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Abstract 

The understanding and the prediction of the clinical outcomes of focal or 

degenerative cerebral lesions, as well as the assessment of rehabilitation procedures, 

necessitate knowing the cerebral substratum of cognitive or sensorimotor functions. 

This is achieved by activation studies, where subjects are asked to perform a specific 

task while data of their brain functioning are obtained through functional neuroimaging 

techniques. Such studies, as well as animal experiments, have shown that sensorimotor 

or cognitive functions are the offspring of the activity of large-scale networks of 
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anatomically connected cerebral regions. However, no one-to-one correspondence 

between activated networks and functions can be found. 

Our research aims at understanding how the activation of large-scale networks 

derives from cerebral information processing mechanisms, which can only explain 

apparently conflicting activation data. Our work falls at the crossroads of neuroimaging 

interpretation techniques and computational neuroscience. 

Since knowledge in cognitive neuroscience is permanently evolving, our research 

aims more precisely at defining a new modeling formalism and at building a flexible 

simulator, allowing a quick implementation of the models, for a better interpretation of 

cerebral functional images. It also aims at providing plausible models, at the level of 

large-scale networks, of cerebral information processing mechanisms in humans. 

In this paper, we propose a formalism, based on dynamic Bayesian networks, that 

respects the following constraints: an oriented, networked architecture, whose nodes 

(the cerebral structures) can all be different, the implementation of causality - the 

activation of a structure is caused by upstream nodes’ activation -, the explicit 

representation of different time scales (from one millisecond for the cerebral activity to 

many seconds for a PET scan image acquisition), the representation of cerebral 

information at the integrated level of neuronal populations, the imprecision of 

functional neuroimaging data, the nonlinearity and the uncertainty in cerebral 

mechanisms, and brain’s plasticity (learning, reorganization, modulation). One of the 

main problems, nonlinearity, has been tackled thanks to new extensions of the Kalman 

filter. The capabilities of the formalism’s current version are illustrated by the modeling 

of a phoneme categorization process, explaining the different cerebral activations in 

normal and dyslexic subjects. 
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1. Introduction 

The understanding and the prediction of the clinical outcomes of cerebral lesions, 

as well as the assessment of rehabilitation procedures, necessitate identifying the 

cerebral substratum of cognitive or sensorimotor functions, and understanding the 

information processing mechanisms that are implemented by the substratum and 

underlie the functions. 

In humans, the substratum identification can be only addressed indirectly, 

traditionally with the clinical anatomical method that establishes the relationships 

between cerebral lesions and functional deficits, and currently, mainly by activation 

studies where subjects are asked to perform a specific task while data of their brain 

functioning are collected through functional neuroimaging techniques. A direct 

evidence of the brain / mind link can only be obtained in patients, during preoperative 

situations. Activation studies, as well as animal experiments, have shown that 

sensorimotor or cognitive functions are the offspring of the activity of large-scale 

networks of anatomically connected cerebral areas [1,9,27,42]. 

Knowing the cerebral substratum of a cognitive function is necessary, although not 

sufficient, to be able to make a precise diagnosis of a functional deficit, or an accurate 

prognosis of the clinical outcome of a lesion. The main point is interpreting functional 
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neuroimaging data as the result of information processing at the integrated level of 

large-scale networks. At this level, cerebral mechanisms are the synthesis of more basic 

neurobiological, neurophysiological or neuropsychological processes. They can only be 

approached with the help of computational models, based on the knowledge of more 

basic processes. 

Although research in neuroscience is quickly evolving, definitive answers, either on 

the cerebral substratum of any cognitive function or on the integrated cerebral 

mechanisms, are yet unknown. Moreover, knowledge on basic cerebral processes is 

partial and scattered in various studies, from molecular research to animal experiment 

and human psychological studies. A modeling approach for the interpretation of 

functional neuroimaging data should therefore meet three requirements: 1) represent 

explicitly cerebral information and mechanisms at the integrated level of large-scale 

networks, 2) integrate different sources of data and knowledge and 3) design models 

able to evolve rapidly with new findings in neuroscience. 

Currently, most models originate either in neuroimaging, and they are based on 

statistical techniques, or in computational neurosciences and cognitive modeling, and 

they use connectionist and/or AI-based methods. 

1.1. The neuroimaging approach 

For a given cognitive task, traditional interpretation methods of functional 

neuroimaging data allow a spatial or temporal localization of cerebral activation. The 

so-called segregative method, used for tomographic techniques (functional Magnetic 

Resonance Imaging (fMRI), Positron Emission Tomography (PET)), aims at 

independently localizing the areas involved in the task performance, i.e. at knowing 
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where the function is implemented [22,23]. Electromagnetic surface techniques 

(electroencephalography (EEG), magnetoencephalography (MEG)) focus mainly on 

temporal localization, i.e. they uncover and date cerebral events [26]. Although they can 

answer indirectly to the where with the help of source detection methods, their major 

concern is when the brain performs specific processes.  

More recently, more powerful methods have been designed to take the relationships 

between different cerebral structures involved in the same cognitive task into account. 

Functional connectivity [30,31] allows studying the covariation of the activation 

between some areas thanks to factorial analysis methods. The uncovered relationships 

are strictly functional and may be a clue, but certainly not a proof, of the existence of a 

direct anatomical link between structures, since they may reflect only the existence of 

indirect neuroanatomical pathways. The technique gives then a sketch of what the 

network of cerebral areas activated is, for a given cognitive or sensorimotor function. 

