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Abstract

A lot of algorithms in communities detection have been proposed particularly for undirected networks. As
methods to find communities in directed networks are few, our contribution is to propose a method based on
strongly and unilaterally connected components, and more specifically on strongly p-connected components in
directed graphs. The result is a clustering of nodes giving good results in generated graphs according to several
clustering evaluation measures, and which practical time complexity remains acceptable.

1. Introduction

The field of complex systems have highlighted the central role played by networks in many phenomena. Analyzing the
structure and the dynamic of a complex network is a difficult task which researchers are trying to answer. A partial response
to this problem is the identification of equivalent roles of the elements composing such a network, which can be of several
natures (social, biological, etc.) [1]. To solve this problem, one can use some techniques of different fields like clustering in
data mining or graph partitions in graph theory. This kind of idea is generalized by a research field known as communities
detection. With the expansion of the web, most of the works dedicated to communities detection focus on social networks of
the web. Habitually, we represent networks as graphs, and a lot of papers are dealing with this subject since some researchers
found some special properties characterizing these real networks [2]–[4]. Most of the papers on communities detection use
graphs as a mathematical representation of a network, and more precisely undirected graphs [5]. However, a lot of networks
have complex relations and are expressed as directed links. There are few algorithms that identify communities in oriented
networks, and it is easier to ignore link orientation. Moreover, transforming a directed graph into an undirected one causes a
loss of information, and the detected communities don’t really make sense [6]. As few works propose communities detection
in directed networks, finding these communities remains a difficult task [5].
In this paper, we focus on the communities detection into directed networks, and on the definition of a community in such
a network based on connected components. First, we give some basic notions of graph theory, and definitions of connected
components, which is the main subject of our work. Then, we explain how we define a community in a directed network,
and how our method works. Finally, we present results based on benchmarks dedicated to the communities detection and
on measures validating our clustering algorithm.

2. Graph Theory Notions

2.1. Graph definitions

In this article, we consider only directed graphs (also noted digraph). Formally, a graph G = (V,A) is the pair composed
of [7]:

1) a set V = {x1, x2, ..., xn} named vertices or nodes.
2) a family A = (a1, a2, ..., an) of elements of the Cartesian product V × V = {(x, y)/x ∈ V, y ∈ V } named arcs.
We usually denote n as the amount of vertices (also noted |V (G)|) and m the amount of arcs (also noted |A(G)|). A path

P is composed of k arcs such as P = (a1, a2, ..., ai, ..., ak) where for every arc ai the terminal end coincides with the initial
end of ai+1. Several equivalent notations can be used: P = ((x1, x2), (x2, x3), ...) = [x1, x2, ..., xk, xk+1 ] = P [x1, xk+1].
A chain is, like a path, an alternating sequence of vertices and edges, where an edge is an arc without orientation.



2.2. Connected Components

As our work focus on connected components in a directed graph, we give a reminder of some definitions [8]:
• a weakly connected component WCC of a digraph is a subgraph where: ∀x, y ∈ WCC, there is a chain between x

and y.
• an unilaterally connected component UCC of a digraph is a subgraph where: ∀x, y ∈ UCC, there is a path between
x and y, or there is a path between y and x.

• a strongly connected component SCC of a digraph is a subgraph where: ∀x, y ∈ SCC, there is a path between x and
y, and there is a path between y and x.

A circuit is a path such that the first node of the path corresponds to the last. It can be viewed as an oriented cycle.
In this paper, we use a special case of strongly connected component named strongly p-connected component by [9] which

is related to l-edge-connectivity [10] (we use p-connected notation instead of n-connected to avoid confusion):
• a strongly p-connected component p-SCC of a digraph is a subgraph where: ∀x, y ∈ p-SCC, there is a path of length
p or less between x and y, and there is a path of length p or less between y and x, with p ≥ 2.

This definition can be easily generalized to other types of components.

3. Communities detection

3.1. Community definition

Concerning undirected networks, a lot of works has been done mainly in: graph partitioning [11], [12], clustering [13]–
[17] and random walks [18]–[22]. Some of these algorithms have been adapted to oriented networks with varying degrees
of success [23]. If the definition of a community is blurry [5], the communities appear to be relatively similar sets of
nodes strongly interrelated and more weakly associated with the rest of the network. We can also imagine a community
in term of network with dense communication. Based on this idea, we can define a community as a group of elements
where each element can strongly communicate with other elements: this reflects the fact that there is always a bidirectional
flow that connects two elements of a community. This vision can be related to the definition of the strongly connected
components (SCC) we have in graph theory. As the SCC of a graph are maximal, these components are often not precise
enough to make appear real communities. We answer to this problem by using strongly p-connected components (p-SCC)
as subdivisions of the initial SCC. We can establish a hierarchical classification of components corresponding itself to a
hierarchical classification of communities (Fig. 1). Thus, we consider the detection of communities as the finding of p-SCC.
Note: in this article, we only work on clustering without overlapping.

