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In this paper, our aim is to estimate sparse sequences in the framework of the heteroscedastic white noise model. To model sparsity, we consider a Bayesian model composed of a mixture of a heavy-tailed density and a point mass at zero. To evaluate the performance of the Bayes rules (the median or the mean of the posterior distribution), we exploit an alternative to the minimax setting developed in particular by Kerkyacharian and Picard: we determine the maxisets for each of these estimators. Using this approach, we compare the performance of Bayesian procedures with thresholding ones. Furthermore, the maxisets obtained can be viewed as weighted versions of weak lq spaces that naturally model sparsity. This remark leads us to investigate the following problem: how can we choose the prior parameters to build typical realizations of weighted weak l q spaces?

Introduction

1.1. Model. In this paper, we consider the following heteroscedastic white noise model: [START_REF] Abramovich | On optimality of Bayesian wavelet estimators[END_REF] x k = θ k + εσ k ξ k , k = 1, 2, . . . , where θ = (θ k ) k≥1 is an unknown sequence to be estimated by using observations (x k ) k≥1 , ε > 0 is a small parameter, and (ξ k ) k≥1 is an independent and identically distributed (i.i.d.) sequence of Gaussian variables with mean zero and unit variance. Along this paper, we assume that σ = (σ k ) k≥1 is a known sequence of positive real numbers. This heteroscedastic white noise model, that appears as a generalization of the classical white noise model (for which, we have ∀ k ≥ 1, σ k = 1), is extensively used by statisticians. Let us briefly recall the reasons for this large use and provide references. Given a known linear operator A, we use the heteroscedastic white noise model when we have to estimate the solution f of the linear equation g = Af , with noisy observations of g. Most of the time, to deal with such a problem, we exploit the singular value decomposition of A and the sequence (σ -2 k ) k≥1 is then the eigenvalues sequence of the operator A * A, with A * the adjoint of A. There is a considerable literature about statistical inverse problems. Let us cite Korostelev and Tsybakov [START_REF] Korostelev | Minimax Theory of Image Reconstruction[END_REF], Donoho [START_REF] Donoho | Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition[END_REF], Golubev and Khasminskii [START_REF] Golubev | Statistical approach to some inverse boundary problems for partial differential equations[END_REF], Goldenshluger and Pereverzev [START_REF] Goldenshluger | Adaptive estimation of linear functionals in Hilbert scales from indirect white noise observations[END_REF], Cavalier, Golubev, Picard and Tsybakov [START_REF] Cavalier | Oracle inequalities for inverse problems[END_REF] and the references cited below. Some well-posed inverse problems with noise can be reduced to [START_REF] Abramovich | On optimality of Bayesian wavelet estimators[END_REF] with σ k k→∞ -→ 0. The condition σ k k→∞ -→ +∞ characterizes ill-posed problems. For instance, the sequences (σ k ) k≥1 associated with operators such as integration considered by Ruymgaart [START_REF] Ruymgaart | A unified approach to inversion problems in statistics[END_REF], the Radon transform (see Cavalier and Tsybakov [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF]), convolution for the case studied by Cavalier and Tsybakov [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF] or operators for some elliptic differential equations (see Mair and Ruymgaart [START_REF] Mair | Statistical inverse estimation in Hilbert scales[END_REF]) have a polynomial growth. But, the σ k 's may grow exponentially. See, for instance, Pereverzev and Schock [START_REF] Pereverzev | Error estimates for band-limited spherical regularization wavelets in an inverse problem of satellite geodesy[END_REF] who considered the problem of satellite geodesy or the inverse problems associated with partial differential equations such as the heat equation (see Mair and Ruymgaart [29]).

In the wavelet context, Johnstone [START_REF] Johnstone | Wavelet shrinkage for correlated data and inverse problems: adaptivity results[END_REF] and Johnstone and Silverman [START_REF] Johnstone | Wavelet threshold estimators for data with correlated noise[END_REF] explained that the heteroscedastic white noise model can also be used to represent direct observations with correlated structure. More precisely, let us assume that we are given the following nonparametric regression model:

(2)

Y i = f (i/n) + e i , i ∈ {1, 2, . . . , n},
where n is an integer, f is the signal to be estimated, and the e i 's are drawn from a stationary Gaussian process. By studying the autocorrelation function of the e i 's, Johnstone [START_REF] Johnstone | Wavelet shrinkage for correlated data and inverse problems: adaptivity results[END_REF] and Johnstone and Silverman [START_REF] Johnstone | Wavelet threshold estimators for data with correlated noise[END_REF] showed that under a good choice of ε and σ = (σ k ) k≥1 , the model (1) appears as a good approximation of the model [START_REF] Abramovich | Adapting to Unknown Sparsity by Controlling the False Discovery Rate[END_REF] when n is large.

1.2. Bayesian model and Bayes rules. In this paper, we suppose that the sequence θ to be estimated is sparse. It means that only a small proportion of the θ k 's are non-negligible. When the θ k 's are wavelet coefficients, this assumption is natural since the underlying property of wavelets is that a function can be well approximated by a function with a relatively small proportion of nonzero wavelet coefficients. In this paper, we model the sparsity by using a Bayesian approach. For this purpose, we assume that the θ k 's are random and the distribution of θ is such that the θ k 's are independent and for any k ≥ 1, there exist a fixed parameter w k,ε ∈ (0, 1) depending on ε and k and a fixed density γ, such that, with probability 1 -w k,ε , θ k is equal to 0 and with probability w k,ε , the density of θ k is γ k,ε , where

γ k,ε (θ) = s k,ε γ(s k,ε θ), ∀ θ ∈ R and s k,ε = (εσ k ) -1 .
If δ 0 denotes the Dirac mass at 0, this model is written as follows:

(M 1 ) θ k ∼ (1 -w k,ε )δ 0 (θ k ) + w k,ε γ k,ε (θ k ), k ≥ 1.
So, roughly speaking, the first term models the negligible components and the second one non-negligible ones. Bayesian procedures have now become very popular in signal estimation, since they often outperform classical procedures and in particular thresholding procedures from the practical point of view. See the very complete review paper of Antoniadis, Bigot and Sapatinas [START_REF] Antoniadis | Wavelet estimators in nonparametric regression: a comparative simulation study[END_REF] who provide descriptions and practical comparisons of various Bayesian wavelet shrinkage and wavelet thresholding estimators. It is relevant to note that most of works about Bayesian procedures take place in the practical framework. However, we can cite Johnstone and Silverman [START_REF] Johnstone | Empirical Bayes selection of wavelet thresholds[END_REF][START_REF] Johnstone | Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences[END_REF] and Abramovich, Amato and Angelini [START_REF] Abramovich | On optimality of Bayesian wavelet estimators[END_REF] who studied Bayesian procedures from the minimax point of view.

Most of the authors consider quite similar Bayesian models and often, priors are based on normal distributions. For instance, in the wavelet framework, Johnstone and Silverman [START_REF] Johnstone | Empirical Bayes Approaches to Mixture Problems and Wavelet Regression[END_REF] following Abramovich, Sapatinas and Silverman [START_REF] Abramovich | Wavelet thresholding via a Bayesian approach[END_REF] and Clyde, Parmigiani and Vidakovic [START_REF] Clyde | Multiple shrinkage and subset selection in wavelets[END_REF] consider a mixture of a normal component and a point mass at zero for the wavelet coefficients. Chipman, Kolaczyk and McCulloch [START_REF] Chipman | Adaptive Bayesian wavelet shrinkage[END_REF] impose a mixture of two Gaussian distributions with different variances for negligible and non-negligible wavelet coefficients. Let us add that, often, properties of conjugate families enable statisticians to point out easily Bayes rules when Gaussian priors are considered in the classical Gaussian white noise model. However, Johnstone and Silverman [START_REF] Johnstone | Empirical Bayes selection of wavelet thresholds[END_REF][START_REF] Johnstone | Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences[END_REF] did not use Gaussian distributions and showed the advantages from the minimax point of view in considering heavy-tailed distributions. In the maxiset framework, we shall draw similar conclusions concerning γ.

The posterior distribution of

θ k given x k is (3) γ φ k,ε (θ k | x k ) = φ k (x k -θ k )[w k,ε γ k,ε (θ k ) + (1 -w k,ε )δ 0 (θ k )] w k,ε +∞ -∞ φ k (x k -θ)γ k,ε (θ) dθ + (1 -w k,ε )φ k (x k )
, where φ k denotes the density of εσ k ξ k , using notations of Section 1.1. For all ε > 0, we assume that we are given a real number Λ ε > 1 depending only on ε and tending to +∞ as ε → 0. We estimate each θ k by θb1 k (x k ) or by θb2 k (x k ) defined by the following procedure.