Effective connectivity [10,31] aims at understanding the role of anatomical connections 

in the activation propagation, that is why the activation of an area can affect a cerebral 

structure, connected downstream with it. However, the strictly statistical use of 

structural equations allows reversing the mathematical relationship carried by an 

oriented anatomical link, therefore canceling the link orientation. In addition, by 

definition of structural equations, the technique bans the direct modeling of non-linear 

relationships. 

Thus, interpretation methods associated to functional neuroimaging techniques can 

answer the where, when, what and why of cerebral activation. Clearly, they do not 

answer how the activation of large-scale cerebral networks derives from the brain’s 

structural properties, i.e. neuroanatomy and cerebral connectivity, and from its 
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functional characteristics, the cerebral information processing mechanisms. Knowing 

the how, that is the link between function and activation, is necessary to alleviate 

apparent contradictions in activation data, and make functional neuroimaging a more 

dependable diagnosis and prognosis aid. 

1.2. The viewpoint of computational neuroscience and cognitive 

modeling  

The how is the main goal of each model developed in the field of computational 

neuroscience. Currently, most existing works in the domain are based on a connectionist 

approach (formal neural networks), with varying levels of biological plausibility and 

different levels of representation. 

At the highest level of biological plausibility, the goal is the understanding of basic 

physiological processes in a limited cerebral structure, for example the neuronal 

oscillations emerging, in the hippocampus, in small networks of specific neurons, such 

as pyramidal cells [67] or GABAergic inter-neurons [69]. In this case, mathematical 

models of biochemical and electrical properties are provided at the level of individual 

cells and cell-to-cell connections. Although these models give some insight of the 

different synchronous rhythms in the EEG signal, they do not really allow interpreting it 

in terms of information processing. 

At intermediate levels, the decrease of biological plausibility in the cellular 

representation is counterbalanced by the integration of more structural features, and 

models move towards a more cognitive interpretation of the functioning of cerebral 

structures. The levels of biological accuracy and cognitive precision may be very 

different in those models. For example, the links between thalamocortical dynamics and 
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vision may be explored in a more physiological [39,40] or a more functional [28] way. 

In the first case, neurons, represented by their integrated electrical properties 

(membrane potentials, channel conductance), are embedded in large, neuroanatomically 

plausible networks, where cerebral organization (e.g. laminae), and connectivity 

patterns between and within cerebral structures, are described [39]. The model aims at 

understanding thalamocortical synchrony, under two aspects, its underlying biological 

mechanisms, and its role in pattern-selective responses in the cortex [40]. In the second 

case [28], the model departs further from neurobiology, in order to be more 

representative of the computational characteristics of the brain. The formal neurons, and 

their connections, are considered as the functional abstraction (e.g. sensitivity to 

stimulus’ features) of pools of specific biological cells, and of the role (e.g. inhibitory) 

of real anatomical pathways. The model aims at explaining the role of thalamocortical 

functional mechanisms on the perceptual McCullough effect [28]. 

Such models, based on architectural and processing properties of the brain, are 

dominantly used in computational neuroscience [8,41,61,62]. Some of them are based 

on detailed architectural features, such as cortical columns [29], and/or on complex 

biological processes, such as the study of the role of dopaminergic modulation on 

working memory [19] or learning and planning [65]. 

Neural networks can also be built considering only functional properties and 

behavioral data [13,33,38], that is considering the mind as an emerging set of cognitive 

functions independent of the biological substratum. With this purely functional point of 

view, other methods have been successfully used. Symbolic AI has focused on the 

modeling of high level cognitive processes such as memory [2,43,54,59,60] or on 

frameworks for a global representation of the mind [44]. More recently, Bayesian 
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networks have been used to model visuomotor mechanisms [24], which demonstrates 

the utility of graphical probabilistic formalisms for cerebral functional modeling.  

At the center of image interpretation, are the question “how the activation of large-

scale networks derives from cerebral information processing mechanisms” and the 

necessity to provide models explicit enough to be directly used for clinical purpose. 

Above methods do not meet these requirements. Indeed, physiological modeling 

[39,40,67,69] derives neuronal activation from biological mechanisms, computational 

neuroscience [8,19,28,29,41,61,62,65] describes how basic cognitive functions emerge 

from neuronal activation, and cognitive modeling [2,13,24,33,38,43,44,54,59,60] is not 

concerned with cerebral plausibility.  

 

Although some works in physiological modeling [66] or computational 

neuroscience [4] model the relationships between neuronal activity and cerebral 

activation measured by tomographic techniques, causal connectivity [50] only answers 

the question and meets the necessity. However, the underlying formalism [49,50], 

causal qualitative networks based on interval calculus, limits severely the biological 

plausibility of the models, since it cannot represent major features, such as learning or 

the non-linearity and the uncertainty of cerebral processes. 

In the following we demonstrate how we tackle the problem of the interpretation of 

functional images for a clinical purpose. In section 2 we briefly describe large-scale 

cerebral networks, and the constraints imposed both by the need to comply with our 

goals and by a biologically plausible modeling approach. We show how dynamic 

Bayesian networks seem the best modeling paradigm. Section 3 deals with the 

characteristics of our formalism and illustrates its capabilities by an example. Section 4 
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discusses the advantages and drawbacks of our methodological choices. Finally, we 

conclude with some perspectives. 

2. Large-scale cerebral networks 

2.1. A networked structure 

Activation data, as well as animal experiments, suggest that the neurological base 

of a cognitive or sensorimotor function is a large-scale network of cortical or subcortical 

regions [1,9,15,27,42,58], anatomically interconnected through oriented axon bundles. 

