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Abstract- Understanding the clinical outcomes of brain lesions 
necessitates knowing how networks of cerebral structures 
implement cognitive or sensorimotor functions. Functional 
neuroimaging techniques provide useful insights on what the 
networks are, and when and how much they activate. However, 
an interpretative method, explaining how the activation of 
large-scale networks derives from the cerebral information 
processing mechanisms involved in the function, is still missing. 
Our goal is to provide such a tool. We suggest that integrated 
neural computation can be best represented with dynamic 
Bayesian networks. Our modeling approach is based on the 
anatomical connectivity of cerebral regions, the information 
processing within cerebral areas and the causal influences that 
connected regions exert on each other. We use experimental 
results [1] concerning the modulation of the striate cortex’s 
activation by the presentation rate of visual stimuli, to show 
that our explicit modeling approach allows the interpretation 
of neuroimaging data, through the formulation and the 
simulation of functional and physiological assumptions. 
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I. INTRODUCTION 

 

The understanding and the prediction of the clinical 
outcomes of cerebral lesions, as well as the assessment of 
rehabilitation procedures, necessitate knowing the nature 
and the functioning of the cerebral substratum of cognitive 
or sensorimotor functions. In humans, the substratum 
identification can only be addressed indirectly, through 
activation studies, where subjects are asked to perform a 
specific task involving the functions, while data of their 
brain functioning are collected thanks to functional 
neuroimaging techniques. It has been shown [2][3] that the 
functions are the offspring of the activity of large-scale 
networks of anatomically connected cerebral areas. 

Traditional neuroimaging methods allow knowing 
where [1], i.e. in which areas, and/or when [4] during the 
task performance, the brain’s activity reaches local maxima. 
They also give a sketch of what the network of cerebral 
areas activated is [5], and why the activation of an area can 
affect another connected cerebral structure [6]. Clearly, they 
do not answer how the activation derives from the integrated 
neural computation in large-scale cerebral networks.  

Modeling neural computation is at the core of 
computational neuroscience. Most existing works in the 
domain are based on formal neural networks, with varying 
levels of biological plausibility, from physiology-based 
models [7], hardly interpretable in terms of information 
processing, to purely functional models [8], not concerned 
with cerebral plausibility. More recently, Bayesian networks 
have been used to model visuomotor mechanisms [9], which 

demonstrates the utility of graphical probabilistic 
formalisms for cerebral functional modeling.  

Above methods can hardly both answer the how and 
provide models explicit enough to be directly used for 
clinical purpose. In fact, few researches answer the question 
or meet the necessity [10]. Hereafter, we demonstrate how 
the interpretation of functional images for a clinical purpose 
can be tackled. Section II presents our viewpoint on large-
scale cerebral networks. After a short introduction to 
dynamic Bayesian networks, section III describes the 
characteristics of our formalism. Section IV illustrates the 
formalism’s capabilities by an example. We conclude with 
some perspectives. 
 
II. LARGE-SCALE CEREBRAL NETWORKS 

 

A. Structural and Functional Nodes 
 

The function implemented by a large-scale network 
depends on three properties: the network’s structure [3], the 
more elementary functions implemented by its nodes (the 
functional role of each region), and the properties of its links 
(length, role: inhibitory or excitatory, …).  

In each network, regions are information processors and 
connecting oriented fibers are information transmitters [11]. 
Each region (structural node) is itself a network of smaller 
information processors (functional nodes) that are neuronal 
populations, connected through neuronal fibers, and 
implement functional primitives (e.g. GABAergic neurons 
that have an inhibitory role on pyramidal cells). All 
functional primitives may be different.  
A large-scale network has therefore neurophysiologically 
constrained, oriented edges and possibly differentiated 
nodes. The explicit representation of the nodes’ function 
allows the direct expression of hypotheses on cerebral 
processing, and their easy modification in order to follow 
the evolution of knowledge in neurosciences. This is not the 
case of formal neural networks’ implicit modeling approach 
that requires modifying the whole network architecture to 
implement functional changes. 