• If k < Λ ε , θb1 k (x k ) (respectively θb2 k (x k ))
is the median (respectively the mean) of the posterior distribution of θ k given x k . Therefore, these rules satisfy: for any θk < θb1 k (x k ),

F γ φ k,ε ( θk ) < 0.5 ≤ F γ φ k,ε ( θb 1 k (x k )), θb 2 k (x k ) = θ k γ φ k,ε (θ k | x k ) dθ k ,
where

F γ φ k,ε denotes the cumulative distribution function of γ φ k,ε (• | x k ). • If k ≥ Λ ε , then θb 1 k (x k ) = θb 2 k (x k ) = 0.
The values of the hyperparameters w k,ε , γ, and Λ ε will be chosen later. Other properties of these Bayes rules are given in Section 2.1. So, the choice for Bayes rules is very classical. Indeed, most of the time, in practice, the Bayes rules used by statisticians are the median, and more frequently the mean of the posterior distribution, which are generally better estimates than the mode (see Berger [START_REF] Berger | Statistical Decision Theory: Foundations, Concepts, and Methods[END_REF], p. 101). Note that the posterior mean and the posterior median are built by using the posterior distribution on its whole support. For instance, let us cite Chipman, Kolaczyk and McCulloch [START_REF] Chipman | Adaptive Bayesian wavelet shrinkage[END_REF] and Clyde, Parmigiani and Vidakovic [START_REF] Clyde | Multiple shrinkage and subset selection in wavelets[END_REF] who used the posterior mean. But Abramovich, Sapatinas and Silverman [START_REF] Abramovich | Wavelet thresholding via a Bayesian approach[END_REF] considered the posterior median under a Bayesian model that has the same form as (M 1 ). In their Bayesian framework, unlike the posterior mean, the posterior median is a true thresholding rule. In the wavelet context, they showed several simulated examples for which this approach improves most of the traditional methods. If from the practical point of view, the median seems preferable to the mean, what happens under a theoretical approach? From the minimax point of view, Theorem 1 of Johnstone and Silverman [START_REF] Johnstone | Empirical Bayes selection of wavelet thresholds[END_REF] showed that the posterior median of their Bayes model achieves optimal rates of convergence under Besov body constraints and for l qlosses, with 0 < q ≤ 2. If the posterior mean is used, optimal rates are also achieved but only if 1 < q ≤ 2 (see Section 7.3 of [START_REF] Johnstone | Empirical Bayes selection of wavelet thresholds[END_REF]). This provides some theoretical justification for preferring the posterior median over the posterior mean. In this paper, to evaluate the performance of θb 1 = ( θb 1 (x k )) k≥1 and θb 2 = ( θb 2 (x k )) k≥1 , we use neither a practical approach nor the minimax theory, which have been extensively considered, but the maxiset theory that we describe now.

1.3. The maxiset theory and functional spaces. Let us first motivate the introduction of the maxiset point of view. When nonparametric problems are explored, the minimax theory is the most popular point of view: it consists in ensuring that the used procedure θ = ( θk (x k )) k≥1 achieves the best rate on a given sequence space S. But, at first, the choice of S is arbitrary (what kind of spaces has to be considered: Sobolev spaces? Besov spaces? why?), secondly, S could contain sequences very difficult to estimate. Since the unknown quantity θ = (θ k ) k≥1 could be easier to estimate, the used procedure could be too pessimistic and not adapted to the data. More embarrassing in practice, several minimax procedures may be proposed and the practitioner has no way to decide but his experiment. To answer these issues, another point of view has recently appeared: the maxiset point of view introduced by Cohen, DeVore, Kerkyacharian and Picard [START_REF] Cohen | Maximal spaces with given rate of convergence for thresholding algorithms[END_REF] and Kerkyacharian and Picard [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well-concentrated bases[END_REF]. Given an estimate θ, it consists in assessing the accuracy of θ by fixing a prescribed rate ρ ε and pointing out the set of all the sequences θ that can be estimated by the procedure θ at the target rate ρ ε . So, under the statistical model (1), we introduce the following definition. Definition 1. Let 1 ≤ p < ∞ and let θ = ( θk (x k )) k≥1 be an estimator. The maxiset of θ associated with the rate ρ ε and the l p -loss is

M S( θ, ρ ε , p) = θ = (θ k ) k≥1 : sup ε E k≥1 | θk (x k ) -θ k | p 1/p ρ -1 ε < ∞ .
The maxiset point of view brings answers to the previous issues. Indeed, there is no a priori assumption on θ and then, the practitioner does not need to restrict his study to an arbitrary sequence space. The practitioner states the desired accuracy and then, knows the quality of the used procedure. Obviously, he chooses the procedure with the largest maxiset. Let us give first examples of maxiset results in the statistical framework of this paper. For this purpose, we need to introduce the following sequence spaces. Definition 2. For all 1 ≤ p < ∞ and 0 < η < ∞, we set

B η p,∞ = θ = (θ k ) k≥1 : sup λ>0 λ pη k≥λ |θ k | p < ∞ ,
and if q is a real number such that 0 < q < p, we set

wl p,q (σ) = θ = (θ k ) k≥1 : sup λ>0 λ q k 1 |θ k |>λσ k σ p k < ∞ .
Now, let us focus on thresholding rules associated with the universal threshold λ k,ε = σ k ε | log ε| (see Donoho and Johnstone [START_REF] Donoho | Ideal spatial adaptation via wavelet shrinkage[END_REF]): for all ε > 0, we assume that we are given a real number Λ * ε > 0 only depending on ε and tending to +∞ as ε → 0, and we set

θt k (x k ) = x k 1 |x k |≥κ * λ k,ε if k < Λ * ε , 0 otherwise,
where κ * is a constant. Kerkyacharian and Picard [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well-concentrated bases[END_REF] have studied the maxisets for this procedure. They obtained the following result for θt = ( θt k (x k )) k≥1 (Theorems 3.1 and 3.2 of Kerkyacharian and Picard [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well-concentrated bases[END_REF]): Theorem 1. Let 1 ≤ p < ∞ be a fixed real number and 0 < r < ∞. We suppose that

(4) ∀ ε, Λ * ε = ε | log ε| -r ,
and there exists a positive constant T such that ∀ ε

(5) ε κ 2 * /16 | log ε| -1/4-p/2 k<Λ * ε σ p k ≤ T.
Let q be a fixed positive real number such that q < p.

Then, if κ * ≥ √ 2p, M S θt , ε | log ε| (1-q/p) , p = wl p,q (σ) ∩ B 1 r (1-q/p) p,∞
.

Remark 1. In this last result, of course, to avoid problems of definitions in (4) and [START_REF] Berger | Statistical Decision Theory: Foundations, Concepts, and Methods[END_REF], it is implicitly assumed, without loss of generality, that ε remains smaller than a positive constant ε 0 strictly smaller than 1 (equal to 1/2 for instance).

For the model (1), we can prove that under some conditions, the maxisets associated with linear estimates of the form (l k x k ) k≥1 , where (l k ) k≥1 is a non-increasing sequence of weights lying in [0, 1], are the spaces B η p,∞ , called Besov bodies. These conditions are satisfied, for instance, by projection weights, Tikhonov-Phillips weights or Pinsker weights. For further details see Theorem 2 of Rivoirard [START_REF] Rivoirard | Maxisets for linear procedures[END_REF]. We can add that Lemma 1 of Rivoirard [START_REF] Rivoirard | Maxisets for linear procedures[END_REF] proves that for the rate (ε | log ε|) (1-q/p) , the maxisets of linear estimates are strictly contained in the maxisets of thresholding rules. It means that from the maxiset point of view, linear estimates are outperformed by thresholding ones. Kerkyacharian and Picard [START_REF] Kerkyacharian | Minimax or maxisets?[END_REF] also applied the maxiset theory for local bandwidth selection in the framework of the Gaussian white noise model. Under some conditions, they proved that local bandwidth selection is at least as good as the thresholding procedure (see Section 5 of [START_REF] Kerkyacharian | Minimax or maxisets?[END_REF]).

The comparison of procedures based on maxisets is not as widely used as minimax comparison. However the results that have been obtained up to now are very promising since they generally show that the maxisets of well-known procedures are spaces that are well established and easily interpretable. Indeed, in the maxiset approach, the Besov bodies (the spaces B η p,∞ ) control the θ k 's for the large values of k. As for the spaces wl p,q (σ), they can be viewed as weighted weak l q spaces. The weak l q space is the space wl p,q (σ) when σ k = 1 for any k ≥ 1, so we denote it wl p,q (1), and it was considered in statistics by Johnstone [START_REF] Johnstone | Minimax Bayes, asymptotic minimax and sparse wavelet priors[END_REF], Donoho and Johnstone [START_REF] Donoho | Neo-classical minimax problems, thresholding and adaptive function estimation[END_REF] or Abramovich, Benjamini, Donoho and Johnstone [START_REF] Abramovich | Adapting to Unknown Sparsity by Controlling the False Discovery Rate[END_REF]. This space was also studied in approximation theory and coding by DeVore [START_REF] Devore | Degree of nonlinear approximation[END_REF], Donoho [START_REF] Donoho | Unconditional bases and bit-level compression[END_REF], or Cohen, DeVore and Hochmuth [START_REF] Cohen | Restricted nonlinear approximation[END_REF]. Abramovich, Benjamini, Donoho and Johnstone [START_REF] Abramovich | Adapting to Unknown Sparsity by Controlling the False Discovery Rate[END_REF] proved that if we order the components of a sequence θ according to their size:

|θ| (1) ≥ |θ| (2) ≥ • • • ≥ |θ| (n) ≥ . . . , then θ ∈ wl p,q (1) ⇐⇒ sup n n 1/q |θ| (n) < ∞ (see Section 1.2 of [2]
). So, wl p,q (1) spaces naturally measure the sparsity of a signal. Of course, the weighted versions of these spaces, the wl p,q (σ) spaces, share the same property. So, since Bayesian Procedures, commonly used in practice, have been barely studied from a theoretical point of view, it seems relevant to investigate the maxiset results for the Bayesian procedures θb1 and θb2 introduced in Section 1.2 and our first two goals in this paper will be the following:

1. to point out the maxisets of the Bayesian procedures θb1 and θb2 , 2. to compare these estimators with traditional procedures in the maxiset approach by comparing their respective maxisets.

We shall draw interesting conclusions from the maxiset results of these classical Bayes rules that are extensively used in practice.

1.4. Maxiset results. Given 1 ≤ p < ∞ and ρ ε the prescribed rate, our first issue is to determine for i ∈ {1, 2}, M S( θb i , ρ ε , p) once we have fixed assumptions on the hyperparameters w k,ε , γ, and Λ ε . First, throughout this paper, we take the density γ to be unimodal, symmetric about 0, positive, and absolutely continuous on R. We also assume that there exist two positive constants M and M 1 such that (H 1 ) sup

θ≥M 1 d dθ log γ(θ) = M < ∞.
It implies that the tails of γ have to be exponential or heavier. This enables us to establish asymptotic properties of θb1 k (x k ) and θb2 k (x k ). We prove that the posterior median θb 1 k (x k ) is a thresholding rule. The posterior mean does not have this thresholding property, but is a shrinkage rule (see Propositions 1, 2, and 3 in Section 2). We also assume that w k,ε = w ε depends only on ε and we set

π ε = (1 -w ε )w -1 ε .
Then, the maxisets for these procedures can be pointed out if we take in addition ρ ε and Λ ε of the form

ρ ε = (ε log π ε ) 1-q/p , Λ ε = (ε log π ε ) -r ,
with 0 < r < ∞ and 0 < q < p. Corollaries 1 and 2 show that under mild assumptions on π ε and on the size of the σ k 's (see Assumptions ( 7), ( 8), [START_REF] Clyde | Multiple shrinkage and subset selection in wavelets[END_REF], and ( 11), for i ∈ {1, 2},

M S θbi , (ε log π ε ) 1-q/p , p = wl p,q (σ) ∩ B 1/r(1-q/p) p,∞ .
In particular, it is possible to choose w ε = ε ν , as soon as ν is great enough to satisfy Assumptions ( 7), ( 8), [START_REF] Clyde | Multiple shrinkage and subset selection in wavelets[END_REF], and [START_REF] Cohen | Restricted nonlinear approximation[END_REF]. So, as far as the maxiset point of view is concerned, and roughly under the same conditions, both Bayesian procedures achieve exactly the same performance as the thresholding one for the rate (ε | log ε|) (1-q/p) . And for this last rate, we can then claim that each of the Bayesian procedures outperforms the linear algorithm. We note in Section 2.4 that Assumption (H 1 ) on the tails of γ is essential to get maxisets as large as possible. Finally, in Section 2.5, the previous results are readily extended to the case where we want to estimate functions f decomposed in an appropriate unconditional fixed basis

B = {ψ k , k ≥ 1} as f = k≥1 θ k ψ k .
We assume that θ is still observed through the model (1) and still estimated by Bayes rules. In this case, the maxisets are no longer sequence spaces but real functional spaces. See Section 2.5 for more details.

1.5. Connections between the proposed Bayesian model and the spaces pointed out. Starting from a Bayesian model, the outcomes of the study of the associated natural Bayes rules under the maxiset approach are the spaces wl p,q (σ). Thus, the Bayesian model (M 1 ) and wl p,q (σ) spaces are connected throughout the maxiset approach. We can wonder whether or not this connection is "artificial". It is worthwhile to observe that the Bayesian model has been constructed to model the sparsity of the sequences to be estimated. And as recalled in Section 1.3, wl p,q (σ) spaces are natural spaces to measure the sparsity of a sequence by controlling the proportion of non-negligible θ k 's. The third goal of this paper is then the following.

3. Can we establish a "direct" connection between (M 1 ) and wl p,q (σ) spaces?

Actually, we would like to prove a result similar to the one obtained by Abramovich, Sapatinas and Silverman [START_REF] Abramovich | Wavelet thresholding via a Bayesian approach[END_REF] and exploited by Abramovich, Amato and Angelini [START_REF] Abramovich | On optimality of Bayesian wavelet estimators[END_REF]. Abramovich, Sapatinas and Silverman considered in the wavelet framework a Bayesian model (denoted (M * 1 )) similar to (M 1 ), where γ is fixed in advance and is the density of a Gaussian variable with mean zero and unit variance. Then, they established a necessary and sufficient condition on the other hyperparameters of (M * 1 ) to ensure that the signal built from the wavelet coefficients coming from (M * 1 ) belongs, almost surely, to a prescribed Besov space (see Theorem 1 of Abramovich, Sapatinas and Silverman [START_REF] Abramovich | Wavelet thresholding via a Bayesian approach[END_REF]). We would like to do the same job with (M 1 ) and wl p,q (σ) spaces, but without fixing γ in advance. Theorem 7 of Section 3 gives answers to this issue. In particular, we point out the condition sup λ>0 λ q +∞ λ γ(x) dx < ∞, which means that the tails of γ cannot be heavier than those of a Pareto(q)-variable. Consequently, similarly to the result presented in Section 2.2 of Rivoirard [START_REF] Rivoirard | Thresholding procedure with priors based on Pareto distributions[END_REF], this result illustrates the strong connections between Pareto(q)-distributions and wl p,q (σ) spaces. Theorem 7 is proved by using results on weighted empirical distribution process established by Marcus and Zinn [START_REF] Marcus | The bounded law of the iterated logarithm for the weighted empirical distribution process in the non-i.i.d. case[END_REF].

1.6. Contents. In Section 2, we give some properties of the Bayes rules and evaluate the maxisets obtained for the Bayesian procedures θb 1 and θb 2 . Section 3 investigates the relationships between the Bayesian model and wl p,q (σ) spaces. Finally, in Section 4, we prove the results concerning the asymptotic properties of the Bayes rules.

Maxisets for Bayesian Procedures

2.1. Properties of the Bayes rules. In the Introduction, we defined the Bayes procedures θb1 and θb2 used in this paper. Recall that for k

< Λ ε , θb 1 k (x k ) (respectively θb 2 k (x k ))
is the median (respectively the mean) of the posterior distribution of θ k given x k given by [START_REF] Abramovich | Wavelet thresholding via a Bayesian approach[END_REF]. We also mention that if γk,ε denotes the prior distribution of θ k , then for any 1 ≤ p < ∞ and any estimator θk (x k ) of θ k , the Bayes risk B( θk , γk,ε , p) of θk (x k ) with respect to γk,ε associated with the l p -loss defined by

B( θk , γk,ε , p) = γk,ε (θ k )| θk (x k ) -θ k | p φ k (x k -θ k ) dθ k dx k ,
where φ k still denotes the density of εσ k ξ k , satisfies:

B( θb 1 k , γk,ε , 1) ≤ B( θk , γk,ε , 1), and B( θb 2 k , γk,ε , 2) ≤ B( θk , γk,ε , 2) 
. These Bayes rules are shrinkage rules. In particular, they satisfy the following property, which will be capital for description of their maxisets. For further details, see Lemma 2, inequality (62), and Section 5.5 of Johnstone and Silverman [START_REF] Johnstone | Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences[END_REF].

Proposition 1. For all k ≥ 1, since γ is symmetric, absolutely continuous, positive, and unimodal, we have for i ∈ {1, 2},

• θb i k (x 1 k ) ≤ θb i k (x 2 k ) for any (x 1 k , x 2 k ) such that x 1 k ≤ x 2 k , • θbi k (-x k ) = -θbi k (x k ) for any x k , • 0 ≤ θb i k (x k ) ≤ x k for any x k ≥ 0, • | θbi k (x k ) -θ k | ≤ max(|θ k |; |x k -θ k |) for any (x k , θ k ).
Assumptions imposed on the Bayesian model enable us to deduce other properties. Assumption (H 1 ) implies that

∀ u ≥ M 1 , γ(u) ≥ γ(M 1 ) exp(-M (u -M 1 )).
It means that the tails of γ have to be exponential or heavier. We shall see below (see Section 2.4) that this assumption is essential to get maxisets as large as possible. Furthermore, w k,ε = w ε depends only on ε and we shall assume throughout this paper that

π ε = (1 -w ε )w -1 ε
satisfies the following mild assumptions, globally denoted (H 2 ):

1. ε -→ π ε is continuous, 2. inf ε>0 π ε > 1, 3. π 1 = exp(1), 4. π ε ε→0 -→ +∞, 5. ε √ log π ε ε→0 -→ 0. Then, we deduce the asymptotic behavior of θb1 k (x k ). Proposition 2. Assume that (H 1 ) and (H 2 ) hold. For all k < Λ ε , θb 1 k (x k
) is a thresholding rule, i.e., there exists a uniquely defined t(π ε ) such that

θb1 k (x k ) = 0 ⇐⇒ s k,ε |x k | ≤ t(π ε ),
where the threshold t(π ε ) satisfies t(π ε ) ≥ 2 log(π ε ) for π ε large enough, and

lim πε→+∞ t(π ε ) 2 log(π ε ) = 1.
Furthermore, there exists a positive constant C such that lim sup

π ε →+∞ |s k,ε x k -s k,ε θb 1 k (x k )|1 |s k,ε x k |>2t(π ε ) ≤ C.
Remark 2. The threshold t(π ε ) introduced in Proposition 2 will be used throughout this paper, even though it is only implicitly defined.

The proof of this proposition is given in the Appendix. Since ∀ k < Λ ε , θb 1 k (x k ) is a thresholding rule, it will be easy to evaluate the maxiset for θb1 . As for the posterior mean, we have the following useful result. Proposition 3. Assume that (H 1 ) and (H 2 ) hold. Let k < Λ ε be fixed. There exist two functions ε 1 and

ε 2 bounded on [1, +∞) such that ε 1 (x) x→∞ -→ 0, and (6) θb2 k (x k ) = x k 1 + ε 1 (s k,ε x k ) 1 + π ε φ(s k,ε x k )γ(s k,ε x k ) -1 ε 2 (s k,ε x k ) ,
where φ denotes the density of a (0, 1) Gaussian variable. If t(π ε ) is the threshold introduced in Proposition 2, there exists a positive constant C such that

lim sup πε→+∞ |s k,ε x k -s k,ε θb2 k (x k )|1 |s k,ε x k |>2t(π ε ) ≤ C.
Proposition 3 is proved in the Appendix.

Remark 3. By using the results of Proposition 3, we have for π ε large enough,

θb 2 k s -1 k,ε t(π ε ) 2 ≤ π -1 2 ε s -1 k,ε log π ε . Unlike θb 1 k (x k ), for all k < Λ ε , θb 2 k (x k ) is not a thresholding rule, since θb 2 k (x k ) = 0 if x k = 0,
and we can easily prove that under (H 1 ), lim

s k,ε x k →0 x k +∞ -∞ u 2 exp(-1 2 u 2 )γ(u) du +∞ -∞ exp(-1 2 u 2 )γ(u) du + π ε -1 θb2 k (x k ) = 1.
Now, we are ready to evaluate the maxisets for both Bayesian rules. In Sections 2.2 and 2.3, for i ∈ {1, 2}, the risk of θb i studied under the l p -norm (1 ≤ p < ∞), will be denoted R p ( θb i ). We have:

R p ( θb i ) = (E θb i -θ p lp ) 1/p = k≥1 E | θbi k (x k ) -θ k | p 1/p .

