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Bayesian Modeling of Cerebral Information Processing

◼ Objective of the M.I.T.I.C. project (Integrated Modeling of 
Cerebral Information Processing): to determine the links 
between the brain’s physical structure and its functioning, 
at an integrated level.
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A CAUSAL MODEL
◼Biological justification (the transmission of the cerebral 
signal is causal).

Bayesian Modeling of Cerebral Information Processing

MITIC specifications

Primary
Auditory
cortex
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◼ Spatial and temporal 
adjacency.

◼ Statistical regularity.

◼ Temporal 
consistency.

◼ Experimental/medical justification (the hypotheses 
are expressed in terms of causes and effects).
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A FUNCTIONAL AND STRUCTURAL MODEL

Bayesian Modeling of Cerebral Information Processing

MITIC specifications

We need both 
representation levels in 
order to link the brain’s 
structure and its 
functioning.

Large-scale network of cerebral regions implements high-
level cognitive functions.
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⚫ The brain is a 
dynamical system.

⚫Neuroimaging data 
are temporal 
measures.

Temporality
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Constraints on the formalism
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At a global level, 
the signal 

transmitted between 
two areas has a 

category.

Categorization⚫ Imprecise 
imaging data.

⚫ The brain can 
react differently 
(uncertainty) to 
the same stimuli.

Uncertainty and/or 
imprecision

A

C

B

Conditioning⚫ Cerebral 
relationships may 
not be always 
linear (ex: 
thresholds).

Non-linearity
⚫Habituation 
mechanisms.

⚫ Long term 
learning.

Learning
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Bayesian Modeling of Cerebral Information Processing

Causal functional networks [Pearl, 99] 

◼ a set of random variables (nodes).
◼ a set of deterministic functions (edges).

If A and C are B’s causes, then:
B  = fB(A, C, uB)

Where uB is a random variable standing for the error, and fB

can be a non-linear function.
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Bayesian Modeling of Cerebral Information Processing

Causal functional networks [Pearl, 99] 
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Conditions with 
deterministic functions

Non-linear relationships

Learning mechanisms

Causality

Explicit representation of 
time
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Bayesian Modeling of Cerebral Information Processing

Information representation

In order to agree with the categorization constraint, the 
propagated and computed information is a couple 
(Magnitude, Category).

◼ category: identity of 
the concerned neuronal 
population (what ?).

◼ magnitude: intensity 
of the response (How 

much ?).

A link 
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information
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information

Firing 
neuron’s axon

Resting 
neuron’s axon

Two different categories of 
information, the same 
magnitude.
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Bayesian Modeling of Cerebral Information Processing

Measure of the imprecision 

Two applicable solutions:

◼ to use a mean value and a dispersion measure to 
represent magnitude: XM = (mx, x).

◼ or to use the possibilistic theory instead of the 
probabilistic one.

Advantages of the probabilities:
◼ more mathematical tools.
◼ statistical processing of neuroimaging data.
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Bayesian Modeling of Cerebral Information Processing

An example of application

The formalism has been used to approach results obtained 
experimentally (PET) by Fox & Raichle [1984].
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Bayesian Modeling of Cerebral Information Processing

An example of application

Another model, based on Ruff’s experiment (fMRI) [Ruff, 
2000].
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Discussion & perspectives

◼ Applicability of our formalism.

◼ Possible interventions in the model (previous 
example).

◼ Processing of the conditions: two possible choices : to 
process all the cases (NP-hard) or only the most probable 
ones (loss of information).

◼ Using normal random variables: difficulties to combine 
non-linearly this type of variables (the normality property 
is lost).


