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Abstract 

Conventional methods used for the interpretation 
of activation data provided by functional neu-
roimaging techniques provide useful insights on 
what the networks of cerebral structures are, and 
when and how much they activate. However, 
they do not explain how the activation of these 
large-scale networks derives from the cerebral 
information processing mechanisms involved in 
cognitive functions. At this global level of repre-
sentation, the human brain can be considered as 
a dynamic biological system. Dynamic Bayesian 
networks seem currently the most promising 
modeling paradigm. Our modeling approach is 
based on the anatomical connectivity of cerebral 
regions, the information processing within cere-
bral areas and the causal influences that con-
nected regions exert on each other. The capabili-
ties of the formalism’s current version are illu-
strated by the modeling of a phonemic categori-
zation process, explaining the different cerebral 
activations in normal and dyslexic subjects. The 
simulation data are compared to experimental re-
sults [Ruff et al., 2001]. 

1 Introduction 

In Neurology and Neuropsychology, the diagnosis of the 
neurological causes of cognitive disorders, as well as the 
understanding and the prediction of the clinical outcomes 
of focal or degenerative cerebral lesions, necessitate 
knowing the link between brain and mind, that is what 
the cerebral substratum of a cognitive or a sensorimotor 
function is and how the substratum’s activity can be in-
terpreted in cognitive terms, i.e. in terms of information 
processing.  

Studies in humans and animals [Bressler, 1995; Démo-
net et al., 1994] have shown that sensorimotor or cogni-
tive functions are the offspring of the activity of oriented 
large-scale networks of anatomically connected cerebral 
regions (Figure 1). In humans, functional neuroimaging 
techniques provide activation data, which are indirect 
measures of the brain’s electrical or metabolic activity 

during a task performance. Statistical analyses of the ac-
tivation data allow determining where [Fox and Raichle, 
1985], i.e. in which areas, and/or when [Giard et al., 
1995] during the task performance, the activation reaches 
local extrema. Through the study of covariation between 
local activations, they give a sketch of what the network 
of cerebral areas involved in the cognitive function is 
[Herbster et al., 1996]. A known oriented anatomical link 
between 2 areas allows determining why the activation of 
one area can affect the other one [Büchel and Friston, 
1997]. Above methods allow identifying the substratum 
of a cognitive function and the activation level and dy-
namics of the substratum during the function perfor-
mance. They do not give any clue of how the cognitive 
processes participating in the function are implemented 
by the substratum and how the activation derives from 
the processing. That is, they do not allow interpreting 
neuroimaging data as the result of information processing 
at the integrated level of large-scale networks. 

 

 
Figure 1: Large-scale network involved in phoneme monitor-

ing, according to results from [Démonet, et al., 1994] 

 

Interpretative models, linking a networked structure 
activity to the realization of a function, are at the core of 
Computational Neurosciences. Most existing works in the 
domain are based on formal neural networks, with vary-
ing levels of biological plausibility, from physiology 
[Wang and Buzsaki, 1996], hardly interpretable in terms 
of information processing, to more or less biologically 
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plausible models of how basic cognitive functions 
emerge from neuronal activation [Grossberg et al., 2002], 
and to purely functional models [Cohen et al., 1990], not 
concerned with cerebral plausibility. Although these 
models answer the how, they do not meet two major re-
quirements for an interpretative approach of functional 
neuroimaging data. The models are not explicit enough to 
be directly used for clinical purpose, and they cannot 
evolve quickly and easily with new findings in neuros-
cience, such as the integration of more detailed know-
ledge on the substratum, which often necessitates a com-
plete rebuilding of the formal network. 

The causal connectivity approach [Pastor et al., 2000] 
aims at answering the how and satisfying the constraints. 
However, the underlying formalism, causal qualitative 
networks based on interval calculus, limits severely the 
biological plausibility of the models, since it cannot 
represent major cerebral features, such as learning or the 
non-linearity and the uncertainty of cerebral processes. 
Dynamic Bayesian networks only meet the three major 
constraints: temporal evolution, uncertainty and nonli-
nearity [Labatut and Pastor, 2001]. The utility of graphi-
cal probabilistic formalisms for cognitive modeling has 
also been demonstrated in the representation of visuomo-
tor mechanisms with Bayesian networks [Ghahramani 
and Wolpert, 1997]. 