Moreover, studies in animals show the complex connectivity patterns between the 

regions [1,27,58].  

Clinical observations, as well as activation studies in humans [18,55], show that 

there is no one-to-one correspondence between activated networks and high level 

functions. In other words, one network can implement several functions, and one 

function can be implemented by several networks. The first may be explained by the 

fact that a large-scale network can be the aggregation of parallel networks of subareas, 

hidden by the low spatial resolution of the neuroimaging techniques but revealed by 

anatomical studies [1,27]. The second can be answered by a top-down, context-sensitive 

modulation of activation by control processes [9,10,14], or by a bottom-up influence of 

the physical properties of the stimulus [12,22,23,26,57]. 

The function implemented by a large-scale network depends on three properties: 

the network’s structure [27,45], the more elementary functions implemented by its 

nodes (the functional role of each region), and the properties of its links (length, role: 

inhibitory or excitatory, …). The function of a cerebral region emerges from the 
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neuronal population compounding the area, and can be considered as the integration of 

the individual behaviors of the neurons.   

2.2. Cerebral nodes and their representations 

In the light of the preceding paragraph, the whole brain can be viewed as a very 

complex large-scale network, composed of interconnected and overlapping, function-

dedicated, large-scale sub-networks. Every large-scale network can be modeled by a 

structural network whose nodes are the abstraction of cerebral regions (cortical or 

subcortical areas or subareas) and edges represent oriented axon bundles. Each 

structural link, which acts as an information transmitter [37], is characterized by its role 

(excitatory or inhibitory) and its temporal length, all derived from the properties of the 

corresponding bundle’s fibers (role, physical length, signal transmission speed). Each 

structural node, which acts as an information processor, is characterized by its 

connections to other structural nodes and its function. 

Each region can be considered as a network of (at least one) smaller neuronal 

populations, defined by functional (e.g. GABAergic neurons) or architectural (columns, 

modules [3]) features, and considered only after their functional properties. Therefore, a 

structural node can be represented by a functional network, i.e. the oriented network 

whose nodes are the abstractions of the smaller neuronal populations and edges the 

oriented neuronal fiber packs between them. A functional node implements a functional 

primitive, which is either the aggregate function of a specific specialized neuronal 

population, or a function which is supposed to exist, but whose neuronal substratum is 

not yet identified. When the functional network is composed of only one node, the 

structural node and its corresponding functional node can be merged. Although it is 
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supposed to be supported by fibers, a functional link is strictly defined in terms of a 

functional relationship.  

Either in a structural or in a functional network, nodes are information processors 

and links information transmitters. A cerebral zone is defined as the substratum of a 

processor, i.e. it is a topographically well-defined, functionally coherent neuronal 

population whose connections with other populations are well-known.  

The function of a structural node is the outcome of the primitives implemented in 

its functional network and which may all be different. The first constraint on the 

formalism is thus to be able to represent a network with oriented links and possibly 

differentiated nodes. This explicit modeling allows the direct expression of hypotheses 

on the cerebral processing. Functional networks can also be easily modified in order to 

follow the evolution of neurological knowledge, for example by changing one node 

(instead of modifying the whole architecture in a formal neural network). Furthermore, 

experimental results on cerebral plasticity [64] and cortical reorganization [48] reveal 

that some areas may share functional properties, probably due to similar physical 

organizations [5,11]. Our hypothesis is that the functional networks corresponding to 

these areas are different instantiations of a same model, called a generic model. A 

generic model is thus a partially defined network, where the nodes and links are 

defined, but the parameters are missing. Computationally speaking, it constitutes a 

reusable component. 

2.3. Information representation 

The cerebral information that is processed by a neuronal population is the 

abstraction of the number and the pattern of this population’s activated neurons. It can 
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be represented both by an energy level, which is indirectly, and in a distorted manner, 

reflected in the activation level measured by functional neuroimaging techniques, and a 

category. This representation is supported by results on the topical organization of the 

brain, which reflects category maps of the input stimuli. For example, primary auditory 

areas have a tonotopic organization corresponding to interval frequencies [6], the visual 

cortex has a retinotopic topography [5], and primary motor cortices have a somatotopic 

organization [1]. The persistence of the somatotopic organization at the level of non-

primary cortices and subcortical structures is in favor of a categorical representation 

beyond the primary areas [1]. The energy level and the category can also be represented 

in fibers [37]. When considering the external stimulus, i.e. the input information, the 

energy may be easily extracted from its psychophysical properties (e.g. a sound 

intensity) and the category is the summary of these characteristics (e.g. the frequency of 

a tone). 

With a modeling point of view, the energy may be represented through a numerical 

value, whereas the category is expressed thanks to a more symbolic value. They are 

respectively called the magnitude and the type of the information or the stimulus. 

2.4. Information processing 

Modeling the information processing in large-scale networks necessitates taking 

into account explicitly the dynamic aspects of the cerebral mechanisms, in terms of 

transmission delays, response times… Moreover, in humans, the only (indirect) 

measures of cerebral activity are sequences of sampled functional neuroimaging data 

whose representation requires a time discretization.  
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Functional neuroimaging data are very indirect measures of the neuronal activity, 

since they are statistical approximations, derived from the raw signal, of cerebral blood 

flow variations (tomographical techniques) or electromagnetic field variations (surface 

techniques) related to neuronal activation. Imprecision, which arises from indirectness 

and the inevitable experimental and measurement errors, must be modeled. 