Maxisets for the posterior median. Since

∀ k < Λ ε , θb1 k (x k
) is a thresholding rule, it is easy to evaluate the maxiset for θb 1 . On the one hand, we have: Theorem 2. Assume that (H 1 ) and (H 2 ) hold. Let 0 < r < ∞ and 1 ≤ p < ∞ be two fixed real numbers. Suppose that ∀ ε > 0,

Λ ε = (ε log π ε ) -r
and there exist two positive constants T 1 and T 2 such that ∀ ε > 0,

ε -p π -1 ε (log π ε ) -1 2 -p 2 ≤ T 1 , (7) π -1 8 ε (log π ε ) -1 4 -p 2 k<Λ ε σ p k ≤ T 2 . ( 8 
)
Let q be a fixed positive real number such that q < p.

If θ ∈ B 1 r (1-q/p) p,∞
∩ wl p,q (σ), then there exists a positive constant C such that

∀ ε > 0, R p ( θb1 ) ≤ C(ε log π ε ) 1-q/p .
The proof of this theorem that uses Proposition 2 is omitted since it is inspired by the proof of Theorem 3.1 of Kerkyacharian and Picard [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well-concentrated bases[END_REF] and is very similar to the proof of Theorem 4 of Section 2.3.

On the other hand, we have:

Theorem 3. Assume that (H 1 ) and (H 2 ) hold. Let 0 < r < ∞ and 1 ≤ p < ∞ be two fixed real numbers. Suppose that ∀ ε > 0,

Λ ε = (ε log π ε ) -r .
Let q be a fixed positive real number such that q < p. If there exists a positive constant C such that

∀ ε > 0, R p ( θb 1 ) ≤ C(ε log π ε ) 1-q/p , then θ ∈ B 1 r (1-q/p) p,∞
∩ wl p,q (σ).

Before proving Theorem 3, let us recall the following result (Lemma 2.2 of Kerkyacharian and Picard [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well-concentrated bases[END_REF]):

Proposition 4. For any 1 ≤ p < ∞ and 0 < q < p, wl p,q (σ) = θ = (θ k ) k≥1 : sup λ>0 λ q-p k 1 |θ k |≤λσ k |θ k | p < ∞ .
Proof of Theorem 3. Since π 1 = exp(1), we have Λ 1 = 1 and θ p l p ≤ C p . For any ε > 0,

k≥Λ ε |θ k | p ≤ E θb 1 -θ p lp ≤ C p Λ -(p-q)/r ε ,
and since ε → Λ ε is continuous with lim ε→0 Λ ε = +∞, we have:

sup λ>0 λ p r (1-q p ) k≥λ |θ k | p ≤ C p , and θ ∈ B 1 r (1-q p ) p,∞ .
In the following, we shall use t(π ε ) (denoted t if there is no risk of confusion) introduced in Proposition 2 and the following inequality: for any m > 0, with Z ∼ N (0, 1), for ε small enough,

P |s k,ε x k -s k,ε θ k | ≥ t m ≤ P |Z| ≥ 1 m 2 log π ε (9) ≤ 2 ∞ 1 m √ 2 log π ε e -u 2 /2 du √ 2π ≤ 2 exp - 1 2 1 m 2 log π ε 2 ∞ 0 e -u 1 m √ 2 log π ε du √ 2π ≤ K(log π ε ) -1/2 π -1/m 2 ε ,
where K depends only on m. So, for k < Λ ε , and for ε small enough,

|θ k | p 1 |s k,ε θ k |≤ t 2 = |θ k | p E (1 |s k,ε θ k |≤ t 2 1 |s k,ε x k |≥t ) + E (|θ k | p 1 |s k,ε θ k |≤ t 2 1 |s k,ε x k |<t ) ≤ |θ k | p 1 |s k,ε θ k |≤ t 2 P |s k,ε x k -s k,ε θ k | ≥ t 2 + E | θb1 k (x k ) -θ k | p ≤ 1 2 |θ k | p 1 |s k,ε θ k |≤ t 2 + E | θb 1 k (x k ) -θ k | p .
Therefore, for ε small enough,

k |θ k | p 1 |s k,ε θ k |≤ t 2 ≤ 2E θb 1 -θ p l p ≤ 2C p (ε log π ε ) p-q .
Since ε → π ε is continuous, it implies that there exists λ 0 > 0 such that

sup λ<λ0 λ q-p k |θ k | p 1 |θ k |≤σ k λ < ∞. Since θ ∈ B 1 r (1-q p ) p,∞ , sup λ≥λ0 λ q-p k |θ k | p 1 |θ k |≤σ k λ ≤ λ q-p 0 k |θ k | p < ∞.
Using Proposition 4, we have proved that

θ ∈ B 1 r (1-q p ) p,∞ ∩ wl p,q (σ).
Finally, from Theorems 2 and 3, we deduce easily:

Corollary 1. Assume that (H 1 ) and (H 2 ) hold. Let 0 < r < ∞ and 1 ≤ p < ∞ be two fixed real numbers. Suppose that ∀ ε > 0, Λ ε = (ε log π ε ) -r
such that [START_REF] Cavalier | Oracle inequalities for inverse problems[END_REF] and (8) are satisfied. Let q be a fixed positive real number such that q < p. Then,

M S θb 1 , (ε log π ε ) 1-q/p , p = wl p,q (σ) ∩ B 1 r (1-q/p) p,∞ .
We can conclude that the spaces B 1 r (1-q p ) p,∞ ∩ wl p,q (σ) appear as maximal spaces where θb1 attains specific rates of convergence.

Maxisets for the posterior mean.

As in Section 2.2, we prove the following results:

Theorem 4. Assume that (H 1 ) and (H 2 ) hold. Let 0 < r < ∞ and 1 ≤ p < ∞ be two fixed real numbers. Suppose that ∀ ε > 0, Λ ε = (ε log π ε ) -r
and there exist two positive constants T 1 and T 2 such that ∀ ε > 0,

ε -p π -1 4 ε (log π ε ) -1 2 -p 2 ≤ T 1 , (10) π -1 32 ε (log π ε ) -1 4 -p 2 k<Λ ε σ p k ≤ T 2 . ( 11 
)
Let q be a fixed positive real number such that q < p.

If θ ∈ B 1 r (1-q/p) p,∞
∩ wl p,q (σ), then there exists a positive constant C such that

∀ ε > 0, R p ( θb 2 ) ≤ C(ε log π ε ) 1-q/p .
Proof. In the following, K will denote a constant independent of ε that may be different at each line. Let t = t(π ε ) be the threshold introduced in Proposition 2. For all

k < Λ ε , E | θb 2 k (x k ) -θ k | p = A + B + C, with A = E | θb 2 k (x k ) -θ k | p 1 |s k,ε x k |≤ t 2 , B = E | θb 2 k (x k ) -θ k | p 1 t 2 <|s k,ε x k |≤2t , and C = E | θb2 k (x k ) -θ k | p 1 |s k,ε x k |>2t .
For the first term, we have, using Remark 3 and (9),

A = E | θb 2 k (x k ) -θ k | p 1 |s k,ε x k |≤ t 2 ≤ 2 p-1 E | θb 2 k (x k )| p 1 |s k,ε x k |≤ t 2 + 2 p-1 |θ k | p E 1 |s k,ε x k |≤ t 2 ≤ Ks -p k,ε π -p 2 ε (log π ε ) p 2 + 2 p-1 |θ k | p E [1 |s k,ε x k |≤ t 2 1 |s k,ε θ k |>t ] + 2 p-1 |θ k | p E [1 |s k,ε x k |≤ t 2 1 |s k,ε θ k |≤t ] ≤ Kσ p k ε p π -p 2 ε (log π ε ) p 2 + 2 p-1 |θ k | p P |s k,ε x k -s k,ε θ k | ≥ t 2 + 2 p-1 |θ k | p 1 |s k,ε θ k |≤t ≤ Kσ p k ε p π -p 2 ε (log π ε ) p 2 + K|θ k | p π -1 4 ε (log π ε ) -1 2 + 2 p-1 |θ k | p 1 |s k,ε θ k |≤t .
The second term can be split into B = B 1 + B 2 + B 3 , with

B 1 = E | θb 2 k (x k ) -θ k | p 1 t 2 <|s k,ε x k |≤2t 1 |s k,ε θ k |>3t , B 2 = E | θb 2 k (x k ) -θ k | p 1 t 2 <|s k,ε x k |≤2t 1 t 4 <|s k,ε θ k |≤3t , B 3 = E | θb 2 k (x k ) -θ k | p 1 t 2 <|s k,ε x k |≤2t 1 |s k,ε θ k |≤ t 4 .
Using Proposition 1 and ( 9),

B 1 = E | θb2 k (x k ) -θ k | p 1 t 2 <|s k,ε x k |≤2t 1 |s k,ε θ k |>3t ≤ E |x k -θ k | p 1 |x k -θ k |≥|θ k | 1 t 2 <|s k,ε x k |≤2t 1 |s k,ε θ k |>3t + |θ k | p E 1 |x k -θ k |<|θ k | 1 t 2 <|s k,ε x k |≤2t 1 |s k,ε θ k |>3t ≤ (E |x k -θ k | 2p ) 1 2 P(|s k,ε x k -s k,ε θ k | ≥ t) 1 2 + |θ k | p P(|s k,ε x k -s k,ε θ k | ≥ t) ≤ Kε p σ p k π -1 2 ε (log π ε ) -1 4 + K|θ k | p π -1 ε (log π ε ) -1 2 , B 2 = E | θb 2 k (x k ) -θ k | p 1 t 2 <|s k,ε x k |≤2t 1 t 4 <|s k,ε θ k |≤3t ≤ E |x k -θ k | p 1 |x k -θ k |≥|θ k | 1 t 4 <|s k,ε θ k | + |θ k | p E 1 |x k -θ k |<|θ k | 1 |s k,ε θ k |≤3t ≤ Kε p σ p k P |s k,ε x k -s k,ε θ k | ≥ t 4 1 2 + |θ k | p 1 |s k,ε θ k |≤3t ≤ Kε p σ p k π -1 32 ε (log π ε ) -1 4 + |θ k | p 1 |s k,ε θ k |≤3t , B 3 = E | θb 2 k (x k ) -θ k | p 1 t 2 <|s k,ε x k |≤2t 1 |s k,ε θ k |≤ t 4 ≤ E |x k -θ k | p 1 |s k,ε x k -s k,ε θ k |≥ t 4 ≤ (E |x k -θ k | 2p ) 1 2 P |s k,ε x k -s k,ε θ k | ≥ t 4 1 2 ≤ Kε p σ p k π -1 32 ε (log π ε ) -1 4 .
For the last term, we denote

τ (k, ε) = s k,ε x k -s k,ε θb 2 k (x k
) and recall that ξ k is the noise. Using Proposition 3 and ( 9), we have

C = E | θb 2 k (x k ) -θ k | p 1 |s k,ε x k |>2t = E | θb 2 k (x k ) -θ k | p 1 |s k,ε x k |>2t 1 |s k,ε θ k |≤t + E | θb 2 k (x k ) -θ k | p 1 |s k,ε x k |>2t 1 |s k,ε θ k |>t ≤ s -p k,ε E (|ξ k -τ (k, ε)| 2p 1 |s k,ε x k |>2t ) 1 2 P(|s k,ε x k -s k,ε θ k | ≥ t) 1 2 + s -p k,ε E |ξ k -τ (k, ε)| p 1 |s k,ε x k |>2t 1 |s k,ε θ k |>t ≤ Ks -p k,ε P(|s k,ε x k -s k,ε θ k | ≥ t) 1 2 + Ks -p k,ε 1 |s k,ε θ k |>t ≤ Kε p σ p k (π -1 2 ε (log π ε ) -1 4 + 1 |s k,ε θ k |>t ).
Finally, for ε small enough, and

∀ k < Λ ε , E | θb 2 k (x k ) -θ k | p ≤ K ε p σ p k π -1 32 ε (log π ε ) -1 4 + ε p σ p k 1 |θ k |>εσ k √ 2 log π ε + |θ k | p 1 |θ k |≤4εσ k √ 2 log π ε + |θ k | p π -1 4 ε (log π ε ) -1 2 .
We conclude by using Proposition 4 and by observing that

E θb 2 -θ p lp = k<Λ ε E | θb2 k (x k ) -θ k | p + k≥Λ ε |θ k | p ≤ K(ε log π ε ) p-q , since θ ∈ B 1 r (1-q p ) p,∞ ∩ wl p,q (σ) and Λ ε = (ε √ log π ε ) -r .
As in Section 2.2, we have a converse result, but unlike Theorem 3, we need to control the size of the σ k 's.

Theorem 5. Assume that (H 1 ) and (H 2 ) hold. Let 0 < r < ∞ and 1 ≤ p < ∞ be two fixed real numbers. Suppose that ∀ ε > 0,

Λ ε = (ε log π ε ) -r .
Let q be a fixed positive real number such that q < p. If there exists a positive constant C such that

∀ ε > 0, R p ( θb2 ) ≤ C(ε log π ε ) 1-q/p , then θ ∈ B 1 r (1-q p ) p,∞
∩ wl p,q (σ) as soon as there exists a positive constant T such that

(12) ∀ ε > 0, π -p 2 ε k<Λε σ p k ≤ T. Proof. To prove that θ ∈ B 1 r (1-q p ) p,∞
, we refer the reader to the proof of Theorem 3. Then, we want to show that

sup λ>0 λ q-p k |θ k | p 1 |θ k |≤λσ k < ∞.
For this, we still use the threshold t = t(π ε ) of Proposition 2. Using (9), for any k < Λ ε and for ε small enough,

|θ k | p 1 |s k,ε θ k |≤ t 4 = |θ k | p E (1 |s k,ε θ k |≤ t 4 1 |s k,ε x k |≥ t 2 ) + |θ k | p E (1 |s k,ε θ k |≤ t 4 1 |s k,ε x k |< t 2 ) ≤ |θ k | p 1 |s k,ε θ k |≤ t 4 P |s k,ε x k -s k,ε θ k | ≥ t 4 + |θ k | p 1 |s k,ε θ k |≤ t 4 P |s k,ε x k | < t 2 ≤ 1 2 |θ k | p 1 |s k,ε θ k |≤ t 4 + |θ k | p 1 |s k,ε θ k |≤ t 4 P |s k,ε x k | < t 2 .
By using Remark 3, we have for ε small enough,

θb 2 k s -1 k,ε t 2 ≤ π -1 2 ε s -1 k,ε log π ε .
Therefore,

k |θ k | p 1 |s k,ε θ k |≤ t 4 ≤ 2 k |θ k | p 1 |s k,ε θ k |≤ t 4 P |s k,ε x k | < t 2 ≤ 2 p k E | θb2 k (x k ) -θ k | p + | θb2 k (x k )| p 1 |s k,ε x k |< t 2 ≤ 2 p k E | θb 2 k (x k ) -θ k | p + 2 p k<Λε E | θb 2 k (x k )| p 1 |s k,ε x k |< t 2 ≤ 2 p E θb2 -θ p l p + 2 p k<Λε s -p k,ε π -p 2 ε (log π ε ) p 2 ≤ 2 p C p (ε log π ε ) p-q + 2 p ε p π -p 2 ε (log π ε ) p 2 k<Λ ε σ p k .
Consequently, under condition [START_REF] Cohen | Maximal spaces with given rate of convergence for thresholding algorithms[END_REF], for ε small enough,

k |θ k | p 1 |θ k |≤ 1 4 σ k ε √ log πε ≤ 2 p (C p + T )(ε log π ε ) p-q .
Using the same arguments as for the proof of Theorem 3, the last inequality implies that θ ∈ wl p,q (σ).

Finally, from Theorems 4 and 5, observing that condition [START_REF] Cohen | Maximal spaces with given rate of convergence for thresholding algorithms[END_REF] is less restrictive than condition [START_REF] Cohen | Restricted nonlinear approximation[END_REF] since p/2 ≥ 1/2 > 1/32, we deduce easily: Corollary 2. Assume that (H 1 ) and (H 2 ) hold. Let 0 < r < ∞ and 1 ≤ p < ∞ be two fixed real numbers. Suppose that ∀ ε > 0,

Λ ε = (ε log π ε ) -r
such that [START_REF] Clyde | Multiple shrinkage and subset selection in wavelets[END_REF] and [START_REF] Cohen | Restricted nonlinear approximation[END_REF] are satisfied. Let q be a fixed positive real number such that q < p. Then,

M S θb2 , (ε log π ε ) 1-q/p , p = wl p,q (σ) ∩ B 1 r (1-q/p) p,∞ .
Once more, we can conclude that the spaces

B 1 r (1-q p ) p,∞
∩ wl p,q (σ) appear as maximal spaces where θb 2 attains specific rates of convergence.

2.4. First conclusions. Before going further, let us compare the various procedures involved in this paper. We recall that unlike θb 1 k (x k ), θb 2 k (x k ) does not possess the advantage of being a thresholding rule (k < Λ ε ) and this explains the differences between the assumptions that are needed to determine the respective maxisets associated with the Bayesian procedures θb1 and θb2 . For instance, this explains why, unlike θb1 , if θb2 achieves the given rate of convergence, we need a condition on the σ k 's to prove that θ ∈ B 1 r (1-q p ) p,∞ ∩ wl p,q (σ). Furthermore, to obtain the upper bound for R p ( θb 2 ), we use a decomposition into eleven terms for

E | θb 2 k (x k ) -θ k | p .
Since it is a thresholding rule, the corresponding decomposition for θb1 k is simpler. This explains why the assumptions of Theorem 4 are a bit more restrictive than those of Theorem 2. Actually, to obtain the assumptions of Theorem 4, we just have to replace π ε with π 1/4 ε in the assumptions of Theorem 2. But, since we consider a rate of the form ε √ log π ε without focusing on the optimal constant, the Bayesian procedures achieve exactly the same performance from the maxiset point of view. When π ε is a power of ε, then, by using Theorem 1, we can compare the Bayesian procedures θb 1 and θb 2 with the thresholding one. We can conclude that each of them achieves the same performance as the thresholding one. Finally, since linear estimates are outperformed by thresholding ones, they are also outperformed by θb 1 and θb 2 .

Let us show now the importance of Assumption (H 1 ). Section 7.2 of Johnstone and Silverman [START_REF] Johnstone | Empirical Bayes selection of wavelet thresholds[END_REF] proves that if γ is a normal density, whatever the value of w k,ε , the posterior median satisfies

| θb1 (x k )| ≤ (1 -α)|x k |,
for some α > 0 and the same inequality holds for the posterior mean. It yields for

θ k > 0, E | θb 1 k (x k ) -θ k | p ≥ 1 2 α p θ p k .
Moreover, when γ has tails equivalent to exp(-C|t| λ ) for some λ ∈ (1, 2), Johnstone and Silverman showed that for large θ k ,

| θb 1 k (x k ) -θ k | ≥ C|θ k | λ-1 .
Thus (H 1 ) cannot be essentially relaxed without obtaining smaller maxisets.

2.5. Maxisets of Bayesian procedures for estimating functions of L p spaces. In this section, we estimate functions of

L p (D) = f : f Lp = ( D |f (x)| p dx) 1/p < ∞ , where D = [0, 1] d or D = R d .
For this purpose, we exploit a wavelet basis of L 2 (D) denoted B = {ψ k , k ≥ 1}. More precisely, we assume that (ψ k ) k≥1 is the wavelet-tensor product constructed on compactly supported wavelets (see Meyer [START_REF] Meyer | Wavelets and Operators[END_REF]). So, if 1 < p < ∞, Meyer [START_REF] Meyer | Wavelets and Operators[END_REF] proved that B is an unconditional basis of L p (D), which means that:

• for any f ∈ L p (D), there exists a unique sequence

θ such that f = k θ k ψ k , • there exists an absolute constant K such that if ∀ k ≥ 1, |θ k | ≤ |θ k |, then k θ k ψ k L p ≤ K k θ k ψ k L p . Remark 4. The restriction 1 < p < ∞ is due to the fact that there is no unconditional basis if p / ∈ (1, ∞).
Furthermore, we assume that {σ k ψ k , k ≥ 1} satisfies the following inequality, called a superconcentration inequality: for any 0 < r 1 < ∞, there exists a constant C(p, r 1 ) such that for all F ⊂ {1, 2, . . . },

k∈F |σ k ψ k | r1 1 r 1 Lp ≤ C(p, r 1 ) sup k∈F |σ k ψ k | L p .
Remark 5. Theorem 4.2 of Kerkyacharian and Picard [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well-concentrated bases[END_REF] gives conditions on the σ k 's and on B to satisfy the above superconcentration inequality.