Hereafter, a structural or a functional structure will be 
indifferently named a cerebral zone. 

 
B. Information Representation and Processing 
 

The cerebral information that is processed by a neuronal 
population can be seen as the abstraction of the number and 
the pattern of the neurons firing for this information. It can 
be represented both by an energy level and by a category. 
Energy is indirectly represented by the imprecise activation 
data provided by neuroimaging techniques. The category 
representation is in agreement with the “topical” 
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organization of the brain, which reflects category maps of 
the input stimuli, and can persist from primary cortices to 
nonprimary cortices and subcortical structures [2], through 
transmission fibers [11]. The energy and the category of a 
stimulus can also be easily extracted from its 
psychophysical properties. 

Modeling cerebral processes necessitates an explicit and 
discrete representation of time, both for taking into account 
the dynamics of cerebral mechanisms (transmission delays, 
response times…), and for complying with sampled 
functional neuroimaging data. 

Since oriented anatomical links provide spatial and 
temporal contiguity between cerebral nodes, cerebral events 
are temporally consistent (a firing zone provokes the 
activation of downstream zones), and there is a statistical 
regularity in the response of a specific neuronal population 
to a given stimulus, information processing in a large-scale 
network can be considered as mediated through causal 
mechanisms. Those mechanisms, which are the abstraction, 
at the level of a neuronal population, of the chemical and 
electrical mechanisms at the cell levels, are often nonlinear.  
 
III. OVERVIEW OF THE FORMALISM 

 
Causal dynamic Bayesian networks are the paradigm 

that meets best the constraints derived from large-scale 
networks’ properties. 
 

A. Introduction to Dynamic Bayesian Networks 
 

A causal Bayesian network consists of a directed acyclic 
graph where nodes represent random variables and edges 
represent causal relationships between the variables [12]. A 
conditional probability is associated with each relationship 
between a node and its parents. If the node is a root, the 
probability distribution is a prior. When some nodes’ values 
are observed, posterior probabilities for the hidden nodes 
can be computed thanks to inference algorithms such as the 
junction tree algorithm [13]. 

In a dynamic Bayesian network (DBN), the evolution of 
random variables through time is considered. Time is seen 
as a series of intervals called time slices [14]. For each slice, 
a submodel represents the state of the modeled system. 
DBNs are used to model Markovian processes, i.e. processes 
where a temporally limited knowledge of the past is 
sufficient to predict the future. The choice of the inference 
algorithm, generally an extension of the junction tree 
algorithm [15], depends on the DBN’s structure, the nature 
of its variables (discrete or continuous), and its relationships 
(linear or nonlinear). 

A realistic cerebral modeling necessitates representing 
continuous values and nonlinear relationships. Furthermore, 
although they represent non-neuronal functions, 
neuroimaging data, which are the only observable values, 
must be integrated in our models. Thus, we have a set of 
hidden variables (the cerebral network) constituting a 
Markov chain, and a set of observable variables 
(neuroimaging data) depending only on the hidden 
variables. Specific algorithms exist for this type of 

structures, called a fully nonlinear state space model (SSM). 
The extended Kalman filter (EKF) is based on Taylor 
approximations, it needs a linearization, which can lead to 
unreliable results [16, 17]. The unscented Kalman filter 
(UKF) is based on the unscented transformation [16], which 
allows to represent a probability distribution by a set of 
chosen points, and then to bypass the linearization required 
by the EKF, and thus to have better performances (more 
accurate results). The DD1 and DD2 filters [17] use 
polynomial approximations, offering qualities comparable to 
the UKF (but more accurate; according to their author [17]). 
In order to be able to represent nonlinear relationships, the 
UKF and the DD1/DD2 filters are the most adapted 
algorithms.  
 