According to our definition of causality, which is a modification of Hume’s one 

[32], the brain can be considered as a causal network. Our definition states that causality 

is due to three properties: spatial and temporal contiguity, temporal consistency, and 

statistical regularity. In other words, two entities A and B are causally linked if they are 

contiguous relatively to the system they belong to, if the beginning of A precedes the 

beginning of B, and if most of the times, A provokes B. This definition agrees with 

Pearl’s probabilistic causality [53]. Since anatomical links (axons or axonal bundles), 

which convey information with very short transmission delays, connect physically 

cerebral zones, the zones are spatially and temporally adjacent and the condition of 

contiguity is strictly met. Temporal consistency is the result of the fact that, when two 

neurons (neuronal populations) are considered, the beginning of the activation of the 

upstream cell (population) always precedes the activation of the downstream cell 

(population). Moreover, due to the tremendous amount of factors that may act on the 

brain’s states, either at a large or small scale level, the response of a neuronal population 

to a given stimulus or information cannot be considered as deterministic. Thus, the 

relationships between two cells or zones have a probabilistic regularity. Moreover, we 

want to supply a tool able to implement hypothesis on brain working, which are 

expressed by scientists or physicians merely in term of causes and effects. That is, both 
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biological plausibility and the need of models that can help clinical practice impose a 

causal formalism. 

From the probabilistic regularity of cerebral events and the imprecision of the 

processed information arises the constraint to have uncertainty explicitly represented in 

the model.  

Relationships between cerebral areas or functional primitives, which integrate the 

relationships that exist at a neuronal level, may be nonlinear (e.g. the sigmoid output 

function). At the cerebral area level, nonlinearity can be also caused by emission 

threshold or control processes, i.e. mechanisms putting discontinuities in information 

propagation. The last constraint is therefore to be able to model both linear and 

nonlinear cerebral relationships.  

 

Given the modeled system, the cerebral areas networks, and our objectives 

concerning the use of the models, we have the following constraints on the modeling 

formalism: (1) an oriented networked architecture, with possibly different nodes, (2) 

causal relationships, (3) an explicit, discrete and regular representation of time, (4) an 

adapted representation of cerebral information, (5) the consideration of imprecision of 

neuroimaging data, and of uncertainty in brain’s behavior, (6) nonlinear relationships.  

Considering these constraints, causal dynamic Bayesian network are the best 

formalism. They are a graphical formalism using a directed network, where every node 

can be different from others. The relationships are causal and can be nonlinear. The use 

of real random variables allows to measure imprecision through mean and dispersion 

values, while the use of symbolic random variables allows representing the qualitative 

part of cerebral information. Furthermore, time can be explicitly modeled. 
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3. Overview of the formalism 

3.1. Dynamic Bayesian networks 

A causal Bayesian network is a graphical model used to represent conditional 

independencies in a set of random variables. It consists of a directed acyclic graph 

where nodes represent random variables and edges represent causal relationships 

between the variables [51]. A conditional probability distribution is associated with 

each relationship between a node and its parents. Most of the times, when the random 

variables are continuous, normal distributions and linear relationships are assumed, for 

an easier computation. A relationship is then usually expressed as: 

YubXaY   

where X  is the cause of Y , a  and b  are the relationship’s parameters, and 
Yu  is a 

Gaussian random variable, independent of other variables, representing the unmodeled 

influences or the noise [52]. If the node is a root, its prior probability is also Gaussian. 

When some nodes’ values are observed, posterior probabilities for the hidden (i.e. non-

observed) nodes can be computed thanks to an inference algorithm, such as the junction 

tree algorithm [34]. Bayesian networks are usually used to model systems with causal 

and uncertain relationships. For a more complete description see [51,52]. 

In a dynamic Bayesian network (DBN), time is seen as a series of intervals called 

time slices [17,36]. For each slice, a submodel represents the state of the modeled 

system at the time. Contrary to static (i.e. classical) Bayesian networks, the evolution of 

random variables through time is considered. Furthermore, a length, expressed in 

number of slices, is implicitly associated to each relationship between the submodels. 
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DBNs are used to model Markov processes, i.e. processes where a temporally limited 

knowledge of the past is sufficient to predict the future. In other words, in a n-order 

Markov process, only the current ( t ) and n  previous ( t n  to 1t  ) time slices are 

necessary to forecast future values [25,46].  

If the set of hidden variables of a DBN constitute a Markov chain, with the set of 

observable variables depending on the hidden variables (see Fig. 1), then the network is 

called a state space model (SSM). In a SSM, if all the relationships are linear, the model 

is said to be a linear dynamical system. There are some specific algorithms to compute 

posterior distributions in this type of DBN, like the Kalman filter [70], a specialization 

of the junction tree algorithm. 

Insert Fig. 1 here 

If only the dynamical relationships (i.e. between the hidden variables) are linear, 

the observation relationships (i.e. between the hidden and observed variables) being 

non-linear, then the model is a dynamic generalized linear model [21]. If the SSM is 

fully nonlinear (i.e. both the dynamical and the observation relationships), it is a 

nonlinear dynamical system. A specific algorithm is needed to make inference, like the 

extended Kalman filter [46], or more recent (and more efficient) algorithms such as the 

particle filter [7], the unscented Kalman filter [35], or the divided difference filters [47]. 

3.2. Formal description 

We define a static network as the functional expansion of a structural network, i.e. 

the network where all structural nodes have been replaced by their corresponding 

functional networks. It is the graphical representation of a network of cerebral zones. 