Cliques p-SCC SCC UCC WCC

Figure 1. Hierarchical Classification of Components.

3.2. Our Method

One of the most known algorithm to find SCC is the Tarjan’s algorithm [24] which uses depth-first search (DFS). As we
want to find some p-SCC, the exploration of the graph is bounded by p (the maximum path length in the component) in
term of arcs. This operation is realized by a breadth-first search (BFS). Here is a description of each step of our method
which computes p-SCC:

1) Choose a random start vertex xs.
2) Make a BFS beginning at xs.
3) If, during the BFS, a circuit with xs is found, all nodes of the circuit are added to the current component.
4) Stop the BFS if current path length reaches p, and add current component to the list of p-SCC.
5) Remove nodes of the last added component of the graph.
6) Go to step 1 if the graph is not empty.
The method is using a FIFO (i.e., First In, First Out) queue like a standard BFS. An example of the execution of our

algorithm is given in Figure 2.
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Figure 2. Example of execution of our algorithm with p = 4.

In the illustration of Fig. 2, we seek 4-SCC. At step a), the neighborhood of xs is explored. These nodes are contained
in paths which are potential circuits (dashed nodes). At next step b), we find a circuit of length 2. Step c) finds a circuit of
length 3 and deselects a node which is a leaf (upper node). Step d) finds a circuit of length 4. Step e) stops the algorithm
because we reach the maximum path length p.
As our method starts exploration from a random vertex, results would be different between several executions, but it can
be considered as a small issue as we will note in the experiment part. A bigger problem is the disconnection of nodes:
the algorithm can find singletons as communities. In the previous example of the Figure 2 at step e), three nodes remains
disconnected. To avoid this problem, a final phase groups communities having a too small size (which is a parameter to
adjust). Having our p-SCC considered as core communities, we merge all “small” communities with large ones, if there is
an arc in common between them, which extends some of the p-SCC to UCC (Fig. 3). This phase reduces errors that can be
obtained by selecting nodes at random for each BFS.

The first algorithm (Alg. 1) finds a p-SCC starting from a given node xs. This method is called while the graph is not
empty (Alg. 2) and the merging operation is then applied on found p-SCC (Alg. 3).

Algorithm 1:
Method pSCC(graph G, vertex xs, integer p)
{C:set, paths:list, P:path, A(x):neighborhoods of x}
C ← ∅
paths← ∅
paths.add([xs])
while paths 6= ∅ do

P ← paths.removeFirstPath()
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Figure 3. Merging communities in UCC

if xs = P.xk+1 then
C ← C ∪ P

else
for each y ∈ A(P.xk+1) do

PP ← P
PP.add(y)
if |PP | ≤ p + 1 then

paths.add(PP )
end if

end for
end if

end while

Algorithm 2:
Method AllpSCC(graph G, integer p)
{C:set, SCC:family of sets}
SCC ← ∅
while V (G) 6= ∅ do

x← random node of V (G)
C ← pSCC(G, x, p)
V (G)← V (G)− C
SCC ← SCC ∪ C

end while
return SCC

Algorithm 3:
Method MergeSCC(graph G ,family SCC, integer minCsize)
{C,smallC:sets, smallSCC:family of sets, A(x):neighborhoods of x}
smallSCC ← ∅
for each C ∈ SCC do

if |C| ≤ minCsize then
smallCC ← smallCC ∪ C

end if
end for
SCC ← SCC − smallSCC
while smallSCC 6= ∅ do

smallC ← smallSCC.remove()
for each x ∈ smallC do

for each C ∈ SCC do
if A(x) ∩ A(C) then

C ← C ∪ {x}
end if

end for
end for

end while
return SCC

Note: if the graph is not weakly-connected, we apply our method on each weakly connected component of the graph.
For now, the complexity of our algorithm is exponential in the maximum length of the paths. The worst case for our

method can be obtained by applying it on a complete graph Kn (each pair (x, y) of nodes has an arc from x to y and
from y to x). As the method pSCC keeps in memory all current paths, starting with a random node, we have n− 1 initial
paths. Then we exhaustively explore the neighborhoods of each path ends. The number of operations is equal to: (n− 1)p.
The worst case time complexity can be written as O(np) with p the maximum path length. Although this complexity is
exponential, it is parametrized by the maximum length of paths. It can be related to the Tarjan’s algorithm [25] which
enumerates all circuits in a digraph with a complexity in time of O((n ·m)(c+ 1)) (c is the amount of elementary circuits
and is exponential). In real networks, the worst case should not be met because they are used to be sparse [16], and our
experiments show that the best value for p is no more than 4 with a low experimental complexity. The space complexity
follows the same rules.



