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Bayesian Modeling of Cerebral Information Processing

MITIC presentation

m Objective of the M.I.T.I.C. project (Integrated Modeling of
Cerebral Information Processing): to determine the links
between the brain’s physical structure and its functioning,
at an integrated level.
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Simulation

Stimulation Perception Information Observed
Of the stimuli processing activity
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MITIC specifications

A CAUSAL MODEL

mBiological justification (the transmission of the cerebral

signal is causal).
Wernicke
area

t+1 = Temporal
consistency.

m Spatial and temporal
adjacency.

Primary
Auditory

cortex = Statistical regularity.

= Experimental/medical justification (the hypotheses
are expressed in terms of causes and effects).
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MITIC specifications

A FUNCTIONAL AND STRUCTURAL MODEL
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We need both »
representation levels in 3
order to link the brain’s 2
structure and its »
functioning. »
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structural level 1 Functional level

Large-scale network of cerebral regions implements high-
level cognitive functions.
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Constraints on the formalism

e The brain is a Causality
dynar"" ° “'Q,tgm-

.,\m B )3 II‘ Temporality
e Cerebral I Conditioning
relationships may
eHabituation “‘ Non-linearity

mechanisms.

e Long term
learning.
Imaging data.

e The brain can
react differently
(uncertainty) to
the same stimuli.

Learning
Categorization

Uncertainty and/or
Imprecision
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Causal functional networks ppearl, 991

m a set of random variables (nodes).
m a set of deterministic functions (edges).

If A and C are B’s causes, then:
B:= fB(AI C/ uB)

Where ug is a random variable standing for the error, and fg
can be a non-linear function.
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Causal functional networks ppearl, 991

Causal relationships

Explicit representation of
time

Conditions with
deterministic functions

Non-linear relationships

Learning mechanisms

Manipulation of symbolic
values

Measure of uncertainty
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Causality
Temporality
Conditioning
Non-linearity

Learning

Categorization

Uncertainty and/or
imprecision
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Information representation

In order to agree with the categorization constraint, the
propagated and computed information is a couple
(Magnitude, Category).

A link Category 1
] : information
= category: identity of s(::fe
the concerned neuronal XUARR
1 - Category 2
population (what ?). bundle) information

. Firing <:> Resting
neuron’s axon neuron’s axon

Two different categories of
information, the same
magnitude.

= magnitude: intensity
of the response (How
much ?).
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Measure of the imprecision

Two applicable solutions:

m to use a mean value and a dispersion measure to
represent magnitude: X,, = (m,, o,).

m or to use the possibilistic theory instead of the
probabilistic one.

Advantages of the probabilities:
m more mathematical tools.
m statistical processing of neuroimaging data.
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An example of application

The formalism has been used to approach results obtained
experimentally (PET) by Fox & Raichle [1984].

stimulus g visual cortex thalamus

ARCBF% (PET scan values)

Scale : s
Scale : M Fox & Raichle
— > functional link B MITIC

== Structural link
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An example of application

Another model, based on Ruff’s experiment (fMRI) [Ruff,

2000].

stimulus right temporal superior gyrus
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Discussion & perspectives

m Applicability of our formalism.

m Possible interventions in the model (previous
example).

m Processing of the conditions: two possible choices : to
process all the cases (NP-hard) or only the most probable
ones (loss of information).

m Using normal random variables: difficulties to combine
non-linearly this type of variables (the normality property
is lost).
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