Since, it has no temporal feature, it is neither a causal network nor a Bayesian one (it 
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may be cyclic: see Fig. 3 and Fig. 5). The DBN that is built from the static network 

expresses the cerebral information processing in the corresponding large-scale 

networks. 

3.2.1. Information representation 

Cerebral information is a flowing entity, that is computed at each spatial (cerebral 

zone) and temporal (time slice) step of the simulation. It is a two-dimensioned data (see 

section 2.3). The first part, the magnitude, stands for the cerebral energy needed to 

process the information in the zone. Real random variables represent it in the DBN. For 

the second part, the type, which represents the cerebral category the zone attributes to 

the information, the representation is more complex.  

A symbol represents a “pure” (i.e. not blurred with noise or another symbol) 

category of information. For example, when the information represents a linguistic 

stimulus, a symbol may refer to a non ambiguous phoneme. For cerebral information, 

the symbol represents, in each zone, the neuronal subpopulation that is sensitive to (i.e. 

that fires for) the corresponding pure information. For example, in the primary auditory 

cortex, it may be the subpopulation sensitive to a specific frequency interval. A 

categorical field is a set of symbols describing stimuli of the same semantic class. For 

example, the “color” categorical field contains all the color symbols, but it cannot 

contain phonemes.  

A type concerns several symbols, due to the presence of noise or because of some 

compound information. Let  be the set of all existing symbols. We assume that a type 

T  is defined for only one categorical field. Let 
TS  be the subset of , corresponding 
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to this categorical field. The type T  is an application from 
TS  to  0,1 , with the 

property   1
 TSs

sT , i.e. it describes a symbol repartition for a specific categorical field. 

In a stimulus, this repartition corresponds to the relative importance of each symbol 

compounding the information carried by the stimulus. Inside the model,  T s  stands for 

the proportion of s-sensitive neurons in the population that fired for the information 

whose type is T .  

Unlike the magnitude, the type is not represented by a random variable. Indeed, it is 

not necessary to represent its uncertainty (and hence to make the computational 

complexity harder) since we cannot compare it to neuroimaging data.  

Finally, to describe the state of a cerebral zone X  at time t , we consider the type 

t

XT  and the magnitude t

XM of the information output by X  at that time. Thus for one 

node in the static network, there are, at each time slice, two nodes in the DBN (Fig. 2).  

Insert Fig. 2 here 

3.2.2. Structure and relationships  

The relationships of the model are the propagation entities, while its nodes are the 

processing entities. In the static network, the relationship that links two cerebral zones 

Y  and X  is the functional abstraction of an anatomical link. A delay 
Y  representing 

the average propagation time in the link’s fibers is associated to the relationship. It is 

not dealt with in the static network, but it appears in the DBN. The static relationship 

between Y  and X  is represented in the DBN by relationships between the magnitude 
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and the type of the information output from Y  at time 
Yt   ( Yt

YM
  and Yt

YT
 ) and 

those of the information output from X  at time t ( t

XM  and t

XT ), for all t . 

Most of the time, the activity of a cerebral zone depends also on its previous 

activity. This is represented by a relationship between the X  information (i.e. the 

information output by X ) at time 1t   and the X  information at time t . Fig. 2 

summarizes the differences between the static network and the DBN for such a node. 

3.2.3. Propagation and processing 

For one zone, both the cerebral propagation mechanisms (i.e. the relationships 

towards the zone) and the processing (spatial and temporal integration of the inputs, and 

processing as such) are described by a pair of functions, 
XTf  and 

XMf . 

Let consider the general case where n  zones 
nYY ,,1   are inputs to X , i.e. X  has 

n  parents in the static network. Let 
n ,,1   be the corresponding delays of these 

relationships. Furthermore, the current activation of X  depends of its previous one. In 

the DBN, this is described by the following equations: 

 X

t

X

t

Y

t

YM

t

X uMMMfM nY

n

Y

X
,,,, 11

1


   ,  1,,,1

1


 t

X

t

Y

t

YT

t

X TTTfT nY

n

Y

X
  

The constraints on the magnitude function depend on the algorithm used to perform 

the simulation. We chose the DD2 algorithm [47], which allows the use of nonlinear 

functions. The random variable  2,0~ NuX
 models uncertainty in the cerebral 

processing. When a parameter of a magnitude function can be modified by another 

node’s influence, this parameter has to be modeled as an additional real random variable 

[20]. This kind of parameters allows modeling some controlled or learning mechanisms. 
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The type function is any combination of the incoming types and of the previous 

type that respects our type definition. For example, if both the incoming and the 

outgoing types are defined on the same categorical field S , the type function can be a 

linear combination such as: 

       sTcsTcsTcsT t

XX

t

YY

t

YY

t

X
nY

n

Y 1

2

1

11


  , Ss  

where S  is the categorical field of t

XT , 1

1

Yt

YT
 , …, nY

n

t

YT
 , and 1t

XT ; and with   1c  

in order to keep the property   1
Ss

t

X sT . In fact, we extend to all categorical fields the 

persistence of a “topic” organization at different cortical and subcortical levels, 

demonstrated for somatosensory stimuli [1]. This assumption is also supported by the 

existence of parallel distributed networks [27], which is in favor of the maintenance of a 

topical organization.  

The Magnitude and Type functions are flexible enough to allow representing a 

large variety of cerebral mechanisms, and make the formalism able to adapt to the 

evolutions of the cerebral mechanisms knowledge. 

3.2.4. Model building 

The goal of a model is getting a better understanding of the cerebral mechanisms 

explaining the set of functional neuroimaging data related to a given task. 

The first step is the construction of the structural network. Since we build on 

existing knowledge in neuropsychology, the structural network is supposed to 

encompass all the regions that are supposed to be involved in the task performance. All 
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known (from human neuroanatomy) or supposed (i.e. assumed from animal 

experiments) connections between the regions are represented. 

The second step is to develop the functional networks within structural nodes, then 

achieving the static network. A functional model describes the equations governing its 

functional primitives and the relationships between the primitives. It utilizes mostly 

results in neuropsychology or in neurophysiology for the function definition (e.g. the 

computation in pyramidal cells), and also for setting partly the parameters’ values (e.g. 

the value of a firing threshold). Neuroimaging data are included as observables in the 

functional network, although their associated primitives, such as the derivation of PET-

like data from neuronal activation values, are non neuronal functions. The existence of 

generic models, that is, non instantiated, reusable, models of functional networks, is 

assumed.  

The third step consists at deriving the DBN from the static network, by giving 

values to the temporal parameters. Some of them are set according to known physiology 

results (e.g. the transmission speed in some neural fibers). An important parameter is 

the length of a time slice, i.e. the time step of the model simulation. It must be shorter or 

equal than the time scale of the modeled cerebral phenomena, and than the sampling 

time of the neuroimaging technique. Furthermore, the longer the time slice is, the 

smaller the number of iterations necessary for the simulation is. Then the length of the 

time slice must be a compromise between realism and length of the simulation. 
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3.3. Example 

As an example of application of our formalism, a model is given. It is based on an 

experimental study [56] that focused on the differences between normal and dyslexic 

subjects, during a phoneme categorization task.  

3.3.1. The experiment 

The hypothesis is that dyslexic subjects are not able to correctly categorize 

phonemes, because of a dysfunction in some cortical areas involved in the early 

processing of auditory stimuli [56]. The goal is to detect the regions that behave 

differently in controls and dyslexic subjects, and to understand the reasons behind the 

difference. 

Six patients and six controls were submitted to a passive hearing of stimuli that are 

mixes of two phonetically close syllables: /pa/ and /ta/ (including the pure /pa/ and the 

pure /ta/). The measurements were made with fMRI. 

An fMRI run is a sequence of five blocks. A block contains six sequences of four 

sounds, followed by a rest period. A sequence lasts three minutes. The first three stimuli 

of every sequence are always the same sound (called the pivotal stimulus) noted dev0, 

and the last stimulus (called the deviant) is chosen amongst a set of five syllables 

constituted by four different mixes of /pa/ and /ta/, noted dev2M, dev1M, dev1P and 

dev2P, plus the pivotal stimulus. Each block corresponds to a specific deviant (Table 1). 

Insert Table 1 here 
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3.3.2. Description of the model 

We restrict the large-scale network to a single region, a part of the right temporal 

superior gyrus, that is involved in the early processing of auditory stimuli, and is 

activated differently in controls and dyslexic subjects. Our main assumption is that 

phylogenic processes have given rise to the existence of phonemic processors in the 

human brain. Since the location of those processors is unknown, they cannot constitute 

separate structural nodes. Basic mechanisms for the early processing of stimuli ground 

the striate cortex model presented by Pastor et al. [50]. According to the concept of 

genericity, the model of each phoneme processor is based on it. In each processor (Fig. 

3), a loop between the output (OGN) and the firing threshold (FTN) summarizes the 

thalamocortical loop in the striate cortex model (Fig. 5) and the parameters are adapted 

from visual to auditory stimuli processing. Moreover, since fMRI does not provide 

activation measures at the level of the phonemic processors, the two activation nodes 

have been merged in a single one (AN). 

Insert Fig. 3 here 

The static network shows that lateral inhibitions (LIN nodes) between the two 

processors involved in the experiment (the /pa/ processor, and /ta/ processor) are 

assumed (Fig. 3). Since delays are associated to the links in the static network, the 

unrolled dynamic network is an acyclic oriented graph. 

The categorical field contains two symbols (/pa/ and /ta/). The type of a stimulus 

represents the proportions of the two symbols. Five different types are used, 

corresponding to the experimental conditions (Table 1). 
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In Fig. 3, the Stim node stands for the stimulus; it is the input of the model. The 

Activation Node (AN) reflects the level of the whole region’s blood flow variations, 

linked to the neuronal energy demand. The Input Gating Nodes (IGNpa and IGNta) 

express the phoneme processors’ sensitivity to the stimulus. They may be considered as 

the abstraction, in terms of pattern and level of activation, of the cells of the area’s input 

layer. The Output Gating Nodes (OGNpa and OGNta) send information to the 

downstream areas. They represent, more or less, the integrated activity of the cells of 

the area’s output layer. The Inhibitory Nodes (INpa and INta) and Lateral Inhibitory 

Nodes (LINpa and LINta) are supposed to represent the integrated behavior of the 

GABA-neurons. Because of the LINs, the activation of an IGN causes an inhibition in 

the opposite IGN. Each Firing Threshold Node (FTNpa and FTNta) is modulated by an 

OGN (respectively OGNpa and OGNta) that can lower it. The FTNs are purely functional 

nodes.  

The model is symmetric, that is the functions for both the /pa/ and the /ta/ parts 

share exactly the same structure and parameters (Table 2), except for the IGNs’ 

sensitiveness to the stimulus. Thus, only the functions for the /pa/ part will be presented. 

In the following equations, the parameter whose rank is i  in the function of a node X , 

is noted  i
Xa . All the 

•

•u  are independent Gaussian variables. 

The refractory period of the processor’s neurons is modeled in IGNpa by a sigmoid 

function 
IGN  that makes t

IGNM


 sensitive to the incoming stimulus only if 1t

OGNM


 , the 

magnitude of the processor’s output, is close to zero: 
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The sensitivity of each IGN● to the received type is defined by a constant type sens● 

(Table 1). Of course, IGNpa is more sensitive to the symbol /pa/, and IGNta to /ta/. The 

function 
paIGNg  is used with the constant senspa and the incoming stimulus’ type 2t

StimT   in 

order to modulate the magnitude of IGNpa: 

         tasenstaTpasenspaTTg pa

t

Stimpa

t

Stim

t

StimIGN pa

222    

The types are used only for the input gating; they do not intervene in the rest of the 

model. The sigmoid 
OGN  in OGNpa’s magnitude function allows it to fire only if the 

magnitude coming from the IGNpa is greater than the firing threshold’s (FTNpa) one: 
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Finally, AN consists in the sum of the successive IGNs’ activations during one 

experimental block: 

111   t

AN

t

IGN

t

IGN

t

AN MMMM
tapa

 

We made the hypothesis that the difference of processing between a normal subject 

and a dyslexic subject was caused mainly by a disorder in the lateral inhibitions. Thus, 

the two models, one for the average patient and the other for the average control, used 



26/44 

the same functions and shared the same parameters (Table 2), except for the inhibition 

nodes (IN● and LIN●).  

There are no lateral inhibitions in the dyslexic model, and its internal inhibitions are 

slightly stronger than in the normal model. Table 3 gives the parameters for the 

inhibition nodes in the normal model, and Table 4 those for the dyslexic one. 

Insert Table 3 here 

Insert Table 4 here 

More generally, the parameters were either drawn from the model of the striate 

cortex [50], or adapted to the representation of an auditory region (instead of a visual 

cortex) and the explanation of fMRI data, instead of PET scan data. 

3.3.3. Results and comments 

During the simulation, we used five blocks of only one sequence of four syllables 

(three pivotal stimuli and a deviant). In fact, since the brain’s activity returns to rest 

level between two experimental sequences, we considered that the processed results 

were comparable to average results obtained during the real experiment. Since, except 

for the Stim and the AN nodes, all nodes represent neuronal activities, the time unit is 

set to 1 ms. We used the DD2 algorithm [47] to perform the simulation. The 

computational complexity of this algorithm is O(L3), where L is the state dimension 

[68]. 

Fig. 4 compares the simulated activation values to the mean activation values, for 

the controls (left graph) and the dyslexic subjects (right graph). Both for controls and 

patients, simulation and experimental results were normalized in order to have the same 

arithmetic mean (0) and the same range (1). In each graph, a pair of bars corresponds to 
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one block. Light-grey bars stand for the differences between the normalized 

experimental values and the normalized experimental rest values. Dark-grey bars 

represent the difference between normalized values of AN and experimental rest values. 

Bar numbers 1, 2, 3, 4, 5 represent respectively the blocks for deviants dev2M, dev1M, 

dev0, dev1P and dev2P. 

Insert Fig. 4 here 

For controls, the experimental results shows that the more distant (from the pivotal 

stimulus, categorically speaking) the deviant is, the stronger the activation is. This is 

supposed to be caused by a habituation mechanism, due to the repetition of the pivotal 

stimulus, that lowers the activation, followed by an activation the force of which 

depends on the “surprise” caused by the deviant. In the model, the internal inhibition 

allows to mimic the habituation, because several consecutive activations will raise the 

IN, and thus lower the IGN. On the other hand, the lateral inhibition favors the more 

activated of the two areas of the gyrus (i.e. the /pa/ part or the /ta/ part), creating this 

great sensitiveness to the last presented phoneme’s distance to the pivotal stimulus. 

The interpretation of the dyslexic subjects’ results is that they do not correctly 

categorize the different phonemes. Thus, both the /pa/ and the /ta/ parts of the gyrus 

activate for each block. The activation level is different in the different blocks, since the 

sub-regions do not show the same sensitiveness to the phonemes.  

4. Discussion 

Classical neuroimaging models focus on a localization problem. Their goal is to 

identify a network or a set of cerebral zones implementing some cognitive or 

sensorimotor function, but they do not aim at explaining how the network’s activation 
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derives from the function performance. Our formalism aims at explaining neuroimaging 

data, by understanding the underlying cerebral mechanisms leading to the observed 

activation. The important difference is that this additional information is essential to 

explain neuroimaging data in the cases where there are apparently contradictory results, 

or where complex functions are studied. 

On the other hand, models in computational neuroscience are characterized both by 

their biological plausibility and their level of cerebral representation. Unlike 

neuroimaging models, their goal is to explain how cerebral mechanisms work. But if the 

modelling level is too low (neuronal mechanisms level), cerebral activity cannot be 

explained in terms of information processing. On the contrary, if the modelling level is 

too high (cognitive functions without considering the cerebral substratum), the model 

cannot lead to neuroimaging interpretation because of the lack of biological plausibility. 

Our approach can be viewed as a compromise between the biological and the cognitive 

levels needed to have a tool allowing the explanation of observed activation in terms of 

information processing.  