4. Experiments

To test the efficiency of our method, we use specific benchmarks dedicated to the detection of communities. Graph
generators have been introduced allowing complex tests of realistic undirected [26] and directed [27] graphs with a reference
dataset of communities. However, these graph generators are not intended to model the phenomena which result from real
networks, they are simply trying to imitate some of their properties while imposing a structure in the community. We are
aware that the community structures of real networks are certainly more complex than that generated graphs. The problem
is that there is no real large graphs for which a reference partitioning is known. So we test our method on directed versions
of these graphs, and we then apply it to some real network datasets to estimate practical time efficiency.
The most common measure of similarity in the literature to compare two partitions is the Normalized Mutual Information
(NMI) [28] which had been generalized to covering partitions (GNMI) by [29]. This measure is quite close to the standard
NMI even when communities do not overlap. However, the use of a single test measurement is not sufficient. The evaluation
of clustering is an important field of machine learning domain, and a lot of different measures which compare two clustering
exist. In addition to the NMI, we measured the performance of our algorithm to find communities using: Adjusted Rand
Index, Jaccard index, and F-measure. We compare our scores to InfoMap method [22] which gives good results in undirected
[30] and directed [23] graphs. Obviously, we compare ourselves only to the directed version of their algorithm.

4.1. Evaluation methods

In a clustering evaluation, there is a correspondence between reference and predicted clusters, expressed by the confusion
matrix. The confusion matrix can be considered to list the frequencies of occurrence common to reference-predicted pairs
clusters. The mean information content of the confusion matrix is, by definition, identical to the mean entropy of reference-
predicted pairs that resulted from the experiment. We use the following notations: I(X;Y ) is the mutual information of X
and Y with I(X;Y ) = H(X) − H(X|Y ), H(X) and H(Y ) are the marginal entropies, H(X|Y ) and H(Y |X) are the
conditional entropies, and H(X,Y ) is the joint entropy of X and Y which are two discrete random variables. All measures
are between 0 (worst matching) and 1 (best matching).

4.1.1. Normalized Mutual Information [28]. It is defined as the mutual information between the cluster assignments and
a pre-existing labeling of the dataset normalized by:

NMI(X,Y ) =
I(X;Y )√
H(X)H(Y )

4.1.2. Jaccard Index [31]. The Jaccard index is used in statistics to compare the similarity and diversity between samples.
Given two sets A and B, the Jaccard index is expressed as:

J(A,B) =
|A ∩B|
|A ∪B|

A set-theoretic interpretation of information shows that I(X;Y )/H(X,Y ) is equivalent to the Jaccard Index.

4.1.3. Adjusted Rand Index [32]. The adjusted form of the Rand Index, the Adjusted Rand Index, which is used for
increasing the sensitivity of the index value, is defined as:

AdjutedIndex =
Index− ExpectedIndex

MaxIndex− ExpectedIndex
It can be related to the adjusted measure for the mutual information:

AI(X;Y ) =
I(X;Y )− E{I(X;Y )}

max{H(X), H(Y )} − E{I(X;Y )}

4.1.4. F-measure [33]. The formula for the clustering F-measure is defined in [34]. The recall, precision, and F-measure
for natural class Ki (reference) and cluster Cj (predicted) are defined as Recall(Ki, Cj) = nij/|Ki|, Precision(Ki, Cj) =
nij/|Cj | and :

F (Ki;Cj) =
2×Recall(Ki, Cj)× Precision(Ki, Cj)

Recall(Ki, Cj) + Precision(Ki, Cj)

where nij corresponds to a cell of the confusion matrix.



4.2. Results on generated graphs

Our tests have been made on several digraphs generated by [23] and having different parameters:
• n the number of nodes of the graph
• kavg the average node degree, kmax the maximum node degree
• minc,maxc min. and max. community size
• µ the mixing parameter i.e. for each vertex the ratio between the number of outgoing arcs and the number inside his

community.
As done in [30], we move one criteria for each test (degree, mixing parameter, and community size), but the difference

is that we did our tests on graphs of different sizes, from n = 1000 to n = 10000. Each score corresponds to a mean over
50 graph generations. The parameters used for our method is p = 4 (maximum path length) and minCsize = 3 (minimum
community size) which give the best results on all types of graph. All tests are using JUNG graph (Java) library [35] and
have been runned on a lambda laptop. Our method is noted LP Method in the following tests.

4.2.1. Standard Graph. We set the graph generator parameters with reference values as follows: kavg = 15, kmax =
50,minc = 20,maxc = 50, µ = 0.1. The results of the measures appear in Table 1. It appears that our algorithm gives
always good results which are increasing with the number of nodes.