B. Static and Dynamic Networks 
 

A static network is the graphical representation of a 
large-scale network, whose nodes are cerebral zones and 
edges are the oriented axon bundles connecting zones. Due 
to anatomical loops, it is often cyclic. The DBN is the 
acyclic temporal expansion of the static network. Each node 
of the DBN is the processing entity related to a cerebral 
zone, i.e. the mathematical expression, at a given time slice, 
of information processing in the zone. Each edge is the 
propagation entity, whose orientation is its corresponding 
axon bundle’s orientation. When deriving the DBN from the 
static network, values are given to the temporal parameters, 
according to known physiology results (e.g. the transmission 
speed in some neural fibers). That is, the length of the time 
slices is fixed, and a delay representing the average 
propagation time in the bundle’s fibers is associated to the 
propagation entity. 
 
B. Information Representation 
 

Cerebral information is the flowing entity that is 
computed at each spatial (cerebral zone) and temporal (time 
slice) step, by a processing entity. It is a two-dimensioned 
data. The first part, the magnitude, stands for the cerebral 
energy and is represented by a real random variable in the 
DBN. The second part is the type, representing the cerebral 
category, which is based on the symbol and categorical field 
concepts. A symbol represents a “pure” (i.e. not blurred with 
noise or another symbol) category of information. When the 
information is external, a symbol may refer to a stimulus or 
a response. For cerebral information, the symbol represents, 
in each zone, the neuronal subpopulation being sensitive to 
(i.e. that fires for) the corresponding category. For example, 
in the primary auditory cortex, it may be the subpopulation 
sensitive to a specific frequency interval. A categorical field 
is a set of symbols describing stimuli of the same semantic 
class. For example, the “color” categorical field contains all 
the color symbols, but it cannot contain sounds. Let S be the 
set of each existing symbol s. Let ST be a subset of S, 
corresponding to a given categorical field. A type T is an 
application from ST to [0,1], with the sum of all s equal to 1. 
Thus it describes a symbol repartition for a specific 
categorical field. In a stimulus, this repartition corresponds 



   

to the relative importance of the symbols compounding the 
information carried by the stimulus. Inside the brain, T(s) 
stands for the proportion of s-sensitive neurons in the 
population that emitted the stimulus whose type is T. Since 
we cannot compare types to neuroimaging data, which 
reflect only magnitude, we choose to represent them as 
deterministic variables. 

At time t and zone X, information is represented by its 

value at the output of X, X(t) = ( Yt

XM , Yt

XT ), where Yt

XT  

represents its type and Yt

XM  its magnitude. 

 
C. Propagation and Processing 
 

For a zone X, both the cerebral propagation mechanisms 
(i.e. the relationships towards the zone) and the processing 
(spatial and temporal integration of the inputs, and 
processing as such) are described by a pair of functions, the 
type function 

XTf  and the magnitude function 
XMf . Let us 

consider the general case where n zones Y1,…,Yn are 
connected to X (in the static network, X has n parents). Let 

n ,,1   be the corresponding delays of these relationships. 

Consider that the activation of X at t-1 time is taken into 
account. In the DBN, the general form of the magnitude 
functions is: 
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where fM can be a nonlinear function. The random variable 

 2,0~ NuX
 models uncertainty in the cerebral processing.  

The type function is a linear combination of the 
incoming types and of the previous type: 
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where 
t
XT

S  is the categorical field of t

XT , and with   1c . 

The functions’ definition, as well as the setting of the 
parameters’ values (e.g. the value of a firing threshold), 
utilize mostly results in neuropsychology or in 
neurophysiology. The existence of generic models, that is, 
non instantiated, reusable, models of functional networks, is 
assumed. For example, primary cortices may implement the 
same mechanisms, although they are parameterized so that 
they can process different types of stimuli [10]. 
 
IV. EXAMPLE 

 
A. The Experiment 
 

A model, adapted, in terms of a DBN, from a previous 
work [10], illustrates our formalism. The original model 
used causal qualitative networks (CQN), based on interval 
calculus, to explain results from two PET experiments by 
Fox & Raichle [1]. Their studies focused on the modulation 
of the activation of the striate cortex by the presentation rate 
of visual stimuli. The stimuli are orange square-waves 
pulses of constant intensity and duration (5ms) that are 
presented during 40s scans (PET) at rates of 1, 3.9, 7.8, 
15.5, 33.1 and 61 Hz. The hypothesis is that the observed 

activation is modulated by the connections between the 
thalamus and the cortex.  