Hereafter, we describe how the interpretation of func-
tional images for a clinical purpose can be tackled. Sec-
tion 2 presents our viewpoint on large-scale cerebral 
networks. After a short introduction to dynamic Bayesian 
networks, section 3 describes the characteristics of our 
formalism. Section 4 illustrates the formalism’s capabil i-
ties by an example. We conclude with some perspectives. 

2 Representation of Large-Scale Cere-

bral Networks 

2.1 Structural and Functional Nodes  

The function implemented by a large-scale network de-
pends on three properties: the network’s structure 
[Goldman-Rakic, 1988], the functional role of each node 
(E.g. Wernicke’s area (Figure 1), which is supposed to 
realize the early stages of phoneme processing), and the 
properties of the links (length, role: inhibitory or excita-
tory, …). In each network, regions, which are the struc-
tural nodes, are information processors and connecting 
oriented fibers are information transmitters [Leiner and 
Leiner, 1997]. 

All neurons in a region do not have the same structure 
or the same role. Similar neurons constitute generally 
local populations that realize a specific function. For ex-
ample, the inhibitory role of GABAergic neurons on oth-
er neuronal populations may explain the fact that every 
visual stimulus is not perceived in high frequency stimu-
lation [Pastor, et al., 2000]. Therefore, each region is 
itself a network of smaller neuronal populations (func-
tional nodes), connected through neuronal fibers. These 

nodes are information processors that implement func-
tional primitives, which may all be different.  

A large-scale network has therefore neurophysiologi-
cally constrained, oriented edges and possibly differen-
tiated nodes. The explicit representation of the nodes’ 
function allows the direct expression of hypotheses on 
cerebral processing, and their easy modification in order 
to follow the evolution of knowledge in neurosciences. 
This cannot be dealt with by formal neural networks’ 
implicit modeling that requires modifying the whole net-
work architecture to implement functional changes. He-
reafter, a structural or a functional structure will be indif-
ferently named a cerebral zone. 

2.2 Information Representation and 

Processing 

The cerebral information processed by a neuronal popula-

tion can be seen as the abstraction of the number and the 

pattern of the neurons firing for this information. It can be 

represented both by an energy level and by a category. 

Energy is indirectly represented by the imprecise activation 

data provided by neuroimaging techniques. The category 

representation is in agreement with the “topical” organiza-

tion of the brain, which reflects category maps of the input 

stimuli, and can persist from primary cortices to nonprimary 

cortices and subcortical structures [Alexander et al., 1992], 

through transmission fibers [Leiner and Leiner, 1997]. The 

energy and the category of a stimulus can also be easily 

extracted from its psychophysical properties. 

Modeling cerebral processes necessitates an explicit and 

discrete representation of time, both for taking into account 

the dynamics of cerebral mechanisms (transmission delays, 

response times…), and for complying with sampled func-

tional neuroimaging data. 

According to a definition of causality inspired by Hume 

[Hume, 1740] and consistent with Pearl’s probabilistic cau-

sality [Pearl, 2001], information processing in a large-scale 

network can be considered as mediated through causal me-

chanisms. Causality is defined by three properties: spatial 

and temporal contiguity, temporal consistency, and statistic-

al regularity [Labatut and Pastor, 2001]. In other words, two 

entities A and B are causally linked if they are contiguous 

relatively to the system they belong to, if the beginning of A 

precedes temporally the beginning of B, and if most of the 

times, A provokes B. In the brain, oriented anatomical links 

provide spatial and temporal contiguity between cerebral 

nodes, cerebral events are temporally consistent (a firing 

zone provokes the activation of downstream zones), and 

there is a statistical regularity in the response of a specific 

neuronal population to a given stimulus. 

3 Description of the Formalism 

3.1 Dynamic Bayesian Networks  

In summary, the brain can be viewed as a network whose 
nodes are differentiated dynamic and adaptive informa-



tion processors and oriented edges convey causality. 
Moreover, cerebral mechanisms, which are the abstrac-
tion, at the level of a neuronal population, of the chemi-
cal and electrical mechanisms at the cell levels, are often 
nonlinear. Causal dynamic Bayesian networks are the 
paradigm that meets best the constraints derived from 
these properties [Labatut and Pastor, 2001]. 

A causal Bayesian network consists of a directed acyc-
lic graph where nodes represent random variables and 
edges represent causal relationships between the va-
riables [Pearl, 1988]. A conditional probability is asso-
ciated with each relationship between a node and its par-
ents. If the node is a root, the probability distribution is a 
prior. When some nodes’ values are observed, posterior 
probabilities for the hidden nodes can be computed 
thanks to inference algorithms such as the junction tree 
algorithm [Jensen, 1996].  

In a dynamic Bayesian network (DBN), the evolution 
of random variables through time is considered. Time is 
seen as a series of intervals called time slices [Dean and 
Kanazawa, 1988]. For each slice, a submodel represents 
the state of the modeled system. DBNs are used to model 
Markovian processes, i.e. processes where a temporally 
limited knowledge of the past is sufficient to predict the 
future. The choice of the inference algorithm, generally 
an extension of the junction tree algorithm [Murphy, 
1999], depends on the DBN’s structure, the nature of its 
variables (discrete or continuous), and relationships (l i-
near or nonlinear). 

Activation data and/or the subject’s responses to the 
stimuli are the only observable variables we have. There-
fore, they must be integrated in our models. One may 
reasonably consider that the hidden variables, describing 
the successive states of the cerebral network, constitute a 
Markov chain, and that observable variables depend only 
on them. Moreover, the variables are continuous and their 
relationships may be nonlinear. This is typically the de-
scription of a type of DBNs called fully nonlinear state 
space models. Specific and recent algorithms allowing 
dealing with nonlinearity exist for this type of structures. 
Their general principle is to linearize the model in order 
to apply the classic Kalman filter. These algorithms differ 
on the used linearization method: first-order Taylor ap-
proximations for the extended Kalman filter [Julier and 
Uhlmann, 1997; Norgaard et al., 2000] or polynomial 
approximations for the unscented Kalman filter [Julier 
and Uhlmann, 1997], the divided difference filter (DDF) 
[Norgaard, et al., 2000], and others [Van Der Merwe and 
Wan, 2001]. The algorithms based on polynomial ap-
proximations seem to give more reliable results [Nor-
gaard, et al., 2000]. Their computational complexity is 
O(L3), where L is the state dimension [Van Der Merwe 
and Wan, 2001]. They offer equivalent qualities, but 
those of the DDF are more accurate according to its au-
thor [Norgaard, et al., 2000].  

3.2 Formal definition 

Static and Dynamic Networks  

A static network is the graphical representation of a 
large-scale network, whose nodes are cerebral zones and 
edges are the oriented axon bundles connecting zones. 
Due to anatomical loops, it is often cyclic. The DBN is 
the acyclic temporal expansion of the static network. 
Each node of the DBN is the processing entity related to 
a cerebral zone, i.e. the mathematical expression, at a 
given time slice, of information processing in the zone. 
Each edge is the propagation entity, whose orientation is 
its corresponding axon bundle’s orientation. When deriv-
ing the DBN from the static network, values are given to 
the temporal parameters, according to known physiology 
results (e.g. the transmission speed in some neural fi-
bers). That is, the length of the time slices is fixed, and a 
delay representing the average propagation time in the 
bundle’s fibers is associated to the propagation entity.  

Information Representation 

Cerebral information is the flowing entity that is com-
puted at each spatial (cerebral zone) and temporal (time 
slice) step, by a processing entity. It is a two-
dimensioned data. The first part, the magnitude, stands 
for the cerebral energy needed to process the information 
in the zone. It is represented by a real random variable in 
the DBN. For the second part, the type, which represents 
the cerebral category the zone attributes to the informa-
tion, the representation is based on the symbol and cate-
gorical field concepts.  

A symbol represents a “pure” (i.e. not blurred with 
noise or another symbol) category of information. For 
example, when the information represents a linguistic 
stimulus, a symbol may refer to a non ambiguous pho-
neme. For cerebral information, the symbol represents, in 
each zone, the neuronal subpopulation being sensitive to 
(i.e. that fires for) the corresponding category. It may be, 
in the primary auditory cortex, the subpopulation sensi-
tive to a specific frequency interval. A categorical field 
is a set of symbols describing stimuli of the same seman-
tic class. The “color” categorical field contains all the 
color symbols, but it cannot contain phonemes.  

A type concerns several symbols, due to the presence 

of noise or because of some compound information. Let 

 be the set of all existing symbols. We assume that a 

type T  is defined for only one categorical field. Let 
TS  

be the subset of , corresponding to this categorical 

field. The type T  is an application from 
TS  to  0,1 , with 

the property   1
 TSs

sT , i.e. it describes a symbol reparti-

tion for a specific categorical field. In a stimulus, this 

repartition corresponds to the relative importance of each 

symbol compounding the information carried by the sti-

mulus. Inside the model, T(s) stands for the proportion of 

s-sensitive neurons in the population that fired for the 

information whose type is T. Unlike the magnitude, the 
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type is not represented by a random variable. Indeed, it is 

not necessary to represent its uncertainty (and hence to 

make the computational complexity harder) since we 

cannot compare it to neuroimaging data.  

