARI	0.62	0.64	0.65	0.67	0.67	0.69
		Jaccard	0.47	0.48	0.49	0.50	0.50	0.53
		F-Measure	0.69	0.71	0.72	0.74	0.75	0.77
		NMI	0.41	0.46	0.48	0.50	0.51	0.52

Table 1 .

 1 Efficiency test while increasing n. 4.2.2. Graph with Bad Defined Communities. We set the graph generator parameters as standard graph values and n = 5000, changing only the mixing parameter form µ = 0.1 to µ = 0.5. The results of the measures appear in Table2. The efficiency to find communities decreases with increase of µ which makes sense because each node has many links within and outside its own community, and it becomes more and more difficult to find communities.

				Mixing parameter	
	Algorithm	Measures	0.1	0.2	0.3	0.4	0.5
	LP Method	ARI	0.98	0.92	0.79	0.59	0.33
		Jaccard	0.97	0.86	0.66	0.43	0.20
		F-Measure 0.99	0.96	0.89	0.78	0.62
		NMI	0.98	0.92	0.81	0.66	0.45
	InfoMap	ARI	0.67	0.48	0.33	0.19	0.13
		Jaccard	0.50	0.32	0.20	0.11	0.07
		F-Measure 0.75	0.62	0.51	0.38	0.31
		NMI	0.51	0.30	0.15	0.03	0.00

Table 2 .

 2 Efficiency test while increasing µ. 4.2.3. Undense Graph. We set the graph generator parameters as standard graph values changing only the average nodes degree k avg = 7 and n = 5000. The results of the measures appear in Table3. The parameters of the generated graph gives an average number of 155 communities. On average, we find the same number of communities with minCsize = 10 and have the best NMI score. The other measures decrease when minCsize and NMI score increase. One can see the interest of using several evaluation measures. In the others tests, all measures were more or less correlated. In the case of undense graph, the choice of the minimum size of a community is important.

		ARI	Jaccard F-Measure NMI	|C|
	LP (minCsize = 3)	0.68	0.51	0.76	0.56	260
	LP (minCsize = 5)	0.60	0.43	0.73	0.57	195
	LP (minCsize = 10)	0.48	0.39	0.69	0.62	155
	LP (minCsize = 15)	0.23	0.13	0.62	0.61	130
	InfoMap	0.59	0.42	0.64	0.37	265

4.3. About practical complexity 4.3.1. Generated Graphs. Generated graphs used for our test are composed from 1000 to 250 000 nodes. The results are displayed in Table

4

, and show that our algorithm performs well even at 250 000 nodes (3 min 20 s).

Table 3 .

 3 Efficiency test on undense graphs.

	Nodes	1000 5000	10 000	50 000	100 000	250 000
	Time	2s	4s	7s	36s	1min 10s 3min 20s

Table 4 .

 4 Practical time complexity in generated graphs. 4.3.2. Real Networks. The datasets 1 used are: