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Abstract

In this paper we compare wavelet Bayesian rules taking into account the sparsity of
the signal with priors which are combinations of a Dirac mass with a standard distribution
properly normalized. To perform these comparisons, we take the maxiset point of view:
i. e. we consider the set of functions which are well estimated (at a prescribed rate) by
each procedure. We especially consider the standard cases of Gaussian and heavy-tailed
priors. We show that if heavy-tailed priors have extremely good maxiset behavior compared
to traditional Gaussian priors, considering large variance Gaussian priors (LVGP) leads
to equally successful maxiset behavior. Moreover, these LVGP can be constructed in an
adaptive way. We also show, using comparative simulations results that large variance
Gaussian priors have very good numerical performances, confirming the maxiset prediction,
and providing the advantage of a high simplicity from the computational point of view.

1 Introduction

Bayesian techniques have now become very popular to estimate signals decomposed on wavelet
bases. Many authors have built Bayes estimates showing, from the practical point of view, im-
pressive properties especially to estimate inhomogeneous signals. Most of the simulations show
that these procedures seriously outperform classical procedures and in particular thresholding
procedures. See for instance, [Chipman et al., 1997], [Abramovich et al., 1998], [Clyde et al., 1998],
[Johnstone and Silverman, 1998], [Vidakovic, 1998], [Clyde and George, 1998], or [Clyde and George, 2000]
who discussed the choice of the Bayes model to capture the sparsity of the signal to be esti-
mated and the choice of the Bayes rule (and among others, posterior mean or median). We also
refer the reader to the very complete review paper of [Antoniadis et al., 2001] which provide
descriptions and comparisons of various Bayesian wavelet shrinkage and wavelet thresholding
estimators.

∗Key Words and Phrases: minimax, maxiset, nonparametric estimation, Bayesian methods.
AMS 2000 Subject Classification: 62G05, 62G07, 62G20.
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To capture the sparsity of the signal, the most common models introduce priors on the wavelet
coefficients of the following form:

βjk ∼ πj,εγj,ε + (1− πj,ε)δ(0), (1)

where 0 ≤ πj,ε ≤ 1, δ(0) is a point mass at zero and the βjk’s are independent. The nonzero
part of the prior γj,ε is assumed to be the dilation of a fixed symmetric, positive, unimodal and
continuous density γ:

γj,ε(βjk) =
1
τj,ε

γ

(
βjk
τj,ε

)
,

where the dilation parameter τj,ε is positive. The parameter πj,ε can be interpreted as the
proportion of non negligible coefficients. We also introduce the parameter

wj,ε =
πj,ε

1− πj,ε
.

When the signal is sparse, most of the wj,ε’s are small. These priors or very close forms have
extensively been used by the authors cited above and especially by [Abramovich et al., 2004],
[Johnstone and Silverman, 2004a] and [Johnstone and Silverman, 2004b]. To complete the def-
inition of the prior model, we have to fix the hyperparameters τj,ε and wj,ε. Finally the density
γ will play a very important role. The most popular choice for γ is the normal density. It is also
the density giving rise to the easiest procedures from a computational point of view. However
heavy-tailed priors have proved also to work extremely well.
From the minimax point of view, recent works have studied these Bayes procedures and it has
been proved that Bayes rules can achieve optimal rates of convergence. [Abramovich et al., 2004]
investigated theoretical performance of the procedures introduced by [Abramovich et al., 1998],
considering priors of the form quoted above with some particular choice of the hyperparam-
eters. For the mean squared error, they proved that the non adaptive posterior mean and
posterior median achieve optimal rates up to a logarithmic factor on the Besov spaces Bsp,q
when p ≥ 2. When p < 2, these estimators show less impressive properties since they only be-
have as linear estimates. As [Abramovich et al., 2004], [Johnstone and Silverman, 2004a] and
[Johnstone and Silverman, 2004b] investigated minimax properties of Bayes rules, with priors
based on heavy-tailed distributions and they considered an empirical Bayes setting. In this
case, the posterior mean and median turn out to be optimal for the whole scale of Besov spaces.
Other more sophisticated results concerning minimax properties of Bayes rules have been es-
tablished by [Zhang, 2002].

Hence, summarizing the results cited above, the minimax results seem to indicate that Bayes
procedures have comparable results to thresholding estimates at least on the range of Besov
spaces, but also seem to show a preference to heavy-tailed priors.

The main goal of the paper is to push a little further this type of comparison on Bayesian
procedures by adopting the maxiset point of view. In particular, since Gaussian priors have
very interesting properties from the computational point of view, one of our motivations was
to answer the following question: Are Gaussian priors always outperformed by heavy-tailed
priors ? And quite happily, one of our results will be to show that if some Bayesian procedures
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using Gaussian priors behave quite unwell (in terms of maxisets as it was the case in terms
of minimax rates) compared to those with heavy tails, it is nevertheless possible to attain a
very good maxiset behavior, among procedures based on Gaussian priors. We prove that this
can only be achieved under the condition that the hyperparameter τj,ε is “large”. Under this
assumption, the density γj,ε is then more spread around 0, mimicking in some ways the behavior
of a distribution with heavy-tails. Moreover, we prove that these procedures can be built in an
adaptive way: their construction does not depend on the specified regularity or sparsity of the
function at hand.

As these Bayesian procedures with large variance Gaussian priors have not been much
studied in the literature yet, we investigated their behavior also from a practical point of view
and show a comparative simulations study with many standard and Bayesian procedures of
the literature. As can be seen in our last section, such estimators turn out to have excellent
numerical performances.

Let us only recall here that the maxiset point of view consists in determining the set of all
functions which can be estimated at a specified rate of convergence for a specified procedure.
Exhibiting maxisets of different estimation rules allow to say that a procedure is more powerful
than another one if its maxiset is larger.

The results that have been obtained up to now, using the maxiset point of view, are very
promising since they generally show that the maxisets of well-known procedures are spaces
which are well understandable and easily interpretable sets. They have the advantage of being
generally less pessimistic and seem also to enjoy the important advantage of giving theoretical
claims which are often closer to the practical (simulations) situation, than other theoretical
results (such as minimax rates).

The following section details the model and Bayesian rules we are going to consider in the
paper. The third section recalls the definition of maxisets, and briefly details some results
obtained in the area, to allow a comparison with the results obtained later for Bayesian rules.
The forth section investigates maxisets of standard Bayesian rules: first the ’small variance’
Gaussian priors, then the heavy-tailed priors. The fifth section is devoted to large variance
Gaussian priors, and the last section details the simulations results.

2 Model and Bayesian rules

For sake of simplicity, we will consider a white noise setting: Xε(.) is a random measure satisfying
on [0, 1] the following equation:

Xε(dt) = f(t)dt+ εW (dt)

where 0 < ε < 1 is the noise level and f is a function defined on [0, 1], W (.) is a Brownian
motion on [0, 1]. As usual, to connect with the standard framework of sequences of experiments
we put ε = n−1/2.
{ψjk(·), j ≥ −1, k ∈ Z} is a compactly supported wavelet basis of L2([0, 1]), such that any
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f ∈ L2([0, 1]) can be represented as:

f =
∑
j≥−1

∑
k

βjkψjk

where βjk = (f, ψjk)L2 . As usual, ψ−1k denote the translations of the scaling function, and ψjk,
for j ≥ 0 are the dilations and translations of the wavelet function. The model is reduced to
a sequence space model if we put: yjk = Xε(ψjk) =

∫
fψjk + εZjk where Zjk are i.i.d N (0, 1).

Let us note that at each level j ≥ 0, the number of non-zero wavelet coefficients is smaller than
or equal to 2j + lψ − 1, where lψ is the maximal size of the supports of the scaling function and
the wavelet. So, there exists a constant Sψ such that at each level j ≥ −1, there are less than
or equal to Sψ × 2j coefficients to be estimated. In the sequel, we shall not distinguish between
f and β = (βjk)jk its sequence of wavelet coefficients.

As explained in the introduction, we consider the following priors: The βjk’s are independent
random variables with the following distribution,

βjk ∼ πj,εγj,ε + (1− πj,ε)δ(0), (2)

γj,ε(βjk) =
1
τj,ε

γ

(
βjk
τj,ε

)
(3)

wj,ε =
πj,ε

1− πj,ε

where 0 ≤ πj,ε ≤ 1, δ(0) is the Dirac mass at 0, γ is a fixed symmetric, positive, unimodal and
continuous density, τj,ε is positive.

2.1 Gaussian priors

Let us consider the case where γ is the Gaussian density, which is the most classical choice.
In this case, we easily derive the Bayes rules of βjk associated with the l1-loss and the l2-loss,
respectively the ’a posteriori’ median and mean:

β̆jk = Med(βjk|yjk) = sign(yjk) max(0, ξjk), (4)

β̃jk = E(βjk|yjk) =
bj

1 + ηjk
yjk, (5)

where,

ξjk = bj |yjk| − ε
√
bjΦ−1

(
1 + min(ηjk, 1)

2

)
,

bj =
τ2
j,ε

ε2 + τ2
j,ε

,

ηjk =
1
wj,ε

√
ε2 + τ2

j,ε

ε
exp

(
−

τ2
j,εy

2
jk

2ε2(ε2 + τ2
j,ε)

)
,

and Φ is the normal cumulative distributive function.
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To study the properties of such rules, it is interesting to make use of their shrinkage proper-
ties. Let us recall that β̂ is said to be a shrinkage rule if yjk −→ β̂jk is antisymmetric, increasing
on (−∞,+∞) and

0 ≤ β̂jk ≤ yjk, ∀ yjk ≥ 0.

Both rules quoted above obviously are shrinkage rules. We also note that β̆jk is zero whenever
yjk falls in an implicitly defined interval [−λj,ε, λj,ε].
We will first consider the following very classical form for the hyperparameters:

τ2
j,ε = c12−αj , πj,ε = min(1, c22−bj), (6)

where c1, c2, α and b are positive constants. This particular form was suggested by [Abramovich et al., 1998]
and then used by [Abramovich et al., 2004]. A nice interpretation was provided by these au-
thors who explained how α, b, c1 and c2 can be derived for applications.
Our second part will be concerned with large variance rules. In this case, we will consider
hyperparameters of the form

τj,ε = τ(ε) and wj,ε = w(ε) (7)

with specified conditions on the functions τ and w.

Remark 1. An alternative for eliciting these hyperparameters consists in using empirical
Bayes methods and EM algorithm (see [Clyde and George, 1998], [Clyde and George, 2000] or
[Johnstone and Silverman, 1998]).

2.2 Heavy-tailed priors

For sake of comparison, we will also consider priors where the density γ is no longer Gaussian.
We assume that there exist two positive constants M and M1 such that

sup
β≥M1

∣∣∣∣ d
dβ

log γ(β)
∣∣∣∣ = M <∞. (8)

The hypothesis (8) means that the tails of γ have to be exponential or heavier. Indeed, under
(8), we have:

∀ u ≥M1, γ(u) ≥ γ(M1) exp(−M(u−M1)).

In the minimax approach of [Johnstone and Silverman, 2004a] and [Johnstone and Silverman, 2004b],
the priors also verified (8). To complete the prior model, we assume that:

τj,ε = ε, wj,ε = w(ε) → 0, as ε→ 0 (9)

and w a positive continuous function. Using these assumptions, the following proposition de-
scribes the properties of the posterior median and mean:

Proposition 1. Under the conditions (8) and (9) the estimates β̆HTjk = Med(βjk|yjk) and
β̃HTjk = E(βjk|yjk) are shrinkage rules. Moreover, β̆HTjk is a thresholding rule: there exists t̆ε
such that

β̆HTjk = 0 ⇐⇒ |yjk| ≤ t̆ε,
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where the threshold t̆ε verifies for ε small enough, t̆ε ≥ ε
√

2 log(1/w(ε)) and

lim
ε→0

t̆ε

ε
√

2 log(1/w(ε))
= 1.

Proof: The first point has been established by [Johnstone and Silverman, 2004a] and
[Johnstone and Silverman, 2004b]. The second point is an immediate consequence of Proposi-
tion 3 of [Rivoirard, 2003].

3 Maxisets and associated functional spaces

Let us first briefly recall the definition of maxisets. We consider a sequence of models En =
{Pnθ , θ ∈ Θ}, where the Pnθ ’s are probability distributions on the measurable spaces Ωn, and Θ is
the set of parameters. We also consider a sequence of estimates q̂n of a quantity q(θ) associated
with this sequence of models, a loss function ρ(q̂n, q(θ)), and a rate of convergence αn tending
to 0. Then, we define the maxiset associated with the sequence q̂n, the loss function ρ, the
rate αn and the constant T as the following set:

MS(q̂n, ρ, αn)(T ) = {θ ∈ Θ, sup
n

Enθρ(q̂n, q(θ))(αn)−1 ≤ T}

The focus in this domain has mainly been on the nonparametric situation. Let us briefly
mention the differences with the minimax point of view. In this latter, we fix a set of functions
and look at the worst performances of estimators. Here, instead of a priori fixing a (functional)
set such as a Hölder, Sobolev or Besov ball, we choose to settle the problem in a wider context:
The parameter set Θ can be very large, such as the set of bounded, measurable functions. Then,
the maxiset is associated with the procedure in a more genuine way since it only depends on
the model and the estimation rule at hand.

As explained more in details later in this section, there already exist very interpretable results
about maxisets. For instance, it has been established in [Kerkyacharian and Picard, 1993] that
the maxisets of linear kernel methods are in fact Besov spaces under fairly reasonable conditions
on the kernel, whereas the maxisets of thresholding estimates (see [Cohen et al., 2001]) are
Lorentz spaces reflecting extremely well the practical observation that wavelet thresholding
performs well when the number of wavelet coefficients is small. It has also been observed (see
[Kerkyacharian and Picard, 2002]) that there is a deep connection between oracle inequalities
and maxisets, in the sense that verifying an oracle inequality is equivalent to proving that the
maxiset of the procedure automatically contains a minimal set associated to the oracle.

Although both settings seem quite different, still there is a deep parallel between maxisets
and minimax theory. For instance, facing a particular situation, the standard procedure to
prove that a set B is the maxiset usually consists (exactly as in minimax theory ) in two steps:
first showing that B ⊂MS(q̂n, ρ, αn)(T ), but this is generally obtained using similar arguments
as for proving upper bound inequalities in minimax setting since it is simply needed to prove
that if θ ∈ B then Enθρ(q̂n, q(θ)) ≤ Tαn. The gain of the maxiset setting is probably that the
second inclusion MS(q̂n, ρ, αn)(T ) ⊂ B is often much simpler than proving lower bound for
minimax rates over complicated spaces.

6



3.1 Functional spaces

In this paper, for simplicity, we shall restrict to the case where ρ is the square of the L2 norm,
even though a large majority of the results can be extended to more general losses. For this
study, we need to introduce the following classes of functions which are of typical use in maxiset
theory.

3.1.1 Besov and weak Besov spaces

Here, we give definitions of the Besov and weak Besov spaces depending on the wavelet basis.
However, as is established in [Meyer, 1990] and [Cohen et al., 2001], most of them also have
different definitions proving that this dependence in the basis is not crucial at all.

Definition 1. Let s > 0 and R > 0. A function f =
∑+∞

j=−1

∑
k βjkψjk ∈ L2([0, 1]) belongs to

the Besov ball Bsp,∞(R), if and only if:[
sup
j≥−1

2j(s+
1
2
− 1

p
)p
∑
k

|βjk|p
]1/p

≤ R.

Note that, when p = 2, f belongs to Bs2,∞ if and only if:

sup
J≥−1

22Js
∑
j≥J

∑
k

β2
jk < +∞. (10)

This characterization is often used in the sequel. Recall that the class of Besov spaces Bsp,∞ pro-
vides a useful tool to classify wavelet decomposed signals in function of their regularity and spar-
sity properties. See [Donoho et al., 1995], [Donoho and Johnstone, 1994] or [Johnstone, 1994].
Roughly speaking, regularity increases when s increases whereas sparsity increases when p de-
creases. Especially, the spaces with indices p < 2 are of particular interest since they describe
very wide classes of inhomogeneous but sparse functions. To model sparsity, a very convenient
and natural tool consists in introducing the following particular class of Lorentz spaces that are
in addition directly connected to the estimation procedures considered in this paper.

Definition 2. Let 0 < r < 2 and R > 0. A function f =
∑+∞

j=−1

∑
k βjkψjk ∈ L2([0, 1]) belongs

to the weak Besov ball Wr(R) if and only if:sup
λ>0

λr−2
∑
j≥−1

∑
k

β2
jkI{|βjk| ≤ λ}

1/2

≤ R.

It is not difficult to prove (see [Cohen et al., 2001]) that

f ∈Wr ⇔ sup
λ>0

λr
∑
j

I{|βjk| > λ} <∞,

We have, in particular,

sup
λ>0

λr
∑
j,k

I{|βjk| > λ} ≤ 22−r

1− 2−r
sup
λ>0

λr−2
∑
j≥−1

∑
k

β2
jkI{|βjk| ≤ λ}, (11)
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which shows the natural relationship between sparsity and weak Besov spaces and the con-
nection with the regular Besov spaces introduced above. If ( denotes the strict inclusion be-
tween two functional spaces, the previous embeddings are not difficult to show (see for instance
[Meyer, 1990], [Kerkyacharian and Picard, 2002] or [Rivoirard, 2004a]):

Bsp,∞ ( Bs2,∞ ( W 2
1+2s

, if s > 0, p > 2, (12)

Bsp,∞ ( W 2
1+2s

, if s > 0, p < 2. (13)

3.2 First connections between the spaces and maxiset results

In the present setting of white noise model, [Rivoirard, 2004a] proved that, the maxisets of lin-
ear estimates for polynomial rates of convergence of the form ε4s/(1+2s) are Besov spaces Bs2,∞. A
similar result in the context of kernel estimates was established in [Kerkyacharian and Picard, 1993].
If we introduce the classical hard and soft thresholding rules:

f̂T =
∑

−1≤j<jε

∑
k

yjkI{|yjk| > mtε}ψjk,

f̂S =
∑

−1≤j<jε

∑
k

(
1− mtε

|yjk|

)
I{|yjk| > mtε}yjkψjk,

with m a positive constant, jε ∈ N such that

tε = ε
√

log(1/ε) (14)
2−jε ≤ t2ε < 21−jε , (15)

(which will be denoted in the sequel by 2jε ∼ t−2
ε ).

Under mild conditions, [Kerkyacharian and Picard, 2000] proved:

MS(f̂T , ‖.‖2
2, (ε

√
log(1/ε))4s/(1+2s)) = Bs/(2s+1)

2,∞ ∩W 2
2s+1

.

A similar result is obtained for the soft thresholding rule f̂S .

Remark 2. The embeddings mentioned above ((12) and (13)) give clear informations about the
respective performances of linear procedures and thresholding rules, which have been extensively
confirmed by practical results. In particular, one can observe that the spaces Bsp,∞ for p < 2 are
never included into the maxisets of the linear procedures (Bs2,∞), while they are included into

the maxisets of thresholding procedures (Bs/(2s+1)
2,∞ ∩W 2

2s+1
) under fairly wide conditions.

Notation: If ⊂ denotes the inclusion between two spaces and for A, a given space, the
following notations:

MS(f̂ε, ‖.‖2
2, λε) ⊂ A

(resp.) A ⊂ MS(f̂ε, ‖.‖2
2, λε)
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will mean in the sequel

∀M ∃M ′, MS(f̂ε, ‖.‖2
2, λε)(M) ⊂ A(M ′)

(resp.) ∀M ′ ∃M, A(M ′) ⊂ MS(f̂ε, ‖.‖2
2, λε)(M),

where M and M ′ respectively denote the radii of balls of MS(f̂ε, ‖.‖2
2, λε) and A. 3

4 Maxisets results for ’heavy-tailed’ and ’small variance Gaus-
sian’ priors

4.1 Maxisets results for small variance Gaussian priors

Let us consider now, the Bayesian rules with Gaussian priors as explained in section 2.1, and
especially those verifying conditions (6), as introduced in [Abramovich et al., 1998] and studied
in [Abramovich et al., 2004].

Theorem 1. With the previous choice for the hyperparameters, for s > 0 and β0 ∈ {β̆, β̃},

• α > 2s+ 1 implies Bsp,∞ 6⊂MS(β0, ‖.‖2
2, t

4s/(1+2s)
ε ) for any 1 ≤ p ≤ ∞,

• α = 2s+ 1 implies Bsp,∞ 6⊂MS(β0, ‖.‖2
2, t

4s/(1+2s)
ε ) if p < 2.

Remark 3. Theorem 1 is established for the rate t4s/(1+2s)
ε but it can be generalized for any rate

of convergence of the form ε4s/(1+2s)(log(1/ε))m, with m ≥ 0. The results established in Theorem
1 (if we for example refer to remark 2) proved that the performances obtained by these rules
are obviously outperformed by thresholding rules. It is worthwhile to notice in addition, that
their behavior are (just like linear procedures) highly non robust regarding the tuning constant
α. The behavior of these rules turns out to be very comparable to linear rule as is confirmed in
Appendix where more details about the maxisets of these procedure are given.

The proof of Theorem 1 is based on the following result:

Proposition 2. If β ∈MS(β0, ‖.‖2
2, t

4s/(1+2s)
ε ), then there exists a constant C such that, for ε

small enough: ∑
j,k

β2
jkI{τ2

j,ε ≤ ε2}I{|βjk| > tε} ≤ Ct
4s

1+2s
ε . (16)

Proof of Proposition 2: Here we shall distinguish the cases of the posterior mean and median.
The posterior median can be written as follows:

β̆jk = sign(yjk)(bj |yjk| − g(ε, τj,ε, yjk)),
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with 0 ≤ g(ε, τj,ε, yjk) ≤ bj |yjk|.
Let us assume that bj |yjk − βjk| ≤ (1− bj)|βjk|/2 and τ2

j,ε ≤ ε2, so bj ≤ 1/2.
First, let us suppose that yjk ≥ 0 so β̆jk ≥ 0. If βjk ≥ 0, then

|β̆jk − βjk| = |bj(yjk − βjk)− (1− bj)βjk − g(ε, τj,ε, yjk)|
= (1− bj)βjk − bj(yjk − βjk) + g(ε, τj,ε, yjk)

≥ 1
2
(1− bj)βjk

≥ 1
4
βjk.

If βjk ≤ 0, then

|β̆jk − βjk| ≥
1
4
|βjk|.

The case yjk ≤ 0 is handled by using similar arguments and the particular form of the posterior
median. So, we obtain:

E(β̆jk − βjk)2I{τ2
j,ε ≤ ε2} ≥ 1

16
β2
jk P(bj |yjk − βjk| ≤ (1− bj)|βjk|/2)I{τ2

j,ε ≤ ε2}

≥ 1
16
β2
jk P(|yjk − βjk| ≤ |βjk|/2)I{τ2

j,ε ≤ ε2}

≥ 1
16
β2
jk(1− P(|yjk − βjk| > |βjk|/2))I{τ2

j,ε ≤ ε2}.

Using the large deviations inequalities for the Gaussian variables, we obtain for ε small enough:

E(β̆jk − βjk)2I{τ2
j,ε ≤ ε2}I{|βjk| > tε} ≥ 1

16
β2
jk(1− P(|yjk − βjk| > tε/2))I{τ2

j,ε ≤ ε2}I{|βjk| > tε}

≥ 1
32
β2
jkI{τ2

j,ε ≤ ε2}I{|βjk| > tε}.

This implies (16).
For the posterior mean, we have:

E(β̃jk − βjk)2 = E
(

bj
1 + ηjk

(yjk − βjk)− (1− bj
1 + ηjk

)βjk

)2

≥ 1
4

E
(

(1− bj
1 + ηjk

)βjk

)2

I

{
bj

1 + ηjk
|yjk − βjk| ≤ (1− bj

1 + ηjk
)|βjk|/2

}
.

So, we obtain:

E(β̃jk − βjk)2I{τ2
j,ε ≤ ε2} ≥ 1

16
β2
jkP(|yjk − βjk| ≤ |βjk|/2)I{τ2

j,ε ≤ ε2}

≥ 1
16
β2
jk(1− P(|yjk − βjk| > |βjk|/2))I{τ2

j,ε ≤ ε2}.
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Finally, using similar arguments as those used for the posterior median, we obtain (16). Propo-
sition 2 is proved. 2

Proof of Theorem 1: Let us first investigate the case α > 2s + 1. Let us take β such
that all the βjk’s are zero, except 2j coefficients at each level j that are equal to 2−j(s+

1
2
).

Then, β ∈ Bsp,∞. Since τ2
j,ε = c12−jα, if we put 2Jα ∼ c

1
α
1 ε

− 2
α and 2Js ∼ t

−2
2s+1
ε , we observe that

asymptotically Jα < Js. So, for ε small enough:∑
j,k

β2
jkI{τ2

j,ε ≤ ε2}I{|βjk| > tε} =
∑

Jα≤j<Js

2−2js

≥ cε
4s
α ,

with c a positive constant. Using Proposition 2, β does not belong to MS(β0, ‖.‖2
2, t

4s/(1+2s)
ε ).

Let us then investigate the case α = 2s + 1. Let us take β such that all the βjk’s are zero,

except 1 coefficient at each level j that is equal to 2−j(s+
1
2
− 1

p
)
. Then, β ∈ Bsp,∞. Similarly, we

put 2Jα ∼ c
1
α
1 ε

− 2
α and 2J̃s ∼ t

−1/(s+ 1
2
− 1

p
)

ε , we observe that asymptotically Jα < J̃s. So, for ε
small enough: ∑

j,k

β2
jkI{τ2

j,ε ≤ ε2}I{|βjk| > tε} =
∑

Jα≤j<J̃s

2−2j(s+ 1
2
− 1

p
)

≥ c̃ε
4(s+ 1

2
− 1

p
)/α
,

with c̃ a positive constant. Using Proposition 2, β does not belong to MS(β0, ‖.‖2
2, t

4s/(1+2s)
ε ),

since p < 2. 2

4.2 Heavy-tailed priors

Let us consider now the case of priors verifying the condition (8) and (9). If we set,

f̆HTε =
∑
j<jε

∑
k

β̆HTjk ψjk, β̆HTjk = Med(βjk|yjk), (17)

and
f̃HTε =

∑
j<jε

∑
k

β̃HTjk ψjk, β̃HTjk = E(βjk|yjk), (18)

where jε is such that 2jε ∼ t−2
ε , using results of Proposition 1, we expect these procedures to

mimic classical thresholding rules from the maxiset point of view, at least when the posterior
median is considered. Indeed Theorems 2, 3, 4 and 5 established by [Rivoirard, 2003] lead to
the following result.
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Theorem 2. Let s > 0. We suppose that there exist two positive constants ρ1 and ρ2 such that
for ε > 0 small enough,

ερ1 ≤ w(ε) ≤ ερ2 .

Then, we have:

MS(f0
ε , ‖.‖2

2, (ε
√

log(1/ε))4s/(1+2s)) = Bs/(2s+1)
2,∞ ∩W 2

2s+1
,

where f0
ε ∈ {f̃HTε , f̆HTε }, as soon as ρ2 ≥ 16 for the posterior median and ρ2 ≥ 64 for the

posterior mean.

So, the performances achieved by adaptive Bayesian procedures based on heavy-tailed prior
densities are similar to those of classical non linear procedures in the maxiset framework. In
particular, they obviously outperform the previous small variance Bayesian procedures from the
maxiset point of view.

5 Gaussian priors with large variance

The previous subsection has shown the power of the Bayes procedures built from heavy-tailed
prior models in the maxiset setting. The goal of this section is to answer the following questions.
Are heavy-tailed priors unavoidable? Is it possible to build Gaussian priors leading to procedures
with maxiset properties comparable to the heavy-tailed methods discussed above ? Moreover,
can we imagine to contruct these procedures in such a way that it automatically adapts to the
regularity of the function (adaptivity property). In other words, if γ is the Gaussian density,
does there exist an adaptive choice of the hyperparameters πj,ε and wj,ε such that

MS(f0
ε , ‖.‖2

2, (ε
√

log(1/ε))4s/(1+2s)) = Bs/(2s+1)
2,∞ ∩W 2

2s+1
.

This is a very important issue since calculation using Gaussian priors are mostly direct and
obviously much easier than heavy-tailed priors. The answers are provided by the following
theorem 3.
Let us consider the following estimates:

f̆LVε =
∑
j<jε

∑
k

β̆jkψjk, β̆jk = Med(βjk|yjk), (19)

and
f̃LVε =

∑
j<jε

∑
k

β̃jkψjk, β̃jk = E(βjk|yjk), (20)

(Recall that the posterior mean and median are given in (5) and (4)), with the following choice
of hyperparameters

τj,ε = τ(ε) and wj,ε = w(ε) (21)

12



Theorem 3. We consider the prior model (1), where γ is the Gaussian density. We assume
that τj,ε = τ(ε) and wj,ε = w(ε) are independent of j with w a continuous positive function. We
consider f̆ε and f̃ε introduced in (19) and (20). If

1 + ε−2τ(ε)2 = t−1
ε

and there exist q1 and q2 such that for ε small enough

εq1 ≤ w(ε) ≤ εq2 ,

we have:
MS(f0

ε , ‖.‖2
2, (ε

√
log(1/ε))4s/(1+2s)) = Bs/(2s+1)

2,∞ ∩W 2
2s+1

,

where f0
ε ∈ {f̃ε, f̆ε} as soon as q2 > 63/2 for the posterior median and q2 ≥ 65/2 for the

posterior mean.

Unlike the previous choice ( τ2
j,ε = ε2 or τ2

j,ε = 2−jα), here we impose a “larger” variance. It
is the key point of the proof of Theorem 3. In a sense, we re-create the heavy tails by increasing
the variance. The proof of Theorem 3 essentially relies on the following proposition.

Proposition 3. Let s > 0 and $jk(ε) a sequence of random weights lying in [0, 1]. We assume
that there exist positive constants c, m and K($) such that for any ε > 0,

β̂(ε) = ($jk(ε)yjk)jk

is a shrinkage rule verifying for any ε,

$jk(ε) = 0, a.e. ∀ j ≥ jε with 2jε ∼ t−2
ε , ∀ k, (22)

|yjk| ≤ mtε ⇒ $jk(ε) ≤ ctε, a.e. ∀ j < jε, ∀ k, (23)

(1−$jk(ε)) ≤ K($)
(

tε
|yjk|

+ tε

)
, a.e. ∀ j < jε, ∀ k. (24)

and let
f̂ε =

∑
j<jε

∑
k

$jk(ε)yjkψjk.

Let f ∈ B
s

1+2s

2,∞ ∩W 2
1+2s

and let us note

‖f‖2

B
s

1+2s
2,∞

= sup
J≥−1

22Js
∑
j≥J

∑
k

β2
jk <∞,

and
‖f‖2

W 2
1+2s

= sup
λ>0

λr−2
∑
j≥−1

∑
k

β2
jkI{|βjk| ≤ λ} <∞.

13



Then, as soon as m ≥ 8, we have the following inequality:

E‖f̂ε − f‖2
2 ≤

[
4c2Sψ + 4(1 +K($)2)‖f‖2

2 + 4
√

3Sψ + 2(2
4s

1+2s + 2
−4s
1+2s )m

4s
1+2s ‖f‖2

W 2
1+2s

+

+ 8m−2/1+2s

(1−2−2/1+2s)
(1 + 8K($)2)‖f‖2

W 2
1+2s

+ ‖f‖2

B
s

1+2s
2,∞

]
t

4s
1+2s
ε ,

and
B

s
1+2s

2,∞ ∩W 2
1+2s

⊂MS(f̂ε, ‖.‖2
2, t

4s/(1+2s)
ε ).

Proof of Proposition 3: Using (22), we have

E‖f̂ε − f‖2
2 = E‖

∑
j<jε,k

($jk(ε)yjk − βjk)ψj,k‖2
2 +

∑
j≥jε,k

β2
jk.

The second term is a bias term bounded by t
4s

1+2s
ε ‖f‖2

B
s

1+2s
2,∞

.

We split E
∑

j<jε,k
($jk(ε)yjk − βjk)2 into 2(A+B) with

A = E
∑
j<jε,k

[$jk(ε)2(yjk − βjk)2 + (1−$jk(ε))2β2
jk] I{|yjk| ≤ mtε},

B = E
∑
j<jε,k

[$jk(ε)2(yjk − βjk)2 + (1−$jk(ε))2β2
jk] I{|yjk| > mtε}.

Again, we split A into A1 +A2, and using (23)

A1 = E
∑
j<jε,k

$jk(ε)2(yjk − βjk)2 I{|yjk| ≤ mtε}

≤ c2Sψ2jεt2εε
2

≤ 2c2Sψt2ε .

A2 = E
∑
j<jε,k

(1−$jk(ε))2β2
jk I{|yjk| ≤ mtε}

≤ E
∑
j<jε,k

β2
jk I{|yjk| ≤ mtε}[I{|βjk| ≤ 2mtε}+ I{|βjk| > 2mtε}]

≤ (2mtε)4s/1+2s‖f‖2
W 2

1+2s

+
∑
j<jε,k

β2
jkP(|βjk − yjk| ≥ mtε)

≤ (2mtε)4s/1+2s‖f‖2
W 2

1+2s

+ ‖f‖2
2
εm

2/2

≤ (2mtε)4s/1+2s‖f‖2
W 2

1+2s

+ ‖f‖2
2
t2ε .
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We have used here the concentration property of the Gaussian distribution and the fact that
m2 ≥ 4.

B := B1 +B2

= E
∑
j<jε,k

[$jk(ε)2(yjk − βjk)2 + (1−$jk(ε))2β2
jk] I{|yjk| > mtε}[I{|βjk| ≤ mtε/2}

+I{|βjk| > mtε/2}].

For B1 we use the Schwartz inequality:

E(yjk − βjk)2I{|yjk − βjk| > mtε/2} ≤ (P(|yjk − βjk| > mtε/2))1/2(E(yjk − βjk)4)1/2.

Now, observing that E(yjk − βjk)4 = 3ε4 and that P(|yjk − βjk| > mtε/2) ≤ ε
m2

8 , we have for
m2 ≥ 32:

B1 ≤
√

3
∑
j<jε,k

ε2I{|βjk| ≤ mtε/2}ε
m2

16 +
∑
j<jε,k

β2
jkI{|βjk| ≤ mtε/2}

≤ 2
√

3Sψt2ε +
(m

2
tε

)4s/1+2s
‖f‖2

W s
1+2s

.

For B2, we use (11) to obtain

B2 = E
∑
j<jε,k

[$jk(ε)2(yjk − βjk)2 + (1−$jk(ε))2β2
jk] I{|yjk| > mtε}I{|βjk| > mtε/2}

≤
∑
j<jε,k

[ε2I{|βjk| > mtε/2}+B3

≤ 4m−2/1+2s

(1− 2−2/1+2s)
‖f‖2

W 2
1+2s

t4s/1+2s
ε +B3.

B3 :=
∑
j<jε,k

E(1−$jk(ε))2β2
jk I{|yjk| > mtε}I{|βjk| > mtε/2}[I{|yjk| ≥ |βjk|/2}+ I{|yjk| < |βjk|/2}]

:= B′3 +B”3.

B”3 ≤
∑
j<jε,k

β2
jkP(|yjk − βjk| ≥ mtε/4)

≤ ‖f‖2
2
t2ε ,

since m2 ≥ 64. We have used in the line above the concentration property of the Gaussian
distribution. Now using (24) and (11), we get,

B′3 ≤
∑
j<jε,k

Eβ2
jk(1−$jk(ε))2I{|yjk| ≥ |βjk|/2}I{|βjk| > mtε/2}I{|yjk| ≥ mtε}]

≤
∑
j<jε,k

Eβ2
jkK($)2

(
tε
|yjk|

+ tε

)2

I{|yjk| ≥ |βjk|/2}I{|βjk| > mtε/2})

≤ K($)2
32m−2/1+2s

1− 2−2/1+2s
‖f‖2

W 2
1+2s

t4s/1+2s
ε + 2K($)2‖f‖2

2t
2
ε .
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2

Proof of Theorem 3: We shall prove that under our assumption the LVGP rules verify
Assumptions (22), (23) and (24). First assumption is obviously checked. Note that we already
remarked in subsection (2.1) that they are shrinkage rules. Now, let us fix m ≥ 8 and let us
assume that |yjk| ≤ mtε. Then,

ηjk =
1

w(ε)

√
ε2 + τ(ε)2

ε
exp

(
−

τ(ε)2y2
jk

2ε2(ε2 + τ(ε)2)

)

≥ 1
w(ε)

t−1/2
ε exp

(
−m

2t2ε
2ε2

)
≥ ε

m2

2
− 1

2
1

w(ε)
(log(1/ε))−1/4.

• If q2 > m2−1
2 , for ε small enough, ηjk ≥ 1 and β̆jk = 0.

• If q2 ≥ m2+1
2 , for ε small enough, ηjk ≥ t−1

ε and bj
1+ηjk

≤ tε.

So, Assumption (23) is checked for both rules. Now, let us prove Assumption (24). Let us fix
a constant M ≥

√
6 + 4q1. We assume |yjk| > Mtε. Then, for ε small enough,

ηjk =
1

w(ε)

√
ε2 + τ(ε)2

ε
exp

(
−

τ(ε)2y2
jk

2ε2(ε2 + τ(ε)2)

)

≤ 1
w(ε)

√
ε2 + τ(ε)2

ε
ε

M2

4

≤ 1
w(ε)

t−1/2
ε ε

M2

4

≤ tε.

Let us first consider the posterior median. Using the previous inequality, we have for ε small
enough, and for any j < jε and any k,

ε
√
bjΦ−1

(
1 + min(ηjk, 1)

2

)
≤ tε.

So,

|yjk − β̆jk| = |yjk − β̆jk|I{|yjk| > Mtε}+ |yjk − β̆jk|I{|yjk| ≤Mtε}
≤ ((1− bj)|yjk|+ tε)I{|yjk| > Mtε}+ 2|yjk|I{|yjk| ≤Mtε}
≤ tε|yjk|+ (1 + 2M)tε,

which implies (24) for the posterior median. Now, let us deal with the posterior mean. For ε
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small enough, and for any j < jε and any k,

|yjk − β̃jk| = |yjk − β̃jk|I{|yjk| > Mtε}+ |yjk − β̃jk|I{|yjk| ≤Mtε}

≤
(

1− bj
1 + ηjk

)
|yjk|I{|yjk| > Mtε}+ 2|yjk|I{|yjk| ≤Mtε}

≤ (1− bj + ηjk)|yjk|I{|yjk| > Mtε}+ 2|yjk|I{|yjk| ≤Mtε}
≤ 2tε|yjk|+ 2Mtε,

which implies (24) for the posterior mean.
Assumptions (22),(23) and (24) are checked for both rules, which finally proves that their

maxiset contains B
s

1+2s

2,∞ ∩W 2
1+2s

for the rate t4s/(1+2s)
ε = (ε

√
log(1/ε))4s/(1+2s).

We prove now the reverse inclusion:

MS(f0
ε , ‖.‖2

2, (ε
√

log(1/ε))4s/(1+2s)) ⊂ Bs/(2s+1)
2,∞ ∩W 2

2s+1
.

Observe that β0
jk = 0 when j ≥ jε, which implies,

∑
j>jε,k

β2
jk ≤ E‖f0

ε − f‖2
2 ≤ ct

4s
1+2s
ε ≤ c2−jε

2s
1+2s .

Letting ε vary, we obtain the characterization (10), which proves that:

MS(f0
ε , ‖.‖2

2, (ε
√

log(1/ε))4s/(1+2s)) ⊂ Bs/(2s+1)
2,∞ .

If we remember that if |yjk| ≤ mtε then 0 ≤ β0
jk/yjk ≤ ctε (Assumption (23)), we have for

f ∈MS(f0
ε , ‖.‖2

2, (ε
√

log(1/ε))4s/(1+2s))(M):

(1− ctε)2
∑
j,k

β2
jkI{|βjk| ≤ mtε}

= 2(1− ctε)2
∑
j,k

β2
jk [P(yjk − βjk < 0)I{βjk ≥ 0}+ P(yjk − βjk > 0)I{βjk < 0}] I{|βjk| ≤ mtε}

≤ 2E
∑
j,k

[
(βjk − β0

jk)
2I{βjk ≥ 0}+ (βjk − β0

jk)
2I{βjk < 0}

]
I{|βjk| ≤ mtε}

≤ 2E
∑
j,k

(βjk − β0
jk)

2

≤ 2M (ε
√

log(1/ε))4s/(1+2s).

We deduce that
sup
λ>0

λ−
4s

2s+1

∑
j≥−1

∑
k

β2
jkI{|βjk| ≤ λ} <∞,

and f belongs to W 2
2s+1

. 2
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6 Simulations

Dealing with the prior model (1), we compare in this section the performances of both LVGP
rules described in the previous section, in (19) and (20), with many other procedures: the thresh-
olding rules of [Donoho and Johnstone, 1994] called VisuShrink and of [Nason, 1996] called
GlobalSure, the ParetoThresh (with p=1.3) proposed by [Rivoirard, 2004b] built using Pareto
priors and hyperparameters as well as the Bayesian procedures of [Abramovich et al., 1998]
denoted as BayesThresh and those proposed by [Johnstone and Silverman, 2004b] and imple-
mented by [Antoniadis et al., 2000] built with the heavy-tailed Laplace prior with scale factor
α = 0.5 (LaplaceBayesMedian, LaplaceBayesMean) and with the heavy-tailed quasi-Cauchy
prior(CauchyBayesMedian, CauchyBayesMean). For this purpose, we use the mean-squared
error in the following regression model.

6.1 Model and discrete wavelet transform

Let us consider the standard regression problem:

gi = f(
i

n
) + σεi, εi

iid∼ N (0, 1), 1 ≤ i ≤ n, (25)

where n = 1024. We introduce the discrete wavelet transform (denoted DWT) of the vector
f0 = (f( in), 1 ≤ i ≤ n)T :

d := Wf0.

The DWT matrix W is orthogonal. Therefore, we can reconstruct f0 by the relation

f0 = WTd.

These transformations performed by Mallat’s fast algorithm require only O(n) operations
[Mallat, 1998]. The DWT provides n discrete wavelet coefficients djk, −1 ≤ j ≤ N − 1, k ∈ Ij .
They are related to the wavelet coefficients βjk of f by the simple relation

djk ≈ βjk ×
√
n.

Using the DWT, the regression model (25) is reduced to the following one:

yjk = djk + σzjk, −1 ≤ j ≤ N − 1, k ∈ Ij ,

where
y := (yjk)j,k = Wg

and
z := (zjk)j,k = Wε.

Since W is orthogonal, z is a vector of independent N (0, 1) variables. Now, instead of estimat-
ing f , we estimate the djk’s.
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In the sequel, we suppose that σ is known. Nevertheless, it could robustly be estimated by the
median absolute deviation of the (dN−1,k)k∈IN−1

divided by 0.6745 (see [Donoho and Johnstone, 1994]).

To implement the LVGP rules, we reconstruct the djk’s, as posterior median and the posterior
mean of a prior having the following form:

djk ∼
ωn

1 + ωn
γj,n +

1
1 + ωn

δ(0),

where ωn = ω∗ = 10( σ√
n
)q (q > 0), δ(0) is a point mass at zero, γ is the Gaussian density and

γj,n(djk) =
1
τn
γ(
djk
τn

),

with τn is such that nτ2
n

σ2+nτ2
n

= 0, 999.

Dealing with this prior model, we respectively denote GaussMedian and GaussMean, the LVGP
rules described in (19) and (20).

The Symmlet 8 wavelet basis (as described on page 198 of [Daubechies, 1992]) is used for all
the methods of reconstruction. In Table 1 we measure the performances of both estimators by
using the four test functions: ”Blocks”, ”Bumps”, ”Heavisine” and ”Doppler” thanks to the
mean-squared error defined by:

MSE(f̂) =
1
n

n∑
i=1

(
f̂(
i

n
)− f(

i

n
)
)2

.

Remark: Recall that the test functions have been chosen by [Donoho et al., 1995] to represent
a large variety of inhomogeneous signals.

6.2 Simulations and discussion

Table 1 shows the average mean-squared error (denoted AMSE) using 100 replications for
VisuShrink, GlobalSure, ParetoThresh, BayesThresh, GaussMedian, GaussMean (for q = 1),
LaplaceBayesMedian, LaplaceBayesMean, CauchyBayesMedian and CauchyBayesMean, with
different values for the root signal to noise ration (RSNR).

The results provided below can be summarized as follows:

• According to Table 1, we remark that ”purely Bayesian” procedures (BayesThresh, Gauss-
Median, GaussMean, CauchyBayesMedian, CauchyBayesMean, LaplaceBayesMedian and
LaplaceBayesMean) are preferable to ”purely deterministic” ones (VisuShrink and Glob-
alSure) under the AMSE approach for inhomogeneous signals. Paretothresh appears as a
good compromise between purely Bayesian rules and deterministic ones.
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• We observe that Bayesian rules using the posterior mean (GaussMean, LaplaceBayesMean
and CauchyBayesMean) have better performances than those using the posterior median
(GaussMedian, LaplaceBayesMedian and CauchyBayesMedian).

• CauchyBayesMean provides the best behaviors here since its AMSEs are globally the
smallest (11 times on 12).

• GaussMean shows performances which are rather close to CauchyBayesMean. It outper-
forms BayesThresh 11 times on 12. This confirms our maxiset previous results, and shows
that GaussMean is an excellent choice if we take into account the performances as well as
the computation time.
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RSNR=5 Blocks Bumps Heavisine Doppler
VisuShrink 2.08 2.99 0.17 0.77
GlobalSure 0.82 0.92 0.18 0.59

ParetoThresh 0.73 0.85 0.15 0.36
BayesThresh 0.67 0.74 0.15 0.30
GaussMedian 0.72 0.76 0.20 0.30
GaussMean 0.62 0.68 0.19 0.29

LaplaceBayesMedian 0.59 0.69 0.14 0.30
LaplaceBayesMean 0.56 0.65 0.13 0.28

CauchyBayesMedian 0.60 0.67 0.14 0.29
CauchyBayesMean 0.55 0.63 0.13 0.27

RSNR=7 Blocks Bumps Heavisine Doppler
VisuShrink 1.29 1.77 0.12 0.47
GlobalSure 0.42 0.48 0.12 0.21

ParetoThresh 0.40 0.46 0.09 0.21
BayesThresh 0.38 0.45 0.10 0.16
GaussMedian 0.41 0.42 0.12 0.15
GaussMean 0.35 0.38 0.11 0.15

LaplaceBayesMedian 0.33 0.37 0.09 0.17
LaplaceBayesMean 0.31 0.36 0.08 0.16

CauchyBayesMedian 0.32 0.36 0.09 0.17
CauchyBayesMean 0.29 0.34 0.08 0.15

RSNR=10 Blocks Bumps Heavisine Doppler
VisuShrink 0.77 1.04 0.08 0.27
GlobalSure 0.25 0.29 0.08 0.11

ParetoThresh 0.21 0.25 0.06 0.12
BayesThresh 0.22 0.25 0.06 0.09
GaussMedian 0.21 0.23 0.06 0.08
GaussMean 0.18 0.20 0.06 0.07

LaplaceBayesMedian 0.17 0.20 0.05 0.09
LaplaceBayesMean 0.17 0.19 0.05 0.09

CauchyBayesMedian 0.17 0.19 0.05 0.09
CauchyBayesMean 0.16 0.18 0.05 0.09

Table 1: AMSEs pour VisuShrink, GlobalSure, ParetoThresh, BayesThresh, GaussMe-
dian, GaussMean, LaplaceBayesMedian, LaplaceBayesMean, CauchyBayesMedian and Cauchy-
BayesMean, with various test functions and various values of the RSNR.