A better assessment of our formalism is the comparison with BioCaEn [49,50], 

which has the same or close modeling objectives and constraints. This tool aims at 

modeling information processing in large-scale cerebral networks, with causal 

qualitative networks (CQN), based on interval calculus [16]. We adapted to our 

formalism the model presented in [50] (Fig. 5), based on two PET experiments 

conducted by Fox & Raichle [22,23] who studied the modulation, by the presentation 

rate of visual stimuli, of the activation of the striate cortex. The model highlighted the 

role of a thalamocortical loop in the habituation phenomenon, which explained partly 

the experimental results [50]. 
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Insert Fig. 5 here 

In the model simulation, the time unit is 1ms. The summation over 40 s of all the 

AN values is a measure of relative regional cerebral blood flow, once the brain’s 

average activation level is set in the model, at its experimental value. Our simulation 

(Fig. 6) shows slightly better results than the CQN model. But the real advantages are 

elsewhere. First, DBNs allow a better control of the dispersion of the calculated values 

than interval-based simulation, which leads, by construction [63], to a constant increase 

of the imprecision. Moreover, DBN can directly express non linear functions, while 

BioCaen is based on linear equations.  

Insert Fig. 6 here 

Another advantage of probabilistic networks is the existence and development of a 

lot of algorithms for parameter estimation and inference. This was not illustrated here 

since both the experiments described in this paper provided us temporally integrated 

activation data (respectively, fMRI and PET data), averaged on the subjects. The sample 

size being one (the average subject), parameter estimation using automatic methods 

cannot be applied. Thus, the parameters’ values were defined only by using 

neurological knowledge and empirical estimation. However, since we do not aim at 

building ad hoc models, able to fit only one experiment, but rather more general 

purpose models, representing cerebral mechanisms, the real robustness of a model does 

not come from the perfect fit to one experiment, but rather from its robustness over 

many different situations. We expect that the joint use of EEG or fMRI data will allow 

to determine more precisely temporal parameters related to different regions and to get a 

gross approximation of the links between neuronal activation (provided by EEG data) 
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and haemodynamic activation (provided by fMRI). Transcranial Magnetic Stimulation 

should allow getting some insights on hidden variables (i.e. neuronal phenomena). 

5. Conclusion 

We have presented a general framework, allowing interpreting neuroimaging data 

concerning various cognitive or sensorimotor tasks. This framework has been designed 

to be open to evolutions of the knowledge in neuropsychology and neurophysiology. 

DBNs allowed us to model the brain as a dynamic causal probabilistic network with 

non-linear relationships. This was illustrated with two examples, the first concerning a 

phonemic categorization process, and the last a visual perceptive process. 

Our future work will focus on the integration of more biological plausibility in the 

modeling framework. Currently, the state of a functional node is represented by the 

magnitude and the type of the information, after it has been processed by the associated 

zone. The magnitude and the type correspond to the cumulated firing rate and the 

pattern of the neurons that have fired in the zone. In particular, the magnitude is used in 

the estimation of tomographic activation data (metabolic data, relative cerebral blood 

flow…). However, it is not clear that the neurons that activate and do not fire, do not 

participate in the tomographic activation. Indeed, it is possible to set apart a zone’s 

activation and its emission. The activation can be seen as the result of the spatial and 

temporal integration of the zone’s inputs, while the emission is the result of the process 

of the activation and maybe other influences. This first extension of the formalism will 

allow representing complex relationships between and inside the zones. 
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Some higher level cognitive processes need the model to be able to combine types 

defined on different categorical domains. The definition of this new type operator, 

which is a first step to concept learning, constitutes another question we will address.  

Another essential topic is the reusability of our models. Since, today, neuronal and 

neuroimaging-oriented variables coexist in the models, in the same experimental 

conditions, two different models must be defined if the data acquisition technique 

changes. Building generic functional models needs therefore the separation of 

functional models and interface models, able to translate cerebral information 

processing variables into neuroimaging results.  

Our long-term goal is to progressively include in our framework various validated 

generic models, in order to have reusable components, and to build a consistent and 

general brain theory based on large-scale networks. 
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Tables 

Table 1 

Constants for both phonemic categorization models 

name  Mdev2  Mdev1  0dev  Pdev1  Pdev2   
pasens  

tasens  

/pa/ value  0.7 0.55 0.4 0.25 0.1  0.8 0.2 

/ta/ value  0.3 0.45 0.6 0.75 0.9  0.2 0.8 
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Table 2 

Identical parameters for both phonemic categorization models 

name   1

IGNa   2

IGNa   3

IGNa   4

IGNa   1

OGNa   2

OGNa   1

FTNa   2

FTNa   2

FTNa  

value  0.6 0.98 0.3 0.8 0.4 0.6 3 0.995 0.005 
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Table 3 

Normal phonemic categorization model’s specific parameters 

name   1

INa   2

INa   1

LINa   2

LINa  

value  0.1 0.8 0.8 0.1 
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Table 4 

Dyslexic phonemic categorization model’s specific parameters  

name   1

INa   2

INa   1

LINa   2

LINa  

value  0.05 0.95 0 0 
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Figures captions 

Fig. 1. A state space model ( X  and Y  can be vector-valued variables). The shaded nodes 

stand for observed variables. 

 

Fig. 2. From the static network to the DBN. 

 

Fig. 3. The static network used to model the cerebral phonemic categorization process. 

The delay for each relationship is 1 ms, except for the dotted relationships, where it is 2 

ms. 

 

Fig. 4. Compared results between simulated data and measures, for the phonemic 

categorization process. 

 

Fig. 5. The static network used to model the Fox & Raichle’s experiment [22;23]. The 

delay for each relationship is 1 ms, excepted for the dotted relationships, where it is 2 

ms. 

 

Fig. 6. Compared results between simulated data and measures, for the visual perception 

process. 
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