The modeled “large-scale” network is a simple 
anatomical loop, the cortex and the thalamus being 
connected by opposite oriented axon bundles. The global 
functional network is the connection of the two functional 
networks representing the striate cortex and the thalamus, 
plus an additional node Stim standing for the stimulus (Fig. 
1). The delay for each relationship is 1 ms, excepted for the 
bold arrows, where it is 2 ms. 

Only two magnitude functions of interest are presented 
here, since the task does not involve categorization 
processes (it uses only one type). Each input gating node 
(IGN) expresses the structural node’s neuronal reactivity to 
the stimulus. It may be considered as the abstraction, in 
terms of pattern and average firing rate, of the activation of 
the area’s pyramidal cells’ somas. For the cortex’s IGN, we 
have (the aX

(i) being the parameters): 
         t
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t

INIGN
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where σIGNc is a sigmoid function used to model the zone’s 
refractory period. Each Output Gating Node (OGN) sends 
information to the downstream areas. It represents, more or 
less, the integrated activity at the junction between the cells’ 
somas and axons. For the cortex: 
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where the sigmoid σOGNc allows using FTNc as a threshold 
on IGNc. The inhibitory node INc is supposed to represent 
the integrated behavior of the GABA-neurons. The firing 
threshold node FTNc is modulated by the thalamus, which 
can lower it. Finally, the activation node ANc reflects the 
level of the whole region’s blood flow variations, linked to 
the neuronal energy demand. It consists in the sum of the 
successive IGNc’s activations during one experimental 
block. 

 

 

Fig. 1. The static network used to model the experiment [1]. 

 
B. Results and Comments 
 

The time unit is 1 ms, and we used the DD1 algorithm 
[17] to perform the simulation. We used a sole stimulus, 
with a magnitude of 1 and a type made of one symbol 
(“orange”), repeated in order to obtain the desired stimulus 
rate during 40 s. The results are measures, for each 40s-scan, 
of the regional cerebral blood flow variations (ΔrCBF%) in 
the visual cortex.  

Our simulation shows slightly better results than the 
CQN model (Fig. 2). But the real advantages are elsewhere. 
First, DBNs allow a better control of the dispersion of the 
calculated values than interval-based simulation, which 
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leads, by construction [18], to a constant increase of the 
imprecision. Moreover, DBN can directly express nonlinear 
functions, which is not the case of the CQN-based simulator. 
Finally, a lot of algorithms for parameter estimation and 
inference exist and are developed for probabilistic networks. 
Nevertheless, the absence of precise activation data, 
temporally speaking, prevented us from estimating 
parameters using automatic methods, and forced us to define 
these values only by using neurological knowledge and 
empirical estimation. 

 

 

Fig. 2. Compared results between simulated data and experimental 
measures. 

 
V. CONCLUSION 

 
Instead of building a specialized model, designed for a 

specific function or cerebral network, we have presented a 
general framework, allowing the interpretation of 
neuroimaging data concerning various tasks. This 
framework has been designed to be open to evolutions of the 
knowledge in neuropsychology and neurophysiology. The 
use of DBNs allowed us to model the brain as a dynamic 
causal probabilistic network with nonlinear relationships. 
We have illustrated this with an example concerning a visual 
perceptive process. Our future work will focus on the 
integration of more biological plausibility in the framework, 
through the representation of complex relationships between 
and inside the zones, and the combination of types from 
different categorical domains. Another essential topic is to 
make our models independent of the used data acquisition 
technique, thanks to interface models, able to translate 
cerebral information processing variables into neuroimaging 
results. Our long-term goal is to progressively include in our 
framework various validated generic models and to build a 
consistent and general brain theory based on large-scale 
networks. 
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