In the sequel, we present some simulations of the Bayesian rules using Gaussian priors (1 and
2) and heavy-tailed priors (3 and 4) when RSNR=5.
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Figure 1: Original test functions and reconstructions using GaussMedian and GaussMean with
q = 1 (RSNR=5).

In Figure 1, we note that in both Bayesian procedures some high-frequency artefacts appear.
However, these artefacts disappear if we take large values of q. Figure 2 shows an example of
reconstructions using GaussMedian and GaussMean when the RSNR is equal to 5 (σ = 7/5)
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for different values of q.
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Figure 2: Reconstructions with GaussMedian (schemes a,b et c) and GaussMean (schemes d,e
et f) for various values of q when RSNR=5; a: AMSE=0.37. b: AMSE=0.30. c: AMSE=0.33.
d: AMSE=0.39. e: AMSE=0.29. f: AMSE=0.30.

As we can see in Figure 2, the artefacts are less numerous when q increases . But this
improvement has a cost: in general the AMSE increases when q is close to 0 or strictly greater
than 1. Consequently, the value q = 1 appears as a good compromise to obtain good recon-
structions and good AMSE with the GaussMedian and GaussMean procedures.
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Figure 3: Original test functions and reconstructions using LaplaceBayesMedian and Laplace-
BayesMean (RSNR=5).
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Figure 4: Original test functions and reconstructions using CauchyBayesMedian and Cauchy-
BayesMean (RSNR=5).

7 Appendix: More on maxisets of ’small variance Gaussian pri-
ors’

In a minimax setting, [Abramovich et al., 2004] obtained the following result:

Theorem 4. Let β0 be β̆ or β̃. With α = 2s + 1 and any 0 ≤ b < 1, there exist two positive
constants C1 and C2 such that ∀ ε > 0,

C1(ε
√

log(1/ε))4s/(2s+1) ≤ sup
β∈Bs

2,∞(M)
E‖β0 − β‖2

2 ≤ C2 log(1/ε)ε4s/(2s+1).

So, posterior mean and median achieve the optimal rate up to an unavoidable logarithmic
term. Now, let us consider the maxiset setting.

Theorem 5. For s > 0, α = 2s+ 1, any 0 ≤ b < 1, and if β0 is β̆ or β̃,

1. for the rate ε4s/(1+2s),
MS(β0, ‖.‖2

2, ε
4s/(1+2s)) ( Bs2,∞.
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2. For the rate (ε
√

log(1/ε))4s/(1+2s),

MS(β0, ‖.‖2
2, (ε

√
log(1/ε))4s/(1+2s)) ⊂ B∗s2,∞,

with

B∗s2,∞ =

f ∈ L2 : sup
J>0

22JsJ−2s/(1+2s)
∑
j≥J

∑
k

β2
jk <∞

 .

3. For the rate ε4s/(1+2s) log(1/ε),

Bs2,∞ ⊂MS(β0, ‖.‖2
2, ε

4s/(1+2s) log(1/ε)).

Proof: Let us first prove the inclusion

MS(β0, ‖.‖2
2, ε

4s/(1+2s)) ⊂ Bs2,∞.

For this, let us note λε = (c−1
1 ε2)1/α. We observe that if 2−j ≤ λε then bj ≤ 1/2 and

|β0
jk| ≤

1
2
|yjk|.

Since yjk × β0
jk ≥ 0, if 2−j ≤ λε,

Eβ2
jkI{βjk ≥ 0}I{yjk < βjk} ≤ 4E(β0

jk − βjk)2I{βjk ≥ 0}I{yjk < βjk},

and
Eβ2

jkI{βjk < 0}I{yjk > βjk} ≤ 4E(β0
jk − βjk)2I{βjk < 0}I{yjk > βjk}.

So, since P(yjk − βjk < 0) = P(yjk − βjk > 0) = 1/2, if f ∈ MS(β0, ‖.‖2
2, ε

4s/(1+2s))(M), we
have: ∑

j,k

β2
jkI{2−j ≤ λε}

= 2
∑
j,k

β2
jk [P(yjk − βjk < 0)I{βjk ≥ 0}+ P(yjk − βjk > 0)I{βjk < 0}] I{2−j ≤ λε}

≤ 8E
∑
j,k

[
(β0
jk − βjk)2I{βjk ≥ 0}+ (β0

jk − βjk)2I{βjk < 0}
]
I{2−j ≤ λε}

≤ 8E
∑
j,k

(β0
jk − βjk)2

≤ 8M ε4s/(1+2s).

Since α = 2s+ 1, we deduce

sup
J≥−1

22Js
∑
j≥J

∑
k

β2
jk ≤ 8Mc

2s/(1+2s)
1 ,
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and f belongs to Bs2,∞. To prove that the inclusion is strict, we just use Theorem 4. The second
inclusion is easily obtained by using similar arguments. Finally, the proof of the last one is
provided by Theorem 4. 2

As recalled in Section 3.2, for the rates ε4s/(1+2s), the maxisets of linear estimates are exactly
Besov spaces Bs2,∞. So Theorem 5 shows that the Bayesian procedures built by [Abramovich et al., 2004]
are outperformed by linear estimates for polynomial rates of convergence. Furthermore, these
procedures cannot achieve the same performances as classical non linear procedures, since we
have the following result.

Proposition 4. For any s > 0,

Bs/(2s+1)
2,∞ ∩W 2

2s+1
6⊂ B∗s2,∞.

Proof: To prove this result, we build a sparse function belonging to Bs/(2s+1)
2,∞ ∩W 2

2s+1
but not

to B∗s2,∞. Let us consider f =
∑

j,k βjkψjk, where at each level j, 2jn wavelet coefficients take
the value 2−jβ , whereas the other ones are equal to 0, with 0 ≤ n ≤ 1 and β > n/2 (so f ∈ L2).
For any J ≥ 1,

22JsJ−2s/(1+2s)
∑
j≥J

∑
k

β2
jk = 22JsJ−2s/(1+2s)

∑
j≥J

2nj2−2jβ

≥ 2J(2s+n−2β)J−2s/(1+2s).

So,
n− 2β + 2s > 0 ⇒ f 6∈ B∗s2,∞. (26)

Similarly,
n− 2β + 2s/(1 + 2s) ≤ 0 ⇒ f ∈ Bs/(2s+1)

2,∞ . (27)

And

λ−4s/(1+2s)
∑
j,k

β2
jkI{|βjk| ≤ λ} = λ−4s/(1+2s)

∑
j

2jn2−2jβI{2−jβ ≤ λ}

≤ λ−4s/(1+2s)−n/β+2.

So,
n− 2β + 2ns ≤ 0 ⇒ f ∈W 2

2s+1
. (28)

As soon as n < 1 (that yields that the signal is sparse), it is then possible to choose β > n/2
such that (26), (27) and (28) are checked. So, f belongs to Bs/(2s+1)

2,∞ ∩W 2
2s+1

but not to B∗s2,∞.
2
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