We consider the model (1), and the function

f = k θ k ψ k is estimated by f b 1 = k θb1 k (x k )ψ k or f b 2 = k θb2 k (x k )ψ k .
In this framework, we set: Definition 3. For 1 < p < ∞ and any i ∈ {1, 2}, the maxiset of f b i associated with the rate ρ ε and the L p -loss is

M S( f bi , ρ ε , p) = f = k θ k ψ k : sup ε (E f bi -f p Lp ) 1 p ρ -1 ε < ∞ .
To study maxisets of f b 1 and f b 2 , we introduce for any η > 0 and any 0 < q < p:

B η p,∞ (B) = f = k θ k ψ k : sup λ>0 λ η k≥λ θ k ψ k L p < ∞ , wl p,q (σ)(B) = f = k θ k ψ k : sup λ>0 λ q k 1 |θ k |>λσ k σ p k ψ k p L p < ∞ .
If B is a standard wavelet basis regular enough, the space B η p,∞ (B) can be identified with a real Besov space. See Meyer [START_REF] Meyer | Wavelets and Operators[END_REF] for further details. Theorem 6. Assume that (H 1 ) and (H 2 ) hold. Let 0 < r < ∞ be a fixed real number. Suppose that

∀ ε > 0, Λ ε = ε log π ε -r ,
and there exist two positive constants T 1 and T 2 such that for any ε > 0,

ε -p π -1 ε (log π ε ) -1 2 1 2 min(p;2) (log π ε ) -p 2 ≤ T 1 and π -1 8 ε (log π ε ) -1 4 -p 2 k<Λ ε σ p k ψ k p Lp ≤ T 2 .
Let q be a fixed positive real number such that q < p. Then, under the model ( 1),

M S f b 1 , (ε log π ε ) 1-q/p , p = wl p,q (σ)(B) ∩ B 1 r (1-q/p) p,∞ (B).
The analogous result for f b2 is obtained if we assume that for any ε > 0,

ε -p π -1 4 ε (log π ε ) -1 2 1 2 min(p;2) (log π ε ) -p 2 ≤ T 3 ,
and π

-1 32 ε (log π ε ) -1 4 -p 2 k<Λ ε σ p k ψ k p L p ≤ T 4 ,
where T 3 and T 4 are two positive constants.

Once more, when π ε is a power of ε (i.e., for the rate ε log(1/ε)), by using Theorems 5.1 and 5.2 of Kerkyacharian and Picard [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well-concentrated bases[END_REF] we can conclude that each of the Bayesian procedures achieves the same performance as the thresholding one.

Proof. Again, we only give the proof for the procedure associated with the mean. Recall that B is an unconditional basis of L p (D) if and only if there exists M > 0 such that for any set F ⊂ {1, 2, . . . } and any choice of the coefficients c k 's

(13) M -1 k∈F c k ψ k L p ≤ k∈F |c k ψ k | 2 1 2 L p ≤ M k∈F c k ψ k L p .
Furthermore, since {σ k ψ k , k ≥ 1} satisfies a superconcentration inequality, there exist two positive constants c p and C p such that for any F ⊂ {1, 2, . . . }, we have:

(14) c p k∈F |σ k ψ k | p ≤ k∈F |σ k ψ k | 2 p 2 ≤ C p k∈F |σ k ψ k | p .
In the following, K will denote a constant independent of ε that may be different at each line. We use the threshold t = t(π ε ) introduced in Proposition 2 and the results of Proposition 1. Let us assume that f ∈ wl p,q (σ)(B)

∩ B 1 r (1-q/p) p,∞ (B). Then, E k ( θb2 k -θ k )ψ k p L p is bounded by K 11 i=1
A i , with the A i 's defined as follows:

A 1 = k≥Λ ε θ k ψ k p L p ≤ K ε log π ε (p-q) , since f ∈ B 1 r (1-q/p) p,∞ (B). Next, A 2 = E k<Λ ε θ k ψ k 1 |s k,ε x k |≤ t 2 1 |s k,ε θ k |>t p L p ≤ KE k<Λε θ 2 k ψ 2 k 1 |s k,ε x k -s k,ε θ k |≥ t 2 p 2 ,
by using [START_REF] Devore | Degree of nonlinear approximation[END_REF].

If p ≤ 2, by using ( 9), the Jensen inequality, and (13),

A 2 ≤ K k<Λε θ 2 k ψ 2 k P |s k,ε x k -s k,ε θ k | ≥ t/2 p 2 ≤ K π -1/4 ε (log π ε ) -1 2 p 2 k<Λ ε θ k ψ k p L p .
If p ≥ 2, by using (9), the generalized Minkowski inequality, and (13)

A 2 ≤ K k<Λ ε θ 2 k ψ 2 k P |s k,ε x k -s k,ε θ k | ≥ t/2 2 p p 2 ≤ Kπ -1/4 ε (log π ε ) -1 2 k<Λ ε θ k ψ k p Lp and A 3 = E k<Λε θ k ψ k 1 |s k,ε x k |≤ t 2 1 |s k,ε θ k |≤t p L p ≤ K k<Λε θ 2 k ψ 2 k 1 |s k,ε θ k |≤t p 2 ,
by using [START_REF] Devore | Degree of nonlinear approximation[END_REF]. Further,

A 4 = E k<Λε θb 2 k ψ k 1 |s k,ε x k |≤ t 2 p L p ≤ KE k<Λε ( θb 2 k ) 2 1 |s k,ε x k |≤ t 2 ψ 2 k p 2 ≤ Kε p π -p/2 ε (log π ε ) p 2 k<Λ ε σ 2 k ψ 2 k p 2 ≤ Kε p π -p/2 ε (log π ε ) p 2 k<Λ ε σ p k ψ k p L p ,
by using [START_REF] Devore | Degree of nonlinear approximation[END_REF], Remark 3,[START_REF] Donoho | Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition[END_REF]. Using (13), we have:

A 5 = E k<Λε ( θb 2 k -θ k )ψ k 1 t 2 <|s k,ε x k |≤2t 1 t 4 <|s k,ε θ k |≤3t 1 |x k -θ k |≥|θ k | p Lp ≤ KE k<Λ ε (x k -θ k ) 2 ψ 2 k 1 |s k,ε x k -s k,ε θ k |≥ t 4 p 2 .
If p ≤ 2,

A 5 ≤ K k<Λ ε |ψ k | p E |x k -θ k | p 1 |s k,ε x k -s k,ε θ k |≥ t 4 ≤ Kε p π -1 32 ε (log π ε ) -1 4 k<Λε |ψ k | p σ p k ,
by using ( 9) and the Cauchy-Schwarz inequality.

If p ≥ 2, by using ( 9), the generalized Minkowski inequality, and ( 14),

A 5 ≤ K k<Λε ψ 2 k E |x k -θ k | p 1 |s k,ε x k -s k,ε θ k |≥ t 4 2 p p 2 ≤ Kε p π -132 ε (log π ε ) -1 4 k<Λ ε |ψ k | p σ p k .

Now we have

A 6 = E k<Λ ε ( θb2 k -θ k )ψ k 1 t 2 <|s k,ε x k |≤2t 1 t 4 <|s k,ε θ k |≤3t 1 |x k -θ k |<|θ k | p Lp ≤ K k<Λε θ 2 k ψ 2 k 1 |s k,ε θ k |≤3t p 2 ,
by using [START_REF] Devore | Degree of nonlinear approximation[END_REF]. By using [START_REF] Devore | Degree of nonlinear approximation[END_REF], the following terms:

A 7 = E k<Λ ε ( θb2 k -θ k )ψ k 1 t 2 <|s k,ε x k |≤2t 1 |s k,ε θ k |>3t 1 |x k -θ k |≥|θ k | p L p ≤ KE k<Λε (x k -θ k ) 2 ψ 2 k 1 |s k,ε x k -s k,ε θ k |≥t p 2 , A 8 = E k<Λ ε ( θb 2 k -θ k )ψ k 1 t 2 <|s k,ε x k |≤2t 1 |s k,ε θ k |>3t 1 |x k -θ k |<|θ k | p L p ≤ KE k<Λ ε θ 2 k ψ 2 k 1 |s k,ε x k -s k,ε θ k |≥t p 2 , A 9 = E k<Λε ( θb 2 k -θ k )ψ k 1 t 2 <|s k,ε x k |≤2t 1 |s k,ε θ k |≤ t 4 p L p ≤ KE k<Λ ε (x k -θ k ) 2 ψ 2 k 1 |s k,ε x k -s k,ε θ k |≥ t 4 p 2
are bounded, up to a constant, by the upper bounds of A 2 or A 5 . Next,

A 10 = E k<Λ ε ( θb2 k -θ k )ψ k 1 |s k,ε x k |>2t 1 |s k,ε θ k |≤t p L p ≤ KE k<Λε ( θb 2 k -θ k ) 2 ψ 2 k 1 |s k,ε x k |>2t 1 |s k,ε x k -s k,ε θ k |>t p 2 ,
by using [START_REF] Devore | Degree of nonlinear approximation[END_REF].