Amount of nodes
Algorithm Measures 1000 2000 3000 4000 5000 10000
LP Method ARI 0.95 0.97 0.98 0.98 0.98 0.99

Jaccard 0.91 0.95 0.96 0.96 0.97 0.98
F-Measure 0.97 0.98 0.99 0.99 0.99 0.99

NMI 0.93 0.95 0.97 0.97 0.98 0.99
InfoMap ARI 0.62 0.64 0.65 0.67 0.67 0.69

Jaccard 0.47 0.48 0.49 0.50 0.50 0.53
F-Measure 0.69 0.71 0.72 0.74 0.75 0.77

NMI 0.41 0.46 0.48 0.50 0.51 0.52

Table 1. Efficiency test while increasing n.

4.2.2. Graph with Bad Defined Communities. We set the graph generator parameters as standard graph values and
n = 5000, changing only the mixing parameter form µ = 0.1 to µ = 0.5. The results of the measures appear in Table 2. The
efficiency to find communities decreases with increase of µ which makes sense because each node has many links within
and outside its own community, and it becomes more and more difficult to find communities.

Mixing parameter
Algorithm Measures 0.1 0.2 0.3 0.4 0.5
LP Method ARI 0.98 0.92 0.79 0.59 0.33

Jaccard 0.97 0.86 0.66 0.43 0.20
F-Measure 0.99 0.96 0.89 0.78 0.62

NMI 0.98 0.92 0.81 0.66 0.45
InfoMap ARI 0.67 0.48 0.33 0.19 0.13

Jaccard 0.50 0.32 0.20 0.11 0.07
F-Measure 0.75 0.62 0.51 0.38 0.31

NMI 0.51 0.30 0.15 0.03 0.00

Table 2. Efficiency test while increasing µ.

4.2.3. Undense Graph. We set the graph generator parameters as standard graph values changing only the average nodes
degree kavg = 7 and n = 5000. The results of the measures appear in Table 3. The parameters of the generated graph gives
an average number of 155 communities. On average, we find the same number of communities with minCsize = 10 and
have the best NMI score. The other measures decrease when minCsize and NMI score increase. One can see the interest
of using several evaluation measures. In the others tests, all measures were more or less correlated. In the case of undense
graph, the choice of the minimum size of a community is important.

4.3. About practical complexity

4.3.1. Generated Graphs. Generated graphs used for our test are composed from 1000 to 250 000 nodes. The results are
displayed in Table 4, and show that our algorithm performs well even at 250 000 nodes (3 min 20 s).



ARI Jaccard F-Measure NMI |C|
LP (minCsize = 3) 0.68 0.51 0.76 0.56 ' 260
LP (minCsize = 5) 0.60 0.43 0.73 0.57 ' 195

LP (minCsize = 10) 0.48 0.39 0.69 0.62 ' 155
LP (minCsize = 15) 0.23 0.13 0.62 0.61 ' 130

InfoMap 0.59 0.42 0.64 0.37 ' 265

Table 3. Efficiency test on undense graphs.

Nodes 1000 5000 10 000 50 000 100 000 250 000
Time 2s 4s 7s 36s 1min 10s 3min 20s

Table 4. Practical time complexity in generated graphs.

4.3.2. Real Networks. The datasets1 used are:
• Epinions social network: This is a who-trust-whom online social network of a a general consumer review site Epin-

ions.com with 75 879 nodes and 508 837 arcs.
• EU email communication network: The network was generated using email data from a large European research

institution. It contains 265 214 nodes and 420 045 arcs.
The first network is processed by our algorithm in less than 5 mins. The second one is treated in 58 minutes. The main

difference in time processing can be explained by the merging operation. For Epinions, we obtain 58 026 clusters before
merging, and 1572 clusters after merging. For the email network, we obtain 256 962 clusters before merging, and 174
clusters after merging. This observation is related to the results we obtain in undense graphs. The density of the email
network is smaller than the Epinions network, and the choice of the size of the smallest community is important.

5. Conclusion

In this paper, we focused on communities detection using the p-connected components approach. It really gives very good
results on generated graphs, and has an acceptable ratio quality/time execution. Our main contribution is a simple and
efficient algorithm for detecting communities using graph strongly and unilaterally connected components properties. We
validate our algorithm by several performance tests of different natures. We are aware that using artificial networks is not
sufficient to fully validate our results, and we have to extend our work to real networks which have communities reference
datasets. As the algorithm makes a “naive” search in the graph, we should optimize it to obtain a better complexity. Another
possible issue is the choice of the parameter minCsize in our method which needs to be studied. Moreover, the case of
overlapping communities is not treated in this paper and should be taken in account in a future work.
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