DYNAMIC BAYESIAN NETWORKS FOR INTEGRATED NEURAL COMPUTATION

V. LABATUT and J.PASTOR, Insermu455, Pavillon Riser, CHU Purpan, Toulouse, France

CONTEXT

- Analysis of neuroimaging activation data give a sketch of the large-scale networks implementing cognitive or sensorimotor functions.
- However, there is no one-to-one correspondence between lesions and cognitive dysfunctions.

GOALS

- Answer how the activation derives from the integrated neural computation in large-scale cerebral networks.
- Provide a modeling tool explicit enough to be directly used for clinical purpose, through the interpretation of functional neuroimaging data.

LARGE-SCALE CEREBRAL **NETWORKS**

LARGE-SCALE ARTIFICIAL **NETWORKS**

- Network of neuronal populations, anatomically interconnected through oriented axon bundles
- sub-networks perceptive, motor and cognitive implement functions
- Adaptive mechanisms at different time scales (habituation and learning)
- The brain can be considered as an uncertain system, due to the involved complex mechanisms
- Each region has its own information processing mechanisms, which may be nonlinear
- Small, well-located regions are dedicated to the processing of a specific piece of information at different levels of abstraction. The activity level and the **identity** of these regions provide therefore a measure and a label to the information

- Formalism based on Dynamic Bayesian Networks (DBN), the most adapted formalism considering LSCN properties
- Directed networked structure
- Explicit representation of time
- Modeling of uncertainty through random
- Causal and nonlinear relationships
- Differentiated nodes
- Specific information representation with a numeric part (random variable) and a symbolic part (a deterministic variable), respectively called magnitude and type
- Specific propagation and learning mechanisms, adapted to the information representation

EXAMPLES

COGNITIVE APPLICATION IN NORMAL SUBJECTS

- PET study by Fox & Raichle (1985)
- Visual stimulus rate modulates visual cortex activation: activation grows until 7,8 Hz, then fades and becomes stable → why?
- Model involving the striate cortex (primary visual cortex) and the thalamus
- Hypotheses implemented in the model: habituation and refractory period at the regional level

CLINICAL APPLICATION IN DYSLEXIC AND NORMAL SUBJECTS

- fMRI study by Ruff et al. (2001)
- Phonemic discrimination process between two phonetically close syllables /pa/ and /ta/:
- differences between normal and dyslexic subjects activations → why?
- Model of the right temporal superior gyrus (early processing of auditory stimuli)
- Hypotheses implemented in the model :
 - existence of two specialized phonemic processors, represented by two sub-networks
 - near no lateral inhibition in dyslexic subjects

CONCLUSION

CURRENTLY

- New formalism able to process uncertain labeled information
- Interpretation of data provided by various neuroimaging techniques and concerning various tasks
- Open to evolutions of the knowledge in neuropsychology and neurophysiology.

PERSPECTIVES

- Inclusion of more biological plausibility
- Make the models independent of the used data acquisition technique by using interface models able to translate cerebral information processing variables into neuroimaging results
- Application to complex systems such as ecological systems (tracing of pollutants, of populations), industrial systems (trace of different components during the building of a product), etc...

REFERENCES

control

- Controls

— Simulation

P. T. Fox and M. E. Raichle, "Stimulus rate determines regional brain blood flow in striate cortex," Ann Neurol, vol. 17, pp. 303-5, 1985.

Ruff S., Boulanouar K., Cardebat D., Celsis P., Demonet J. F. Brain correlates of impaired categorical phonetic perception in adult dyslexics. Neuroimage 2001;13(6):S595-S.