If p ≤ 2, by using ( 9), the Cauchy-Schwarz inequality, and Proposition 3,

A 10 ≤ K k<Λ ε |ψ k | p E | θb 2 k -θ k | p 1 |s k,ε x k |>2t 1 |s k,ε x k -s k,ε θ k |>t ≤ K k<Λε |ψ k | p ε p σ p k P |s k,ε x k -s k,ε θ k | > t 1 2 ≤ Kε p π -1/2 ε (log π ε ) -1 4 k<Λ ε σ p k |ψ k | p .
If p ≥ 2, by using the generalized Minkowski inequality, the Cauchy-Schwarz inequality, ( 9), ( 14), and Proposition 3,

A 10 ≤ K k<Λε ψ 2 k E | θb 2 k -θ k | p 1 |s k,ε x k |>2t 1 |s k,ε x k -s k,ε θ k |>t 2 p p 2 ≤ K k<Λ ε ψ 2 k σ 2 k ε 2 P(|s k,ε x k -s k,ε θ k | > t) 1 p p 2 ≤ Kε p π -1/2 ε (log π ε ) -1/4 k<Λε |ψ k | p σ p k .
Finally,

A 11 = E k<Λ ε ( θb2 k -θ k )ψ k 1 |s k,ε x k |>2t 1 |s k,ε θ k |>t p L p ≤ KE k<Λε ( θb 2 k -θ k ) 2 ψ 2 k 1 |s k,ε x k |>2t 1 |s k,ε θ k |>t p 2 .
If p ≤ 2, by using Proposition 3,

A 11 ≤ K k<Λε |ψ k | p E | θb 2 k -θ k | p 1 |s k,ε x k |>2t 1 |s k,ε θ k |>t ≤ Kε p k<Λ ε |ψ k | p σ p k 1 |s k,ε θ k |>t .
If p ≥ 2, by using ( 14) and Proposition 3,

A 11 ≤ K k<Λε ψ 2 k 1 |s k,ε θ k |>t E | θb 2 k -θ k | p 1 |s k,ε x k |>2t 2 p p 2 ≤ Kε p k<Λ ε ψ 2 k σ 2 k 1 |s k,ε θ k |>t p 2 ≤ Kε p k<Λ ε |ψ k | p σ p k 1 |s k,ε θ k |>t .
Thus we conclude that there exists a positive constant C such that

∀ ε > 0, E k ( θb 2 k (x k ) -θ k )ψ k p Lp ≤ C p ε log π ε (p-q) ,
by using the following result proved by Kerkyacharian and Picard [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well-concentrated bases[END_REF] (upper bound of the term B 2 , p. 311

): if f = k θ k ψ k ∈ wl p,q (σ)(B), then ∀ λ > 0, k θ 2 k ψ 2 k 1 |θ k |≤σ k λ p 2 ≤ Kλ p-q .
Now, let us assume that there exists a positive constant C such that

∀ ε > 0, E k ( θb2 k (x k ) -θ k )ψ k p L p ≤ C p ε log π ε (p-q) .
To bound the following term, we just use [START_REF] Devore | Degree of nonlinear approximation[END_REF]:

A 12 = k≥Λ ε θ k ψ k p L p = E k≥Λ ε ( θb 2 k -θ k )ψ k p L p ≤ KE k ( θb 2 k -θ k ) 2 ψ 2 k p 2 ≤ KE k ( θb 2 k -θ k )ψ k p L p ≤ K ε log π ε p-q , which proves that f = k θ k ψ k ∈ B 1 r (1-q/p) p,∞
(B). Now, using [START_REF] Devore | Degree of nonlinear approximation[END_REF],

k θ k ψ k 1 |s k,ε θ k |≤ t 4 p L p ≤ K(A 12 + A 13 ),
with

A 13 = k<Λ ε θ k ψ k 1 |s k,ε θ k |≤ t 4 p L p ≤ 2 p-1 E k<Λε θ k ψ k 1 |s k,ε θ k |≤ t 4 1 |s k,ε x k |> t 2 p Lp + 2 p-1 A 14 ≤ 1 2 k<Λ ε θ k ψ k 1 |s k,ε θ k |≤ t 4 p L p + 2 p-1 A 14 ≤ 1 2 A 13 + 2 p-1 A 14 ≤ 2 p A 14 ,
for ε small enough (see the upper bound of A 2 ), where

A 14 = E k<Λε θ k ψ k 1 |s k,ε θ k |≤ t 4 1 |s k,ε x k |≤ t 2 p L p .
But, using [START_REF] Devore | Degree of nonlinear approximation[END_REF], we obtain

A 14 ≤ KE k ( θb2 k -θ k )ψ k p Lp + KE k<Λ ε θb2 k ψ k 1 |s k,ε x k |≤ t 2 p Lp ≤ KE k ( θb 2 k -θ k )ψ k p L p + KA 4 ≤ K ε log π ε (p-q) , which implies that k θ k ψ k 1 |s k,ε θ k |≤ t 4 p L p ≤ K ε log π ε (p-q) .
Now, we use Lemma 5.1 of Kerkyacharian and Picard [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well-concentrated bases[END_REF], which ends the proof of the theorem.

3. Relationships between (M 1 ) and wl p,q (σ) Spaces In this paper, our aim is to estimate sparse sequences, and we model sparsity within a Bayes approach, and more precisely, by using the model (M 1 ). We noticed that under this model, the maxisets for the previous Bayes rules are defined by using wl p,q (σ) spaces. To some extent, this result is not surprising, since we recalled in the Introduction that these spaces are weighted versions of weak l q spaces that naturally measure sparsity. Then, the model (M 1 ) and wl p,q (σ) spaces are connected via a maxiset approach. So, it is natural to wonder whether we can establish other more natural connections between our Bayesian approach to model sparsity and wl p,q (σ) spaces. The following result gives a positive answer.

Theorem 7. Suppose that we are given 1 ≤ p < ∞ and 0 < q < p. We again consider the model (M 1 ) with ε = 1. Denote w k = w k,1 and ∀ λ ≥ 0, F (λ) = 2 +∞ λ γ(x) dx. If there exists a constant C such that

sup λ>0 λ q k σ p k 1 |θ k |>σ k λ ≤ C q a.s., then sup λ>0 λ q F (λ) k w k σ p k ≤ C q .
Conversely, if there exists a constant C such that

(15) sup λ>0 λ q F (λ) k w k σ p k ≤ C q , then sup λ>0 λ q k σ p k 1 |θ k |>σ k λ < ∞ a.s. Proof. If sup λ>0 λ q k σ p k 1 |θ k |>σ k λ ≤ C q a.s.,
we have:

sup λ>0 λ q F (λ) k w k σ p k = sup λ>0 E λ q k σ p k 1 |θ k |>σ k λ ≤ E sup λ>0 λ q k σ p k 1 |θ k |>σ k λ ≤ C q .
Conversely, suppose that ( 15) is true. To establish the required inequality, we exploit Theorem 0.3 of Marcus and Zinn [START_REF] Marcus | The bounded law of the iterated logarithm for the weighted empirical distribution process in the non-i.i.d. case[END_REF]. Let (r k ) k≥1 be a Rademacher sequence (i.e., a sequence of i.i.d. random variables taking values +1 and -1 with probability 1/2 each) independent of (θ k ) k≥1 and let S n be the partial sum of the symmetrized random variables (σ p-q k |θ k | q ) k≥1 :

S n = n k=1 Y k , where Y k = r k σ p-q k |θ k | q .
We have

E (Y k 1 |Y k |≤1 ) = 0, P(|Y k | > 1) = P θ k σ k q > σ -p k = w k F (σ -p/q k ) ≤ C q k w k σ p k -1 w k σ p k , var(Y k 1 |Y k |≤1 ) = E (Y 2 k 1 |Y k |≤1 ) = σ 2p k E (σ -1 k |θ k |) 2q 1 σ -1 k |θ k |≤σ -p/q k = 2w k σ 2p k σ -p/q k 0 x 2q γ(x) dx ≤ 2w k σ 2p k σ -p/q k 0 qx 2q-1 F (x) dx ≤ 2C q k w k σ p k -1 w k σ 2p k σ -p/q k 0 qx q-1 dx ≤ 2C q k w k σ p k -1 w k σ p k .
Using the three series theorem (see Theorem 

λ q j k=1 σ p k E (1 |θ k |>σ k λ ) ≤ µ a.s.
Then, we can apply Theorem 0.3 of Marcus and Zinn [START_REF] Marcus | The bounded law of the iterated logarithm for the weighted empirical distribution process in the non-i.i.d. case[END_REF], which shows that lim sup

n→+∞ 1 b n sup λ>0 λ q n k=1 σ p k 1 |θ k |>σ k λ -P(|θ k | > σ k λ) ≤ 1160 µ. Since lim sup n→+∞ 1 b n sup λ>0 λ q n k=1 σ p k P(|θ k | > σ k λ) = 0, it yields lim sup n→+∞ 1 b n sup λ>0 λ q n k=1 σ p k 1 |θ k |>σ k λ ≤ 1160 µ.
With µ → 0, we have proved that for any increasing sequence of positive real numbers

(b n ) n with lim n→+∞ b n = +∞, lim n→+∞ 1 b n sup λ>0 λ q n k=1 σ p k 1 |θ k |>σ k λ = 0 a.s.
If the random sequence A n = sup λ>0 λ q n k=1 σ p k 1 |θ k |>σ k λ were not bounded, we could construct an increasing function Φ, with lim n→+∞ Φ(n) = +∞, such that A Φ(n) > n. By considering an increasing sequence (b n ) n , with b Φ(n) = n, we obtain a contradiction. So, there exists a finite random variable Y such that

∀ n ≥ 1,
A n ≤ Y, a.s.

It implies that sup

λ>0 λ q k σ p k 1 |θ k |>σ k λ < ∞ a.s.
The result is proved.

So, to ensure that a sequence coming from the Bayesian model (M 1 ) belongs to wl p,q (σ) almost surely, we should not consider densities γ having tails heavier than those of Pareto(q)-distributions. In the wavelet framework, with special values for the σ k 's, Rivoirard [START_REF] Rivoirard | Thresholding procedure with priors based on Pareto distributions[END_REF] has already noted the strong connections between Pareto(q)distributions and wl p,q (σ) spaces, since in Section 2.2 of that paper, least favorable priors for these spaces are presented and it is explained how these priors are built from Pareto(q)-variables.