At time t and node X, the information is represented by 

the type t

XT  and the magnitude t

XM  at the output of X. 

Propagation and Processing  

For a zone X, both the cerebral propagation mechan-

isms (i.e. the relationships towards the zone) and the 

processing (spatial and temporal integration of the inputs, 

and processing as such) are described by a pair of func-

tions, the type 
XTf  and the magnitude functions 

XMf . In 

the general case where n zones 
1, , nY Y  are inputs to X , 

let 
n ,,1   be the corresponding delays of these rela-

tionships. In the DBN, the general form of the magnitude 

functions is: 

 1

1

1, , , ,n

X

ttt t

X M Y Yn X XM f M M M u
   (1) 

where fM can be a nonlinear function. The random varia-

ble  2,0~ NuX
 models uncertainty in the cerebral 

processing.  
The type function is any combination of the incoming 

types and of the previous type that respects our type defi-
nition. If all types are defined on the same categorical 
field S, the type function can be the linear combination: 

       1

1 1

1n

n n

ttt t

X Y Y Y Y X XT s c T s c T s c T s
     , Ss  (2) 

where S is the categorical field of t

XT , 1

1 1
, , ntt

Y YT T
 , and 

1t

XT  ; and with 1c   in order to keep the property 

  1t

X

s S

T s


 . 

The functions’ definition, as well as the setting of the 
parameters’ values (e.g. the value of a firing threshold), 
utilize mostly results in neuropsychology or in neurophy-
siology. The existence of generic models, that is, non 
instantiated, reusable, models of functional networks, is 
assumed. For example, primary cortices may implement 
the same mechanisms, although they are parameterized so 
that they can process different types of stimuli [Pastor, et 
al., 2000]. 

4 Example 

The model, presented hereafter, is based on an experi-
mental study [Ruff, et al., 2001] that focused on the dif-
ferences between normal and dyslexic subjects during a 
passive phonemic categorization process. 

Six patients and six controls were submitted to a pas-
sive hearing of stimuli that are mixes of the two phoneti-
cally close syllables /pa/ and /ta/. The pivot is noted dev0 
and the deviants are 4 different mixes of /pa/ and /ta/, 
noted dev2M, dev1M, dev1P, dev2P (Table 1). The mea-
surements were made with fMRI. An experiment is con-
stituted of 5 blocks, corresponding to the pivot and the 

deviants. Each block contains 6 sequences of 4 sounds, 3 
pivots and the block’s deviant, in a random order . 

We focus on a single region, a part of the right tempor-
al superior gyrus involved in the early processing of audi-
tory stimuli and activated differently in controls and dys-
lexic subjects. Phylogeny is in favor of the existence of 
specialized phonemic processors in this area (Figure 2). 
Since their location is unknown, they cannot constitute 
separate structural nodes. They are supposed to have the 
same building functional nodes. According to our gene-
ricity hypothesis, the processors’ structure and parame-
ters are based on a previously released visual cortex 
model [Pastor, et al., 2000]. The Input Gating Nodes 
(IGN●) express the phoneme processors’ sensitivity to the 
stimulus. The Output Gating Nodes (OGN●) send infor-
mation to the downstream areas. Intra and inter (lateral) 
inhibitions (IN● and LIN●) are assumed between the /pa/ 
and /ta/ processors. LIN● make the activation of an IGN● 
cause an inhibition in the opposite IGN●. Each Firing 
Threshold Node (FTN●) is modulated by an OGN● that 
can lower it. Since only one activation measure is pro-
vided by fMRI for the area, it is represented by the sole 
AN node in the static model. Stim stands for the stimulus.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Static network used to model the cerebral phonemic ca-

tegorization process.  

Except for the parameterization of the IGN● nodes, 

which reflects the specialization of each phonemic pro-

cessor to the phoneme category (/pa/ or /ta/), the func-

tions for both the /pa/ and /ta/ parts share exactly the 

same structure and parameters. Thus, only the pa part 

will be presented. In the following equations, the ith pa-

rameter of the function of a node X is noted  i
Xa . 

The refractory period of the processor’s neurons is 

modeled in IGNpa by a sigmoid function 
IGN  that makes 

the node sensitive to the incoming stimulus only if the 

magnitude of the output is already close to zero: 

       2121 -1  t
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uMaMaMa   141312  (3)  

The categorical field contains two symbols (pa and ta). 
The type of a stimulus represents the proportions of the 
two symbols (Table 1). 



name dev2M dev1M dev0 dev1P dev2P senspa sensta 

pa 

value 
0.7 0.55 0.4 0.25 0.1 0.8 0.2 

ta 

value 
0.3 0.45 0.6 0.75 0.9 0.2 0.8 

 

Table 1: Constants for both phonemic categorization models 

 

The sensitivity of each IGN● to the received type is de-

fined by a constant type sens●. IGNpa is more sensitive to 

the symbol pa, and IGNta to ta. The function 
paIGNg  in 

equation (3) is used with the constant senspa and the in-

coming stimulus’ type 2t

StimT  in order to modulate the 

magnitude of IGNpa: 

         tasenstaTpasenspaTTg pa
t
Stimpa

t
Stim

t
StimIGN pa

222    

The types are used only for the input gating; they do 

not intervene in the rest of the model. The sigmoid 
OGN  

in OGNpa’s magnitude function allows it to fire only if 

the magnitude coming from the IGNpa is greater than the 

firing threshold’s (FTNpa) one: 
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AN consists in the sum of the successive IGNs’ activa-

tions during one experimental block: 
111   t

AN

t

IGN

t

IGN

t

AN MMMM
tapa

 (8)  

This is a gross approximation of the fMRI data, which 

models only the part of the information processing mechan-

isms in the activation building and neglects metabolic 

processes at the level of the cerebral blood flow. Since, ex-

cept the Stim and the AN nodes, all nodes represent neuron-

al activities, the time unit is set to 1 ms. We used the DD2 

algorithm [Norgaard, et al., 2000] to perform the simula-

tions.  

The hypothesis is that the difference of processing be-

tween normal and dyslexic subjects is caused by a disorder 

in the inhibitory mechanisms. Thus, the two models, one for 

the average patient and the other for the average control, use 

the same functions and share the same parameters, except 

for the inhibition nodes (IN● and LIN●). There are no lateral 

inhibitions in the dyslexic model. It can be interpreted in 

cognitive terms as the fact that all the processors compete 

for each stimulus and that no clear category can be built. 

Also, the dyslexic model’s internal inhibitions are slightly 

stronger than in the normal one, leading to a slowing in the 

stimulus perception. These two tentative interpretations are 

good starting points for new experiments. 
The differences in the inhibition parameters are suffi-

cient to obtain very different activation data. For con-

trols, the more distant (from the pivotal stimulus, cate-
gorically speaking) the deviant is, the stronger the activa-
tion is (Figure 3). This is supposed to be caused by a ha-
bituation mechanism that lowers the activation, followed 
by an activation the force of which depends on the “sur-
prise” caused by the deviant. Dyslexic subjects do not 
correctly categorize the different phonemes, both the pa 
and the ta parts of the gyrus activate for each block. This 
illustrates how activation data can be explained thanks to 
the understanding of the cerebral information processing 
mechanisms expressed in the models.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Compared results between simulated data (± 2 stan-

dard deviations) and experimental measures.  

5 Conclusion 

Instead of building a specialized model, designed for a 
specific function or cerebral network, we have presented 
a general framework, allowing the interpretation of func-
tional neuroimaging data. This framework has been de-
signed to be open to evolutions of the knowledge in neu-
ropsychology and neurophysiology. Using DBNs allows 
modeling the brain as a dynamic causal probabilistic 
network with nonlinear relationships. We have illustrated 
this with an example concerning a language-related 
process. Currently, our framework is adapted to automat-
ic processing, which is dominant in cerebral functioning. 
In function of the stimulus type, nodes can react diffe-
rently and different networks may be activated, thus im-
plementing different functions. Our future work will fo-
cus on the integration of more biological plausibility in 
the framework. The representation of complex relation-
ships between and inside the zones will allow the repre-
sentation of controlled processes and contextual modula-
tion of the cerebral activity. The combination of types 
from different categorical domains and the search for 
regularities in the combinations will allow the implemen-
tation of learning mechanisms. Another essential topic is 
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to make our models independent of the used data acquisi-
tion technique, thanks to interface models, able to trans-
late cerebral information processing variables into neu-
roimaging results. Our long-term goal is to progressively 
include in our framework various validated models and to 
build a consistent and general brain theory based on 
large-scale networks.  
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