Concluding remarks. In this paper, we discussed the modelling of sparsity. The form of our Bayesian model was the following:

θ k ∼ w k,ε γ k,ε (θ k ) + (1 -w k,ε )δ 0 (θ k ), k ≥ 1.
Provided the tails of γ k,ε are exponential or heavier, the maxisets of the Bayes rules are wl p,q (σ) spaces that naturally measure the sparsity of a signal. So, our choice for the Bayesian modelling seems appropriate. It is all the more appropriate since this model enables us to build typical realizations of wl p,q (σ) spaces.

The main goal of this paper was to compare in the maxiset approach the performances of classical Bayes estimators: the posterior median and mean of our Bayesian model. We proved that for a large range of loss functions, the maxisets of these estimators coincide with the maxisets associated with thresholding estimators. These results have been established for the heteroscedastic white noise model [START_REF] Abramovich | On optimality of Bayesian wavelet estimators[END_REF], where the ξ k 's are assumed to be Gaussian and independent. It would be interesting to study the maxisets of the Bayes rules without these assumptions. It would also be interesting to try to find Bayes estimators that outperform θb 1 and θb 2 under the maxiset approach, if possible. Note that if the maxiset theory seems to provide advantages, the problem of optimality in this approach remains an entirely open issue. Can we introduce a meaningful notion of optimality? If yes, what are optimal estimators? Other natural questions arise: what do the maxisets become when the σ k 's are unknown and they are, for instance, estimated by using a Bayes approach? Do we obtain larger maxisets when the θ k 's are gathered in non-overlapping blocks, each of which is provided with a prior?

Since the outcome of the maxiset approach is a functional space (or a sequence space), we have not focused on the Bayes risks of the estimators. But, inspired by the maxiset point of view used in this paper, we could investigate the maximal set of prior distributions such that the associated Bayes risk of a given estimator achieves a prescribed rate. This provides an interesting topic for further research.

Appendix

In this section, O x (1) will denote any function of x that is bounded as x → +∞. We write o π ε (1) for any function that is bounded by a function depending only on π ε and that tends to 0 as π ε tends to +∞. Furthermore, φ denotes the density of a (0, 1) Gaussian variable and γ is the density introduced in (M 1 ). We shall exploit the following lemma: Lemma 1. For any x > 0 and 0 < τ < x, define: Proof. Under (H 1 ), since γ is positive, absolutely continuous, symmetric, and unimodal, it is easy to show that there exist two constants M 2 and M 3 such that, ∀ (a, b) ∈ R 2 , M 2 exp(-M |a -b|) ≤ γ(a)γ(b) -1 ≤ M 3 exp(M |a -b|).

K τ (x) =
We immediately get the first inequality. Now, let us define ∀ x > 0,

J(x) = +∞ 0 exp - 1 2 v 2 γ(x + v) dv.
As before,

M 2 +∞ 0 exp - 1 2 v 2 -M v dv ≤ J(x)γ(x) -1 ≤ M 3 +∞ 0 exp - 1 2 v 2 + M v dv.
By simple computations, we have:

I(x) = exp 1 2 x 2 J(x) + K 0 (x) ,
which implies the result. Now, let us give the proof of Propositions 2 and 3.

Proof of Proposition 2. Without loss of generality, we can assume that x k > 0. Then, using Proposition 1, Using Lemma 1, we have, for π ε large enough, 2 log(π ε ) ≤ t(π ε ) ≤ 2 log(π ε )(1 + o π ε (1)), and the first statement of Proposition 2 is proved.

θb1 k (x k ) = 0 ⇐⇒ P(θ k > 0 | x k ) <
For the second statement, we assume that s k,ε x k > 2t, which implies that θb1 k (x k ) > 0. Using (13), we have:

P θ k ≤ θb 1 k (x k ) | x k = 1 2 ⇐⇒ 2w ε θb 1 k -∞ φ k (x k -θ)γ k,ε (θ) dθ + (1 -w ε )φ k (x k ) = w ε +∞ -∞ φ k (x k -θ)γ k,ε (θ) dθ ⇐⇒ 2 s k,ε θb 1 k -∞ exp s k,ε x k u - 1 2 u 2 γ(u) du + π ε = +∞ -∞ exp s k,ε x k u - 1 2 u 2 γ(u) du.
Using Lemma 1, since s k,ε x k ≥ 2t, we prove easily that

π ε I(s k,ε x k ) -1 = o π ε (1). Therefore, 2 s k,ε θb 1 k -∞ exp s k,ε x k u - 1 2 u 2 γ(u) du = I(s k,ε x k )(1 + o π ε (1)).
By using again Lemma 1, it implies that there exists a positive constant V such that for π ε large enough,

s k,ε θb 1 k -s k,ε x k -∞ exp - 1 2 v 2 γ(v + s k,ε x k ) dv • γ(s k,ε x k ) -1 ≥ V ⇐⇒ K s k,ε x k -s k,ε θb 1 k (s k,ε x k )γ(s k,ε x k ) -1 ≥ V,
in notations of Lemma 1. Finally, there exists a positive constant C such that lim sup

π ε →+∞ |s k,ε x k -s k,ε θb 1 k (x k )|1 |s k,ε x k |>2t(π ε ) ≤ C.
Proof of Proposition 3. Without loss of generality, we can assume that x k > 0. We have: On the other hand, Lemma 1 yields, exp -1 2

θb2 k (x k ) = +∞ -∞ θγ φ k,ε (θ | x k ) dθ = +∞ -∞ s k,ε θφ(s k,ε (x k -θ))s k,ε γ(s k,ε θ) dθ +∞ -∞ s k,ε φ(s k,ε (x k -θ))s k,ε γ(s k,ε θ) dθ + π ε s k,ε φ(s k,ε x k ) = 1 s k,ε +∞ -∞ u exp -1 2 u 2 + s k,ε x k u γ(u) du
x 2 I 1 (x) = +∞ -∞ u exp - 1 2 (x -u) 2 γ(u) du = +∞ -∞ (v + x) exp - 1 2 v 2 γ(v + x) dv = x exp - 1 2 x 2 I 2 (x) + +∞ -∞ v exp - 1 2 v 2 γ(v + x) dv.
But it is easy to prove that Using [START_REF] Donoho | Neo-classical minimax problems, thresholding and adaptive function estimation[END_REF], we obtain equation [START_REF] Billingsley | Probability and Measure[END_REF]. Now, let us prove the second statement of Proposition 3. Suppose that s k,ε x k ≥ 2t(π ε ). Using ( 16) and ( 18),

0 ≤ s k,ε x k -s k,ε θb2 k (x k ) = s k,ε x k - I 1 (s k,ε x k ) I 2 (s k,ε x k ) + π ε = π ε s k,ε x k + I 2 (s k,ε x k )T (s k,ε x k ) I 2 (s k,ε x k ) + π ε ,
where T is a bounded function. But we suppose that s k,ε x k ≥ 2t(π ε ). So, [START_REF] Donoho | Neo-classical minimax problems, thresholding and adaptive function estimation[END_REF] implies that for π ε large enough

I 2 (s k,ε x k ) ≥ C 1 γ(s k,ε x k )φ(s k,ε x k ) -1 .
Therefore, by using again s k,ε x k ≥ 2t(π ε ), lim sup

πε→∞ π ε s k,ε x k I 2 (s k,ε x k ) < ∞,
which ends the proof of the proposition.

2 + 2 - 3 +∞ τ exp - 1 2 v 2 +

 2232 xv γ(v) dv.Under (H 1 ), there exist four positive constants M 2 , M 3 , C 1 , andC 2 such that M v dv ≤ K τ (x)γ(x) -1 ≤ M M v dv,andC 1 ≤ lim inf x→+∞ I(x)γ(x) -1 φ(x) ≤ lim sup x→+∞ I(x)γ(x) -1 φ(x) ≤ C 2 < ∞.

  ε φ s k,ε (x k -θ) s k,ε γ(s k,ε θ) dθ < w ε +∞ -∞ s k,ε φ s k,ε (x k -θ) s k,ε γ(s k,ε θ) dθ + (1 -w ε )s k,ε φ(s k,ε x k ) ⇐⇒ +∞ 0 s k,ε φ s k,ε (x k -θ) s k,ε γ(s k,ε θ) dθ -0 -∞ s k,ε φ s k,ε (x k -θ) s k,ε γ(s k,ε θ) dθ < π ε s k,ε φ(s k,ε x k ). Then θb 1 k (x k ) = 0 ⇐⇒ s k,ε x k ≤ t, with t such that (u) exp(tu) -exp(-tu) du = π ε .We have that t is a function depending only on π ε and as π ε -→ +∞, (u) exp(tu) du = π ε (1 + o π ε (1)).

+∞ -∞ exp -1 2 u 2 +I 1

 21 s k,ε x k u γ(u) du + π ε (s k,ε x k ) I 2 (s k,ε x k ) + π ε .On the one hand, as x → +∞, using Lemma 1, (17)C 1 ≤ lim inf x→+∞ I 2 (x)γ(x) -1 φ(x) ≤ lim sup x→+∞ I 2 (x)γ(x) -1 φ(x) ≤ C 2 .

2 I 1

 21 (v + x) dv = γ(x)O x (1), (v + x) dv = γ(x)O x (1(x) = x exp -1 2x 2 I 2 (x) + γ(x)O x (1).

  [START_REF] Johnstone | Wavelet threshold estimators for data with correlated noise[END_REF].8 of Billingsley[START_REF] Billingsley | Probability and Measure[END_REF]), S n converges with probability 1 as n → +∞. Therefore, if µ is a fixed positive real number, we have for any increasing sequence of positive real numbers (b n ) n with lim n→+∞ b n =

	Obviously,			
	lim sup n→+∞	sup 1≤j≤n	sup λ>0	1 b n
	+∞,		lim sup n→+∞	1 b n	|S n | ≤ µ a.s.
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